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Combination of Compressed Sensing and Parallel
Imaging for Highly Accelerated First-Pass Cardiac

Perfusion MRI

Ricardo Otazo,* Daniel Kim, Leon Axel, and Daniel K. Sodickson

First-pass cardiac perfusion MRI is a natural candidate for com-
pressed sensing acceleration since its representation in the
combined temporal Fourier and spatial domain is sparse and
the required incoherence can be effectively accomplished by k-t
random undersampling. However, the required number of sam-
ples in practice (three to five times the number of sparse coeffi-
cients) limits the acceleration for compressed sensing alone.
Parallel imaging may also be used to accelerate cardiac perfu-
sion MRI, with acceleration factors ultimately limited by noise
amplification. In this work, compressed sensing and parallel
imaging are combined by merging the k-t SPARSE technique
with sensitivity encoding (SENSE) reconstruction to substantially
increase the acceleration rate for perfusion imaging. We also
present a new theoretical framework for understanding the
combination of k-t SPARSE with SENSE based on distributed
compressed sensing theory. This framework, which identifies
parallel imaging as a distributed multisensor implementation of
compressed sensing, enables an estimate of feasible accelera-
tion for the combined approach. We demonstrate feasibility of
8-fold acceleration in vivo with whole-heart coverage and high
spatial and temporal resolution using standard coil arrays. The
method is relatively insensitive to respiratory motion artifacts
and presents similar temporal fidelity and image quality when
compared to Generalized autocalibrating partially parallel
acquisitions (GRAPPA) with 2-fold acceleration. Magn Reson
Med 64:767-776, 2010. © 2010 Wiley-Liss, Inc.
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First-pass cardiac perfusion MRI is a promising and
much-studied modality for noninvasive assessment of
coronary artery disease (1,2). However, robust implemen-
tation for routine clinical use can be technically chal-
lenging. In particular, the pulse sequence must be care-
fully designed to balance conflicting requirements, such
as spatial resolution, temporal resolution, contrast-to-
noise ratio, and spatial coverage. Currently, parallel
imaging techniques for dynamic MRI, such as temporal
SENSE (TSENSE) (3) and temporal GRAPPA (TGRAPPA)
(4), can be used to acquire three to four slices per heart-
beat, with adequate spatial and temporal resolution for
clinical interpretation, using commercially available ra-
diofrequency coil arrays.
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To extend the slice coverage and/or increase spatial
and temporal resolution, more advanced techniques are
needed to obtain higher acceleration factors. Such tech-
niques include k-f Broad-use linear acquisition speed-up
technique (BLAST) and k-t SENSE (5), k-t GRAPPA (6),
and SPatiotemporal domain-based unaliasing employ-
ing sensitivity Encoding and Adaptive Regularization
(SPEAR) (7), which exploit spatiotemporal correlations
in the dynamic MRI data either alone or in combination
with coil sensitivity information. In these methods, the
ky-t space signal is sampled on a sheared grid, which
results in reduced signal overlap in the sparse temporal
Fourier domain (y-f), and as a result higher undersam-
pling rates are feasible. However, dynamic training data
are required to establish an aliasing pattern in the y-f do-
main, which reduces the effective acceleration rate. For
perfusion imaging, training data must be interleaved
with undersampled imaging data to reflect similar con-
trast enhancement and avoid misregistration due to re-
spiratory motion. Previously described perfusion studies
using k-t techniques have reported acceleration factors
greater than 6 (8—10). However, respiratory motion repre-
sents a source of reconstruction error for these techni-
ques, since signal overlap increases in the y-f domain
due to the presence of higher temporal frequencies and
results in residual aliasing artifacts.

An alternative method for reconstruction of under-
sampled data is compressed sensing, which is based
upon the principle that an image with a sparse represen-
tation in a known transform domain can be recovered
from randomly undersampled k-space data, using a non-
linear reconstruction (11). Unlike k-t BLAST and k-t
SENSE, compressed sensing does not require training
data, and, as a result, it may be less sensitive to inconsis-
tencies between training and imaging data. Application
of compressed sensing to dynamic MR imaging has been
presented in methods such as k-t SPARSE (12), com-
pressed sensing dynamic imaging (13), and k-t FOCUSS
(14), using the temporal FFT as the sparsifying transform
(v-f space as the sparse domain) and k-t random under-
sampling. However, the maximum acceleration rate
reported by a previous first-pass cardiac perfusion study
employing the method described in Gamper et al. (13)
was only 4 (15).

