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ABSTRACT
Motivation: Despite the growing literature devoted to finding
differentially expressed genes in assays probing different
tissues types, little attention has been paid to the combin-
atorial nature of feature selection inherent to large, high-
dimensional gene expression datasets. New flexible data
analysis approaches capable of searching relevant subgroups
of genes and experiments are needed to understand multivari-
ate associations of gene expression patterns with observed
phenotypes.
Results: We present in detail a deterministic algorithm to
discover patterns of multivariate gene associations in gene
expression data. The patterns discovered are differential with
respect to a control dataset. The algorithm is exhaustive and
efficient, reporting all existent patterns that fit a given input
parameter set while avoiding enumeration of the entire pattern
space. The value of the pattern discovery approach is demon-
strated by finding a set of genes that differentiate between
two types of lymphoma. Moreover, these genes are found to
behave consistently in an independent dataset produced in a
different laboratory using different arrays, thus validating the
genes selected using our algorithm. We show that the genes
deemed significant in terms of their multivariate statistics will
be missed using other methods.
Availability: Our set of pattern discovery algorithms includ-
ing a user interface is distributed as a package called
Genes@Work. This package is freely available to non-
commercial users and can be downloaded from our website
(http://www.research.ibm.com/FunGen).
Contact: gustavo@us.ibm.com

INTRODUCTION
Recent advances in DNA microarray technology have opened
an important window into the internal workings of the cell.
Microarrays allow the measurement of the expression level of
thousands of genes simultaneously with a single experiment
(Brown and Botstein, 1999; Lockhart et al., 1996). While
the expression level of all genes in the cell is not a complete
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description of the state of the cell, expression data have been
shown to contain information about the molecular mechan-
ism underlying different cell tissue types and behavior. For
example, the expression levels of a gene under varied condi-
tions contain information about the functional category of the
gene (Brown et al., 2000; Eisen et al., 1998; Mateos et al.,
2002).

The measured gene expression profile across all the
genes also contains information about the type of tissue or
‘phenotype’ of the cell. For example, a widely studied pheno-
type is that of cancerous cells. Many successful works have
been published demonstrating how cancer phenotypes can be
characterized by gene expression profiles (Alon et al., 1999;
Furey et al., 2000; Golub et al., 1999; Guyon et al., 2002;
Ross et al., 2000 and many others).

Many methods have been proposed for selecting genes
that behave differentially in two tissue types (for a review,
see Stolovitzky, 2003). To discover differentially expressing
genes between two phenotypes, we propose a combinatorial
pattern discovery algorithm that we call Genes@Work. We
have previously described similar constructs in the context of
phenotype classification (Califano et al., 2000). Our pattern
discovery method entails searching for patterns that differen-
tiate one particular phenotype from another phenotype chosen
as a reference or control. Each pattern is a subgroup of genes
observed to act consistently over a subset of the experiments
in the phenotype. Straightforward methods of finding such
patterns become computationally intractable in large data-
sets by requiring enumeration of an exponentially growing
space of sub-patterns (e.g. finding all subsets of genes and all
subsets of experiments that satisfy some given pattern para-
meters). In this study, we present a computationally efficient,
deterministic and exhaustive algorithm that avoids searching
the complete combinatorial space. Other efficient algorithms
have been described for the discovery of patterns in biological
sequences (Califano, 2000; Parida et al., 2000; Rigoutsos and
Floratos, 1998), but these have not been optimized for the task
of pattern discovery in the context of gene expression research.

