
Random Matrices in Data Analysis

Dimitris Achlioptas

Microsoft Research, Redmond, WA 98052, U.S.A.
optas@microsoft.com

Abstract. We show how carefully crafted random matrices can achieve
distance-preserving dimensionality reduction, accelerate spectral compu-
tations, and reduce the sample complexity of certain kernel methods.

1 Introduction

Given a collection of n data points (vectors) in high-dimensional Euclidean space
it is natural to ask whether they can be projected into a lower dimensional
Euclidean space without suffering great distortion. Two particularly interesting
classes of projections are: i) projections that tend to preserve the interpoint
distances, and ii) projections that maximize the average projected vector length.

In the last few years, distance-preserving projections have had great impact in
theoretical computer science where they have been useful in a variety of algorith-
mic settings, such as approximate nearest neighbor search, clustering, learning
mixtures of distributions, and computing statistics of streamed data.

The general idea is that by providing a low dimensional representation of the
data, distance-preserving embeddings dramatically speed up algorithms whose
run-time depends exponentially in the dimension of the working space. At the
same time, the provided guarantee regarding pairwise distances often allows one
to show that the solution found by working in the low dimensional space is a
good approximation to the solution in the original space.

Perhaps the most commonly used projections aim at maximizing the average
projected vector length, thus retaining most of the variance in the data. This
involves representing the data as a matrix A, diagonalizing A = UDV , and pro-
jecting A onto subspaces spanned by the vectors in U or V corresponding to the
largest entries in D. Variants of this idea are known as Karhunen-Loève trans-
form, Principal Component Analysis, Singular Value Decomposition and others.

In this paper we examine different applications of random matrices to both
kinds of projections, all stemming from variations of the following basic fact: if
R is an n× n random matrix whose entries are i.i.d. Normal random variables,
N(0, 1), then the matrix 1√

n
R is very close to being orthonormal.

2 Euclidean distance preservation

A classic result of Johnson and Lindenstrauss [7] asserts that any set of n points
in Rd can be embedded into Rk, with k = O(log n), so that all pairwise distances
are maintained within an arbitrarily small factor. More precisely,

Lemma 1 ([7]). Given 0 < ε ≤ 1 and an integer n, let k be a positive integer
such that k ≥ k0 = (12/ε2) log n. For every set P of n points in Rd there exists
f : Rd → Rk such that for all u, v ∈ P

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2 .

Perhaps, a naive attempt to construct an embedding as above would be to
pick a random set of k coordinates from the original space. Unfortunately, two
points can be very far apart while differing only along one original dimension,
dooming this approach. On the other hand, if (somehow) for all pairs of points,
all coordinates contributed “roughly equally” to their distance, such a sampling
scheme would be very natural. This consideration motives the following idea: first
apply a random rotation to the n points, and then pick the first k coordinates as
the new coordinates. The random rotation can be viewed as a form of insurance
against axis alignment, analogous to applying a random permutation before
running Quicksort.

Of course, applying a random rotation and then taking the first k coordinates
is equivalent to projecting the n points on a uniformly random k-dimensional
subspace. Indeed, this is exactly how the original proof of Lemma 1 by Johnson
and Lindenstrauss proceeds: to implement the embedding, multiply the n × d
data matrix A with a random d×k orthonormal matrix. Dasgupta and Gupta [5]
and, independently, Indyk and Motwani [6] more recently gave a simpler proof of
Lemma 1 by taking the following more relaxed approach towards orthonormality.

The key idea is to consider what happens if we multiply A with a random d×k
matrix R whose entries are independent Normal random variables with mean 0
and variance 1, i.e., N(0, 1). It turns out that while we do not explicitly enforce
either orthogonality or normality in R, its columns will come very close to having
both of these properties. This is because, as d increases: (i) the length of each
column-vector concentrates around its expectation as the sum of d independent
random variables; (ii) by the spherical symmetry of the Gaussian distribution,
each column-vector points in a uniformly random direction in Rd, making the
k ≤ d independent column-vectors nearly orthogonal with high probability.

More generally, let R be a random matrix whose entries are independent
random variables with E(rij) = 0 and Var(rij) = 1. If f : Rd → Rk is given by

f(x) =
1√
k

xR ,

it is easy to check that for any vector x ∈ Rd we have E (||f(x)||) = ||x||.
Effectively, the squared inner product of x with each column of R acts as an
independent estimate of ‖x‖2, making ||f(x)||2 the consensus estimate (sum) of
the k estimators. Seen from this angle, requiring the k vectors to be orthonormal
simply maximizes the mutual information of the k estimators. For good dimen-
sionality reduction, we also need to minimize the variance of the estimators.