Maximum acceleration rate in compressed sensing is
determined by image sparsity. In practice, the number of
required samples is approximately three to five times the
number of nonzero coefficients in the image or in some
appropriate transform domain (11,16). When multiple
receiver coils are employed, compressed sensing can be
combined with parallel imaging techniques (17-19) to
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obtain higher accelerations. Previous combinations for
nondynamic MRI have framed compressed sensing as a
regularization method for parallel imaging reconstruc-
tions such as SENSE and have demonstrated increased
acceleration capability over each of the techniques
applied separately (20-23). Another method applied
coil-by-coil compressed sensing to reconstruct regularly
aliased images and then used standard SENSE recon-
struction to remove the aliasing (24). This two-step
approach, however, runs the risk of inefficiency since
correlations between coils are only used at the second
step. The recently introduced theory of distributed com-
pressed sensing (25) extends compressed sensing to
include multiple sensors in order to reduce the number
of required samples by exploiting the idea of joint spar-
sity in the multisignal ensemble rather than simply
exploiting separate sparsity.

In this work, a combination of the k-t SPARSE and
SENSE techniques is employed for highly accelerated
first-pass cardiac perfusion imaging using a temporal
Fourier transform as the sparsifying transform. It is dem-
onstrated that this approach represents a form of distrib-
uted compressed sensing, exploiting joint sparsity in
multicoil images rather than coil-by-coil sparsity (26,27).
Using the theoretical framework of distributed com-
pressed sensing, estimates of maximum feasible accelera-
tions for the combination of k-t SPARSE and SENSE are
derived. For experimental validation of the maximum
practical acceleration rate, fully sampled, first-pass car-
diac perfusion MRI data were acquired in vivo and then
undersampled to various degrees. Highly accelerated in
vivo perfusion data were then acquired and recon-
structed to demonstrate the feasibility of the method.
Sensitivity to respiratory motion was evaluated in terms
of residual aliasing artifacts. A comparison of the pro-
posed method at 8-fold acceleration with commercially
available GRAPPA at 2-fold acceleration was performed
to evaluate their relative performance. Finally, 8-fold
accelerated k-t SPARSE-SENSE images were obtained in
a patient with acute myocardial infarction.

THEORY

Compressed Sensing for First-Pass
Cardiac Perfusion MRI

The requirements for a successful application of com-
pressed sensing are (a) image sparsity in a known trans-
form domain, i.e., few large coefficients and many small
coefficients that can be omitted without loss of image
quality; (b) incoherent undersampling artifacts in the
sparse domain, i.e., the undersampling artifacts look like
additive noise; and (c) nonlinear reconstruction to
recover the sparse coefficients. The cardiac perfusion sig-
nal is sparse in the combined temporal Fourier and spa-
tial domain (y-f space) since only portions of the field of
view require the full temporal bandwidth and the other
regions have only static information or at low temporal
frequencies (Fig. 1). The required incoherence can be
obtained by randomly omitting phase-encoding lines (k)
with a different pattern for each time point (), generating
a random undersampling pattern in k-t space. Compared
with k,-only random undersampling, k-t random under-
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sampling increases the incoherence since the undersam-
pling artifacts are incoherently distributed along two
dimensions rather than one.

Combination of Compressed Sensing
and Parallel Imaging

The perfusion data (in k.-k,-t space) acquired in each
coil can be represented as:

m; = FSS1d, [1]

where d is the perfusion image series to be reconstructed
in x-y-t space, F® is the spatial Fourier transform, and S,
represents the coil sensitivities (in x-y space). Note that
k. is fully sampled. Instead of applying compressed
sensing to each coil separately, the multicoil SENSE
model given by the concatenation of the individual mod-
els is solved:

m = Ed, 2]

m, S1
JE=F°
my, Sn,

of coils. The compressed sensing reconstruction of the
SENSE model is given by:

where m = and N, is the number

& = argmin{ [Ed — m|+|[F'd] . 8

where F' is the temporal Fourier transform, ||-||, is the ;-
norm or sum of absolute values given by [x|,=>;|xi|,

1
and |||, is the L-norm given by |x||,= (3; |x;|*)2. The I,-
norm term enforces sparsity in the temporal Fourier do-
main, and the l,-norm term enforces data consistency
with a model error threshold, given by ¢ (¢ is usually set
to the noise level). 1 Is a weighting parameter that con-
trols the balance between sparsity in the temporal Fou-
rier domain (right-hand term) and parallel imaging data
consistency (left-hand term). The reconstruction problem
associated with Eq. 3 represents a combination of k-t
SPARSE and SENSE using a temporal FFT as sparsifying
transform.

