
AQuery: A Query Language for Order in Data
Analytics: Language, Optimization, and

Experiments

José Pablo Cambronero and Dennis Shasha

Courant Institute/New York University

September 20, 2016

Introduction

I Success of the relational model results from happy
combination of expressive power and simplicity

I Single data type + few operations
(select/project/join/aggregate) → simplicity

I Programmers of applications that depend on ordered events
face a dilemma

I They would like to use a relational database system, but the
model makes it hard to express queries over order.

I AQuery (and others) embodies philosophy that order can be
introduced without affecting simplicity (and improving
performance)[24][14][8]

AQuery: Sales Query

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month

AQuery: Sales Query

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.
That’s (most of) AQuery!

AQuery

I Modest syntactic and semantic extension to SQL 92

I Replaces unordered relational tables by ordered tables
(arrables which stands for array-tables), which can be sorted
by one or more columns[10]

I Modest syntactic and semantic extension to SQL 92: (i) Adds
one clause: assuming clause (order) (ii) Provides
order-senstive aggregates (iii) Go into and out of first normal
form.

SQL 92: Sales Query – inefficient AND incorrect

Please return the running three month moving average of sales.

1 SELECT t1.month , t1.sales ,

(t1.sales+t2.sales+t3.sales)/3

3 FROM Revenue t1, Revenue t2, Revenue t3

WHERE t1.month - 1 = t2.month and

5 t1.month - 2 = t3.month

Three-way join (inefficient) and misses the first two months. Can
be written correctly in SQL 99 but complex and inefficient.

AQuery: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice) with
the last ten years’ data. Calculate a 12-day moving variance in
returns for stock tickers Leverages: assuming clause,
order-dependent aggregate (vars over 12 previous value, ratios
based on consecutive days). Gives for each ID, a vector of Dates
and variances.

1 SELECT ID, DATE ,

vars(12, ratios(1, EndOfDayPrice) - 1)

3 FROM prices

ASSUMING ASC Date

5 GROUP BY ID

SQL-99: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

1 SELECT ID , Date ,
VARIANCE(r e t s) OVER (

3 ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW

5) as mv
FROM

7 (SELECT
c u r r . Date , c u r r . ID ,

9 c u r r . EndOfDayPrice /
p r e v . EndOfDayPrice − 1 as r e t s

11 FROM
p r i c e s c u r r LEFT JOIN p r i c e s p r e v

13 ON c u r r . ID = p r e v . ID
AND c u r r . Date = p r e v . Date + 1)

15 GROUP BY ID

Optimizations for both sequential and parallel
implementations

I Rule-based optimization for predictability

I Tranformation rules yield demonstratable advantages

I Rules implemented as rewrites on abstract syntax tree.

Sort minimization [new, but clear]

I Detect order-dependent vs order-independent operations

I Sort only columns upon which operations are order-dependent.

I od(t) returns all columns affected by order-dependence, and
necessary to maintain semantics

SELECT ... FROM t ASSUMING S

sortS(t)

→
sortS(od(t)), (columns(t) \ od(t))

Push selections [classical]

I Generally perform selections before sorting and joins

I Except when doing so loses the benefits of indexes.

t ′ ← σW (sortS(t))

→
t ′ ← σW ′′(sortS(σW ′(t)))

where W ′ includes all selections up to first use of an
order-dependent aggregate, and W ′′ contains remaining selections.

AQuery: Sales Query (again)

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation. Sort only
month and sales by month.

Sequential Implementation

I Pure Scala implementation of compiler

I Execution engine: q[28]

I Workflow: write AQuery code, compiler generates optimized q
code, execute using q interpreter

I Advantages: portability, transparency (user able to inspect
generated q code)

Related Work
I Among the excellent work in the development of time series

databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

I DruidIO[30]: open source data store for analytics. Column
oriented, but query language doesn’t suport common
functionality like joins

I Influxdb[6]: Limited query language, no user-defined
functions, no arbitrary sorting

I SciQL[8]: extends MonetDB[13] with first-class arrays for
scientific applications, allowing direct manipulation of array
and matrix structures. Comparable in expressability to
AQuery, but AQuery is designed to be a natural extension of
sql (and is faster).

I Excellent work but focused on reliability and
scalability[18][26], not query plans

Benchmarks

I Compare: AQuery, Python’s Pandas[17], Sybase IQ[21], and
MonetDB (with imbedded Python)[19]

I Experiments: financial benchmark from Sybase[20],
MonetDB’s benchmarking operation of quantile calculation,
various Pandas benchmarking operations from Panda’s
historical performance benchmark[27]

I We compare on our competitors’ benchmarks!

Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase IQ comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

I Pandas version 0.17.0

I Numpy version 1.10.1

I Python version 2.7.5

I MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

I Sybase IQ version 16.0

I q version 3.2 2014.11.01

I AQuery compiler a2q version 1.0

Finance Benchmark

I Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons, test trading strategies)

I Simulated data, randomized as necessary (various parameter
values) data at different sizes (100K, 1M, and 10M
observations)

I Present average response time

I Data and sequential system soon available.

Finance Benchmark: Sybase IQ Results

100k 1M 10M

0

500

1000

1500

0

2500

5000

7500

0

5000

10000

15000

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Sybase IQ

Figure 1: With 100K and 1M rows, AQuery outperforms Sybase IQ in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.

How does AQuery stack up against q?: Finance Benchmark

I Performance on most queries is comparable

I There is some overhead in managing certain simple aquery
data structures

I Current joins available: equi-join and full outer join. Increasing
expressiveness of joins would erase most of remaining gap

I Gap is most evident in queries 1, 5, 6, which use lj in the q
version

How does it stack up against q?: Finance Benchmark

0

200

400

600

0 1 2 3 4 5 6 7 8 9
Query

A
vg

. E
xe

cu
tio

n
T

im
e

ov
er

 1
0

Ite
ra

tio
ns

language aquery q

10MM observations

How does it stack up against q?: Finance Benchmark

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9
Query

A
vg

. E
xe

cu
tio

n
T

im
e

ov
er

 1
0

Ite
ra

tio
ns

language aquery q

20MM observations

Decomposing our query

I Of course, anything AQuery writes, you can write
I But that doesn’t mean it won’t require keeping track of lots

of details, or that reasoning on the fly will give correct and
efficient results. AQuery does that for you, e.g.,

I When function is not order-dependent, push selections below
sort

I Sort only relevant columns
I If already sorted, don’t resort.

Parallel AQuery: newest work

I Simple architecture, allows deeper reasoning for query
generation/transformation

I Novelty: Explores order-based optimizations in a distributed
setting

Parallel Primitives

I Encapsulate all parallelism, allowing compositional reasoning
I Shuffle
I Map (-Reduce)
I Carry-lookahead
I Edge-extension

*Note on diagrams in following slides: red/solid lines repre-
sent instructions sent across nodes, while green/dashed lines
represent data sent across nodes

Map [classical]

I Predicate based partitioning of say table t – like the map in
the classic map-reduce.

X

par
titi

on(t)

partition(t)
partition(t)

X

t ′

t ′′

t
′′′

Staged Reduce [classical]

I Each worker does its own reduction.

I Optionally, stage reduced results into smaller and smaller
summaries (e.g. for a global sum)

Carry-Lookahead Calculations [new]

I Some operations lend themselves to parallelizing intermediate
results followed by adjustments

I Example: Running (i.e., cumulative) sum of stock volumes
entails partitioning into separate chunks of time, performing
running sum in each chunk and then adding the intermediate
results. Like a carry-lookahead adder.

I Effectively, a map-reduce operation with: order-dependent
scan + adjustment function as a reduction operation

Carry-Lookahead Calculations

I partition(c): initial partition on column c

I adj(x , y): adjusts y by combining with x

t1

t2

t3

pa
rti
tio
n(
c)

partition(c)

partition(c)

t1

t ′2

t ′3

t1

t ′2 = adj(last(t1), t2)

...

Edge-Extension

I Window-based operations abound in order-dependent data
analysis

I Example: 7-day moving average of stock prices

I Dependencies across worker processes

I Solution: extend partitioned data with necessary replicated
data (maintaining order of tuples)

I Allows parallelized window-based computation

Edge-Extension

I drop(x , y): drop first x tuples of y

I last(x , y): last x tuples of y

I Results can be kept in worker processes, or sent back to
master (yellow) if these are final results

t1

t2

t3

ed
gev

als
(w

, t)

edgevals(w , t)

edgevals(w , t)

t1

t ′2

t ′3

t′1 = agg(t1)

edge1 = last(n, t1)

t′2 = drop(n, agg(edge1, t2))

edge2 = last(n, t2)

t′3 = drop(n, agg(edge2, t3))

Implementation

I Developed open-source library implementing primitives:
parallel.q

I Composes primitives to yield: distributed sorting, distributed
grouping, distributed crossing, distributed reference joins, in
addition to standard selections/projections/etc

I Standalone library allows users to write distributed queries in
an intuitive fashion

I Parallel AQuery translates standard queries into calls to
parallel.q, modularizing distributed logic

I Prior optimizations still apply (as rewritten abstract syntax
tree)

https://github.com/josepablocam/aquery2q/blob/parallel/src/parallel/parallel.q

Exploring performance in parallel.q

I Setup: 30 million float point numbers in-memory across 3
worker processes

I Experiments: Compare parallel.q performance versus serial q.
Serial q collects data from workers and computes centrally,
meanwhile parallel.q allows expressing the same in-memory
operations over the distributed dataset