In [1], it was shown that taking rij = ±1 with equal probability, in fact,
slightly reduces the number of required dimensions k (as the variance of each
column-estimator is slightly smaller). At the same time, and more importantly,
this choice of rij makes f a lot easier to work with in practice.

3 Computing Low Rank Approximations

Given n points in Rd represented as an n×d matrix A, one of the most common
tasks in data analysis is to find the “top k” singular vectors of A and then project
A onto the subspace they span. Such low rank approximations are used widely
in areas such as computer vision, information retrieval, and machine learning to
extract correlations and remove noise from matrix-structured data.

Recall that the top singular vector of a matrix A is the maximizer of ‖Ax‖2
over all unit vectors x. This maximum is known as the L2 norm of A and the
maximizer captures the dominant linear trend in A. Remarkably, this maximizer
can be discovered by starting with a random unit vector x ∈ Rd and repeating the
following “voting process” until it reaches a fixpoint, i.e., until x stops rotating:

– Have each of the n rows in A vote on candidate x, i.e., compute y = Ax ∈ Rn.

– Compose a new candidate by combining the rows of A, weighing each row

by its enthusiasm for x, i.e., update x← AT y

‖AT y‖
∈ Rd.

The above idea extends to k > 1. To find the k-dimensional invariant sub-
space of A, one starts with a random subspace, i.e., a random d×k orthonormal
matrix, and repeatedly multiplies by AT A (orthonormalizing after each mul-
tiplication). Computing the singular row-vectors of A, i.e., the eigenvectors of
B = AT A, is often referred to as Principal Component Analysis (PCA). The fol-
lowing process achieves the exact same goal, by extracting the dominant trends in
A sequentially, in order of strength: let A0 be the all zeros matrix; for i = 1, . . . , k:

– Find the top singular vector, xi, of A−Ai−1, via the voting process above.
– Let Ai = Ai−1 + Axix

T
i , i.e., Ai is the optimal rank i approximation to A.

To get an idea of how low rank approximations can remove noise, let G be
an n× d random matrix whose entries are i.i.d. N(0, σ2) random variables. We
saw earlier that each column of G points in an independent, uniformly random
direction in Rn. As a result, when n is large, with high probability the d ≤ n
columns of G are nearly orthogonal and there is no low-dimensional subspace
that simultaneously accommodates many of them. This means that when we
compute a low rank approximation of A + G, as long as σ is “not too large” (in
a sense we will make precise), the columns of G will exert little influence as they
do not strongly favor any particular low-dimensional subspace. Assuming that
A contains strong linear trends, it is its columns that will command and receive
accommodation.

To make this intuition more precise, we first state a general bound on the
impact that a matrix N can have on the optimal rank k approximation of a
matrix A, denoted by Ak, as a function of ‖Nk‖. Recall that ‖A‖F =

√∑
i,j A2

ij .

Lemma 2. For any matrices A and N , if Â = A + N then

‖A− Âk‖2 ≤ ‖A−Ak‖2 + 2‖Nk‖2 and

‖A− Âk‖F ≤ ‖A−Ak‖F + ‖Nk‖F + 2
√
‖Nk‖F ‖Ak‖F .

Notice that all error terms above scale with ‖Nk‖. As a result, whenever N is
poorly approximated in k dimensions, i.e., ‖Nk‖ is small, the error caused by
adding N to a matrix A is also small.

Let us consider the norms of our Gaussian perturbation matrix.

Fact 1 Let G be a random n × d matrix, where d ≤ n, whose entries are i.i.d.
random variables N(0, σ2). For any ε > 0, with probability 1− 1/poly(n, ε),

‖G‖2 = ‖Gk‖2 < (2 + ε)σ
√

n and ‖Gk‖F < (2 + ε)σ
√

kn .

Remarkably, the upper bound above for ‖G‖2 is within a factor of 2 of the lower
bound σ

√
n on the L2 norm of any n × d matrix with mean squared entry σ2.

In other words, a random Gaussian matrix is nearly as unstructured as possible,
resembling white noise in the flatness of its spectrum. On the other hand, ‖A‖2
can be as large as σ

√
dn for an n× d matrix A with mean squared entry σ2.

This capacity of spectral techniques to remove Gaussian noise is by now very
well-understood. We will see that the above geometric explanation of this fact
can actually accommodate much more general noise models, e.g. Nij that are
not identically distributed and, in fact, whose distribution depends on Aij . In
the next section, this generality will enable the notion of “computation-friendly
noise”, i.e., noise that enhances (rather than hinders) spectral computations.

