
Automatic Vectorization for MATLAB

Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren ∗

School of Computer Science,
McGill University, Montréal, Canada

{hanfeng.chen,alexander.krolik,erick.lavoie}@mail.mcgill.ca
hendren@cs.mcgill.ca

Abstract. Dynamic array-based languages such as MATLAB provide a wide
range of built-in operations which can be efficiently applied to all elements of
an array. Historically, MATLAB and Octave programmers have been advised
to manually transform loops to equivalent “vectorized" computations in order
to maximize performance. In this paper we present the techniques and tools to
perform automatic vectorization, including handling for loops with calls to user-
defined functions. We evaluate the technique on 9 benchmarks using two inter-
preters and two JIT-based platforms and show that automatic vectorization is ex-
tremely effective for the interpreters on most benchmarks, and moderately effec-
tive on some benchmarks in the JIT context.

Keywords: Vectorization, Promoted Shape Analysis, MATLAB, elementwise
functions, vectorizing user-defined functions

1 Introduction
Vectorization is a mature field which has been studied for decades. However, there are
new challenges and opportunities for using vectorization concepts to speed up array-
based programming languages such as MATLAB [8]. The key insight is that many
operations in MATLAB support both individual element operations, such as op(a(i)),
as well as elementwise (vectorized) versions that apply op to all elements in an array
using just one call, op(a). When a call is made to a built-in operation over an entire array,
the underlying implementation can then utilize highly tuned and parallelized libraries.
For example, MathWorks began supporting multithreading on elementwise functions
in MATLAB 7.4 (R2007a).1 Thus, it becomes beneficial to replace loops that apply
operations on individual elements with one or more vectorized statements, where the
operations are now applied to entire vectors or arrays. Indeed, this is standard advice
given to MATLAB and Octave [12] programmers as a way of hand optimizing their
programs.2,3

In this paper we present an approach and tool (Mc2Mc)4 that automatically detects
loops that can be vectorized and automatically produces output MATLAB code with

∗This work is supported, in part, by NSERC.
1
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation

2
http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

3
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave

4
https://github.com/sable/mc2mc

2 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

vectorized instructions replacing the loops. In addition to handling loops with built-in
MATLAB operations, we also allow loops which call user-defined functions by pro-
viding an analysis that determines if user-defined functions have the appropriate ele-
mentwise behaviour. Furthermore, we support if-conversion to allow even user-defined
functions with conditionals.

We have implemented Mc2Mc based on the McLAB front-end and Tamer infras-
tructure [9, 4], and have used our implementation to study 9 benchmarks on two interpreter-
based systems and two JIT-based systems. In the interpreter cases, the automatic vector-
izer led to very large speedups on some benchmarks and moderate speedups for others,
with geometric mean speedups of 19.1x for Octave 4.0 and 7.65x for MATLAB 2013
(JIT off). However, with systems supporting JITs, such as MATLAB 2013a (1st gen
JIT on) and MATLAB 2015b (2nd gen JIT which is always on), the effect of vectoriza-
tion is mixed with geometric mean speedups of 1.02 and 0.77 respectively. There are
still benchmarks which benefit from over 10x speedup, however other benchmarks have
loops which are handled very effectively by the JIT, and vectorization can drastically
hurt performance. Thus, it no longer makes sense for a MATLAB programmer to hand
vectorize all of his/her code. However, our automatic vectorization system would allow
a programmer or execution engine to try various strategies and identify those which
benefit from vectorization.

The main contributions of this work are:

– We present a tool (Mc2Mc) that automatically transforms scalar MATLAB pro-
grams to equivalent vector form.

– We propose an interprocedural promoted shape analysis to determine if scalar code
can be modified to vector form in loops and user-defined functions.

– We evaluate the performance of automatic vectorization on 9 benchmarks over 4
different execution engines.

In the rest of the paper we first provide more background about key features of MAT-
LAB in Sec. 2. We then provide a description of our techniques with an overview of our
approach in Sec. 3; a more detailed look at two key components, promoted shape pro-
pogation in Sec. 4 and our handling of user-defined functions in Sec. 5; and an outline
the two final phases, data dependence analysis in Sec. 6 and the actual vectorization in
Sec. 7. Finally we provide our experimental evaluation in Sec. 8, related work in Sec. 9
and conclude in Sec. 10.

2 Motivation and Background
MATLAB provides many features which enable vectorization. In this section, we pro-
vide an introduction to those features, and a motivating example for our vectorization
transformation.

Matrix indexing: Matrix indexing provides a way to retrieve a collection of array ele-
ments with one operation. Figure Fig. 1(a) shows a for loop which accesses items of
array m one at a time, and Fig. 1(b) shows the equivalent matrix indexing version, which
accesses all the items at indices stored in v. Also note that in Fig. 1(b), the pre-allocation
of array r is not needed.

