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Abstract. A private information retrieval (PIR) protocol allows a user
to retrieve one of N records from a database while hiding the identity of
the record from the database server. A PIR protocol is optimal for users,
if the query response time is independent from N, and the communica-
tion between the user and server is of an order of one record. Recently
such a protocol was proposed [AF01,AF02]. However, an ultimate con-
dition for that protocol is using a secure coprocessor (SC) that processes
the database records.

We focus on the problem of minimizing the number of records handled by
the SC, both for preprocessing and for query processing. In this paper,
we present a set of preprocessing algorithms with O(N?/p) I/O’s for a SC
(for any p) and O(pN) I/O’s for an untrusted computer (UC), compared
to O(N?) 1/O’s for a SC in [AF01,AF02]. For p = /N, the algorithm is
of complexity O(v/NN) for a SC and UC. Also, query processing time
may be cut from O(1) to 2 by preprocessing online.

Keywords: Information hiding aspects of privacy; efficient realization of privacy
services.

1 Introduction

In many e-commerce scenarios the user retrieves data from the server and pays
for it. Sometimes it is vital for the user to hide the content of his queries from
every one else. Encrypting the communication channel between the client and
server does not help, since the server would have access to the user queries.
Solutions that help are called Private Information Retrieval (PIR) protocols.

Formally, a PIR protocol allows a user to retrieve one of N digital records
of his choice from the server, while revealing nothing about the record identity,
not even to the server that processes the query.

Trading digital goods online is a straightforward application for PIR. With
PIR the user privacy concerns would be satisfied: The server cannot misuse the
information contained in the user query, because the server simply does not have
information about content of user queries.

* This research was supported by the German Research Society, Berlin-Brandenburg
Graduate School in Distributed Information Systems (DFG grant no. GRK 316.)
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1.1 Motivation

Initial PIR protocols process all N records to answer a user query "return the
i-th record” [K0O97,CMS99,5S500,SS01], resulting in impractical query response
time. Later protocols fixed this problem by introducing preprocessing on the
server side [BDF00,SJ00]. However, the communication proportional to the size
of the database between the client and server is needed to implement these latter
protocols.

A recently proposed protocol achieves constant query response time and op-
timal communication simultaneously [AF01,AF02], thus being an optimal pro-
tocol from the user point of view. This protocol employs a tamper-proof device,
namely a secure coprocessor (SC), that processes database records (Section 2.1

gives a sketch of the protocol). This approach raises the following two concerns:

— The PIR protocol uses special hardware (a SC) at the server site, so the
implementation of the protocol is impossible with general-purpose hardware
only.

— The PIR protocol uses special hardware intensively. Namely, the tamper-
proof device must process k records to answer the k-th query online. More-
over, by starting with k& = 1, the tamper-proof device must preprocess O(N?)
records.

In this paper, we tackle the second concern and achieve results outlined in the
next subsection.

1.2 Owur Results

We improve the complexity of both preprocessing and processing as following.

In Section 3, we construct a set of preprocessing protocols with O(N?/p +
pN) complexity, where p is a parameter identifying a member of the set. We
show, that the overall number of T/O’s is minimal for p & v/N (Section 3.2).
Consequently, the optimal protocol in the set has a complexity of O(N+v/N), in
contrast to O(N?) in [AF02]. For practical scenarios, this result cuts weeks of
preprocessing time down to a few hours, as discussed in Section 2.2.

In Section 4, we assume there is a free time slot after the (k — 1)th query
has been processed. We show how to reduce the query response time for k-th
query from k down to 2 (a constant) if k? time is available online for running
an appropriate algorithm. Evidently, runtime of this algorithm grows with the
number of queries answered so far.

In Section 5 we compare our approaches with the protocol in [AF01,AF02].
To do this using one scale, we propose a normalized measure of the complexity
of a protocol based on the processing and preprocessing complexities.

