
Private Information Retrieval,Optimal for Users and Secure CoprocessorsDmitri Asonov? and Johann-Christoph FreytagHumboldt-Universit�at zu Berlin,10099 Berlin, Germanyfasonov, freytagg@dbis.informatik.hu-berlin.deAbstract. A private information retrieval (PIR) protocol allows a userto retrieve one of N records from a database while hiding the identity ofthe record from the database server. A PIR protocol is optimal for users,if the query response time is independent from N , and the communica-tion between the user and server is of an order of one record. Recentlysuch a protocol was proposed [AF01,AF02]. However, an ultimate con-dition for that protocol is using a secure coprocessor (SC) that processesthe database records.We focus on the problem of minimizing the number of records handled bythe SC, both for preprocessing and for query processing. In this paper,we present a set of preprocessing algorithms with O(N2=p) I/O's for a SC(for any p) and O(pN) I/O's for an untrusted computer (UC), comparedto O(N2) I/O's for a SC in [AF01,AF02]. For p = pN , the algorithm isof complexity O(pNN) for a SC and UC. Also, query processing timemay be cut from O(1) to 2 by preprocessing online.Keywords: Information hiding aspects of privacy; e�cient realization of privacyservices.1 IntroductionIn many e-commerce scenarios the user retrieves data from the server and paysfor it. Sometimes it is vital for the user to hide the content of his queries fromevery one else. Encrypting the communication channel between the client andserver does not help, since the server would have access to the user queries.Solutions that help are called Private Information Retrieval (PIR) protocols.Formally, a PIR protocol allows a user to retrieve one of N digital recordsof his choice from the server, while revealing nothing about the record identity,not even to the server that processes the query.Trading digital goods online is a straightforward application for PIR. WithPIR the user privacy concerns would be satis�ed: The server cannot misuse theinformation contained in the user query, because the server simply does not haveinformation about content of user queries.? This research was supported by the German Research Society, Berlin-BrandenburgGraduate School in Distributed Information Systems (DFG grant no. GRK 316.)

2 Dmitri Asonov and Johann-Christoph Freytag1.1 MotivationInitial PIR protocols process all N records to answer a user query "return thei-th record" [KO97,CMS99,SS00,SS01], resulting in impractical query responsetime. Later protocols �xed this problem by introducing preprocessing on theserver side [BDF00,SJ00]. However, the communication proportional to the sizeof the database between the client and server is needed to implement these latterprotocols.A recently proposed protocol achieves constant query response time and op-timal communication simultaneously [AF01,AF02], thus being an optimal pro-tocol from the user point of view. This protocol employs a tamper-proof device,namely a secure coprocessor (SC), that processes database records (Section 2.1gives a sketch of the protocol). This approach raises the following two concerns:{ The PIR protocol uses special hardware (a SC) at the server site, so theimplementation of the protocol is impossible with general-purpose hardwareonly.{ The PIR protocol uses special hardware intensively. Namely, the tamper-proof device must process k records to answer the k-th query online. More-over, by starting with k = 1, the tamper-proof device must preprocess O(N2)records.In this paper, we tackle the second concern and achieve results outlined in thenext subsection.1.2 Our ResultsWe improve the complexity of both preprocessing and processing as following.In Section 3, we construct a set of preprocessing protocols with O(N2=p +pN) complexity, where p is a parameter identifying a member of the set. Weshow, that the overall number of I/O's is minimal for p u pN (Section 3.2).Consequently, the optimal protocol in the set has a complexity of O(NpN), incontrast to O(N2) in [AF02]. For practical scenarios, this result cuts weeks ofpreprocessing time down to a few hours, as discussed in Section 2.2.In Section 4, we assume there is a free time slot after the (k � 1)th queryhas been processed. We show how to reduce the query response time for k-thquery from k down to 2 (a constant) if k2 time is available online for runningan appropriate algorithm. Evidently, runtime of this algorithm grows with thenumber of queries answered so far.In Section 5 we compare our approaches with the protocol in [AF01,AF02].To do this using one scale, we propose a normalized measure of the complexityof a protocol based on the processing and preprocessing complexities.1.3 Preliminaries and AssumptionsIn the following, N denotes the number of records in the database, each con-sisting of L bits. The only type of query considered is "return the i-th record",1 6 i 6 N .