Automatic Vectorization for MATLAB 3

m = rand (1 , n) ;
r = z e r o s (1 , 4) ;
v = [3 , 7 , 6 , 4] ;
f o r i =1 :4

r (i) = m(v (i)) ;
end

m = rand (1 , n) ;
v = [3 , 7 , 6 , 4] ;
r = m(v) ;

(a) One element at a time (b) All elements using matrix indexing
Fig. 1. A for loop and equivalent using matrix indexing

Colon operator: The colon operator is mainly used to create vectors, subscript arrays
and specify for iterations.5

Creating vectors: The expression j:k generates a vector from j to k if j is less than
k. With an additional parameter i, the expression j:i:k produces a vector from
j to k with the stride i.

Subscripting arrays: Matrix indexing can be introduced with the colon operator, such
as m(1:n) where n ≤ length(m). Moreover, m(:) denotes all elements of m.

Iterating a for-loop: A simple for-loop header is for i=1:n, which indicates that
the for body should be executed once for every value of i in [1,n].

For loop vectorization: The main topic of this paper is automatic for loop vectorization.
To motivate this, we provide a small example in Fig. 2. Function foovec is a vectorized
version of foo. Both the original and vectorized versions call the same user-defined
function bar. This may seem strange, since foovec is passing bar a vector, whereas the
original foo was passing bar a scalar. However, because all of the statements in bar work
on both scalars and vectors in the right way, bar can be called from the vector code, and
bar will return a vector of values. One important part of our work is automaticially
identifying such vectorizable user-defined functions.

f u n c t i o n foo (n)
A=rand (1 , n) ;
B= z e r o s (1 , n) ;
C= z e r o s (1 , n) ;
f o r i =1 : n

B(i) =bar (A(i)) ;
C(i) = s q r t (i) ;

end
end

f u n c t i o n f oo ve c (n)
A=rand (1 , n) ;
B=bar (A) ;
C= s q r t (1 : n) ;

end

f u n c t i o n [z] = bar (x)
t =x +1;
z= s i n (x) ;

end

Fig. 2. Example vectorization

To automatically vectorize the loop there are several things to check. Firstly, we
must apply some standard dependence tests. Secondly, for each built-in function called
from the loop body, such as sqrt, we must ensure that it has appropriate elementwise
behaviour. Finally, for each user-defined function called from the body of the loop, such
as bar, we must ensure that the body of the called function contains only vectorizable

5
http://www.mathworks.com/help/matlab/ref/colon.html?searchHighlight=colon

4 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

statements. Finally, the resulting vectorized program can be cleaned up, in this case the
unneeded intialization of B is removed.

3 Overall Structure of the Vectorizer
We have implemented our approach in a tool, Mc2Mc, which given a MATLAB pro-
gram, automatically identifies vectorizable sections and transforms scalar code to the
equivalent vector form. An overview of the workflow can be found in Fig. 3.

Fig. 3. The overview of the workflow.

The workflow begins by parsing the input MATLAB program into TameIR, a low-
level representation used for analysis of MATLAB programs. The Tamer framework
provides a set of interprocedural value analyses for shape information [6], as well as
use-define and define-use chains that are used in later sections of the vectorizer. Once
the initial analyses have been completed, the inner loops of the input program are col-
lected for input to the vectorization algorithm. The vectorization algorithm thus uses an
inside-out approach for handling loop nests [11]. Since the control flow of loops with
nested if statements is not well suited for vectorization, only loops without such control
statements are considered further.

Next, our new interprocedural promoted shape analysis is performed, determining
whether scalar code can be correctly modified to an equivalent vector form. By prop-
agating shapes through user-defined functions we expose additional areas for vector-
ization beyond built-in functions. While a user-defined function may not contain loops,
nested if statements are permitted. A function is only considered vectorizable if all
conditions and branches can be expressed in equivalent vector form. Promoted shape
propagation is discussed in greater detail in Sec. 4 while user-defined functions and
if-conversion are covered in Sec. 5.

Candidate statements for vectorization are then checked for dependencies that pre-
vent vectorization. If no dependencies are found for a particular statement, the vector-
ized code can then be generated. Since the vectorization algorithm uses an inside-out

Automatic Vectorization for MATLAB 5

approach, the pipeline may need to be rerun to handle nested loops and if statements in
user-defined functions. Once a fixed point is reached, the newly vectorized code is stat-
ically optimized to remove unnecessary colon operators. In addition, dynamic checks
are inserted to further reduce the performance impact of using the colon operators.

4 Promoted Shape Analysis
The promoted shape analysis is an interprocedural analysis that identifies the expres-
sions in the body of a for loop that (1) have a scalar value that is derived directly or
transitively from the loop index and that (2) can safely be promoted from a scalar form
to a vector form, derived directly or transitively from the entire range of the loop index.

An expression (in a statement) can be promoted safely to a vector form if it performs
the same operations on the values represented by variables that compose the expression
over the entire range of the loop index.