Distributed Compressed Sensing Framework

Previous combinations of compressed sensing and paral-
lel imaging have presented compressed sensing as a non-
linear regularizer for SENSE reconstruction (20-23).
Even though the k-t-domain reconstruction problem in
Eq. 3 may be solved in practice with regularized techni-
ques such as a nonlinear conjugate gradient algorithm
(see Materials and Methods), it is difficult from this per-
spective to estimate theoretical bounds for the expected
feasible acceleration. In this work, we present a new
framework for combinations of compressed sensing and
parallel imaging based on distributed compressed theory
(25), in order to assess theoretical bounds on the maxi-
mal acceleration.
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FIG. 1. Conceptual illustration of the
compressed sensing technique for car-
diac perfusion MRI. a: Sparsity: the fully
sampled k, -t data are sparse in y-f
space. b: Incoherence: k-t pseudoran-
dom undersampling preserves the origi-
nal sparse representation in y-f space
and presents artifacts that look like
additive noise (pseudonoise). c: Nonlin-
ear reconstruction: the sparse coeffi-
cients in y-f space can be recovered
with a nonlinear reconstruction that
minimizes the number of nonzero coef-
ficients (minimum L4-norm).

k-t SAMPLING
PATTERN

The combination of k-t SPARSE and SENSE does
indeed represent a form of distributed compressed sens-
ing since joint sparsity is exploited instead of individual
coil-by-coil sparsity to reconstruct one image series (d in
Egs. 1-3 above) that represents the combination from all
coils. In a general sense, one might expect that enforcing
joint sparsity would reduce the number of required sam-
ples per coil and add incoherence to the problem. First
of all, the signal sampled by each coil is given by the
convolution in k-space of the object function and the k-
space representation of the spatial coil sensitivity. There-
fore, multicoil samples with different spatial information
content are simultaneously obtained to reduce the
required number of samples per coil needed to recon-
struct an unaliased image, just as in parallel imaging
(17-19). Second of all, even though the same k-t random
undersampling pattern is shared for all coils, the convo-
lution in k-space with the coil sensitivities will generate
different incoherent artifacts for each coil.

The theory of distributed compressed sensing enables
one to place concrete bounds on this intuitive expecta-
tion. In practice, the number of required samples to per-
form accurate reconstructions in compressed sensing
alone using I;-norm minimization is three to five times
the number of sparse coefficients K (3-5K) (11,16). It has
been shown, however, that for a distributed compressed
sensing model with a large number of sensors (25), the
number of required samples approaches K when differ-
ent random undersampling patterns are used for each
sensor. At first glance, it is not obvious that the case of
multicoil acquisition in MR meets this condition, since
signals from all coils share the same gradient-based
undersampling pattern, albeit convolved with distinct
coil sensitivity patterns. One might therefore expect a
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reduction in incoherence and a departure from the theo-
retical bounds on signal recovery outlined in (25). Fortu-
nately, however, parallel imaging itself provides the tools
needed to match in practice the theoretical condition of
distinct random undersampling. At the core of parallel
imaging is a principle of physical regridding, in which
signals acquired in multiple coils are recombined to gen-
erate signals shifted by some amount in k-space. Using
techniques like the grappa operating gridding method
(28), sets of distinct combinations may in fact be chosen
to synthesize signals for new virtual “coils,” each with a
different random undersampling profile. The price to
pay for such physical regridding using parallel imaging
would be some loss in signal-to-noise ratio, which would
be modest in this case since no large shifts in k-space
are required to synthesize a k-space pattern that is effec-
tively uncorrelated with the starting pattern, particularly
when large numbers of coils are used. In any case, we
are not proposing recombination to virtual uncorrelated
coils as a practical reconstruction technique, but rather
as a means of demonstrating that the combination of
compressed sensing and parallel imaging meets the con-
ditions of distinct random undersampling (25). We may
therefore have some confidence (pending formal mathe-
matical proof of the statistical robustness of reconstruc-
tion with virtual uncorrelated coils) that the correspond-
ing limits on accurate recovery of signal in the noise-free
case may apply.

Our own work (26) has also demonstrated in practice
that increasing the number of coils reduces the required
number of samples for accurate combined compressed
sensing and parallel imaging reconstruction to a mini-
mum of K. The maximum increase in acceleration that
may reasonably be expected by combining parallel
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FIG. 2. Fourier reconstruction of the fully sampled data (R = 1), coil-by-coil compressed sensing (coil-by-coil k-t SPARSE) and k-t
SPARSE-SENSE reconstruction with simulated acceleration factors of R = 4, 6, 8, and 10 for (a) peak blood enhancement and (b) peak

myocardial wall enhancement.

imaging with compressed sensing compared with using
compressed sensing alone is then about 3- to 5-fold for
large numbers of coils. Of course, the baseline degree of
acceleration possible with compressed sensing alone
depends upon the level of sparsity of the underlying
images in each coil. The maximum additional factor of 3
to 5 with parallel imaging represents an upper bound to
what parallel imaging can add to the information that is
already present inherently in a coil-by-coil compressed
sensing reconstruction.