Fact 1 also suggests a criterion for choosing a good value of k when seeking
low rank approximations of a n× d data matrix A:

‖A−Ak‖2 ∼ σ
√

n, where σ2 is the mean squared entry in A−Ak.

In words: we should stop when, after projecting onto the top k singular vectors,
we are left with a matrix, A−Ak, whose strongest linear trend is comparable to
that of a random matrix of similar scale.

3.1 Co-opting the Noise Process

Computing optimal low rank approximations of large matrices often runs against
practical computational limits since the algorithms for this task generally require
superlinear time and a large working set. On the other hand, in many applica-
tions it is perfectly acceptable just to find a rank k matrix C satisfying

‖A− C‖ ≤ ‖A−Ak‖+ δ ,

where Ak is the optimal rank k approximation of the input matrix A, and δ
captures an appropriate notion of “error tolerance” for the domain at hand.

In [2], it was shown that with the aid of randomization one can exploit such an
“error allotment” to aid spectral computations. The main idea is as follows.

Imagine, first, that we squander the error allotment by obliviously adding to
A a Gaussian matrix G, as in the previous section. While this is not likely to
yield a computationally advantageous matrix, we saw that at least it is rather
harmless. The first step in using noise to aid computation is realizing that G is
innocuous due precisely to the following three properties of its entries:

independence, zero mean, small variance.

The fact that the Gij are Gaussian is not essential: a fundamental result of
Füredi and Komlós [4] shows that Fact 1 generalizes to random matrices where
the entries can have different, in fact arbitrary, distributions as long as all Nij

are zero-mean, independent, and their variance is bounded by σ2.
To exploit this fact for computational gain, given a matrix A, we will create

a distribution of noise matrices N that depends on A, yet is such that the ran-
dom variables Nij still enjoy independence, zero mean, and small variance. In
particular, we will be able to choose N so that Â = A + N has computationally
useful properties, such as sparsity, yet N is sufficiently random for ‖Nk‖ to be
small with high probability.

Example: Set Nij = ±Aij with equal probability, independently for all i, j.

In this example, the random variables Nij are independent, E[Nij] = 0 for all
i, j, and the standard deviation of Nij equals Aij . On the other hand, the matrix
Â = A + N will have about half as many non-zero entries as A, i.e., it will be
about twice as sparse. Therefore, while ‖A‖2 can be proportional to

√
dn, the

error term ‖N‖2, i.e., the price for the sparsification, is only proportional to
√

n.

The rather innocent example above can be greatly generalized. To simplify
exposition, in the following, we assume that Aij ∈ [−1,+1].

– Quantization: For all i, j, independently, set Âij to +1 with probability
(1 + Aij)/2, and to −1 with probability (1− Aij)/2. Clearly, for all i, j, we
have E[Nij] = E[Âij −Aij] = 0, while Var(Nij) ≤ N2

ij ≤ 4.
– Uniform sampling: For any desired fraction p ∈ (0, 1], set Âij = Aij/p

with probability p, and 0 otherwise. Now, Var(Nij) = A2
ij(1 − p)/p ≤ 1/p,

so that the error grows only as 1/
√

p as we retain a p-fraction of all entries.
– Weighted sampling: For all i, j, independently, set Âij = Aij/pij with

probability pij , and 0 otherwise, where pij = pA2
ij . This way we retain even

fewer small entries, while maintaining Var(Nij) = 1/p−A2
ij ≤ 1/p.

Reducing the number of non-zero entries and their representation length
causes standard eigenvalue algorithms to work faster. Moreover, the reduced
memory footprint of the matrix Â enables the handling of larger data sets. At a
high level, we perform data reduction by randomly perturbing each data vector
so as to simplify its representation, i.e., sparsify and quantize. The point is that
the perturbation vectors we use, by virtue of their independence, do not fit in a
small subspace, acting effectively as “white noise” that is largely filtered out.

4 Kernel Principal Component Analysis

Given a collection X of training data x1, . . . , xn ∈ Rd, techniques such as linear
SVMs and PCA extract features from X by computing linear functions of X .
However, often the structure present in the training data is not a linear function
of the data representation. Worse, many data sets do not readily support linear
operations such as addition and scalar multiplication (text, for example).