Other pattern-based approaches have been reported recently
in the literature. In Li et al. (2003) and Li and Wong (2002), the
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data is discretized before patterns are found. In our approach,
we will explicitly handle the continuous nature of the gene
expression data. Our definition of pattern can be interpreted
as a cluster of samples over a subset of genes, an idea that
has been referred to in the recent literature as biclustering.
Recent biclustering work includes Cheng and Church (2000)
(who used greedy algorithms to identify groups of genes that
fluctuate in unison in a subset of samples), Getz et al. (2000)
(whose biclusters consist of pairs of stable gene and sample
clusters generated by iterations of hierarchical clustering),
Tanay et al. (2002) (who used graph theory and statistics to
find subsets of genes that exhibit a similar expression pattern
across a subset of conditions), Lazzeroni and Owen (2002)
(who define ‘plaid’ models that describe the gene expres-
sion matrix as a linear function of their bicluster parameters)
and Bergmann et al. (2003) (who iteratively refine sets of
genes and conditions until they match the definition of a spe-
cial kind of bicluster that they call transcription modules).
There are important differences between these methods and
our approach. All these clustering methods employ heurist-
ics and are not guaranteed to find all patterns. In contrast,
we will present an exhaustive pattern discovery algorithm.
All the methods mentioned above are based on unsupervised
clustering, whereas our approach is supervised. The simil-
arity in gene expression in our method is measured using a
novel metric. Our patterns are maximal in genes and samples.
Finally, an important feature of our approach (also important
in Tanay et al. (2002) is that for each pattern we compute a stat-
istical significance, an aspect that facilitates the segregation
of interesting from spurious patterns.

The paper is organized as follows. First, we present our
approach to the normalization of the phenotype samples in
terms of the control samples, the definition of a pattern and
the statistical significance of patterns. Then, we present in
detail the algorithm used to identify the gene expression pat-
terns. The performance and scalability of the algorithm is
subsequently explored. Next, the utility of the algorithm is
demonstrated with a specific example to discover genes in two
independently collected sets of lymphoma data. We finish the
paper with some concluding remarks.

SYSTEMS AND METHODS
Normalization of gene expression
In the following discussion, we assume that we are compar-
ing gene expression samples from two distinct phenotypes.
Samples of one such phenotype will be referred to as the
‘control’ samples, and the others simply as the ‘pheno-
type’ samples. Finding consistent gene expression differences
between these two sample sets suggest a functional role in
the conditions under consideration. However, finding consist-
ent differences requires enough number of samples to find
signal above the variability with sufficient statistical signific-
ance. For example, gene expression measurements contain

many sources of variability including sample purity, sample
preparation variability and the measurement process (Tu et al.,
2002; Workman et al., 2002).

In view of its variability, it is natural to conceptualize the
gene expression of a gene as a continuous random variable
whose probability density function describes the distribution
of gene expression levels across different samples. One might
try modeling all possible gene dependencies by a joint distri-
bution, but this requires larger datasets than those generally
available. Therefore, our method considers probability dens-
ity functions of individual genes. For example, consider the
expression level of samples of a gene g in the control set
and its probability distribution estimate F̂g(x) (Fig. 1a). Using
this estimate, we define the normalized gene expression for
gene g as:

µ(x) ≡ F̂g(x). (1)

A useful property of this normalization is that, if the gene
expression x is distributed as in the control set, then the nor-
malized values will be uniformly distributed in the interval
[0, 1] (Fig. 1a, for a representation of this property). This
property allows us to detect changes in gene expression dis-
tribution by detecting how the normalized expressions deviate
from a uniform distribution. In Figure 1b, a hypothetical distri-
bution for the gene expression levels on the phenotype samples
is compared with the distribution on the control samples. The
phenotype distribution happens to be bimodal in Figure 1b, but
there are no restrictions on the form of this distribution. After
the normalization, the phenotype samples form clusters of
maximum width less than some value δ, with 0 < δ < 1. Now,
if we assume that δ is an input parameter given by the user,
we define any cluster of maximum width less than δ to be a
‘δ-valid pattern’. In Figure 1b, two patterns are formed, one at
lower expression levels with three samples and another at high
expression levels with five samples. The number of samples
in the pattern is called the ‘support’ of the pattern. Notice that
we must ensure that the support of the pattern is large enough
such that the pattern is unlikely to occur from sampling a uni-
form distribution. This issue of randomly occurring patterns
will be discussed later on.

Gene expression patterns
Having defined a method for gene expression normaliza-
tion and identification of single gene patterns, we proceed
to extend the concept of δ-valid patterns to multiple genes.
We shall also define a few terms used throughout this
paper, following the notation introduced in Califano et al.
(2000).