Private Information Retrieval, Optimal for Users and Secure Coprocessors 3We assume that the access to secondary storage takes several orders of mag-nitude more time than an operation on data in main memory. Thus, we measurethe preprocessing and query response time of a PIR protocol by the number ofrecords accessed on secondary storage, i.e. by the number of I/O's of blocks ofsize L.For simplicity of presentation, we assume that O(L) bits of memory of a SCare available. Our protocols can be slightly modi�ed in order to support thegeneral case.2 Related WorkAppendix A sketches the PIR protocols from [SS00,SS01,BDF00,SJ00], that suf-fer from O(N) query response time or O(N) communication required to initiatethe protocol. Additionally, it briey reviews the properties of a SC briey inSection A.1.Section 2.1 summarizes the protocol from [AF01,AF02], that both has O(1)query response time and communication complexity.Section 2.2 reviews the related work and compares those results with theproposed protocol.2.1 PIR Optimal for Users but Costly for SCThe protocols described in [SS01,BDF00,SJ00] (summarized in Section 2.2, Ta-ble 1) raise the question, if it is possible to design a PIR protocol with O(1)query response time and O(1) communication. Such protocol would be optimalfrom the user's point of view. A solution is described in [AF02] by suggestingthe following protocol.Using Algorithm 1, the SC shu�es the records of a database in such a way,that no one observes the new order (Fig. 1). In Algorithm 1, the SC reads theentire database N times record by record. Each time the SC leaves a record inits secure memory and writes it to the (shu�ed) database in an encrypted form.When the shu�ed database is complete, the SC has read N2 database records,i.e. N2 (sequential) blocks of size L.After this preprocessing is complete, the SC answers the user queries in O(1)time. The SC must not read the entire database to answer one query. Instead, asfor the �rst query, the SC reads only one record to answer a query. To answer ak-th query, the SC must read k records: These are k� 1 previously read recordsplus one of the unread records in the shu�ed database.After some threshold number m of records to read to answer a query isreached, the SC switches to another shu�ed database to keep the response timefrom breaking through the threshold.

4 Dmitri Asonov and Johann-Christoph Freytag
.

R1

NR

.

.

E(R)?

E(R)?

.

.

. SC

E(R)?

E(R)?

.

.

.

13

1

2

SC

2

handling the records

e(Query, SC_key)

S
E

R
V

E
R

preprocessing processing

e(Ri, client_key)

SC reads entire db,

CLIENT

to answer k−th query
SC reads O(1)=k records

communication between
the client and server

{1} is run N times, i.e.
until shuffling is complete

saves a record

Fig. 1. I/O ows in the PIR in [AF01].2.2 State of the Art and Our ResultsWe call a protocol optimal for users if both the communication and query re-sponse time are optimal 1. In the related work, summarized in Table 1, there isonly one protocol optimal for users { [AF02].However, this protocol requires preprocessing of high complexity which mustbe repeated periodically. Assuming that accessing one database record takes0:01sec for a SC and N = 10000, these are N2 � (0:01sec=record) = 10000 �10000 � 0:01sec� 2 weeks to prepare one shu�ed database. [AF02] recommendsto use one shu�ed database for answering no more than about 140 queries.One of the preprocessing protocols proposed in this paper exhibits a com-plexity of O(N1:5), meaning the time of preprocessing of 2 weeks is cut downto approximately 3 hours. Note, that the query response time of our protocol(identi�ed to be � k in Table 1) can take values up to 2. The exact value dependson the amount of time between the processing of a query and the arrival of thenext query, as explained in details in Section 4.1 We say, that the communication complexity is optimal if communication betweenthe client and server is of an order of one record per query "return the i-th record".Query response time is optimal if it is independent form the size of the database,i.e., if it is independent from N