1.3 Preliminaries and Assumptions

In the following, N denotes the number of records in the database, each con-
sisting of L bits. The only type of query considered is "return the i-th record”,
1<i<N.
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We assume that the access to secondary storage takes several orders of mag-
nitude more time than an operation on data in main memory. Thus, we measure
the preprocessing and query response time of a PIR protocol by the number of
records accessed on secondary storage, i.e. by the number of I/O’s of blocks of
size L.

For simplicity of presentation, we assume that O(L) bits of memory of a SC
are available. Our protocols can be slightly modified in order to support the
general case.

2 Related Work

Appendix A sketches the PIR protocols from [SS00,5SS01,BDF00,SJ00], that suf-
fer from O(N) query response time or O(/N) communication required to initiate
the protocol. Additionally, it briefly reviews the properties of a SC briefly in
Section A.1.

Section 2.1 summarizes the protocol from [AF01,AF02], that both has O(1)
query response time and communication complexity.

Section 2.2 reviews the related work and compares those results with the
proposed protocol.

2.1 PIR Optimal for Users but Costly for SC

The protocols described in [SS01,BDF00,SJ00] (summarized in Section 2.2, Ta-
ble 1) raise the question, if it is possible to design a PIR protocol with O(1)
query response time and (1) communication. Such protocol would be optimal
from the user’s point of view. A solution is described in [AF02] by suggesting
the following protocol.

Using Algorithm 1, the SC shuffles the records of a database in such a way,
that no one observes the new order (Fig. 1). In Algorithm 1, the SC reads the
entire database N times record by record. Each time the SC leaves a record in
its secure memory and writes it to the (shuffled) database in an encrypted form.
When the shuffled database is complete, the SC has read N? database records,
i.e. N2 (sequential) blocks of size L.

After this preprocessing is complete, the SC answers the user queries in O(1)
time. The SC must not read the entire database to answer one query. Instead, as
for the first query, the SC reads only one record to answer a query. To answer a
k-th query, the SC must read k records: These are k — 1 previously read records
plus one of the unread records in the shuffled database.

After some threshold number m of records to read to answer a query is
reached, the SC switches to another shuffled database to keep the response time
from breaking through the threshold.



4 Dmitri Asonov and Johann-Christoph Freytag

- preprocessing————>|-<——— processing——s
R1 E(R?) E(R?)
. SC reads entire dby, . . | SCreads O(1)=k records
saves a recor % to answer k—th query
[ D > — 3 SC l D — » E w | e > —= SC
L 1
n b
[ ] [ ] | ] | |
by
! I
by
|
{1}'Iiskr1qulN times, i.ei r
until shuffling is complet [
RN 915 COmPEHE(Ry) E(R?) @. :@
! .
e(Ri, cIient_key:) e(Query, SC_key
by
---------- » handling the records : |
. —
- - —» communication between
the client and server CLIENT

Fig. 1. I/0O flows in the PIR in [AF01].

2.2 State of the Art and Our Results

We call a protocol optimal for users if both the communication and query re-
sponse time are optimal !. In the related work, summarized in Table 1, there is
only one protocol optimal for users — [AF02].

However, this protocol requires preprocessing of high complexity which must
be repeated periodically. Assuming that accessing one database record takes
0.01sec for a SC and N = 10000, these are N? x (0.01sec/record) = 10000 *
10000 % 0.01sec ~ 2 weeks to prepare one shuffled database. [AF02] recommends
to use one shuffled database for answering no more than about 140 queries.

One of the preprocessing protocols proposed in this paper exhibits a com-
plexity of O(N'®), meaning the time of preprocessing of 2 weeks is cut down
to approximately 3 hours. Note, that the query response time of our protocol
(identified to be < k in Table 1) can take values up to 2. The exact value depends
on the amount of time between the processing of a query and the arrival of the
next query, as explained in details in Section 4.