The data for the phenotype under study contains Ne micro-
array samples with each microarray measuring the expression
level of Ng genes. Thus, the phenotype dataset is conveniently
represented by an Ne ×Ng gene expression matrix V = {νij },
where i is the microarray or experiment index and j is the
gene index. Each gene is normalized to a value in the interval
[0, 1] as described in the previous section. We introduce the
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(a) (b)

Fig. 1. (a) Gene expression normalization. The normalization uses an estimate of the cumulative probability density over observed control
samples, F̂g(x). When the control samples are normalized by the transformation µ(x) = F̂g(x), they become uniformly distributed in
[0, 1]. (b) When the normalization, as given by the transformation µ(x) = F̂g(x), is applied to samples that are not in the control set
the normalized values will tend to deviate from a uniform distribution. Only if the new observations are distributed as the control set their
normalized expressions will be uniform. The figure depicts the case when the new samples follow a hypothetical density (dotted curve). When
normalized, the new samples will distribute non-uniformly. If the samples fall in regions of low pg(x) like groups A and C, they will form
clusters in the interval [0, 1] and some of these clusters may fit in an interval of width δ. If the samples fall in regions of high pg(x) like
group B, they will spread without forming detectable clusters.

following definitions:

Gene vector: a list of k gene indexes G = {g1, . . . , gk}, with
1 ≤ g1 < g2 < · · · < gk ≤ Ng .

Experiment vector: a list of l experiment indexes E =
{e1, . . . , el}, with 1 ≤ e1 < e2 < · · · < el ≤ Ne.

δ-valid pattern: a gene vector G and an experiment vector
E uniquely define an l × k submatrix of the phenotype
data matrix V. Such a sub-matrix is a δ-valid pattern if the
entries in each column (genes) are contained in an
interval of size up to δ.

δ-valid maximal pattern: a δ-valid pattern that cannot be
extended to another δ-valid pattern by adding genes
without reducing the dimension of the experiment
vector, or by adding experiments without reducing the
dimension of the gene vector.

Figure 2 shows an example of a maximal pattern in a nor-
malized gene expression matrix. A δ-valid maximal pattern
will be simply called a ‘pattern’ from now on. The length of
the experiment vector l is called the support of the pattern.
Observe that any sub-matrix of a pattern is also a pattern, but
we are interested in δ-valid maximal patterns that by definition
cannot be completely included into another δ-valid pattern.

0.15 0.81 0.45 0.72 0.84 0.28 0.26 0.09 0.01 0.88
0.21 0.11 0.96 0.81 0.07 0.40 0.55 0.22 0.97 0.92
0.75 0.01 0.22 0.89 0.11 0.61 0.58 0.73 0.98 0.72
0.95 0.12 0.66 0.82 0.48 0.19 0.55 0.07 0.30 0.37
0.91 0.06 0.58 0.85 0.65 0.06 0.93 0.60 0.90 0.23
0.25 0.43 0.90 0.28 0.50 0.99 0.38 0.96 0.03 0.18
0.88 0.05 0.94 0.84 0.71 0.96 0.51 0.61 0.99 0.59
0.66 0.75 0.84 0.07 0.63 0.15 0.60 0.74 0.38 0.52
0.43 0.99 0.88 0.77 0.30 0.06 0.85 0.21 0.85 0.47
0.19 0.07 0.60 0.91 0.96 0.30 0.49 0.60 0.80 0.68
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Fig. 2. Example of a maximal δ-valid pattern in a normalized gene
expression matrix. In this example δ = 0.1, Ne = 10, Ng = 10.
The pattern contains three genes in its gene vector G = {2, 4, 7} and
four experiments E = {2, 3, 7, 10}. The pattern support is 4. The
pattern is maximal because no other gene can be added that satisfies
the δ condition on E and no experiment can be added without a
gene in G failing the δ condition. Naturally, there are many more
maximal patterns in this matrix besides the one shown. In bold face,
are expression values that also form patterns.
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Statistical significance of patterns
We are interested in discovering patterns that differentiate the
phenotype set from the control set, and that are unlikely to
occur by chance. In order to achieve such discrimination of
patterns, we define a null hypothesis under which we can
compute the probability of a given pattern to occur. Ideally,
the null hypothesis would be that the genes in the phenotype
set have the same joint distribution as the genes in the con-
trol set. However, the joint probability is not easily estimable
with the small number of samples available in the control
set. Instead, we define the null hypothesis as consisting of all
genes independently distributed, with each gene distributed as
F̂g(x). The rationale is described next. Under this null hypo-
thesis every pattern will be assigned a p-value. If the p-value
is small enough, we can assert that either the pattern genes
have distributions differing from the control, or that the genes
are not statistically independent. Both negations of the null
hypothesis will yield a group of interesting genes. Statistical
significant patterns in the majority of the cases will differen-
tiate the phenotype from the control. However, patterns may
arise that reject the null hypothesis and yet are likely to occur
in the control set. We call these promiscuous patterns. These
are patterns that negate the null hypothesis only because the
participating genes are statistically dependent. In these cases,
it could be that this dependence is also present in the control
set, in which case the pattern would not be discriminating
between phenotype and control. By checking whether these
patterns match the control set, promiscuous patterns can be
easily eliminated in a post-processing phase (Califano et al.,
2000).