I End Goal: AQuery compiler should translate the same simple
query into parallel.q formulation

I Experiment 1: Last value in running average (carry-operation)

I Experiment 2: Max value in 10-element moving average
(edge-extension)

Experiment 1: last of running average

Target AQuery (note that this translation has not yet been
implemented, and parallel.q has been written manually)

SELECT last(avgs(vals)) FROM nums

Experiment 2: Max of moving averages

Target AQuery (note that this translation has not yet been
implemented, and parallel.q has been written manually)

1 SELECT max(avgs(10, vals)) FROM nums

Performance Overview

Table 1: parallel.q allows users to take advantage of parallelism for in-memory
operations that otherwise require collecting (average execution time ms)

Experiment parallel.q standard q

1 1016.5 1213.4
2 1574.9 1876.6

Performance Overview
We evaluate parallel.q scalability by testing with 3, 5 and 10 worker
processes, on a machine with 12 cores. The combined workers
contain a total of 100MM floating point numbers in-memory

0

500

1000

1500

2000

3 5 10
Workers

A
vg

. E
xe

cu
tio

n
T

im
e

(m
s)

query

1

2

Conclusions

I AQuery is a linguistically simple high performance database
system for time series and other ordered data.

I The concept of arrables and assuming and moving averages
constitute the backbone of the system

I Some new optimization problems can be handled with simple
powerful primitives.

I Here is a demo of the sequential version:

https://www.youtube.com/watch?v=ifIsj0Qr-qc&feature=youtu.be

Future Work

I Improve parallel system performance.

I Implement translation for parallel version

I Incorporate time series machine learning primitives.

References I

[]

Stephen Cass.
The 2015 Top Ten Programming Languages, 2015 (accessed
November 7, 2015).

Edgar F Codd.
A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

Ramez Elmasri and Shamkant B Navathe.
Fundamentals of database systems.
Pearson, 2014.

Influxdb.
Influxdb Github Issues: Add aggregate function top #409,
2013-2015 (accessed November 7, 2015).

References II

Influxdb.
Influxdb Github Issues: Add support for custom functions
#68, 2013-2015 (accessed November 7, 2015).

Influxdb.
InfluxDB: Overview, 2015 (accessed November 6, 2015).

Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint.
The C programming language, volume 2.
prentice-Hall Englewood Cliffs, 1988.

M Kersten, Ying Zhang, Milena Ivanova, and Niels Nes.
Sciql, a query language for science applications.
In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pages 1–12. ACM, 2011.

References III

Alberto Lerner.
Querying Ordered Databases with Aquery.
PhD thesis, Ph.D. Thesis, Ecole Nationale Superieure de
Telecommunications, ENST-Paris, 2003.

Alberto Lerner and Dennis Shasha.
Aquery: Query language for ordered data, optimization
techniques, and experiments.
In Proceedings of the 29th international conference on Very
large data bases-Volume 29, pages 345–356. VLDB
Endowment, 2003.

John Levine.
Flex & Bison: Text Processing Tools.
” O’Reilly Media, Inc.”, 2009.

References IV

MonetDB.
Embedded R in MonetDB, 2014 (accessed November 18,
2015).

Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold
Sjoerd Mullender Martin Kersten.
Monetdb: Two decades of research in column-oriented
database architectures.
Data Engineering, page 40, 2012.

Wilfred Ng.
An extension of the relational data model to incorporate
ordered domains.
ACM Transactions on Database Systems (TODS),
26(3):344–383, 2001.

References V

Travis E Oliphant.
A guide to NumPy, volume 1.
Trelgol Publishing USA, 2006.

Oracle.
MySQL: Handling of GROUP BY, 2015 (accessed November
15, 2015).

pandas development team.
pandas: powerful python data analysis toolkit (version 0.17.0),
2015 (accessed November 7, 2015).

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan.
Gorilla: a fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment, 8(12):1816–1827,
2015.

References VI

Mark Raasveldt.
Embedded Python/NumPy in MonetDB.
MonetDB, 2015 (accessed November 06, 2015).

SAP.
Sybase IQ 15.3: Understanding User-Defined Functions, 2008
(accessed November 8, 2015).

SAP.
Introduction to SAP Sybase IQ: SAP Sybase IQ 16.0, 2013
(accessed November 8, 2015).

SAP.
SAP Sybase IQ 16 In-Database Analytics Option Technical
Overview, 2013 (accessed November 8, 2015).

SAP.
Sybase RAP, 2015 (accessed November 8, 2015).

References VII

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan.
SEQ: Design and implementation of a sequence database
system.
Citeseer, 1996.