Private Information Retrieval, Optimal for Users and Secure Coprocessors 5Input: DB: a database of N recordsOutput: DBshuffl: a shu�ed copy of DB, each record is encrypted; INDEXshuffl:an encrypted index of DBshuffl1: V = [1; :::; N] fIndex of the database DBg2: V 0 = shu�e(V) fPrepare index for the shu�ed database DBshufflg3: for g = 1 to N do4: for h = 1 to N do5: read(Temp(DB[h]) fRead the h-th record into the SCg6: if h = V 0[g] then7: Record = Temp fSave the V 0[g]-th record of the database internallyg8: end if9: end for10: write(DBshuffl[g](encrypt(Record)) fProduce g-th record of DBshufflg11: end for12: V 0encrypted = encrypt(V 0) fEncrypt the index with some key of the SCg13: write from SC(INDEXshuffl (V 0encrypt) fThe encrypted index of DBshufflgAlgorithm 1: The basic database shu�ing algorithm3 Improving the Preprocessing ComplexitySection 3.1 presents a preprocessing algorithm with O(N2=p) complexity for aSC (for any p � L) and O(pN) complexity for an untrusted computer (UC).Section 3.2 shows the optimal complexity for a SC together with an UC tobe O(pNN) (for p = pN), in contrast to O(N2) in [AF01].3.1 The Preprocessing Algorithm with Reduced I/O's ComplexityAlgorithm 2 formalizes the proposed preprocessing algorithm referring to threesub-algorithms that are explained in the following.Algorithm 3 splits each record of the database DB[N] in p equal parts. Forexample, the database DB1[N] would consist of the �rst parts of the records ofthe original database; each record of the database DB1[N] would be of size L=p.Obviously, there would be p such databases (DB1[N]; :::; DBp[N]). No SC's isneeded to perform this algorithm, because it can be performed by an untrustedcomputer (UC). Fig. 2(b) shows the output of this algorithm for p = 2.Table 1. Comparative analysis of the proposed protocol.PIR ProtocolParameter Computational[BDF00,SJ00] With SC[SS00,SS01] With SC[AF01,AF02] The Proposed(With SC)Response time O(1) O(N) O(1) = k O(1) � kExtra Comm. O(N) no no noPreprocessing once, once, periodical, periodical,O(N) O(N) O(N2) O(N1:5)

6 Dmitri Asonov and Johann-Christoph FreytagInput: DB[N]: a database of N records of size L; a parameter pOutput: a shu�ed copy of DB[N], each record is encrypted; INDEXshuffl: an en-crypted shu�ing index1: if Algorithm 3 has never been executed before then2: excecute(Algorithm 3) fSplit the records of the database in p parts; j-th partof each record is saved in DBj [N], 8j; 1 � j � pg3: end if4: excecute(Algorithm 4) fShu�e the p databases using the SC: DBj ! DBshufflj g5: excecute(Algorithm 5) fAssemble the shu�ed records of the original databasefrom their piecesgAlgorithm 2: The main preprocessing algorithmInput: DB[N]: a database of N records of size L; parameter pOutput: fDBj [N]g; j 2 f1; ::; pg : p databases; an x-th record from the y-th database(DBy[x]) is the y-th part of DB[x]1: for g = 1 to p do2: for h = 1 to N do3: read(Temp(DB[h][g]) fRead the g-th part of h-th recordg4: write(DBg[h](Temp) fProduce the h-th record of DBgg5: end for6: end for Algorithm 3: The database splitting algorithmUsing Algorithm 4, the SC shu�es all the databases based on the sameshu�ing vector (DB1 ! DBshuffl1 , DB2 ! DBshuffl2 ,...,DBp ! DBshufflp)one by one. Each shu�ing takes (N=p)2 I/O's for a SC, because the SC canread p records into its memory at a time. This results in p � (N=p)2 sequentialreads of blocks of size L. Fig. 2(c) demonstrates an example of an output of thisalgorithm, for the input in Fig. 2(b).Function map used in Algorithm 4 ensures that after each read of a databasep (random) records remain in the memory of SC (in Kept array) which arethen written to secondary storage. Formally, at the end of the h-th read of thedatabase DBg , the array Kept contains p records from the DBg:Kept[1] = DBg [j1]; ::: ;Kept[p] = DBg [jp]; wherej1 = V 0[(h� 1)p+ 1]; ::: ; jp = V 0[(h� 1)p+ p] = V 0[hp]Algorithm 5 gathers the "pieces" of the each record into the one record,such that at query processing time one can access an entire record immediately,instead of accessing each part of the record from p di�erent databases. As wellas Algorithm 3, this algorithm can be performed by an UC, and takes N � preads.The overall complexity of Algorithms 4,5 is N2=p + N � p. Namely, N2=pis complexity of the SC work, and N � p complexity can be carried out by an