As explained in the normalization section, we normalize
gene expressions for each gene g by applying the transform-
ation (1). Since, when we apply the normalization to the
control samples we get gene expressions uniformly distrib-
uted in [0, 1], in the normalized gene expression space, our
null model is a set of Ng independent identically distributed
uniform random variables. The average number of δ-valid
maximal patterns with k genes and support l that occur in
such null model can be computed by the formula (Califano
et al., 2000)

Nlk(l, k, Ne, Ng , δ) ∼=
(

Ng

k

)(
Ne

l

)
αk(1 − α)Ng−k

× [
1 − (1 + 1/l)kδk

]Ne−l
, (2)

where
α = lδ(l−1) − (l − 1)δl . (3)

A calculation of a similar nature, but with l = Ne and with
binary data (i.e. overexpressing and underexpressing genes)
has also been considered in Wahde et al. (2002).

We have observed in numerical experiments that the dis-
tribution of the number of δ-valid maximal patterns with a
fixed support and number of genes is well approximated by

Poisson distribution. Assuming that to be the case, the p-value
of a δ-valid maximal pattern with k genes that holds over
l experiments (taken to be the probability that one or more
such patterns occur by chance) is

p = 1 − e−Nlk . (4)

A pattern is considered statistically significant if its p-value is
less than a pre-defined threshold parameter τ . In addition, we
can also compute the conditional significance of one pattern
given another overlapping pattern (data not shown). In this
way patterns that are likely to occur because they are a vari-
ation of another more significant pattern are discarded. The
resulting set of patterns is said to be ‘non-redundant’.

Having defined the notion of δ-valid maximal patterns, we
now turn our attention to the algorithmic problem of detecting
all these patterns from a gene expression matrix. Readers not
interested in these algorithmic considerations can skip to the
case study below showing a specific example of the use of
Genes@Work for gene selection in cancer data.

ALGORITHM
The AddG pattern discovery algorithm
Given a normalized gene expression matrix of Ne rows
(microarrays) and Ng columns (genes), any subset of the
rows and any subset of the columns could form a pattern
whenever such combination satisfies the δ condition. There
are (2Ng −1)(2Ne −1) distinct sub-matrices that might define
a pattern. An enumeration of all such sub-matrices is imprac-
tical given that typically Ne = 100 and Ng = 10 000. Thus,
the solution space has to be searched without full enumera-
tion. Some existing association rule discovery algorithms such
as the ‘Apriori’ approach (Agrawal and Srikant, 1994) are
not adequate for this domain because although they proved
successful in discovering associations in large databases of
sales transactions, good performance was only found for small
itemsets of about six items (Agrawal and Srikant, 1994).
Efficient searches will exploit the property that any sub-matrix
of a pattern is also a pattern by growing smaller patterns
into maximal ones, thus reusing computation and pruning
the search space in a similar fashion to that of dynamic
programming algorithms (Cormen and Leiserson, 1990).