! We say, that the communication complexity is optimal if communication between
the client and server is of an order of one record per query "return the i-th record”.
Query response time is optimal if it is independent form the size of the database,
i.e., if it is independent from N
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Input: DB: a database of N records
Output: DBgp, g5 a shuffled copy of DB, each record is encrypted; INDE X gpy 5 f1:
an encrypted index of DBpuysi

1. V=1[1,..,N] {Index of the database DB}
2. V' = shuffle(V) {Prepare index for the shuffled database DBgpy 11}
3: for g=1to N do

4: for h=1to N do

5: read(Temp < DBI[h]) {Read the h-th record into the SC}
6: if h =V'[g] then

7 Record = Temp {Save the V'[g]-th record of the database internally}
8: end if

9:  end for
10: write(DBshy £ 11[g] < encrypt(Record)) {Produce g-th record of DBgpussi}
11: end for
12: Viperyptea = encrypt(V') {Encrypt the index with some key of the SC}
13: write_from_ SC(INDEX shuyf1 < Vinerypt) {The encrypted index of DBgp.zyi}

Algorithm 1: The basic database shuffling algorithm

3 Improving the Preprocessing Complexity

Section 3.1 presents a preprocessing algorithm with O(N?/p) complexity for a
SC (for any p < L) and O(pN) complexity for an untrusted computer (UC).

Section 3.2 shows the optimal complexity for a SC together with an UC to
be O(V'NN) (for p = v/N), in contrast to O(N?) in [AF01].

3.1 The Preprocessing Algorithm with Reduced I/0’s Complexity

Algorithm 2 formalizes the proposed preprocessing algorithm referring to three
sub-algorithms that are explained in the following.

Algorithm 3 splits each record of the database DB[N] in p equal parts. For
example, the database DB;[N] would consist of the first parts of the records of
the original database; each record of the database D B;[N] would be of size L/p.
Obviously, there would be p such databases (DB;[N], ..., DBp[N]). No SC’s is
needed to perform this algorithm, because it can be performed by an untrusted
computer (UC). Fig. 2(b) shows the output of this algorithm for p = 2.

Table 1. Comparative analysis of the proposed protocol.

Parameter PIR Protocol
Computational With SC With SC The Proposed
[BDF00,SJ00] [SS00,SS01] [AF01,AF02] (With SC)
Response time 0(1) O(N) o1)=k 0o1) <k
Extra Comm. O(N) no no no
Preprocessing once, once, periodif:al, periodical,
O(N) O(N) O(N?) O(N*?)
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Input: DB[N]: a database of N records of size L; a parameter p
Output: a shuffled copy of DB[N], each record is encrypted; INDE X p,ff: an en-
crypted shuffling index
1. if Algorithm 3 has never been executed before then
2. excecute(Algorithm 3) {Split the records of the database in p parts; j-th part
of each record is saved in DB;[N], Vj,1 < j < p}

@

end if

. ezcecute( Algorithm 4) {Shuffle the p databases using the SC: DB; — DB;h“ffl }
5: excecute( Algorithm b) {Assemble the shuffled records of the original database
from their pieces}

o~

Algorithm 2: The main preprocessing algorithm

Input: DB[N]: a database of N records of size L; parameter p
Output: {DB,;[N]},j € {1,..,p} : p databases; an z-th record from the y-th database
(DBy[z]) is the y-th part of DB[x]
1: for g =1 to p do

2: for h=1to N do

3: read(Temp < DB[h][g]) {Read the g-th part of h-th record}
4: write(DBgy[h] < Temp) {Produce the h-th record of DBy}
5: end for

6: end for

Algorithm 3: The database splitting algorithm

Using Algorithm 4, the SC shuffles all the databases based on the same
shuffling vector (DB, — DB{"//', DB, — DB;"//' .. .DB, — DB/
one by one. Each shuffling takes (N/p)? 1/O’s for a SC, because the SC can
read p records into its memory at a time. This results in p * (IN/p)? sequential
reads of blocks of size L. Fig. 2(¢) demonstrates an example of an output of this
algorithm, for the input in Fig. 2(b).