MATERIALS AND METHODS
Data Acquisition

First-pass cardiac perfusion MRI was performed on two
healthy volunteers (two males; ages 32 and 23 years) and
one patient (male, age 38 years), with 0.1 mmol/kg of
gadopentetate-dimeglumine (Magnevist, Bayer Health-
care, Leverkusen, Germany). The patient presented with
chest pain, electrocardiogram changes, and elevated tro-
ponin (peak 52 ng/mL) 6 days prior to MRI. Diagnostic
catheterization showed total occlusion of the left poste-
rior descending artery, but revascularization was not per-
formed because the occluded vessel was small in caliber,
very distal, and had collateral flow from other vessels.
Human imaging was performed in accordance with pro-
tocols approved by the institutional review board at the
New York University School of Medicine, and all sub-
jects provided written informed consent.

Data were acquired with a modified TurboFLASH
pulse sequence on a whole-body 3-T scanner (Tim Trio;
Siemens Healthcare, Erlangen, Germany). The radiofre-
quency excitation was performed using the transmit
body coil, and six anterior elements and six posterior
elements of the Siemens body matrix array were used for
signal reception.

In one volunteer, a fully sampled perfusion image
acquisition was performed in a midventricular short-axis
location at mid diastole (trigger delay 400 ms) with an
image matrix of 128 x 128. This data set was used as a
template to simulate acceleration rates R = 4, 6, 8, 10,
and 12 (Fig. 2). The relevant imaging parameters include
field of view = 320 x 320mm?, slice-thickness = 8mm,
flip angle = 10°, echo time/pulse repetition time = 1.2/
2.4 ms, bandwidth = 1000 Hz/pixel, radiofrequency
pulse train saturation pulse (29), delay time = 10 ms,
repetitions = 40, spatial resolution = 3.2 x 3.2mm?, and
temporal resolution = 307 ms.

In a separate experiment, an 8-fold accelerated multi-
slice acquisition with user-defined phase-encoding and
temporal (k,-f) sampling patterns was performed using
the same set of imaging parameters with the following
exceptions: image matrix = 192 x 192, spatial resolution
= 1.67 x 1.67mm?, echo time/pulse repetition time =
1.3/2.5 ms, and temporal resolution = 60 ms. R = 8 was
chosen based on the simulated acceleration results,
which are presented below. Low-spatial-resolution coil-
sensitivity data were acquired during the first heartbeat,
using an image acquisition matrix of 64 x 24.
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Acceleration was accomplished using k-t random under-
sampling with variable k-space trajectory, where the
undersampling pattern along k, was varied as a function
of time in order to produce the required incoherence of
artifacts in the sparse y-f domain (Fig. 1). Sampling more
densely at the center of k,-space increases incoherence
and provides a better starting point for reconstruction
than uniform random sampling (11). The k;, sampling
was performed using a reverse-centric k-space reordering
in order to increase the contrast-to-noise ratio, at the
expense of slight blurring in the k, direction (30). During
the first injection of gadopentetate-dimeglumine (0.1
mmol/kg at 6 mL/sec, with a 20-mL saline flush), 10
short-axis slices were acquired within a breath hold.
After 20 min, during the second injection of gadopentetate-
dimeglumine (the same parameters as for first injection),
a repeated scan was performed under heavy breathing in
order to evaluate the sensitivity to respiratory motion.

In another volunteer, comparison between k-t
SPARSE-SENSE with R = 8 and commercially available
GRAPPA (19) with R = 2 was performed by interleaving
SPARSE-SENSE and GRAPPA acquisitions within the
same heartbeat. This acquisition scheme enabled com-
parison of the image quality with identical contrast agent
concentration, slice position, and image scale factors.
The TD of both acquisitions was varied to keep the same
effective recovery time of magnetization between the sat-
uration pulse and the center of k-space acquisition. The
relevant imaging parameters included image acquisition
matrix = 128 x 128, spatial resolution = 3.2 x 3.2mm?
and temporal resolution = 38.4/173 ms for k-t SPARSE-
SENSE/GRAPPA, respectively.

In the patient with myocardial infarction, the 8-fold
accelerated k-t SPARSE-SENSE acquisition was per-
formed using the same parameters as in the breath-held
volunteer study. Delayed-enhancement images were
obtained using a phase-sensitive inversion recovery (31)
pulse sequence 15 min after the administration of the
contrast agent.