The AddG algorithm is an efficient approach to finding
the maximal patterns in the data. The input parameters for
the algorithm are the maximum expression interval (δ), the
minimum support (lmin), and the minimum number of genes
(kmin). The maximum p-value or threshold τ required for a
pattern is applied to each maximal pattern at the end of the
pattern search, hence pattern discovery performance does not
depend on the parameter τ for the algorithm described.

The algorithm starts by searching single gene element-
ary patterns that are maximal in the number of experiments
and contain at least lmin experiments. Any arbitrary order
for the genes is fixed and each gene is considered in turn.
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Fig. 3. Constructing the maximal pattern of Figure 2 by the AddG
algorithm. Starting with the maximal single gene elementary patterns
π2, π4 and π7, we can obtain the maximal pattern of Figure 2 by the
intersection of the experiment sets from the elementary patterns and
the union of the corresponding genes.

The elementary pattern search can be done efficiently by sort-
ing the normalized gene expression of each gene and then
looking for a window of experiments where the δ condi-
tion holds. The elementary patterns will be grown by adding
genes as described below. As genes are added, maintaining
the δ condition valid over the common set of experiments in
the pattern will require removing experiments from the grown
pattern (Fig. 3). The growth continues until no more genes are
available or until the pattern fails to meet a minimum required
number of experiments (lmin). In Figure 3, the patterns π2, π4

and π7, are examples of single gene elementary patterns for
the data in Figure 2.

The elementary patterns constitute the basic building blocks
for the resulting maximal patterns. The order in which
the genes are considered for the elementary pattern search
together with the order in which the elementary patterns are
generated for each gene, define a global order for all element-
ary patterns. All elementary patterns are stored in an array that
maintains this generation order.

Each elementary pattern defines a subset of the experiments
called an ‘experiment comb’. The experiment comb can be
represented efficiently as a bit vector of length Ne with a
one (respect zero) indicating that the experiment is present
(respect absent) in the elementary pattern. For reasons that
will be clear later, we first determine a subset of the ele-
mentary patterns whose experiment comb is not included in
any previous experiment comb. Here, the order of the combs
is simply given by the generation order of elementary pat-
terns. If we ordered the elementary patterns from left to right,
we can call this subset of elementary patterns as the ‘left-
maximal’ elementary patterns. The experiment comb of a

left-maximal elementary pattern is not included in the experi-
ment comb of any previous (i.e. located to the left) elementary
pattern.

Now we are ready to describe the main loops of the
algorithm. The outermost loop goes over all the genes; we
call the current gene in this loop the ‘source’ gene. The task
of the outermost loop’s body is to find all maximal patterns
that start with the source gene. The first step is to retrieve the
elementary patterns present at the source gene. We call these
elementary patterns the ‘source seed patterns’. The next out-
ermost loop is started to consider each source seed pattern
in turn.

For each source seed pattern, a new loop is started over the
genes that follow the source gene according to the selected
gene order. We call the current gene in this new loop the
‘target’ gene. Each target gene contains elementary patterns
called ‘target seed patterns’. A combine operation between
patterns is defined such that it produces a new pattern whose
experiment comb is the intersection of the experiment combs
of the argument patterns and whose genes are the union of
the genes in the argument patterns. In Figure 3 we illustrate
the pattern combination operation which we also refer to as
pattern intersection. The intersection of the source seed pattern
with all the target seed patterns is computed. Each intersection
is a new two-gene pattern containing the gene of the source
seed and the gene of the target seed. The experiment comb of
the intersection is simply the bit-by-bit logical AND operation
of the experiment combs of the source seed and the target seed.
The processing can be described by the following Java-like
pseudocode:

for(int sg=1;sg<=Ng;sg++)
{ //Outermost loop over source gene, sg.

PatternList sourceGeneSeeds
= getElementaryPatternsForGene(sg);

for(int i=1;i<=sourceGeneSeeds.length;i++)
{ //Elementary source pattern,

//to be intersected with elementary
//target patterns from genes to
//the right of the source gene.

Pattern elemSourcePattern
= sourceGeneSeeds[i];

//Initialize a list of patterns.
PatternList twoGenePatterns
= new PatternList();

for(int tg=sg+1;tg<=Ng;tg++)
{ //Inner loop over target gene, tg.

