
Corrigendum to Best position algorithms for efficient top-k query

processing, by R. Akbarinia, E. Pacitti and P. Valduriez,

Information Systems 36, 6 (2011), 973-989

Reza Akbarinia, Esther Pacitti and Patrick Valduriez

In [APV11], we said that the proof of Theorem 6.1 in [FLN03] was incorrect, because we thought

that random access could return the position of the seen data in addition to its score. But, as Dr. Ronald

Fagin points out, the random access defined in [FLN03] does not return the positions. Therefore, we

were wrong, and we apologize to the authors of [FLN03].

For context, we explain the assumptions of [FLN03], as given in their paper.

1 Definitions and Assumptions

There is a set of n objects, and a database that consists of m sorted lists L1, . . . , Lm, each of length n,

with one entry in each list for each of the n objects. Each entry of Li is of the form (R, xi), where R is

an object and xi ∈ [0, 1] is the score of R in list Li, for 1 ≤ i ≤ n. Each list Li is sorted in descending

order by the xi value.

Each object has an overall score, that is obtained by combining its scores in each of the lists by a

fixed aggregation function, such as min or sum. Thus, if t is the aggregation function, and if xi is the

score of object R in list Li, for 1 ≤ i ≤ n, then the overall score of object R is t(x1, . . . , xm). The

goal is to find the top k objects, that is, the k objects with the highest overall scores, for some fixed k.

In [FLN03] the focus is on monotone aggregation functions,, that is, aggregation functions t such that

whenever xi ≤ yi for each i, then t(x1, , . . . , xm) ≤ t(y1, . . . , ym).

There are two modes of access to data. The first mode of access is sorted access. Here the system

obtains the score of an object in one of the sorted lists by proceeding through the list sequentially from

the top. Thus, if object R has the ℓth highest score in list Li, then ℓ sorted accesses to list Li are required

to see this score under sorted access. The second mode of access is random access. Here, the system

requests the score of object R in list Li, and obtains it in one random access. If there are s sorted

accesses and r random accesses, then the sorted access cost is scS , the random access cost is rcR, and

the middleware cost is scS + rcR (the sum of the sorted access cost and the random access cost), for

some positive constants cS and cR.

We now define the notion of instance optimality. Let A be a class of algorithms, and let D be a

class of legal inputs to the algorithms. We assume that we are considering a particular nonnegative

performance cost measure cost(A,D), which represents the cost incurred by running algorithm A ∈ A

on input D ∈ D. In [FLN03], this cost is the middleware cost. We say that an algorithm B is instance

optimal over A and D if B ∈ A and if for every A ∈ A and every D ∈ D we have

cost(B,D) = O(cost(A,D)). (1)

1



Intuitively, instance optimality corresponds to optimality in every instance, as opposed to just the worst

case or the average case.

An algorithm that does sorted and random accesses is said to “make wild guesses” if it performs

some random access on an object not previously encountered by sorted access. In practice, no real-

world algorithm in this setup would make wild guesses.

2 Discussion

In [FLN03] the Threshold Algorithm (TA) is introduced, and the following theorem is given:

Theorem 6.1 [FLN03]. Assume that the aggregation function t is monotone. Let D be the class of

all databases. Let A be the class of all algorithms that correctly find the top k answers for t for every

database and that do not make wild guesses. Then TA is instance optimal over A and D.

In our paper [APV11], we introduced a new algorithm called the Best Position Algorithm (BPA). We

observed that the proof of Theorem 6.1 does not go through to show that (1) holds when A is BPA and

B is TA (in this case (1) may or may not hold, but at least the proof does not go through). We therefore

concluded that there was an error in the proof of Theorem 6.1. However, BPA uses a stronger form of

random access than that defined (or allowed) in [FLN03]: specifically, in our paper, in a random access

of object R in list Li, we learn not only the score of object R in list Li (as in [FLN03]), but also the

position of object R in list Li.

But, as Dr. Ronald Fagin points out, this knowledge is not authorized in the model defined in

[FLN03]. Therefore, BPA is not in the class A of algorithms covered by Theorem 6.1 in [FLN03], and

so there is no error in the proof of Theorem 6.1.

References

[APV11] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Best position algorithms for efficient

top-k query processing. Inf. Syst., 36(6):973–989, 2011.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-

ware. J. Comput. System Sci., 66:614–656, 2003.

2