In order to determine which expressions can be promoted safely, we perform a fix-
point analysis on the shape of variables. Initially, the loop index is first promoted from
a scalar shape to a promoted shape, of the same shape as the entire loop index range.
The promoted shape therefore represents a tentative replacement of the loop index vari-
able scalar value with a vector that contains its entire range. All other variables shapes
are initialized to scalar, non-scalar, or unknown (⊥) with the precise shape coming
from the Tamer ValueAnalysis. The shape information is then propagated through ev-
ery statement of the loop body and modified according to the effect of a statement’s
operation. The previous scalar shape of the output variables of a statement might be
replaced with a promoted shape if the operation of a statement is compatible with the
promoted shape of its input variable(s). If the operation is incompatible, the shape of
the output variable will become >.

Once the fixpoint is reached, all the statements that use a variable with a shape of
> cannot be safely converted to vector form and therefore need to stay in the body of
the for loop. All the others can potentially be moved outside of the loop body and the
expressions that use variables with a promoted shape can be promoted to their vector
form, as long as no dependency exist between the different statements (see Section 6).

In the remainder of this section, we first provide an explanation of the shape abstrac-
tion we use. We then explain which operations are compatible with a shape promotion.
We finally provide the key parts of our promoted shape analysis in pseudocode.

4.1 Shape Abstractions

There are five abstractions summarized in Table 1. The initial variable with an unknown
shape is denoted by⊥. The scalar shape S is considered because it can be extended in the
context of elementwise operations. For the non-scalar N, it means the shape is neither
a promoted shape nor a scalar. It is fine to have N in array indexing when the index is
a scalar since the output of the array indexing is a scalar. For a promoted shape P, it is
initialized by loop iterators and then propagated to variables. The > means there is no
safe promoted shape for vectorization.

Note that a promoted shape represents a promotion from a scalar to a one-dimensional
array. However some operations such as multidimensional array indexing (ex: A(i,i))
may return a two-dimensional array when the i index variable is promoted (ex: A(1:n,1:n))

6 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

Table 1. Definitions of abstractions

Type Description
⊥ An unknown shape
S A scalar which is not promoted
N A non-scalar which is not promoted
P A promoted shape
> A shape cannot be vectorized

rather than the diagonal of the matrix in the original loop. The expression is therefore
not compatible with a promoted shape because it returns different values after the pro-
motion. However, promotion along a single dimension (ex: A(i,j) to A(1:n,j)) is possible
if the shape of the array is compatible.

4.2 Compatible Operations

A unary function F satisfies the property of elementwise operations when it holds
R̂ =

−→
F (Â), where the

−→
F is a vectorizable function, the Â denotes the promoted input

parameter and the R̂ denotes the promoted return value. A promoted operation is intro-
duced in A→ Â when a dimension in A is expanded to k0, where k0 > 1. That means
Â and A have the same number of dimensions, but |Â| = k0 × |A|, where the |A| is its
cardinality. Let ρ(Â) denote the new dimension (i.e. k0). Let Â = {A1, A2, ..., An}
and R̂ = {R1, R2, ..., Rn}, where ρ(Â) = ρ(R̂) = n, so that R̂ =

−→
F (Â) ⇔

[{R1, R2, ..., Rn}] = F ({A1, A2, ..., An}).
A built-in function (BIF), which satisfies the property of elementwise operation,

is vectorizable. For a unary built-in function Fu, it can be described as R̂ =
−→
Fu(Â).

However, a binary function Fb has three possible cases in vectorization. They are 1)
R̂ =

−→
Fb(Â, B); 2) R̂ =

−→
Fb(A, B̂); and 3) R̂ =

−→
Fb(Â, B̂), where the A and B denote

input arguments. It should be noted that the lengths of the argument A and B must agree
in the third case.

User-defined functions (UDF) are also compatible with input arguments in vector
form under some conditions. An interprocedural sub-analysis, described in Section 5,
is performed when a UDF is called from the body of a for loop to determine if the input
arguments can indeed be promoted.

4.3 Key Parts of the Analysis

Initialization. The analysis starts from the innermost for loops. The variables in the
body of the innermost for loops are initialized with one of the abstractions in Table 1.
The loop index variables of all statements in the body of for loops are initialized to
the promoted shape. All other variables are initialized to the scalar or non-scalar shape
obtained from the Tamer ValueAnalysis. The pseudo-code is provided in Algorithm 1.

Promoted shape propagation in statements. There are three important major cases for
the propagation of the flow information, with the first case further sub-divided in three
cases, as listed in Algorithm 2.

The first major case is a call to a function. A function call may target a built-in
function or a user-defined function. For the BIFs, we separate them into two groups:
elementwise built-in functions (eBIFs) and non-elementwise built-in functions (nBIFs).

Automatic Vectorization for MATLAB 7

Algorithm 1: Initialization
Data: a statement
Result: each variable with a promoted shape

1 foreach variable var in the statement do
2 if var.promotedShape has not been initialized then
3 if the statement is from a for-loop then
4 if var is the loop iterator then
5 var.promotedShape←from a scalar to a vector (i.e. loop’s range);

6 else
7 if the shape of var is a scalar then
8 var.promotedShape←Scalar;
9 else

10 var.promotedShape←Non-scalar;

The eBIFs are compatible with a vector form under some conditions while most nBIFs
are not. We therefore do not consider nBIFS and their return value is always >. The
rules for unary and binary eBIFs are defined in Table 2 and Table 3 separately. In the
Table 3, theNd returns N if both have the same non-scalar promoted shape otherwise>
and the Pd returns P if both have the same promoted shape otherwise >. User-defined
functions are covered in Sec. 5.