PatternList targetGeneSeeds
= getElementaryPatternsForGene(tg);
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for(int j=1;j<=targetGeneSeeds.length;j++)
{
Pattern elemTargetPattern
= targetGeneSeeds[j];
Pattern newPattern
= intersect(elemSourcePattern,

elemTargetPattern);
if (newPattern.experimentCount>=lmin
&&isExpCombNew(newPattern))
{
twoGenePatterns.append(newPattern);

}
}
}
//Combine two-gene patterns into
//n-gene patterns.
growPatterns(twoGenePatterns);
}
}

The new two-gene pattern is kept only if its support is greater
than or equal to lmin. In addition, its experiment comb is
checked against all ‘left-maximal’ experiment combs from
the genes located before the current source gene with the call
to isExpCombNew(newPattern). If any previous comb
contains the experiment comb of the new two-gene pattern,
the two-gene pattern is discarded. As we shall see, such prun-
ing is justified and saves a search that cannot generate any new
maximal patterns.

The next step is to combine the two-gene patterns into
patterns with more genes until maximality in number of
genes is reached. The procedure is described conceptu-
ally in Figure 4 and with more detail in the following
pseudocode:

function growPatterns(PatternList
twoGenePatterns)

{
//
//Function growPatterns: Combine
//two-gene patterns into n-gene
//patterns.
Stack stack = new Stack();
//Use a stack to backtrack pattern
//search.

stack.push(twoGenePatterns);
//Stack holds pending pattern lists,
//init.

while(NOT(stack.empty())) {
PatternList prevLevelPatterns
= stack.pop();

//Level (n-1)-gene patterns.
while(prevLevelPatterns!=[]) {

Pattern sourcePattern
= LIST_HEAD(prevLevelPatterns);

PatternList prevLevelPatterns
= LIST_TAIL(prevLevelPatterns);

(B) if (NOT(sourcePattern.isKept()))
continue;

(H) if (NOT(isExpCombNew2(sourcePattern))
//Search pruning step.
continue;

PatternList nextLevelPatterns
= new PatternList();

for(int j=1;
j<=prevLevelPatterns.length;j++)

{ Pattern targetPattern
= prevLevelPatterns[j];

(C) if (NOT(targetPattern.isKept()))
continue;

Pattern newPattern
= intersect(sourcePattern,

targetPattern);
(F) if (newPattern.experimentCount>=lmin
(G) &&isExpCombNew(newPattern))

{ //Search pruning step.
//Verify maximality of source and
//target patterns.

if (sourcePattern.experimentCount
==newPattern.experimentCount)

(D) sourcePattern.setKeep(false);
if (targetPattern.experimentCount

==newPattern.experimentCount)
(A) targetPattern.setKeep(false);

//Save new level n-gene pattern.
nextLevelPatterns.append(newPattern);

}
} //end target pattern loop.

//If source pattern could not be extended
//at same support,
//it must be maximal, add to solution.

if (sourcePattern.isKept())
(E) maximalPatterns.append(sourcePattern);

if (nextLevelPatterns!=[]) {
stack.push(prevLevelPatterns);
//Backtrack pointer, process later.

stack.push(nextLevelPatterns);
break; //Break out to process

//newest list from top of
//stack.

}
} //end source pattern loop.

} //end stack loop.
}

In this procedure, we always intersect a source pattern and
a target pattern with the same number of genes and that differ
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Fig. 4. The pattern search/generation process. Starting with a list
of t two-gene (level 2) patterns, we take the first pattern in the list
(head) and intersect with the remainder patterns in the list (tail). gs is
the current source gene, g1–gt are the target genes. This intersection
produces new patterns that have an additional gene and a possibly
new experiment comb. The old list’s tail is pushed into the pattern list
stack and the process is repeated on the new list. At some point, the
new list will contain only a single pattern, meaning the intersection
process cannot continue, then we may add the pattern to the solution
and pop the next list to process from the pattern list stack. When all
pattern lists in the stack have been processed (the pattern list stack
is empty) the pattern search is complete. Note that although in the
figure the height of each pattern is drawn equally, each pattern can
have very different experiment combs.

only in their last gene (except if a target gene had multiple
seed patterns, but we omit details of this case for clarity).
The resulting pattern contains the union of the genes in both
patterns intersected. We say that the source and target are in
the previous level, and the intersection pattern in the next level,
where the level is given by the number of genes in the patterns.
In comparison with the Apriori algorithm that requires all sub-
patterns at the previous level, we search for a pattern at the
next level only if we know of two patterns at the previous level
that differ only in their last gene.