Private Information Retrieval, Optimal for Users and Secure Coprocessors 7

1 N

1

1 N

DB[1][2] DB[N][2]

DB[1][1]

1

1 N

E(DB[x=?]) O(L) bits

. . .shuffl
DB [N]

1 N

E(DB[x][1])

E(DB[x][2]) E(DB[y][2])
N

O(L/p) bits

. . .

. . .

. . .

. . .

. . .

shuffl
DB [N]

DB [N]
shuffl

N

L/p bits

DB [N]

DB [N]
1

2 2

1

(b) Two databases (p=2) are produced (c) Each database is shuffled by a SC

DB[N]

L bitsDB[1]

(a) The initial database of N digital goods of length L bits

(with Alg.3: Splitting the records) (using the same shuffling vector: Alg.4)

(d) A shuffled copy of the DB[N] (after Alg.5: Gathering splitted records) Fig. 2. An example of the preprocessing algorithm for p = 2.UC. We omit O(N � p) complexity of Algorithm 3 while calculating the overallpreprocessing complexity, because this algorithm must be performed only once.In the next section we determine the minimal complexity possible by varyingparameter p.3.2 Balancing The Preprocessing Complexity between SC and UCIn this section we study, in how many pieces to split the initial database recordsin order to gain optimal (i.e. minimal) complexity of the preprocessing algorithm(Alg. 2).Theorem 1. The minimal complexity of the Algorithm 2 is attained for p =pN .Proof. As follows from Section 3.1, the complexity of the preprocessing algorithmcan be estimated by O(N � p +N2=p), given that the parameter 1 � p � L ofthe algorithm is speci�ed.To �nd the optimal p, we determine the minimum of the function f(p) =N � p+N2=p. f 0(p) = (N � p+ N2p)0 = N � N2p2 ; popt = pN:Consequently, the optimal preprocessing complexity isO(f(popt)) = O(2NpN) =O(NpN), as also shown in Fig 3 for N = 10000. ut

8 Dmitri Asonov and Johann-Christoph FreytagInput: Output from Algorithm 3: fDBj [N]g; j 2 f1; ::; pg: p databases, each has Nrecords of size L=p;Output: fDBshufflj [N]g; j 2 f1; ::; pg : p shu�ed databases; INDEXshuffl: anencrypted shu�ing index, the same for all split databases1: V = [1; :::; N]; V 0 = shu�e(V) fUse the same index to shu�e databasesg2: for g = 1 to p do3: for h = 1 to N=p do4: for u = 1 to N=p do5: read into SC(Temp(DBg[(u� 1)p+ 1; :::; (u� 1)p+ p]) fRead psequential records of size L=p from DBgg6: map(Kept(Temp) fFill positions in Kept in accordance with V 0g7: end for8: write from SC(DBshufflg [(h� 1) � p+ 1; :::; (h� 1) � p+ 1](encrypt(Kept))fProduce p sequential records of size L=p for DBshufflg , encrypt separatelyg9: end for10: end for11: V 0encrypted = encrypt(V 0) fEncrypt the index with some key of the SCg12: write from SC(INDEXshuffl (V 0encrypt) fThe encrypted shu�ing indexgAlgorithm 4: The algorithm for shu�ing the split databasesInput: Output from Algorithm 4: fDBshufflj [N]g; j 2 f1; ::; pg : p shu�ed databases;the shu�ing vector V 0 is the same for all databasesOutput: fDBshuffl[N] : a shu�ed copy of DB[N]; each record is encrypted1: for h = 1 to N do2: for g = 1 to p do3: read(Temp(DBshufflg [h]) fRead the g-th part of h-th record for DBshufflg4: write(DBg[h](Temp) fProduce the g-th part for h-th record for DBshufflg5: end for6: end forAlgorithm 5: The algorithm for assembling the shu�ed databaseThe above result for optimal p is valid if pN � L, which is a rather reasonableassumption. Otherwise, if pN > L, the parameter should be assigned to thelargest possible number, i.e. p = L.The complexity of the work for the SC can be reduced further to O(N) atthe same time leading to a growth in the same order in the complexity of thework done by an UC, as shown in Fig.4.4 Optimizing the Query Processing ComplexityAccording to the protocol in Section 2.1, k records must be read from the shu�eddatabase in order to answer a query online, where k is the number of queriesanswered using the same shu�ed copy of a database. This section suggests anapproach to keep the query response time independent from k by employingpreprocessing online.