Table 2. The propagation rule for unary eBIFs

eBIF ⊥ S N P >
Output ⊥ S N P >

Table 3. The propagation rule for binary eBIFs

eBIF ⊥ S N P >
⊥ ⊥ ⊥ > > >
S ⊥ S N P >
N ⊥ N Nd > >
P > P > Pd >
> > > > > >

The second major case concerns array indexing statements. For both ArrayGetStmt
and ArraySetStmt, the promoted shape of the index variable needs to be the same as the
shape of the array. Or the ArraySetStmt accepts a promoted shape P on the left-hand
side and a promoted shape S on the right-hand side. In the ArrayGetStmt case, if so, the
returned value’s shape is set to promoted, otherwise it is set to >.

The last major case, with the CopyStmt, trivially copies the shape of the left-hand
side variable to the right-hand side variable.

4.4 An example of promoted shape analysis

To illustrate the promoted shape analysis, consider the loop from the function needle
in the NW benchmark, as given in Fig. 4(a). In this example, input_itemsets is an array
and penalty is a scalar. We would like to use our promoted shape analysis determine if
the loop can be converted to a vectorized expression.

8 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

Algorithm 2: Promoted shape propagation
1 propagateStmt(assignstmt, inSet)
2 (lhs, rhs)←assignstmt;
3 ps←> ;
4 if the assignstmt is a CallStmt then
5 op←rhs.getFunctionName();
6 args←rhs.getArguments();
7 if op is a unary eBIF then
8 ps←UnaryFunctionTable(op, args[1].ps);
9 else if op is a binary eBIF then

10 ps←BInaryFunctionTable(op, args[1].ps, args[2].ps);
11 else if op is a UDF then
12 ps←PropagateUDF(op, args, inSet);

13 else if the assignstmt is an ArrayGetStmt then
14 ps←GetArrayIndexShape(rhs, lhs);
15 else if the assignstmt is an ArraySetStmt then
16 ps←GetArrayIndexShape(lhs, rhs) ;
17 else if the assignstmt is a CopyStmt then
18 ps←CopyPromotedShape(rhs.ps) ;

19 genSet(assignstmt) = {(lhs,ps)} ;
20 killSet(assignstmt) = {any tuple contains lhs};
21 outSet(assignstmt) = (inSet(assignstmt) - killSet(assignstmt)) ∪ genSet(assignstmt);
22 return outSet

% p e n a l t y i s a s c a l a r
% i n p u t _ i t e m s e t s i s a m a t r i x
f o r i = 2 : max_rows

i n p u t _ i t e m s e t s (i , 1) =−(i −1)∗ p e n a l t y ;
end

% p e n a l t y i s a s c a l a r
% i n p u t _ i t e m s e t s i s a m a t r i x
[1] f o r i = (2 : max_rows) ;
[2] [mc_t1] = minus (i , 1) ;
[3] [mc_t2] = uminus (mc_t1) ;
[4] [mc_t3] = t i m e s (mc_t2 , p e n a l t y) ;
[5] i n p u t _ i t e m s e t s (i , 1) = mc_t3 ;
[6] end

(a) Original loop (b) TameIR

[1] { (i , P) }
[2] { (i , P) , (mc_t1 , P) }
[3] { (i , P) , (mc_t1 , P) , (mc_t2 , P) }
[4] { (i , P) , (mc_t1 , P) , (mc_t2 , P) ,

(mc_t3 , P) }
[5] { (i , P) , (mc_t1 , P) , (mc_t2 , P) ,

(mc_t3 , P) , (i n p u t _ i t e m s e t s ,N) }

i =2 : max_rows ;
i n p u t _ i t e m s e t s (i , 1) =−(i −1) .∗ p e n a l t y ;

(c) Flow sets (d) Final vectorized code

Fig. 4. Example promoted shape analysis

Our Mc2Mc tool first converts the code to a lower-level three-address style TameIR,
as shown in Fig. 4(b). This means that each statement will now have at most one oper-
ation, which simplfies the subsequent analysis.