In a “kernel method” the idea is to map X into a space H equipped with
inner product. The dimension of H can be very large, even infinite, and therefore
it may not be practical (or possible) to work with the mapped data explicitly
by applying Φ : X → H. Nevertheless, in many interesting cases it is possible to
efficiently evaluate the dot products 〈Φ(xi), Φ(xj)〉 via a positive definite kernel
k for Φ, i.e., a function k so that k(xi, xj) = 〈Φ(xi), Φ(xj)〉. Algorithms whose
operations can be expressed in terms of inner products can thus operate on Φ(X)
implicitly, given only the Gram matrix

Kij := k(xi, xj) .

Given n training data points, the Kernel PCA (KPCA) method [8] begins
by forming the Gram matrix K above and computing the ` largest eigenvalues,
λ1, . . . , λ`, and corresponding eigenvectors, e1, . . . , e` of K, for some appropriate
choice of ` ≤ n. Then, given an input point x, the method computes the value of
the ` nonlinear feature extractors, corresponding to the inner product of the vec-
tor k(x) = (k(x, x1), k(x, x2), . . . , k(x, xn)) with each of the eigenvectors. These
feature-values can be used for clustering, classification etc.

While Kernel PCA is very powerful the matrix K, in general, is dense mak-
ing the input size scale as n2, where n is the number of training points. As
kernel functions become increasingly more sophisticated, e.g. invoking dynamic
programming to evaluate the similarity k(xi, xj) of two strings xi, xj , just the
cost of Θ(n2) kernel evaluations to construct K rapidly becomes prohibitive.

The uniform sparsification and quantization techniques of the previous sec-
tion are ideally suited for speeding up KPCA. In particular, “sparsification” here
means that we actually only construct a matrix K̂ by computing k(xi, xj) for a
uniformly random subset of all input pairs xi, xj and filling in 0 for the remaining
pairs. In [3], it was proven that as long as K has strong linear structure (which
is what justifies KPCA in the first place), with high probability, the invariant
subspaces of K̂ will be very close to those of K.

Also, akin to quantization, we can replace each exact evaluation of k(xi, xj)
with a more easily computable unbiased estimate for it. In [3], it was shown
that for kernels where: i) X ⊆ Rd, and, ii) k(xi, xj) depends only on ‖xi − xj‖
and/or xi · xj , one can use random projections, as described in Section 2 for
this purpose. Note that this covers some of the most popular kernels, e.g., radial
basis functions (RBF) and polynomial kernels.

5 Future Work

Geometric and spectral properties of random matrices with zero-mean, indepen-
dent entries are the key ingredients in all three examples we considered [1–3].
More general ensembles of random matrices hold great promise for algorithm
design and call for a random matrix theory motivated from a computational per-
spective. Two natural directions are the investigation of matrices with limited
independence, and the development of concentration inequalities for non-linear
functionals of random matrices.

We saw that sampling and quantizing matrices can be viewed as injecting
“noise” into them to endow useful properties such as sparsity and succinctness.
The distinguishing feature of this viewpoint is that the effect of randomization is
established without an explicit analysis of the interaction between randomness
and computation. Instead, matrix norms act as an interface between the two
domains: (i) matrix perturbation theory asserts that matrices of small spectral
norm cannot have a large effect in eigencomputations, while (ii) random matrix
theory asserts that matrices of zero-mean, independent random variables with
small variance have small spectral norm. Is it possible to extend this style of
analysis to other machine-learning settings, e.g. Support Vector Machines?

Acknowledgments. Many thanks to Robert Kleinberg, Heikki Mannila, and
Frank McSherry for reading earlier drafts and providing helpful suggestions.

References

1. Dimitris Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss
with binary coins, JCSS 66 (2003), no. 4, 671–687.

2. Dimitris Achlioptas and Frank McSherry, Fast computation of low rank matrix
approximations, JACM, to appear.

3. Dimitris Achlioptas, Frank McSherry and Bernhard Schölkopf, Sampling techniques
for kernel methods, NIPS 2002, pp. 335–342.

4. Zoltán Füredi and János Komlós, The eigenvalues of random symmetric matrices,
Combinatorica 1 (1981), no. 3, 233–241.

5. Sanjoy Dasgupta and Anupam Gupta, An elementary proof of the Johnson-
Lindenstrauss lemma, Technical report 99-006, UC Berkeley, March 1999.

6. Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: towards remov-
ing the curse of dimensionality, STOC 1998, pp. 604–613.

7. William B. Johnson and Joram Lindenstrauss, Extensions of Lipschitz mappings
into a Hilbert space, Amer. Math. Soc., Providence, R.I., 1984, pp. 189–206.

8. Bernhard Schölkopf, Alex J. Smola and Klaus-Robert Müller, Nonlinear component
analysis as a kernel Eigenvalue problem, Neural Computation 10 (1998), no. 5,
1299–1319.