Private Information Retrieval, Optimal for Users and Secure Coprocessors 9
f = (SC(p) +UC(p))SC(p) = N2=pUC(p) = Np

parameter pI/O'stoshu�e
oneDB[N]

100001001

1e+08
1e+06
10000Fig. 3. The overall work done to shu�e one database (calculated as a sum of thenumber of I/O's for SC and UC) is not constant for di�erent values of the parameterp.

UC(p);SC(p)
I/O's done by the UCI/O'sdonebyt

heSC
1e+081e+071e+0610000010000

1e+081e+071e+0610000010000Fig. 4. At preprocessing, reducing the complexity of the SC results in the growth ofcomplexity of the UC and vice versa.

10 Dmitri Asonov and Johann-Christoph Freytag4.1 A Straightforward ApproachThe basic idea is to apply the protocol of Section 2.1 recursively [AS02].After answering the k-th query, we propose to shu�e all the previously readrecords. The shu�ed database would then consist of the group of previouslyunread records and the group of previously read records, now newly shu�ed.Processing the next query results in reading one record from each group2, so that response time is determined by 2 accesses to secondary storage. Ifsuch "refreshment" of the shu�ed database is done after each query, the queryresponse time would remain being determined by 2 I/O's.Periodical switching to a new shu�ed database is inevitable, however. Thereason is that the complexity of online shu�ing of the previously accessed recordsgrows with the number of queries answered, possibly resulting in delays forprocessing the next queries.Note, that the shu�ing of k records can be done using the preprocessingalgorithm proposed in Section 3, providing the complexity O(kpk).4.2 Interruptible Shu�ing ProtocolThe previously proposed secure shu�ing algorithms (Alg. 1 from [AF01,AF02]and Alg. 2 introduced in Sect. 3.1) are non-interruptible. That is, if the executionof these algorithms is interrupted before it �nishes, the output produced so faris of no use for the query processing protocol.In case of using the preprocessing online, the amount of time available forpreprocessing is unknown when preprocessing begins. The reason is that thearrival time of the next query is unknown. Thus, a preprocessing algorithm ispreferred, that can be interrupted and whose output produced so far can be usedto process the next query.Our interruptible shu�ing algorithm (Alg. 6) shu�es k records in O(k2)steps. In order to be interruptible, the algorithm works as follows. Given (j� 1)shu�ed records and a j-th record, the algorithm produces j shu�ed recordsin O(j) time. The algorithm is interruptible, because it can be stopped at anytime and the s shu�ed records produced so far can be used to reduce the queryresponse time from k to (k � s + 2) in way, very similar to that explained inSection 4.1.5 Measuring the Complexity of the PIR ProtocolAbove, we proposed several techniques to improve preprocessing and processingparts of the PIR protocol in [AF01,AF02]. In this section, we measure how theseimprovements inuence the overall complexity of the protocol. For being able todo this, we �rst de�ne a normalized complexity of a PIR protocol as following.2 The correctness of this protocol follows recursively from the formal proof of correct-ness of the protocol in Section 2.1, which can be found in [AF01,AF02].