Function map used in Algorithm 4 ensures that after each read of a database
p (random) records remain in the memory of SC (in Kept array) which are
then written to secondary storage. Formally, at the end of the h-th read of the
database DB, the array Kept contains p records from the DB,:

Kept[l] = DBy[j1], ... ,Keptlp] = DBy[j,], where

Gi=V[(h=Vp+1], o jp=V'[(h—1Dp+p =V'][hp]

Algorithm 5 gathers the ”pieces” of the each record into the one record,
such that at query processing time one can access an entire record immediately,
instead of accessing each part of the record from p different databases. As well
as Algorithm 3, this algorithm can be performed by an UC, and takes N % p
reads.

The overall complexity of Algorithms 4,5 is N*/p + N x p. Namely, N?/p
is complexity of the SC work, and N * p complexity can be carried out by an
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(a) The initial database of N digital goods of length L bits
DB[1][1] Lip bits E(DB[X][1]) O(L/p) bits
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1 N 1 N
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(with Alg.3: Splitting the recordsl) (using the same shuffling vector: Alg.
E(DB[x=?]) O(L) bits
DE™™ [N] | ¥ I P ﬁ
1 N

(d) A shuffled copy of the DB[N] (after Alg.5: Gathering splitted records)

Fig. 2. An example of the preprocessing algorithm for p = 2.

UC. We omit O(N * p) complexity of Algorithm 3 while calculating the overall
preprocessing complexity, because this algorithm must be performed only once.

In the next section we determine the minimal complexity possible by varying
parameter p.

3.2 Balancing The Preprocessing Complexity between SC and UC

In this section we study, in how many pieces to split the initial database records
in order to gain optimal (i.e. minimal) complexity of the preprocessing algorithm
(Alg. 2).

Theorem 1. The minimal complexity of the Algorithm 2 is attained for p =

VN.

Proof. As follows from Section 3.1, the complexity of the preprocessing algorithm
can be estimated by O(N x p + N?/p), given that the parameter 1 < p < L of
the algorithm is specified.
To find the optimal p, we determine the minimum of the function f(p) =
Nxp+ N?/p.
2 2
f'lp) = (N xp+ N?)’ —v-2 Popt = VN.

p?’

Consequently, the optimal preprocessing complexity is O(f(popt)) = O(2NV/N) =
O(NV/N), as also shown in Fig 3 for N = 10000. 0
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Input: Output from Algorithm 3: {DB;[N]},j € {1,..,p}: p databases, each has N
records of size L/p;

Output: {DBl;h“ffl[N]},j € {1,..,p} : p shuffled databases; INDE X p,f: an
encrypted shuffling index, the same for all split databases

1: V=[1,..,N]; V' = shuffle(V) {Use the same index to shuffle databases}

2: for g=1topdo

3: for h=1to N/pdo

4: for u =1 to N/p do

5: read_into_SC(Temp < DBy[(u — 1)p+ 1, ..., (u — 1)p + p]) {Read p
sequential records of size L/p from DB}

6: map(Kept <= Temp) {Fill positions in Kept in accordance with V'}

7 end for

8: write_from_SC(DB;h'“’ffl[(h —1Dxp+1,...,(h—1)xp+1] < encrypt(Kept))

{Produce p sequential records of size L/p for DB;""//! encrypt separately}
9:  end for

10: end for
11: Vryptea = encrypt(V') {Encrypt the index with some key of the SC}
12: write_from_SCINDEXhufsi < Vinerypt) {The encrypted shuffling index}

Algorithm 4: The algorithm for shuffling the split databases

Input: Output from Algorithm 4: {DBl;h“ffl[N]},j € {1,..,p} : p shuffled databases;
the shuffling vector V' is the same for all databases
Output: {DB*"/fN] : a shuffled copy of DB[N]; each record is encrypted
1: for h=1to N do

2: for g=1topdo

3: read(Temp < DB;h“ffl[h]) {Read the g-th part of h-th record for DBgpu s}
4: write(DBy[h] <= Temp) {Produce the g-th part for h-th record for DBgpufsi}
5:  end for

6: end for

Algorithm 5: The algorithm for assembling the shuffled database

The above result for optimal p is valid if v/N < L, which is a rather reasonable
assumption. Otherwise, if /N > L, the parameter should be assigned to the
largest possible number, i.e. p = L.