Acceleration Analysis

Estimates of expected feasible accelerations were com-
puted using the fully sampled data set. The maximum
compression ratio provided by the temporal fast Fourier
transform (FFT) was assessed by truncating the represen-
tation of the fully sampled data in x-y-f space and com-
puting the difference with the full representation in the
x-y-t domain. A threshold of 5% root mean square error
was used to establish the maximum compression ratio.
The maximum feasible acceleration for compressed sens-
ing alone was then estimated to lie between compression
ratio™*/3 and compression ratio™**/5. The increase in
acceleration provided by the combination with parallel
imaging was assessed by reconstructing the fully
sampled data set with simulated accelerations and com-
paring with the original data.

Image Reconstruction

Combination of k- SPARSE and SENSE was imple-
mented in MatLab (The MathWorks, Natick, MA) by
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extending the SparseMRI method (11) to include the
time dimension and the coil sensitivities in the acquisi-
tion model and to enforce joint sparsity in the recon-
struction. A nonlinear conjugate gradient algorithm (11)
was employed to solve the minimization problem given
in Eq. 3, where the ;-term was computed using the sen-
sitivity-weighted multicoil image combination (32). The
matrix E was not computed explicitly and was replaced
by FFT and matrix-vector multiplications, just as in the
conjugate-gradient SENSE method (33). The starting
point of the nonlinear conjugate gradient algorithm was
given by the sensitivity-weighted multicoil image combi-
nation of the zero-filled Fourier reconstruction.

The weighting parameter (\) in Eq. 3 was selected
based on simulation results from a sample data set. Spe-
cifically, a fully sampled data set was used to simulated
different acceleration rates and was also used as a refer-
ence for image quality comparisons. The parameter \
was determined by solving the reconstruction problem
with different values and choosing the one that mini-
mizes the error with respect to the fully sampled data.
To apply the selected \ to a different data set, we nor-
malized the intensity of the data set to have the same in-
tensity of the training data. Note that N was determined
only once and that value was used for all subsequent
experiments.

For the experiment with simulated acceleration, coil-
by-coil compressed sensing was performed for compari-
son purposes using the k-t SPARSE method (11), fol-
lowed by sensitivity-weighted multicoil image combina-
tion (32).

Image Analysis

Signal-intensity time courses were evaluated for the
reconstructed perfusion images, using two different man-
ually defined regions of interest: one for the entire left
ventricle blood pool and one for the entire myocardial
wall. The regions of interest were drawn manually, with
care to avoid partial-volume effects. The myocardial wall
curves were characterized by the baseline (precontrast)
mean and standard deviation, peak and upslope. The
upslope was computed using a linear fit of the curve
points between 10% and 90% of the relative peak
enhancement.

Signal intensity profiles along the x dimension were
computed using the central line of the images in Fig. 2
at peak blood enhancement. The spatial profiles were
characterized by the myocardial wall signal intensity to
assess the effect of spatial blurring on the myocardial
wall signal before contrast agent arrival and by the signal
intensity gradient between myocardial wall and left ven-
tricle to assess the sharpness of the image. The intensity
gradient was computed using a linear fit of the points
between 20% and 80% of the signal increase from myo-
cardial wall to left ventricle.

For the in vivo study with simulated acceleration, the
root mean square error with respect to the fully sampled
Fourier reconstruction was evaluated in a subregion sur-
rounding the heart (indicated by the cropped field of
view of the images in Fig. 2) and averaged over all time
points. The root mean square error values were
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FIG. 3. Signal intensity curves for Fourier reconstruction of the fully sampled data (R = 1) and k-t SPARSE-SENSE reconstruction with
simulated acceleration factors of R = 4, 6, 8, and 10: (a) blood (left ventricular region of interest) and (b) myocardial wall.

expressed as the percentage of the mean value of the
fully sampled Fourier reconstruction (xy,):

St [Xoce (1) — xpn()]”

RMSE = 100 x - .
iy |Xpan (i)

(4]

where x,.. is the compressed sensing accelerated recon-
struction and n is equal to the number of pixels in the
region of interest times the number of time points.