Automatic Vectorization for MATLAB 9

Fig. 4(c) shows the result of the promoted shape analysis after each statement in
the loop body. The loop iterator is used to get initial promoted shape. At program point
2, the minus is an eBIF which takes a promoted shape P (i.e. i) and a promoted
shape S (i.e. 1). The output the the eBIF returns a promoted shape P for the variable
mc_t1. Variable mc_t1 and its promoted shape are then included in the flow set.
The next statement has a unary BIF, uminus, which returns the same promoted shape
as mc_t1. At program point 4, the variable penalty has a promoted shape S so that
the eBIF times returns a promoted shape P. At program point 5, the array indexing
on the left-hand side is a one-dimension promotion and the variable mc_t3 has the
same promoted shape. Therefore, the assignment is safe and the promoted shape of
the variable input_itemsets is set to N. Finally, the analysis returns the set of
promoted shape information. Given that all variables can be given promoted shapes,
and that there are no cyclic dependences, the TameIR is safe to vectorize. We then
perform a final aggegration step on the TameIR, to produce back a MATLAB vectorized
statement, as shown in Fig. 4(d).

5 Handling User Defined Functions
One of the key contributions of our approach is that we can vectorize loops which
contain calls to user-defined functions (UDFs). The key insight is that if the body of the
UDF contains only vectorizable statements, then the calling code can use the UDF as a
vectorized operation. Since some UDFs contain conditional if statements, we have also
developed a MATLAB-specific if-conversion to convert control dependence expressed
as if statements into equivalent vectorized statements without control dependences.

5.1 Promoted shape analysis for UDFs

When the promoted shape analysis encounters a call to an UDF, the initial promoted
shapes are propogated from the arguments of the call to the parameters of the called
UDF. The promoted shape analysis is then used to propogate promoted shapes to all
statements in the body of the UDF. At the end of the dataflow analysis, the return values
are checked before they are copied back to the caller site. If any return value is neither a
scalar nor a promoted shape, then the UDF is not vectorizable and all return values are
set to > and then returned.

Since UDFs may include conditionals, we must extend the promoted shape analysis
to handle conditional control flow. The key addition is that we apply the promoted shape
analysis to each branch of the conditional, and then merge the results. More precisely,
let op2 be the function for binary eBIFs defined in Table 3, ps1 and ps2 are promoted
shape from two different branches, and pscond is the promoted shapes of the condition
of the if. The merge operator gets a new promoted shape with the following equation.

merge(ps1, ps2, pscond) = op2(op2(pscond, ps1), op2(pscond, ps2));

If a UDF is called multiple times from different caller sites, we follow a simple rule
to solve the possible conflicting results from the analysis. The rule is that a UDF is kept
the same no matter the changes in input arguments if the UDF is still vectorizable with
the new arguments. Otherwise, the UDF is not vectorizable despite its prior result.

10 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

5.2 If-conversion for UDFs
Some UDFs contain if statements, which would normally interfere with vectorization.
However, there are some if statements which can be transformed into vectorized state-
ments, using primitive vector operations available in MATLAB to combine results from
the then and else branches.

Consider the example from the CNDF function of the Blackscholes(BS) bench-
mark, given in Fig. 5(a). The original code, with explicit control flow cannot be vector-
ized, because when InputX is promoted from a scalar to a vector, the if will execute only
once instead of once per item in the vector. However, the computation can be converted
to vector form as shown in Fig. 5(b). The trick is to create a boolean vector of 0’s and
1’s containing the results of the condition, and then to use this to select the appropriate
values by multiplying by 1 for all values that should come from the then branch (and
0 otherwise). The same trick, with the negative conditions are used for the else branch.
Then the two vectors are combined, giving all the results for both branches.

i f InputX < 0
InputX = − InputX ;
s i g n = 1 ;

e l s e
s i g n = 0 ;

end

thenCond = InputX < 0 ;
e l seCond = n o t (thenCond) ;
InputX = thenCond .∗(− InputX) + e l seCond .∗ InputX ;
s i g n = thenCond .∗1 + e l seCond . ∗ 0 ;

(a) Original if-structure (b) After if-conversion
Fig. 5. If-conversion from the CNDF function of the BlackScholes(BS) benchmark

In general, if-conversion takes place when promoted shape can be safely propagated
through the if-structure. Equivalently, the promoted shape must successfully propagate
the new code after if-conversion. TameIR provides a simple if-structure with only then-
and else-block. We first identify the variables which will be used in both the then- and
else-block. We then analyze both branches using input flow. For variables which are
used only in one block, there are two cases: 1) only used within block; or 2) remain
after the if-block. The variables in (1) can be kept the same while the variables in (2)
must multiply with its corresponding mask (i.e. cond or ∼cond).

6 Data Dependence Analysis
Besides promoted shape information, we consider the possible dependence between
statements. It is the key problem for program vectorization. We investigate the exact
test, the GCD test [1], to tell whether data dependence exists. If two statements cannot
be decided by the test, we conservatively assume they have data dependence. Further-
more, a dependence graph is built on the result of the test. We split the graph into
subgraphs in which each node connects but there is no connection between subgraphs.
A subgraph is a directed graph. The Tarjan’s algorithm [13] for finding strong con-
nected components is adopted to identify possible acyclic subgraphs. Given an acyclic
subgraph with no variable having promoted shape >, we are able to get the topologi-
cal order of each node in the subgraph with a topological sort. When vectorizing, the
topological ordering is used to order the equivalent vector statements.