The complexity of the work for the SC can be reduced further to O(N) at
the same time leading to a growth in the same order in the complexity of the
work done by an UC, as shown in Fig.4.

4 Optimizing the Query Processing Complexity

According to the protocol in Section 2.1, k records must be read from the shuffled
database in order to answer a query online, where k is the number of queries
answered using the same shuffled copy of a database. This section suggests an
approach to keep the query response time independent from k& by employing
preprocessing online.
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UC(p) = Np
SC(p) = N*/p
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10000
1 100 10000
parameter p

Fig. 3. The overall work done to shuffle one database (calculated as a sum of the
number of I/0’s for SC and UC) is not constant for different values of the parameter
D

16+08 T IIIIIIII T IIIIIIII T IIIIIIII T LB
UC(p),SC(p)

le+07

le+06

I/O’s done by the SC

100000

10000
10000 100000 le+06 le+07 le+08
I/O’s done by the UC

Fig. 4. At preprocessing, reducing the complexity of the SC results in the growth of
complexity of the UC and vice versa.
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4.1 A Straightforward Approach

The basic idea is to apply the protocol of Section 2.1 recursively [AS02].

After answering the k-th query, we propose to shuffle all the previously read
records. The shuffled database would then consist of the group of previously
unread records and the group of previously read records, now newly shuffled.

Processing the next query results in reading one record from each group
, so that response time is determined by 2 accesses to secondary storage. If
such "refreshment” of the shuffled database is done after each query, the query
response time would remain being determined by 2 I/O’s.

Periodical switching to a new shuffled database is inevitable, however. The
reason is that the complexity of online shuffling of the previously accessed records
grows with the number of queries answered, possibly resulting in delays for
processing the next queries.

Note, that the shuffling of k& records can be done using the preprocessing
algorithm proposed in Section 3, providing the complexity O(kvk).

2

4.2 Interruptible Shuffling Protocol

The previously proposed secure shuffling algorithms (Alg. 1 from [AF01,AF02]
and Alg. 2 introduced in Sect. 3.1) are non-interruptible. That is, if the execution
of these algorithms is interrupted before it finishes, the output produced so far
is of no use for the query processing protocol.

In case of using the preprocessing online, the amount of time available for
preprocessing is unknown when preprocessing begins. The reason is that the
arrival time of the next query is unknown. Thus, a preprocessing algorithm is
preferred, that can be interrupted and whose output produced so far can be used
to process the next query.

Our interruptible shuffling algorithm (Alg. 6) shuffles k records in O(k?)
steps. In order to be interruptible, the algorithm works as follows. Given (j — 1)
shuffled records and a j-th record, the algorithm produces j shuffled records
in O(j) time. The algorithm is interruptible, because it can be stopped at any
time and the s shuffled records produced so far can be used to reduce the query
response time from k to (kK — s + 2) in way, very similar to that explained in
Section 4.1.

5 Measuring the Complexity of the PIR Protocol

Above, we proposed several techniques to improve preprocessing and processing
parts of the PIR protocol in [AF01,AF02]. In this section, we measure how these
improvements influence the overall complexity of the protocol. For being able to
do this, we first define a normalized complexity of a PIR protocol as following.

2 The correctness of this protocol follows recursively from the formal proof of correct-
ness of the protocol in Section 2.1, which can be found in [AF01,AF02].



Private Information Retrieval, Optimal for Users and Secure Coprocessors 11

Input: j — 1 shuffled encrypted records DB*"*/#![1, .., j —1]; a record R
Output: DB*"/f[1 4] : j shuffled encrypted records; the newly added record R
can be at any position.