RESULTS

Breath-Held Single-Slice Experiment With
Simulated Acceleration

k-t SPARSE-SENSE presented superior reconstruction
performance when compared to coil-by-coil compressed
sensing (Fig. 2). Coil-by-coil compressed sensing root
mean square error values were 5.3%, 7.9%, 10.5%, and
14.4%, whereas k-t SPARSE-SENSE root mean square
error values were 4.6%, 5.7%, 6.5%, and 7.8% for R = 4,
6, 8, and 10, respectively. The myocardial wall signal in-
tensity at peak blood (expressed in arbitrary units) was
177.9 for the fully sampled Fourier reconstruction; coil-
by-coil compressed sensing values were 206.6, 223.9,
288.2, and 348.8, whereas k-t SPARSE-SENSE values
were 175.9, 188.2, 188.1, and 244.9 for R = 4, 6, 8, and
10, respectively. The intensity gradient between myocar-
dial wall and left ventricle expressed in arbitrary units
per pixel was 262.1 for the fully sampled Fourier recon-
struction; coil-by-coil compressed sensing values were
239.3, 183.8, 174.1, and 109.2, whereas k-t SPARSE-
SENSE values were 260.4, 258.9, 242.1, and 190.2 for R
= 4, 6, 8, and 10, respectively. The increase in the myo-
cardial wall intensity before contrast agent arrival and
the decrease in the intensity gradient were produced by
spatial and temporal blurring, which were more signifi-
cant for coil-by-coil compressed sensing.

The maximum compression ratio provided by the tem-
poral FFT was found to be approximately 18, resulting
in predicted maximum acceleration factors between 3.6

and 6, using compressed sensing alone. Coil-by-coil com-
pressed sensing resulted in an adequate reconstruction
for R = 4, in agreement with previous results (15) and
theoretical estimates; however, reconstruction artifacts
such as spatiotemporal blurring and residual pseu-
donoise were more noticeable for R = 6 and increased in
prominence with increasing acceleration. Note that low
spatiotemporal frequency components result in sparse
coefficients with high values, which can be recovered
even at high accelerations. On the other hand, high spa-
tiotemporal frequency components present much lower
values in the sparse domain, which fall below the pseu-
donoise level, and therefore they are more difficult to
recover. k-t SPARSE-SENSE presented adequate image
quality up to R = 8, which represents a 2-fold increase
over compressed sensing alone.

Figure 3 shows the signal intensity time courses for
the blood and myocardial wall for k-t SPARSE-SENSE at
different acceleration factors, and Table 1 lists the base-
line mean and standard deviation, peak, and upslope
estimated from the myocardial signal time course. The
blood enhancement presented similar temporal fidelity
for all accelerations, except for a small amplification of
the baseline variation and peak value for higher accelera-
tions. For the myocardial signal-time curve, the mean
baseline and peak values were very similar for all accel-
erations. On the other hand, the baseline variation
increased with acceleration due to the higher pseudonoise

Table 1

Baseline Mean Value * Standard Deviation, Peak Value, and
Upslope From the Myocardial Wall Signal Intensity Time Courses
for Fourier Reconstruction of the Fully Sampled Data (R = 1) and
k-t SPARSE-SENSE Reconstruction With Different Simulated
Acceleration Factors (R)

R Baseline (au) Peak (au) Upslope (au/sec)
1 120.6 = 2.8 264.6 14.6

4 120.2 = 4.6 261.9 14.3

6 1225 + 5.9 262.3 13.4

8 123.6 = 7.9 264.6 13.1
10 125.6 = 10.7 266.3 12.0

au: arbitrary unit
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FIG. 4. Breath-held, 8-fold accelerated
images in 10 short-axis views at peak
blood and peak myocardial wall enhance-
ment. These k-t SPARSE-SENSE recon-
structed images exhibited good image
quality.

Blood enhancement

Wall enhancement

level, and the upslope decreased with acceleration due
to a small loss of high temporal frequencies in the recon-
structed images. The upslope decrease with respect to
the fully sampled reconstruction was 2.0%, 8.2%,
10.3%, and 17.8% for R = 4, 6, 8, and 10, respectively.

Breath-Held Multislice Experiment With
True 8-Fold Acceleration

Figure 4 shows the reconstructed images (10 slices) for
the peak blood and peak myocardial wall enhancement
phases from the k-t SPARSE-SENSE reconstruction of
the in vivo breath-held experiment with true 8-fold
acceleration. The reconstructed images covered most of
the heart, with adequate blood and myocardial wall
enhancement and good image quality. The reconstruc-
tion time per slice was approximately 15 min, which
represented a total reconstruction time of approximately
2.5 h for the 10 slices using MatLab (The MathWorks) on
a 64-bit quad core workstation.

Free-Breathing Multislice Experiment With
True 8-Fold Acceleration

Figure 5 shows the reconstructed images (10 slices) for
the peak blood and peak myocardial wall enhancement
time points from the k-t SPARSE-SENSE reconstruction
of the in vivo experiment with heavy breathing. The
reconstruction did not show significant residual incoher-
ent artifacts but did show blurring due to a small loss of
sparsity in the temporal Fourier domain. The presence of
respiratory motion at higher temporal frequencies than
the passage of the contrast agent produces extra low-
energy components in the temporal Fourier domain,
which are more difficult to recover since they are sub-
merged beneath the pseudonoise created by the incoher-
ent artifacts.