Automatic Vectorization for MATLAB 11

7 Vectorization and Optimization
The statements in a loop are separated into two groups: (1) vectorizable statements in a
topological order and (2) non-vectorizable statements in a sequential order. For the first
group, the loop range is extracted and each statement is vectorized and inserted above
the loop. For the second group, the statements are not vectorizable and thus remain as
is. If all statements are vectorizable, the resulting loop is empty and can be removed.

7.1 Special cases
Function replacement. MATLAB programs can contain many arithmetic operators,
some of which can have different meanings depending on the operand types. Multipli-
cation for instance (*) can either be an arithmetic or matrix multiplication. In MATLAB
, a built-in function mtimes provides matrix multiplication while times performs an el-
ementwise operation. With the value analysis from Tamer, we can generate improved
code by using the faster elementwise function where possible. This replacement also
applies to division (mrdivide vs. rdivide) and power (mpower vs. power).

Idioms for reductions. MATLAB programs also commonly use patterns within loops,
especially accumulation [2]. Using cycles from the dependence graph, common patterns
can be replaced using the equivalent reduction operation. MATLAB provides a built-in
reduction function sum for accumulation. The Mc2Mc tool is able to detect this idiom
and generate vectorized code with the sum function.

Special built-in functions. Some built-in functions are excluded from the promoted
shape analysis since they are not elementwise functions. However, they can be analyzed
to expose further vectorization opportunities. We identify two such functions below.

Colon: Since we adopt an iterative method to vectorize loops from innermost to out-
ermost, the generated code from a previous iteration may contain multiple calls to
the colon operator. Since the colon operator is not elementwise, it is not included
in the initial promoted shape analysis. To expose further vectorization, we give the
return variable of a colon operator promoted shape N. This allows vectorization of
outer loops which require full promoted shape information.

Transpose: Since the promoted shape of the function argument may be either a row
or column vector and the vectorized function may require a particular shape to be
semantically equivalent, we use the transpose built-in function to transform the
inputs as needed.

7.2 Code optimization with dynamic checks
Since indexing using a colon operator has an impact on the performance of vectoriza-
tion, we explore dynamic checks to reduce the overhead caused by the redundant array
indexing. If a colon indexing covers all elements in an array, the colon indexing can
be replaced with an array name to improve performance. Only the left-hand side of an
assignment statement is considered for the dynamic checks.

8 Evaluation
To study the performance of our automatic vectorization we have performed experi-
ments on a diverse set of benchmarks on four different execution engines.

12 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

8.1 Experimental Setup

The experiments were done on a desktop with an i7-3820 3.60GHz (eight cores) CPU
and 8GB RAM running Ubuntu 14.04 TLS. We selected four execution engines. We
used two interpreters: Octave 4.0, which is an open-source interpreter and MATLAB
8.1 (R2013a) with the JIT turned off. We used two JIT-based systems: MATLAB 8.1
(R2013a) which has a 1st-generation JIT, and MATLAB 8.6 (R2015b) which has a
newer 2nd-generation JIT. Each benchmark was executed 5 times and the mean ex-
ecution time is reported. We used the Wu-Wei Benchmarking Toolkit to perform the
experiments.6 The source code of these experimemts is available on GitHub.7

There are total nine benchmarks chosen for the experiments, taken from the Ostrich
benchmark set which provides multi-language versions of benchmarks covering a wide
range of numerical categories (Dwarfs). 8

Back-Propagation (BP): a method of training artificial neural networks. It provides
an interactive algorithm to update the weights in the given network.

Black-Scholes (BS): a computationally intensive algorithm which is used to calculate
the price for a portfolio of European options analytically with the Black-Scholes
partial equation (PDE).

Capacitance (CAPR): computes the capacitance of a transmission line using finite
difference and Gauss-Seidel iteration.

Crank-Nicholson (CRNI): computes the Crank-Nicholson solution to the one-dimensional
heat equation.

Fast Fourier Transform (FFT): computes FFT on a random data set as input.
Monte-Carlo simulation (MC): approximates the value of π.
Needleman-Wunsch (NW): calculates optimal global alignment of two DNA sequences.
Page-Rank (PR): link analysis algorithm.
Sparse Matrix-Vector Multiplication (SPMV): compressed sparse row (CSR) for-

mat multiplication between a sparse matrix and a vector.

8.2 Experimental Results

To study the performance influence caused by the code vectorization, we compared the
original MATLAB code with the automatically vectorized code. To produce the vector-
ized code we used our tool to identify and transform loops which could be vectorized,
and we replaced the original loops with the automatically generated vector code.

Overall performance. The results of our experiments are given in Table 4. There are
four multicolumns, one for each execution engine. For each of these there are three
columns: time for the original code, time for the automatically vectorized code, and
speedup which is the ratio of orig_time/vect_time. We also provide the geometric mean
speedup for each execution engine. A speedup of k means that the vectorized version
was k times faster than the original loop version. In Table 4 we have shown all speedups
≥ 1 as bold blue numbers. For each benchmark (i.e. each row in the table) we show the
time of fastest version over all the execution engines as a bold italic red numbers.