Private Information Retrieval, Optimal for Users and Secure Coprocessors 11Input: j � 1 shu�ed encrypted records DBshuffl[1; ::; j � 1]; a record ROutput: DBshuffl[1; ::; j] : j shu�ed encrypted records; the newly added record Rcan be at any position.1: read into SC(Buf (R) fRead the record R into the SCg2: for g = 1 to j � 1 do3: read into SC(Temp(decrypt(DBshuffl[g])) fRead the g-th record fromDBshuffl, decrypt itg4: ifswap(Temp;Buf) fSwap the arguments or wait a given time to pretend doingswappingg5: write from SC(DBshuffl[g](encrypt(Temp)) fWrite down the new g-threcord for DBshufflg6: end for7: write from SC(DBshuffl[j](encrypt(Buf)) fWrite down the record from thebu�er of the SCgAlgorithm 6: The interruptible shu�ing algorithm5.1 A Normalized Measure for the Protocol ComplexityPIR protocols can be di�erentiated based on their preprocessing per query com-plexities and processing complexities. For example, a protocol in [AF01,AF02]preprocesses P prep = O(N2=m) records per query, while exhibiting P proc =O(m) processing complexity. In the next subsection we must be able to com-pare, for example, this protocol to another one with P prep = �(N;m), P proc =�(N;m). Below we de�ne a normalized complexity that provides a single valuemeasure for comparing the complexities of PIR protocols.Let us �x the query response time of a PIR protocol to O(m). Then, wede�ne the normalized complexity P of a PIR protocol by the complexity of thepreprocessing work done per query. Our de�nition of the normalized complexitydoes not depend on the communication complexity of the protocol, because weconsider the only protocols with optimal communication.For better understanding of the measurement, assume two PIR protocols. Weadjust their processing complexities in such a way that they both exhibit a queryresponse time O(m). Then, the only di�erence in performance between them ishow much time each of them spends on preprocessing per answered query. Thatis, we assume that at processing phase the same amount of work is done. Then,the protocols can be di�erentiated on how much preprocessing work per queryis required.5.2 The MeasurementIn this section we measure and compare the normalized complexities of (i) thePIR protocol in [AF01,AF02], (ii) the same protocol improved as proposed inSect. 3, (iii) the same protocol improved as proposed in Sect. 4. Finally, weconsider the combination of both improvements and draw the conclusions.1. The protocol presented in [AF01,AF02] requires the preprocessing of com-plexity N2 to be done in order to answer each m queries, providing the

12 Dmitri Asonov and Johann-Christoph Freytagfollowing normalized complexity:P1 = N2m2. The protocol updated as proposed in Sect. 3 requires the preprocessing ofcomplexity NpN to be done in order to answer each m queries:P2 = NpNm3. The protocol updated as proposed in Sect. 4 have the same processing com-plexity in the worst case as the protocol in [AF02]. However, the idea ex-plained in Sect. 4 can be applied to regenerating a usable shu�ed databasefrom an unusable one. Namely, after the m queries are executed, the shu�eddatabase is not deleted. Instead, the accessed m records could be shu�ed,providing a shu�ed database being able to serve for answering additionalm=2 queries. 3 This approach can be applied several times. The complexityof the protocol can be calculated as follows:P3 = N2 +m2 + 2(m=2)2 + 4 � (m=4)2 + :::+ 2m2=mm+m=2 +m=4 +m=8 + :::+ 1 =N2 +m2(1 + 1=2 + 1=4 + :::+ 2=m)m(1 + 1=2 + 1=4 + 1=8 + :::+ 1=m) uN2 +m2(1 + 1=2 + 1=4 + :::+ 1=m)m(1 + 1=2 + 1=4 + 1=8 + :::+ 1=m) =N2m(1 + 1=2 + 1=4 + 1=8 + :::+ 1=m) +m = N2m(2� 1=m) +m u N22m +mFinally, we combine the two proposed modi�cations together and measurethe normalized complexity of the resulting protocol. Namely, we assume thatthe shu�ing complexity is O(NpN) (as proposed in Sect. 3), and that the usedshu�ed databases are refreshed as proposed in Sect. 4. Then, the complexity P4of the resulting protocol is calculated similar to P3:P4 = NpN +mpm+ 2(m=2)pm=2 + 4 � (m=4)pm=4 + :::+ 2mpm=mm+m=2 +m=4 +m=8 + :::+ 1 uNpNm(1 + 1=2 + 1=4 + 1=8 + :::+ 1=m) + 3pm2 u NpN2m + 3pm2In summary, as demonstrated on Fig. 5, the approach proposed in Sect. 3 re-duces the normalized complexity of the PIR protocol from N2=m to NpN=m,whereas the approach proposed in Sect. 4 reduces the normalized complexity ofthe protocol by a constant factor.3 For details, please refer to Section 4.