StackOverflow.
pandas tag info, 2015 (accessed November 7, 2015).

StumpleUpon.
FAQ, 2015 (accessed November 6, 2015).

the pandas development team.
Vbench performance benchmarks for pandas, 2011 (accessed
November 18, 2015).

Arthur Whitney.
Abridged Q Language Manual, 2009 (accessed November 6,
2015).

References VIII

Hadley Wickham.
ggplot2: elegant graphics for data analysis.
Springer New York, 2009.

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian
Merlino, and Deep Ganguli.
Druid: a real-time analytical data store.
In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 157–168. ACM,
2014.

AQuery: Correlation Pairs (for self-study)
1 WITH

s t o c k s G r o u p e d (ID , Ret) AS (
3 SELECT ID ,

r a t i o s (1 , EndOfDayPrice) − 1
5 FROM p r i c e s

ASSUMING ASC ID , ASC Date
7 WHERE Date >= max (Date) − 31 ∗ 6

GROUP BY ID)
9

p a i r s G r o u p e d (ID1 , ID2 , R1 , R2) AS (
11 SELECT s t 1 . ID , s t 2 . ID ,

s t 1 . Ret , s t 2 . Ret
13 FROM

s t o c k s G r o u p e d st1 , s t o c k s G r o u p e d s t 2)
15

SELECT ID1 , ID2 ,
17 c o r (R1 , R2) as c o e f

FROM FLATTEN(p a i r s G r o u p e d)
19 WHERE ID1 != ID2

GROUP BY ID1 , ID2

Finance Benchmark: Pandas Results

100k 1M 10M

0

20

40

0

100

200

300

400

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.

Finance Benchmark: Pandas Results

100k 1M 10M

0

300

600

900

0

500

1000

0

500

1000

1500

0 0 0
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 3: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.

Finance Benchmark: MonetDB Results

100k 1M 10M

0

30

60

90

0

250

500

750

1000

0

2000

4000

6000

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery MonetDB + Embedded Python/NumPy

Figure 4: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.

Pandas Benchmark: Data Science Operations

I Picked a subset of operations used by Pandas to track
library’s historical performance evolution[27]

I Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

I Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

I Randomly generate data and repeat experiments

Pandas Benchmark: AQuery Results

100k 1M 3M

0

5

10

15

20

0

100

200

300

400

500

0

500

1000

0 1 2 4 5 6 0 1 2 4 5 6 0 1 2 4 5 6
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.

Pandas Benchmark: AQuery Results

100k 1M 3M

0

25

50

75

0

1000

2000

3000

4000

5000

0

5000

10000

15000

20000

3 3 3
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery Pandas

Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.

MonetDB Benchmark: Quantiles

I MonetDB’s ability to embed R[12], and more recently,
Python/NumPy [19], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

I AQuery’s performance in quantile calculation compared to
MonetDB’s performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

I 100K, 1M, 10M, and 25M values

I Repeatedly generate random data sets

MonetDB Benchmark: AQuery Results

100k 1M

10M 25M

0

10

20

30

0

100

200

0

1000

2000

3000

0

2500

5000

7500

0 1 0 1
Query

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

System AQuery MonetDB + Embedded Python/NumPy

Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.

A simple example

We explore a simple example, transformations, and resulting code.

<q>

2 \s 10

n:`int$5e6;
4 t:([]c1:n?100; c2:n?100; c3:n?100;

c4:n?100; c5:n?100; c6:n?100);

6 t:update c2:`g#asc c2 from t

</q>

8

// identity

10 function f(x){x}

12 select

sums(c3), max(c4)

14 from t

assuming asc c1, desc c2

16 where f(c1) >=50 and c2 > 50

A simple example: execution time
We consider various q implementations

// "declarative"

2 .kdb.q0:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc t where 50<=f c1 , c2 >50}

// select before sort

4 .kdb.q1:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc select from t where 50<=f c1 , c2 >50}

// reorder selections

6 .kdb.q2:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc select from t where c2 >50, 50<=f c1}

q)\ts:10 .aq.q0[]

2 1961 150996080

q)\ts:10 .kdb.q0[]

4 10935 872416128

q)\ts:10 .kdb.q1[]

6 3558 218104736

q)\ts:10 .kdb.q2[]

8 3255 218104736

Parallel AQuery: Architecture

I Supermaster-master-worker architecture

I Supermaster: Communicates with user and assigns queries
provided by user to masters (each associated with one cohort
of workers)

I Each cohort has the same data as each other cohort.

I Reads go to one cohort and writes to all.

Parallel AQuery: Sample Architecture

Super-master

Master

Worker

	AQuery Introduction
	AQuery Sampler
	Optimizations
	AQuery Sample – again
	Implementation
	Sequential Performance
	Parallel