6
https://github.com/Sable/wu-wei-benchmarking-toolkit/

7
https://github.com/Sable/lcpc16-analysis

8
https://github.com/Sable/Ostrich

Automatic Vectorization for MATLAB 13

Table 4. Times (in seconds) and Speedups (SU) (orig. time / vect. time)

Octave 4.0 MATLAB 2013a MATLAB 2013a MATLAB 2015b
(interpreter) (interpreter) (1st gen JIT) (2nd gen JIT)

orig. vect. vect. orig. vect. vect. orig. vect. vect. orig. vect. vect.
Benchmark time time SU time time SU time time SU time time SU
BP 1855 0.83 2235 138.4 2.76 50.1 6.18 3.00 2.06 2.18 3.09 0.71
BS 97.1 0.20 485.5 28.84 0.14 206 4.84 0.13 37.2 1.35 0.09 15.0
CAPR 207.6 203.7 1.02 14.63 14.4 1.02 0.43 0.51 0.84 0.23 0.29 0.79
CRNI 2452 1075 2.28 248.7 119.7 2.08 7.67 40.9 0.19 3.05 3.66 0.83
FFT 80.88 76.2 1.06 12.95 13.0 1.00 3.83 7.05 0.54 1.25 2.13 0.59
NW 981.3 733 1.34 57.09 40.3 1.42 2.43 1.97 1.23 1.12 1.17 0.96
PR 511.3 5.00 102.3 49.75 1.95 25.5 1.28 1.16 1.10 1.08 1.15 0.94
MC 535.3 0.35 1529 128.3 0.59 217.5 3.75 0.55 6.82 0.93 0.46 2.02
SPMV 117.6 197.3 0.60 17.73 33.8 0.52 0.26 12.8 0.02 0.20 14.5 0.013
Geo Mean 19.1 7.65 1.02 0.77

The results are very interesting and show the relative importance of vectorization
for different types of execution engines and show that although vectorization can lead
to huge speedups, it is not always beneficial.

For the two interpreters we see excellent speedups due to vectorization. In the case
of Octave we see speedups of 2235x for BP and 1529x for MC. In fact, these vector-
ized versions are the fastest overall, beating even the 2nd-generation JIT in MATLAB
2015b. The speedups for MATLAB 2013a(interpreter) are also quite impressive. How-
ever, the results also show that even with interpreters it is not always worth vectorizing,
as illustrated by the slowdowns for SPMV. In this case the vectorized loop is the inner
loop of the main computation, and the main compuation outer loop is not vectorizable.
The inner loop executes on a vector of size 2, and thus is not a good candidate for
vectorization.

In the case of the JIT execution engines, the results are more nuanced. Some bench-
marks show only a small performance improvement, and others have small performance
degradations. However, there still exist benchmarks where vectorization can give good
speedups, namely BS and MC. Vectorization of BS gives 37.2x speedup for MATLAB
2013a (1st gen JIT) and 15x for MATLAB 2015b (2nd gen JIT). The reason is that the
two benchmarks successfully achieve loop vectorization and UDF vectorization. The
called UDFs are fully vectorized. The function invocations in BS are more complex
than MC. Therefore, it is more difficult for the JIT to exploit possible parallelsim while
our vectorizer achieves this. However, with the JITs there can be even more drastic per-
formance degradations due to vectorization, as can be seen by the slowdown of SPMV.
It would seem that vectorizing an inner loop that has very few iterations not only in-
troduces overheads to that inner loop, but also likely interferes with the JIT’s ability to
generate efficient code for the entire loop nest.

9 Related Work
While vectorization is a mature field, there is no universal method for transforming
scalar programs into vector form. Existing approaches either use user input, automated
analyses or a combination of the two.

14 Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

User-guided vectorization. Tian et al. implemented vector extensions to C and C++, al-
lowing the Intel C++ compiler to produce efficient SIMD instructions without requiring
low-level programming [14]. Using in-code directives, entire user-defined functions can
be vectorized in addition to for loops yielding significant performance improvements.
In constrast, our implementation allows vectorization of user-defined functions without
code annotations. Klemm et al. also explored directive based vectorization by introduc-
ing non-vendor specific SIMD constructs to OpenMP [5]. Since not all loops can be au-
tomatically vectorized, experimental results show that using annotations improves per-
formance over an existing production auto-vectorizing compiler. While evaluating the
effectiveness of auto-vectorizing compilers, Maleki et al. also confirmed that produc-
tion compilers can handle many synthetic benchmarks but have difficulty automatically
vectorizing real world applications [7]. In our work, results show that auto-vectorization
can still provide significant performance increases to substantial benchmarks, but that
performance degredation is also possible, especially with modern MATLAB JITs.

A mixed user-automatic approach to vectorization has been implemented for MAT-
LAB . Since vectorization of MATLAB code requires matrix sizes and shapes, Birkbeck
et al. allow user shape annotations to guide the auto-vectorization techniques [2]. Ad-
ditionally, a pattern based approach transforms common code patterns to the equivalent
MATLAB built-in. Our implementation uses the same principles for vectorization, but
can automatically infer the necessary shapes instead of using annotations.