Private Information Retrieval, Optimal for Users and Secure Coprocessors 13
P4 = NpN=(2m) + 3pm=2P3 = N2=(2m) +mP2 = NpN=mP1 = N2=m

max. query response time mpreprocessingI
/Osperquery

100001000100101

1e+0081e+0071e+006100000100001000100Fig. 5. The normalized complexities of the basic protocol [AF01,AF02], and the twomodi�cations proposed in this paper are presented as functions of the maximal queryresponse time m, for N = 10000.6 Conclusions and Future WorkA recently proposed Private Information Retrieval (PIR) protocol acquire thequery response time and the communication constant from the number of recordsin the database (N), thus being optimal for users [AF01,AF02]. The drawbacksof the protocol are that (i) k records must be read to answer k-th query, (ii)to start with k = 1, which is done periodically, the preprocessing of quadraticcomplexity must be performed. The latter means, N2 times a block (of size ofa database record) is read from secondary storage for the preprocessing to becomplete.We tackled the problem by proposing a preprocessing algorithmwith O(NpN)complexity. We also show how to cut query response time from k to 2 by applyingadditional preprocessing online.We emphasize, that although our preprocessing algorithm is of better com-plexity in comparison to the previous work, we only proved it's complexity to beoptimal within the set of algorithms considered in this paper. Further improve-ments in the preprocessing complexity might be possible.References[AF01] D. Asonov and J.-C. Freytag. Almost optimal private information retrieval.Technical Report HUB-IB-156, Humboldt University Berlin, November 2001.

14 Dmitri Asonov and Johann-Christoph Freytag[AF02] D. Asonov and J.-C. Freytag. Almost optimal private information re-trieval. In Proceedings of 2nd Workshop on Privacy Enhancing Technologies(PET2002), San Francisco, USA, April 2002.[AS02] D. Asonov and S. Smith. Private communication, April 2002.[Aso01] D. Asonov. Private information retrieval - an overview and current trends.In Proceedings of the ECDPvA Workshop, Informatik 2001, Vienna, Austria,September 2001.[BDF00] F. Bao, R. H. Deng, and P. Feng. An e�cient and practical scheme forprivacy protection in the e-commerce of digital goods. In Proceedings ofthe 3rd International Conference on Information Security and Cryptology,December 2000.[BIM00] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers computationin private information retrieval: PIR with preprocessing. In Proceedings ofCRYPTO'00, 2000.[CIO98] G. D. Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers fordatabase private information retrieval. In Proceedings of 17th PODC, 1998.[CMS99] C. Cachin, S. Micali, and M. Stadler. Computationally private informa-tion retrieval with polylogarithmic communication. In Proceedings of EU-ROCRYPT'99, 1999.[GGM98] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model forprivate information retrieval. In Proceedings of 2nd RANDOM, 1998.[KO97] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: Single-databasecomputationally private information retrieval. In Proceedings of 38th FOCS,1997.[SJ00] C. P. Schnorr and M. Jakobsson. Security of signed elgamal encryption. InProceedings of ASIACRYPT'00, LNCS 1976, December 2000.[SPW98] S. W. Smith, E. R. Palmer, and S. H. Weingart. Using a high-performance,programmable secure coprocessor. In Proceedings of the 2nd InternationalConference on Financial Cryptography, February 1998.[SS00] S. W. Smith and D. Sa�ord. Practical private information retrieval withsecure coprocessors. Technical report, IBM Research Division, T.J. WatsonResearch Center, July 2000.[SS01] S. W. Smith and D. Sa�ord. Practical server privacy with secure coprocessors.IBM Systems Journal, 40(3), September 2001.A PIR Protocols not Optimal for UsersThe related work, that did not appear in Section 2, is presented in the followingtwo sections. A more comprehensive overview on PIR can be found in [Aso01].A.1 PIR with Secure CoprocessorSmith et al. [SS00,SS01] make use of a tamper-proof device to implement thefollowing PIR protocol.A secure coprocessor (a tamper-proof device) is used as a black box, wherethe selection of the requested record takes place. Although hosted at the serverside, the SC is designed so that it prevents any one from accessing its memory