1: read_into_SC(Buf < R) {Read the record R into the SC}
2: forg=1toj—1do
3:  read_into_SC(Temp < decrypt(DB*"*If[g])) {Read the g-th record from
DBy, decrypt it}
4:  ifswap(Temp, Buf) {Swap the arguments or wait a given time to pretend doing
swapping}
5. write_from_SC(DB*""[g] < encrypt(Temp)) {Write down the new g-th
record for DBgpufyf1}
6: end for

-~

. write_from_SC(DB*""/1'[j] < encrypt(Buf))  {Write down the record from the
buffer of the SC}

Algorithm 6: The interruptible shuffling algorithm

5.1 A Normalized Measure for the Protocol Complexity

PIR protocols can be differentiated based on their preprocessing per query com-
plexities and processing complexities. For example, a protocol in [AF01,AF02]
preprocesses PP"°? = O(N?/m) records per query, while exhibiting PP"¢ =
O(m) processing complexity. In the next subsection we must be able to com-
pare, for example, this protocol to another one with PP"¢? = o(N,m), PP"°¢ =
B(N,m). Below we define a normalized complexity that provides a single value
measure for comparing the complexities of PIR protocols.

Let us fix the query response time of a PIR protocol to O(m). Then, we
define the normalized complexity P of a PIR protocol by the complexity of the
preprocessing work done per query. Our definition of the normalized complexity
does not depend on the communication complexity of the protocol, because we
consider the only protocols with optimal communication.

For better understanding of the measurement, assume two PIR protocols. We
adjust their processing complexities in such a way that they both exhibit a query
response time O(m). Then, the only difference in performance between them is
how much time each of them spends on preprocessing per answered query. That
is, we assume that at processing phase the same amount of work is done. Then,
the protocols can be differentiated on how much preprocessing work per query
is required.

5.2 The Measurement

In this section we measure and compare the normalized complexities of (i) the
PIR protocol in [AF01,AF02], (ii) the same protocol improved as proposed in
Sect. 3, (iii) the same protocol improved as proposed in Sect. 4. Finally, we
consider the combination of both improvements and draw the conclusions.

1. The protocol presented in [AF01,AF02] requires the preprocessing of com-
plexity N2 to be done in order to answer each m queries, providing the
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following normalized complexity:

N2
P =
m

2. The protocol updated as proposed in Sect. 3 requires the preprocessing of
complexity Nv/ N to be done in order to answer each m queries:

_NVN

m

P,

3. The protocol updated as proposed in Sect. 4 have the same processing com-
plexity in the worst case as the protocol in [AF02]. However, the idea ex-
plained in Sect. 4 can be applied to regenerating a usable shuffled database
from an unusable one. Namely, after the m queries are executed, the shuffled
database is not deleted. Instead, the accessed m records could be shuffled,
providing a shuffled database being able to serve for answering additional
m/2 queries. 3 This approach can be applied several times. The complexity
of the protocol can be calculated as follows:

_NZ24+m?+2(m/2)% + 4% (m/4)* + ... +2m*/m

Fa = m+m/2+m/4d+m/8+ ... +1
N2 +m?*(1+1/2+1/44 ...+2/m) _
m(1+1/2+1/4+1/8+ ...+ 1/m)
N2+m?(1+1/24+1/4+ ... +1/m) _
m(1+1/2+1/4+1/8+ ...+ 1/m)
N2 N2 2
MmO+ 12414118 +ym) T me—tm " T

Finally, we combine the two proposed modifications together and measure
the normalized complexity of the resulting protocol. Namely, we assume that
the shuffling complexity is O(N+v/N) (as proposed in Sect. 3), and that the used
shuffled databases are refreshed as proposed in Sect. 4. Then, the complexity P,
of the resulting protocol is calculated similar to Ps:

_ NVN +mym+2(m/2)\/m[2+ 4% (m/4)\/m[4+ ...+ 2my/m[m _
- m+m/2+m/d+m/8+ .. +1 =

NVN 3vm N\/N+ 3v/m
m(l1+1/2+1/4+1/8+ ...+ 1/m) 2~ 2m 2

P,

In summary, as demonstrated on Fig. 5, the approach proposed in Sect. 3 re-
duces the normalized complexity of the PIR protocol from N?/m to N\/ﬁ/m,
whereas the approach proposed in Sect. 4 reduces the normalized complexity of
the protocol by a constant factor.