Comparison of k-t SPARSE-SENSE With
R = 8 and GRAPPA With R = 2

Figure 6 shows corresponding images for GRAPPA with
R = 2 and k-t SPARSE-SENSE with R = 8. Spatial reso-
lution and blood and myocardial wall enhancement
were similar for both methods, but k-t SPARSE-SENSE
data acquisition was 4-fold higher in temporal resolution
and visually presented lower noise amplification in the
reconstructed images. Note that true noise also accumu-
lates incoherently in the sparse domain with low-value
coefficients. The combination of k-t SPARSE and SENSE
presents a regularized solution to the inverse problem,
where only the high-value sparse coefficients are recov-
ered and the low-value combined true noise and pseu-
donoise coefficients are neglected. This effectively
reduces the noise in the reconstructed images.

Patient Study

Figure 7 shows 8-fold accelerated perfusion images at
peak myocardial wall enhancement in three short-axis
locations (mid to apical) with perfusion defects. The cor-
responding phase-sensitive inversion recovery delayed-
enhancement images show myocardial infarction regions
that correlate well with the perfusion defect regions.

DISCUSSION

The high degree of spatiotemporal correlation in the car-
diac perfusion data allows for the application of com-
pressed sensing to accelerate data acquisition. When
multiple receiver coils are available, the extra correlation
between coils can be exploited to obtain higher accelera-
tions. In this work, a combination of compressed sensing
and parallel imaging using the SENSE model and the k-t
SPARSE method was employed to substantially increase
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Blood enhancement

Wall enhancement

the spatiotemporal resolution and spatial coverage of
first-pass cardiac perfusion MRI studies.

Understanding the combined reconstruction from the
perspective of distributed compressed sensing theory
offers a means to assess theoretical bounds for expected
increases in acceleration for combined techniques over
each technique applied separately. For example, in this
work a 2-fold increase in acceleration over compressed
sensing alone was accomplished by using the combined
reconstruction with a 12-element coil array, which repre-
sents 40-67% of the maximum feasible increase in accel-
eration for a very large number of coils.

The combination of k-t SPARSE and SENSE pre-
sented here shares with previously developed k-t accel-
eration methods the use of sparsity in the combined

RV blood

GRAPPA
(R=2)

FIG. 6. In vivo comparison of k-t SPARSE-
SENSE with R = 8 and commercially available
GRAPPA with R = 2 at different points in the
contrast update time course.

k-t SPARSE-SENSE
(R=8)

Otazo et al.

FIG. 5. Free-breathing, 8-fold accelerated
images in 10 short-axis views at peak
blood and myocardial wall enhancement.
These k-t SPARSE-SENSE reconstructed
images are free of residual aliasing arti-
facts, but at the expense of a moderate
loss in spatiotemporal resolution.

spatial (x-y) and temporal frequency (f) domain to
reconstruct undersampled data. However, these techni-
ques exploit sparsity differently. Methods such as k-t
SENSE and SPEAR exploit regularities in the sparse
domain to reduce signal overlap due to regularly under-
sampled data, whereas k-t SPARSE-SENSE exploits
irregularities in the sparse domain to produce under-
sampling artifacts as pseudonoise that adds incoher-
ently to the sparse representation. k-t SENSE and
SPEAR perform a linear reconstruction, where the
aliased image is unfolded using the signal distribution
in y-f domain and coil sensitivity information. SPEAR
solves the same reconstruction problem as k-t SENSE,
except for the baseline signal, where a model-based
reconstruction using the educed-encoding imaging by

LV peak blood Peak wall
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FIG. 7. a: Eight-fold accelerated perfusion images at peak myocar-
dial wall enhancement using the combination of k-t SPARSE and
SENSE. These three selective planes show perfusion defects.
b: Corresponding phase-sensitive inversion recovery delayed-
enhancement images showing myocardial scarring regions that
correlate well with the perfusion defect regions.

generalized-series reconstruction (RIGR) algorithm is
used instead of the temporal average in order to
increase the temporal resolution of k-t SENSE. On the
other hand, k-t SPARSE-SENSE performs a nonlinear
reconstruction, where the sparse coefficients are recov-
ered from the interference created by the incoherent
undersampling artifacts. Note that k-t SPARSE-SENSE
does not require training data as explicit knowledge of
the particular sparse representation in y-f space is not
required. Reconstruction artifacts in k-t SENSE and
SPEAR appear as unfolding errors, whereas artifacts in
k-t SPARSE-SENSE appear as residual pseudonoise. As
a result, k-t SPARSE-SENSE may reduce image artifacts
due to respiratory motion.