The intersection pattern of any two patterns in the cur-
rent pattern list can produce a new maximal experiment
comb. Genes that satisfy the δ condition over such comb
can then be added to form a maximal pattern. The pattern
search/generation process must make sure that all possible
maximal experiment combs are explored, as is achieved by
the procedure of Figure 4. We always intersect the first pat-
tern of the list with all its peers to the right. Given that if
we start with t patterns and every intersection results in a
pattern of support at least lmin, the total number of pattern
intersections performed can be shown to be 2t − (t + 1)

in the worst case. Hence, this search procedure may lead to

intractability as the number of patterns to be searched grows
exponentially.

However, we avoid the pitfall of exponential growth by
ordering the search to exploit properties of maximal patterns.
The net effect is to prune the exponential search with no loss
of exhaustivity. The main procedures are outlined below.

• When two patterns πs and πt are intersected to form a
new pattern π , if the number of experiments in π is the
same as that of πt , then πt cannot be maximal because
in this case πt is a sub-pattern of π . We flag πt as non-
maximal in line A of the pseudocode so it is not added
later to the solution in line E. The same argument applies
to πs . In addition, pattern generation starting from πt can-
not produce other maximal patterns that are not already
produced by starting with π , so we can prune out the
pattern generation starting from πt that will occur when
πt is later selected as a source pattern in line B. A similar
reasoning will also apply to πt when the pattern genera-
tion tries to intersect πt as a target pattern again but with
another source π ′

s . Such intersection will always produce
a pattern (experiment comb) that is already included in π ;
hence, πt as a target is skipped in line C.

• When two patterns πs and πt are intersected to form a
new pattern π , if the number of experiments in π is less
than the required support lmin, the new pattern is dis-
carded (see line F). If the minimum required support is
satisfied, the experiment comb of π is searched among
the elementary patterns of all genes before the first gene
of π . The search scans for experiment combs that include
the experiment comb of π ; if the search is successful, it
means that π cannot generate a maximal pattern since
its experiment comb is included in a previously seen ele-
mentary pattern that will generate a pattern containing π

when expanded to the right. This check is performed by
the call isExpCombNew(newPattern), as shown in
line G. The functionisExpCombNew(newPattern)
does not need to scan all experiment combs, only the ‘left-
maximal’ experiment combs of all genes before the first
gene of π .

• When a pattern πs is selected as the source for expan-
sion, we also check for elementary patterns in genes
that are not in πs , but are between the first and the
last genes of πs as determined by the gene ordering. If
the experiment comb of πs is included in the experi-
ment comb of one of these elementary patterns, we
then skip πs as a source. The existence of such ele-
mentary pattern and the generation order mean that a
previous pattern that includes the experiment comb of
πs was already searched. Such previous pattern includes
πs but has more genes and when expanded includes
any pattern generated from πs . This check is performed
by the call to isExpCombNew2(sourcePattern)
(see line H).
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Fig. 5. Description of synthetic data used for scalability and per-
formance tests. Synthetic datasets are generated for varying number
of experiments Ne. The control set is kept fixed with 20 experiments.
The gene expression is independent, identical and uniformly distrib-
uted in [0, 1] (see right insert) except for the gene and experiment
regions covered by the simulated patterns. Three simulated patterns,
π1, π2 and π3, are planted in the phenotype. The three patterns have
the same support (Ne/3), and the same number of genes (83), and
are disjoint. Inside each pattern, the gene expression is sampled from
U[ug − 0.05, ug + 0.05] where ug is the gene mean that varies as
shown in the right insert. Notice that the total number of genes with
signal (3 × 83 = 249) is about 2.5% of all the genes so the diagram
is not shown to scale. For all runs, a value of δ = 0.1 is used.