Private Information Retrieval, Optimal for Users and Secure Coprocessors 15from outside [SPW98]. A SC can prove what software is installed inside andwhether it was changed in the past.The basic protocol runs as shown in Fig. 6. The client encrypts the query "re-turn the i-th record" with a public key of the SC, and sends it to the server. TheSC receives the encrypted query, decrypts it, reads through the entire database,but leaves in memory the requested record only. The protocol is �nished afterthe SC encrypts the record and sends it to the client.To provide integrity, the SC keeps all records of the database encrypted.
R1E()

NRE()

2

SC

3 1

.

.

.

da
ta

ba
se

 o
f N

 r
ec

or
ds

SERVER

keeps Ri only

SC reads entire db

e(Query, SC_key)

sequentially,

e(Ri, client_key)

CLIENT
Query = "I need Ri"

handling the records

communication between
client and server

Fig. 6. I/O ows in the PIR with SC in [SS00] (Section A.1).Pros and Cons. The main disadvantage of this PIR is the same as that of thePIR described in [KO97,CMS99]: O(N) query response time, which is intolerablefor large databases.A.2 PIR with Preprocessing and O�ine CommunicationAlthough it does not seem feasible to attain less than O(N) computation perPIR query, one could try to preprocess as much work as possible. Such that,

16 Dmitri Asonov and Johann-Christoph Freytagwhen a query is submitted, it would require only O(1) computation to answerit online.4With this idea in mind, [BDF00,SJ00] present independently very similar PIRprotocols. Both utilize a homomorphic encryption, which is used by the serverto encrypt o�ine every record of the database. All these encrypted records aresent to the client. This communication has to be done only once between theclient and the server before the PIR protocol starts, independently from howmany PIR queries will be processed online.
1

NR

R1

...

E (R)s

E (R)s

3

2

E (R)s

E (R)s i

Es

of interest
the record
select

5

4

Es(Ec(Ri))

Es(Ec(Ri))

7

8

Es
E (R)

E (R)

da
ta

ba
se

 o
f N

 r
ec

or
ds

Ns

...

1

...

1

s N

E (R)

E (R)

SERVER

CLIENT
cE

Ri

−1

ic

i

−1

6

c

EcFig. 7. An example of a PIR protocol with preprocessing and o�ine communication.Steps 1 and 2 are made o�ine once, and the other steps are performed online for everyquery submission.If the user wants to buy a record, he selects the appropriate (locally stored)encrypted record and re-encrypts it. Then, the client sends it to the server andasks to remove the server's encryption. The server is able to do it because of thehomomorphic property of the encryption. The server removes its encryption, butcannot identify the record because of the users's encryption. The server sends itback to the client. The user removes his encryption; the protocol is done (Fig. 7).Pros and Cons. Protocols in [BDF00,SJ00] attain O(1) query response time.However, o�ine communication comparable to the size of the entire databasemust be done between client and server to start the protocol.4 As already explained above, we do not consider here approaches oriented for a settingwith several servers non-communicating to each other [BIM00,CIO98,GGM98].