3 For details, please refer to Section 4.
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Fig. 5. The normalized complexities of the basic protocol [AF01,AF02], and the two
modifications proposed in this paper are presented as functions of the maximal query
response time m, for N = 10000.

6 Conclusions and Future Work

A recently proposed Private Information Retrieval (PIR) protocol acquire the
query response time and the communication constant from the number of records
in the database (IV), thus being optimal for users [AF01,AF02]. The drawbacks
of the protocol are that (i) k records must be read to answer k-th query, (ii)
to start with & = 1, which is done periodically, the preprocessing of quadratic
complexity must be performed. The latter means, N2 times a block (of size of
a database record) is read from secondary storage for the preprocessing to be
complete.

We tackled the problem by proposing a preprocessing algorithm with O(N+v/N)
complexity. We also show how to cut query response time from & to 2 by applying
additional preprocessing online.

We emphasize, that although our preprocessing algorithm is of better com-
plexity in comparison to the previous work, we only proved it’s complexity to be
optimal within the set of algorithms considered in this paper. Further improve-
ments in the preprocessing complexity might be possible.
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A PIR Protocols not Optimal for Users

The related work, that did not appear in Section 2, is presented in the following
two sections. A more comprehensive overview on PIR can be found in [Aso01].

A.1 PIR with Secure Coprocessor

Smith et al. [SS00,SS01] make use of a tamper-proof device to implement the
following PIR protocol.

A secure coprocessor (a tamper-proof device) is used as a black box, where
the selection of the requested record takes place. Although hosted at the server
side, the SC is designed so that it prevents any one from accessing its memory



Private Information Retrieval, Optimal for Users and Secure Coprocessors 15

from outside [SPW98]. A SC can prove what software is installed inside and
whether it was changed in the past.

The basic protocol runs as shown in Fig. 6. The client encrypts the query ”"re-
turn the i-th record” with a public key of the SC, and sends it to the server. The
SC receives the encrypted query, decrypts it, reads through the entire database,
but leaves in memory the requested record only. The protocol is finished after
the SC encrypts the record and sends it to the client.

To provide integrity, the SC keeps all records of the database encrypted.
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Fig. 6. I/O flows in the PIR with SC in [SS00] (Section A.1).

Pros and Cons. The main disadvantage of this PIR is the same as that of the
PIR described in [KO97,CMS99]: O(N) query response time, which is intolerable
for large databases.

A.2 PIR with Preprocessing and Offline Communication

Although it does not seem feasible to attain less than O(NN) computation per
PIR query, one could try to preprocess as much work as possible. Such that,
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when a query is submitted, it would require only O(1) computation to answer
it online.*

With this idea in mind, [BDF00,SJ00] present independently very similar PIR,
protocols. Both utilize a homomorphic encryption, which is used by the server
to encrypt offline every record of the database. All these encrypted records are
sent to the client. This communication has to be done only once between the
client and the server before the PIR protocol starts, independently from how
many PIR queries will be processed online.
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Fig. 7. An example of a PIR protocol with preprocessing and offline communication.
Steps 1 and 2 are made offline once, and the other steps are performed online for every
query submission.

If the user wants to buy a record, he selects the appropriate (locally stored)
encrypted record and re-encrypts it. Then, the client sends it to the server and
asks to remove the server’s encryption. The server is able to do it because of the
homomorphic property of the encryption. The server removes its encryption, but
cannot identify the record because of the users’s encryption. The server sends it
back to the client. The user removes his encryption; the protocol is done (Fig. 7).

Pros and Cons. Protocols in [BDF00,SJ00] attain O(1) query response time.
However, offline communication comparable to the size of the entire database
must be done between client and server to start the protocol.

* As already explained above, we do not consider here approaches oriented for a setting
with several servers non-communicating to each other [BIM00,CI098, GGM98].



