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Introduction

I Success of the relational model results from happy
combination of expressive power and simplicity

I Single data type + few operations
(select/project/join/aggregate) → simplicity

I Programmers of applications that depend on ordered events
face a dilemma

I They would like to use a relational database system, but the
model makes it hard to express queries over order.

I AQuery (and others) embodies philosophy that order can be
introduced without affecting simplicity (and improving
performance)[24][14][8]



AQuery: Sales Query

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month



AQuery: Sales Query

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.
That’s (most of) AQuery!



AQuery

I Modest syntactic and semantic extension to SQL 92

I Replaces unordered relational tables by ordered tables
(arrables which stands for array-tables), which can be sorted
by one or more columns[10]

I Modest syntactic and semantic extension to SQL 92: (i) Adds
one clause: assuming clause (order) (ii) Provides
order-senstive aggregates (iii) Go into and out of first normal
form.



SQL 92: Sales Query – inefficient AND incorrect

Please return the running three month moving average of sales.

1 SELECT t1.month , t1.sales ,

(t1.sales+t2.sales+t3.sales)/3

3 FROM Revenue t1, Revenue t2, Revenue t3

WHERE t1.month - 1 = t2.month and

5 t1.month - 2 = t3.month

Three-way join (inefficient) and misses the first two months. Can
be written correctly in SQL 99 but complex and inefficient.



AQuery: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice) with
the last ten years’ data. Calculate a 12-day moving variance in
returns for stock tickers Leverages: assuming clause,
order-dependent aggregate (vars over 12 previous value, ratios
based on consecutive days). Gives for each ID, a vector of Dates
and variances.

1 SELECT ID, DATE ,

vars(12, ratios(1, EndOfDayPrice) - 1)

3 FROM prices

ASSUMING ASC Date

5 GROUP BY ID



SQL-99: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

1 SELECT ID , Date ,
VARIANCE( r e t s ) OVER (

3 ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW

5 ) as mv
FROM

7 (SELECT
c u r r . Date , c u r r . ID ,

9 c u r r . EndOfDayPrice /
p r e v . EndOfDayPrice − 1 as r e t s

11 FROM
p r i c e s c u r r LEFT JOIN p r i c e s p r e v

13 ON c u r r . ID = p r e v . ID
AND c u r r . Date = p r e v . Date + 1)

15 GROUP BY ID



Optimizations for both sequential and parallel
implementations

I Rule-based optimization for predictability

I Tranformation rules yield demonstratable advantages

I Rules implemented as rewrites on abstract syntax tree.



Sort minimization [new, but clear]

I Detect order-dependent vs order-independent operations

I Sort only columns upon which operations are order-dependent.

I od(t) returns all columns affected by order-dependence, and
necessary to maintain semantics

SELECT ... FROM t ASSUMING S ....

sortS(t)

→
sortS(od(t)), (columns(t) \ od(t))



Push selections [classical]

I Generally perform selections before sorting and joins

I Except when doing so loses the benefits of indexes.

t ′ ← σW (sortS(t))

→
t ′ ← σW ′′(sortS(σW ′(t)))

where W ′ includes all selections up to first use of an
order-dependent aggregate, and W ′′ contains remaining selections.



AQuery: Sales Query (again)

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation. Sort only
month and sales by month.



Sequential Implementation

I Pure Scala implementation of compiler

I Execution engine: q[28]

I Workflow: write AQuery code, compiler generates optimized q
code, execute using q interpreter

I Advantages: portability, transparency (user able to inspect
generated q code)



Related Work
I Among the excellent work in the development of time series

databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

I DruidIO[30]: open source data store for analytics. Column
oriented, but query language doesn’t suport common
functionality like joins

I Influxdb[6]: Limited query language, no user-defined
functions, no arbitrary sorting

I SciQL[8]: extends MonetDB[13] with first-class arrays for
scientific applications, allowing direct manipulation of array
and matrix structures. Comparable in expressability to
AQuery, but AQuery is designed to be a natural extension of
sql (and is faster).

I Excellent work but focused on reliability and
scalability[18][26], not query plans



Benchmarks

I Compare: AQuery, Python’s Pandas[17], Sybase IQ[21], and
MonetDB (with imbedded Python)[19]

I Experiments: financial benchmark from Sybase[20],
MonetDB’s benchmarking operation of quantile calculation,
various Pandas benchmarking operations from Panda’s
historical performance benchmark[27]

I We compare on our competitors’ benchmarks!



Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase IQ comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

I Pandas version 0.17.0

I Numpy version 1.10.1

I Python version 2.7.5

I MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

I Sybase IQ version 16.0

I q version 3.2 2014.11.01

I AQuery compiler a2q version 1.0



Finance Benchmark

I Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons, test trading strategies)

I Simulated data, randomized as necessary (various parameter
values) data at different sizes (100K, 1M, and 10M
observations)

I Present average response time

I Data and sequential system soon available.



Finance Benchmark: Sybase IQ Results
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Figure 1: With 100K and 1M rows, AQuery outperforms Sybase IQ in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.



How does AQuery stack up against q?: Finance Benchmark

I Performance on most queries is comparable

I There is some overhead in managing certain simple aquery
data structures

I Current joins available: equi-join and full outer join. Increasing
expressiveness of joins would erase most of remaining gap

I Gap is most evident in queries 1, 5, 6, which use lj in the q
version



How does it stack up against q?: Finance Benchmark
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How does it stack up against q?: Finance Benchmark
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Decomposing our query

I Of course, anything AQuery writes, you can write
I But that doesn’t mean it won’t require keeping track of lots

of details, or that reasoning on the fly will give correct and
efficient results. AQuery does that for you, e.g.,

I When function is not order-dependent, push selections below
sort

I Sort only relevant columns
I If already sorted, don’t resort.



Parallel AQuery: newest work

I Simple architecture, allows deeper reasoning for query
generation/transformation

I Novelty: Explores order-based optimizations in a distributed
setting



Parallel Primitives

I Encapsulate all parallelism, allowing compositional reasoning
I Shuffle
I Map (-Reduce)
I Carry-lookahead
I Edge-extension

*Note on diagrams in following slides: red/solid lines repre-
sent instructions sent across nodes, while green/dashed lines
represent data sent across nodes



Map [classical]

I Predicate based partitioning of say table t – like the map in
the classic map-reduce.

X
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partition(t)
partition(t)

X

t ′

t ′′

t
′′′



Staged Reduce [classical]

I Each worker does its own reduction.

I Optionally, stage reduced results into smaller and smaller
summaries (e.g. for a global sum)



Carry-Lookahead Calculations [new]

I Some operations lend themselves to parallelizing intermediate
results followed by adjustments

I Example: Running (i.e., cumulative) sum of stock volumes
entails partitioning into separate chunks of time, performing
running sum in each chunk and then adding the intermediate
results. Like a carry-lookahead adder.

I Effectively, a map-reduce operation with: order-dependent
scan + adjustment function as a reduction operation



Carry-Lookahead Calculations

I partition(c): initial partition on column c

I adj(x , y): adjusts y by combining with x

t1

t2

t3

pa
rti
tio
n(
c)

partition(c)

partition(c)

t1

t ′2

t ′3

t1

t ′2 = adj(last(t1), t2)

...



Edge-Extension

I Window-based operations abound in order-dependent data
analysis

I Example: 7-day moving average of stock prices

I Dependencies across worker processes

I Solution: extend partitioned data with necessary replicated
data (maintaining order of tuples)

I Allows parallelized window-based computation



Edge-Extension

I drop(x , y): drop first x tuples of y

I last(x , y): last x tuples of y

I Results can be kept in worker processes, or sent back to
master (yellow) if these are final results
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edgevals(w , t)

t1

t ′2

t ′3

t′1 = agg(t1)

edge1 = last(n, t1)

t′2 = drop(n, agg(edge1, t2))

edge2 = last(n, t2)

t′3 = drop(n, agg(edge2, t3))



Implementation

I Developed open-source library implementing primitives:
parallel.q

I Composes primitives to yield: distributed sorting, distributed
grouping, distributed crossing, distributed reference joins, in
addition to standard selections/projections/etc

I Standalone library allows users to write distributed queries in
an intuitive fashion

I Parallel AQuery translates standard queries into calls to
parallel.q, modularizing distributed logic

I Prior optimizations still apply (as rewritten abstract syntax
tree)

https://github.com/josepablocam/aquery2q/blob/parallel/src/parallel/parallel.q


Exploring performance in parallel.q

I Setup: 30 million float point numbers in-memory across 3
worker processes

I Experiments: Compare parallel.q performance versus serial q.
Serial q collects data from workers and computes centrally,
meanwhile parallel.q allows expressing the same in-memory
operations over the distributed dataset

I End Goal: AQuery compiler should translate the same simple
query into parallel.q formulation

I Experiment 1: Last value in running average (carry-operation)