The method used in this work is more closely related
to other compressed sensing techniques proposed for
dynamic MRI, such as k-t SPARSE and k-t FOCUSS.
However, k-t SPARSE-SENSE exploits joint sparsity
whereas the other methods exploit single coil sparsity.
As a result, the method used in this work provides
increased acceleration capability. Moreover, the recon-
struction algorithm used here differs from that of k-t
FOCUSS. k-t FOCUSS first produces an initial signal
estimate with high temporal resolution, using a model-
based reconstruction (RIGR algorithm, as in the SPEAR
method), and then enforces sparsity on the remaining
part of the signal. As a result, k-t FOCUSS may become
particularly sensitive to errors in the initial estimate.
Another difference is that I;-norm minimization in k-t
FOCUSS is approximated by a series of I,-norm minimi-
zation problems with different weights (reweighted
I,-norm), which might require more samples than using
a nonlinear algorithm.

Image reconstruction artifacts for higher accelerations
include spatiotemporal blurring, attenuation of low-con-
trast features, and increase of combined noise and pseu-
donoise. Ideally, if the signal is truly sparse, with only a
few large coefficients, compressed sensing will recover
only the sparse signal coefficients and suppress the com-
bined noise and pseudonoise. However, in practice the
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signal is only compressible, i.e., it contains a few large
coefficients and many small coefficients. k-t SPARSE-
SENSE tends to suppress low-valued coefficients in the
temporal Fourier domain, such as high spatiotemporal
frequencies and low-contrast image features, which are
below the combined noise and pseudonoise level. Both
noise and pseudonoise in the sparse domain increase
with acceleration, which also increases the false detec-
tion of sparse signal coefficients, and so more noise and
pseudonoise coefficients appear in the solution. How-
ever, the filtering of noise coefficients in the sparse
domain effectively reduces the noise level in the recon-
structed images, at the expense of changing the noise
distribution when compared to standard parallel imaging
techniques.

The maximum acceleration in k-t SPARSE-SENSE is
determined by the number of sparse coefficients in the
temporal Fourier domain and the number of receiver
coils. Tailored sparsifying transforms, which jointly
weight spatial and temporal dimensions, may offer a
higher compression ratio than the temporal Fourier
transform, and the use of coil arrays with larger numbers
of elements may substantially reduce the number of
required samples (26), resulting in improved perform-
ance for cardiac perfusion MRI.

The current implementation of k-t SPARSE-SENSE
performs a sequential slice-by-slice reconstruction. The
reconstruction time per slice is about 15 min using Mat-
Lab (The MathWorks) on a 64-bit quad core workstation
for the imaging parameters used in this work. For whole-
heart coverage, eight to 10 slices are required, which rep-
resents a total reconstruction time of 2-2.5 h. Parallel
computing can be used to reduce the reconstruction time
by reconstructing each slice in parallel. We also expect a
further reduction with programming optimization, using
a standard programming language such as C++.

Compressed sensing reconstruction can also be per-
formed by minimizing the Iy-norm (number of nonzero
coefficients), which in theory would require fewer samples
than I;-norm minimization. However, ly-norm minimiza-
tion is a combinatorial optimization problem and therefore
computationally intensive. Nevertheless, recently devel-
oped methods that approximate the J;-norm minimization
problem have demonstrated fast and stable reconstruction
for highly sparse data sets (26,34), and they may be appli-
cable to the combination of compressed sensing and paral-
lel imaging for first-pass cardiac perfusion MRI.

One limitation of the proposed method is the selection
of the weighting parameter (\). In the current implemen-
tation, we did not apply any rigorous mathematical crite-
ria to select lambda systematically. Instead, the parame-
ter N was selected based on simulation results from a
single fully sampled data set. Mathematical tools, such
as the L-curve, can be used to select A in a systematic
way for an adequate balance between signal-to-noise ra-
tio and spatial-temporal smoothing.

CONCLUSIONS

We have presented a technique combining compressed
sensing and parallel imaging for highly accelerated car-
diac perfusion MRI. This approach exploits joint sparsity
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of the multicoil images in x-y-f space. A new theoretical
framework for combined reconstruction based on distrib-
uted compressed sensing theory was presented to pro-
vide estimates of theoretical bounds for feasible accelera-
tions. An in vivo acceleration factor of 8 was feasible
with the combined approach, using a 12-element coil
array while preserving image quality and temporal fidel-
ity. The combined reconstruction does not require
dynamic training data and is relatively insensitive to re-
spiratory motion artifacts. Even higher acceleration rates
may be feasible with tailored space-time sparsifying
transforms, use of cardiac coil arrays with larger num-
bers of elements, and four-dimensional acquisitions.
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