Array programming languages. Array programming languages such as R and MATLAB
are also important candidates for vectorization. Menon and Pingali showed that source-
to-source transformations of MATLAB, including vectorization, can significantly im-
prove program performance [10]. Vectorization allows better exploitation of the under-
lying hardware and reduces the interpreter overhead of repeatedly iterating the loop
body. However, their exploration used hand-optimized programs and did not consider
function vectorization as in our implementation. Chauhan and Kennedy introduced two
optimizations: procedure vectorization and procedure strength reduction, which im-
proved the performance of real digital signal processing applications [3]. The idea of
procedure vectorization is similar to our approach to UDFs, replacing a function call in-
side a loop by a single function call with vectorized arguments. However, their transfor-
mation is achieved by hand while we present an automatic method for handling UDFs.

The R programming language provides a popular built-in function lapply which
runs a given function on a list of input. By replacing the looping execution of lapply
with a vectorized version of the supplied function, Wang et al. achieved meaningful
speedups [15]. However, their implementation is both limited to lapply and can also
generate inequivalent vector code from if statements due to the semantics of the R ifelse
built-in function. Our work accepts more general input, and generates equivalent vector
code when vectorizing if statements.

10 Conclusions and Future Work

We have presented an automated technique to detect and transform loops to vector-
ized code in MATLAB . Our approach introduces a new promoted shape propogation
analysis which is used to identify vectorizable statements and user-defined functions.

Automatic Vectorization for MATLAB 15

We have implemented our approach as the Mc2Mc tool and used it to experiment
with 9 diverse benchmarks over 4 different execution engines. From our experimental
results we conclude that our automatic vectorizer can find and transform loops in a wide
range of benchmarks. The vectorized code is usually faster, and sometimes three orders
of magnitude faster, on interpreted engines. There is less benefit for vectorizing on JIT
systems, but there still exist benchmarks where excellent speedups can be achieved
by vectorizing. Our results also show that the general advice of “vectorize to improve
performance" is not always true, especially in the JIT settings where vectorizing can
interfere with the JIT.

In our future work we would like to integrate our automatic vectorizer into a MAT-
LAB or Octave IDE, so programmers could selectively vectorize loops. We would also
like investigate automatic and profile-driven techniques for deciding when vectorization
is beneficial, and perhaps also develop some “unvectorizing" techniques for converting
vectorized code to loops when vector code is deemed to be less efficient.

References
1. Allen, R., Kennedy, K.: Automatic translation of Fortran programs to vector form. ACM

Trans. Program. Lang. Syst. 9(4), 491–542 (1987)
2. Birkbeck, N., Levesque, J., Amaral, J.N.: A dimension abstraction approach to vectorization

in Matlab. In: CGO. pp. 115–130 (2007)
3. Chauhan, A., Kennedy, K.: Reducing and vectorizing procedures for telescoping languages.

International Journal of Parallel Programming 30(4), 291–315 (2002)
4. Dubrau, A.W., Hendren, L.J.: Taming MATLAB. In: OOPSLA. pp. 503–522 (2012)
5. Klemm, M., Duran, A., Tian, X., Saito, H., Caballero, D., Martorell, X.: Extending OpenMP*

with vector constructs for modern multicore SIMD architectures. In: IWOMP. pp. 59–72
(2012)

6. Li, X., Hendren, L.J.: Mc2for: A tool for automatically translating MATLAB to FORTRAN
95. In: CSMR-WCRE. pp. 234–243 (2014)

7. Maleki, S., Gao, Y., Garzarán, M.J., Wong, T., Padua, D.A.: An evaluation of vectorizing
compilers. In: PACT. pp. 372–382 (2011)

8. MathWorks: MATLAB, http://www.mathworks.com/
9. McLAB: The McLAB tools for compiling MATLAB (2016), http://www.sable.

mcgill.ca/mclab/
10. Menon, V., Pingali, K.: A case for source-level transformations in MATLAB. In: DSL. pp.

53–65 (1999)
11. Muraoka, Y.: Parallelism exposure and exploitation in programs. Ph.D. Thesis, Univ. of Ill.

at Urbana-Champaign, Dept. of Comp. Sci. UMI(71-21189) (Feb 1971)
12. Octave: GNU Octave, https://www.gnu.org/software/octave/
13. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160

(1972)
14. Tian, X., Saito, H., Girkar, M., Preis, S., Kozhukhov, S., Cherkasov, A.G., Nelson, C.,

Panchenko, N., Geva, R.: Compiling C/C++ SIMD extensions for function and loop vec-
torizaion on multicore-simd processors. In: IPDPS. pp. 2349–2358 (2012)

15. Wang, H., Padua, D.A., Wu, P.: Vectorization of apply to reduce interpretation overhead of
R. In: OOPSLA. pp. 400–415 (2015)