I Experiment 2: Max value in 10-element moving average
(edge-extension)



Experiment 1: last of running average

Target AQuery (note that this translation has not yet been
implemented, and parallel.q has been written manually)

SELECT last(avgs(vals)) FROM nums



Experiment 2: Max of moving averages

Target AQuery (note that this translation has not yet been
implemented, and parallel.q has been written manually)

1 SELECT max(avgs(10, vals)) FROM nums



Performance Overview

Table 1: parallel.q allows users to take advantage of parallelism for in-memory
operations that otherwise require collecting (average execution time ms)

Experiment parallel.q standard q

1 1016.5 1213.4
2 1574.9 1876.6



Performance Overview
We evaluate parallel.q scalability by testing with 3, 5 and 10 worker
processes, on a machine with 12 cores. The combined workers
contain a total of 100MM floating point numbers in-memory
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Conclusions

I AQuery is a linguistically simple high performance database
system for time series and other ordered data.

I The concept of arrables and assuming and moving averages
constitute the backbone of the system

I Some new optimization problems can be handled with simple
powerful primitives.

I Here is a demo of the sequential version:

https://www.youtube.com/watch?v=ifIsj0Qr-qc&feature=youtu.be


Future Work

I Improve parallel system performance.

I Implement translation for parallel version

I Incorporate time series machine learning primitives.
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AQuery: Correlation Pairs (for self-study)
1 WITH

s t o c k s G r o u p e d ( ID , Ret ) AS (
3 SELECT ID ,

r a t i o s ( 1 , EndOfDayPrice ) − 1
5 FROM p r i c e s

ASSUMING ASC ID , ASC Date
7 WHERE Date >= max ( Date ) − 31 ∗ 6

GROUP BY ID )
9

p a i r s G r o u p e d ( ID1 , ID2 , R1 , R2 ) AS (
11 SELECT s t 1 . ID , s t 2 . ID ,

s t 1 . Ret , s t 2 . Ret
13 FROM

s t o c k s G r o u p e d st1 , s t o c k s G r o u p e d s t 2 )
15

SELECT ID1 , ID2 ,
17 c o r (R1 , R2 ) as c o e f

FROM FLATTEN( p a i r s G r o u p e d )
19 WHERE ID1 != ID2

GROUP BY ID1 , ID2



Finance Benchmark: Pandas Results
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Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.



Finance Benchmark: Pandas Results
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Figure 3: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.



Finance Benchmark: MonetDB Results
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Figure 4: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.



Pandas Benchmark: Data Science Operations

I Picked a subset of operations used by Pandas to track
library’s historical performance evolution[27]

I Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

I Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

I Randomly generate data and repeat experiments



Pandas Benchmark: AQuery Results
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Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.



Pandas Benchmark: AQuery Results
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Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.



MonetDB Benchmark: Quantiles

I MonetDB’s ability to embed R[12], and more recently,
Python/NumPy [19], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

I AQuery’s performance in quantile calculation compared to
MonetDB’s performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

I 100K, 1M, 10M, and 25M values

I Repeatedly generate random data sets



MonetDB Benchmark: AQuery Results
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Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.



A simple example

We explore a simple example, transformations, and resulting code.

<q>

2 \s 10

n:`int$5e6;
4 t:([]c1:n?100; c2:n?100; c3:n?100;

c4:n?100; c5:n?100; c6:n?100);

6 t:update c2:`g#asc c2 from t

</q>

8

// identity

10 function f(x){x}

12 select

sums(c3), max(c4)

14 from t

assuming asc c1, desc c2

16 where f(c1) >=50 and c2 > 50



A simple example: execution time
We consider various q implementations

// "declarative"

2 .kdb.q0:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc t where 50<=f c1 , c2 >50}

// select before sort

4 .kdb.q1:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc select from t where 50<=f c1 , c2 >50}

// reorder selections

6 .kdb.q2:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc select from t where c2 >50, 50<=f c1}

q)\ts:10 .aq.q0[]

2 1961 150996080

q)\ts:10 .kdb.q0[]

4 10935 872416128

q)\ts:10 .kdb.q1[]

6 3558 218104736

q)\ts:10 .kdb.q2[]

8 3255 218104736



Parallel AQuery: Architecture

I Supermaster-master-worker architecture

I Supermaster: Communicates with user and assigns queries
provided by user to masters (each associated with one cohort
of workers)

I Each cohort has the same data as each other cohort.

I Reads go to one cohort and writes to all.



Parallel AQuery: Sample Architecture

Super-master

Master

Worker
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