Finally, lets add that the AddG algorithm can be com-
plemented with the AddE (add experiments) algorithm, in
which patterns are grown by adding experiments to gene-
maximal patterns. Both the AddE and AddG algorithms are
implemented in the Genes@Work software package.

Performance and scalability
We tested the performance of the AddG pattern discovery
algorithm on synthetic datasets that are representative in size
and pattern distributions of the kind of signal our method is
designed to detect. The algorithm is implemented in a software
package called ‘Genes@Work’, that can be downloaded from
our website: http://www.research.ibm.com/FunGen. All tests
are run on a single processor personal computer. See Figure 5
for details on how the synthetic data is generated.

We consider how performance depends on the size of the
solution as measured by the number of maximal patterns. The
number of maximal patterns is strongly dependent on the input
gene expression matrix and the values of the parameters δ,
lmin and kmin. We can vary the number of maximal patterns
by changing lmin and/or kmin. As lmin increases, the num-
ber of such maximal patterns decreases about exponentially
(Fig. 6). A similar behavior is observed when kmin is increased
(data not shown). These maximal patterns are mostly ran-
dom combinations of sub-patterns of the simulated patterns
described in Figure 5 combined with the other genes (which
means that these simulations represent a rather challenging
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the number of patterns decreases exponentially. These patterns were
found on the synthetic dataset of Figure 5 with Ne = 50.
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Fig. 7. The running times versus solution sizes for different dataset
sizes given by Ne. For all runs kmin = 4. For Ne = 50, lmin changes
from 22 down to 12. For Ne = 100, lmin changes from 38 down to
25. For Ne = 200, lmin changes from 75 down to 60. The running
times of algorithm AddG are slightly super linear with the solution
size for different values of Ne.

scenario for the algorithm). This indicates that there will be
cases in which the search for patterns with both low support
and few genes can become computationally costly. However,
we can control the size of the solution by asking for patterns
with high support or with many genes or both. In practice,
the user must tune the algorithm parameters so that only sig-
nificant and mostly non-redundant patterns are reported. For
example, by demanding that only conditionally significant
patterns are considered (i.e. patterns that cannot be explained
in terms of other patterns), only a handful of all the max-
imal patterns will be reported. These patterns are variations
of the three planted patterns shown in Figure 5. For the pur-
pose of assessing performance, we count all maximal patterns
regardless of their statistical significance or redundancy.

The running times versus the solution size for three values
of Ne are shown in Figure 7. The differences in the curves with
different Ne is due to the fact that for lower Ne, we are finding
patterns with more genes (and lower support) which requires
the algorithm AddG to make a deeper search when growing
the patterns. For each Ne, the running times increase slightly

1040

http://www.research.ibm.com/FunGen


Genes@Work

faster than linearly with the size of the solution. A polynomial
fit to the data of Figure 7 reveals a small quadratic term (for
Ne = 50, however, the quadratic term was negligible). This
suggests that there could be some room for improvements to
the AddG algorithm given that the optimal runtime is linear
in the output size. However, this sub-optimal behavior has not
posed serious problems at the time of analyzing real datasets,
as will be exemplified in the following section.

Gene selection using Genes@Work: a case study
Genes@Work has recently been used to explore gene expres-
sion data in a number of bio-medical investigations (Jelinek
et al., 2003; Klein et al., 2001, 2003; Kuppers et al., 2003).
However, we have not performed a comparative study with
other methods, or presented distinct evidence of the relation-
ship between the statistical significance of our patterns and
the biological relevance of the resulting genes. We will do
this next.

In this section, we describe the application of pattern dis-
covery to the identification of interesting genes in lymphoma
data. In particular, we seek genes that differentiate between
two types of lymphomas, diffuse large B-cell lymphomas
(DLBCLs) and follicular lymphomas (FLs). Gene expression
data for both types of lymphomas has been analyzed in Shipp
et al. (2002). The analysis method in Shipp et al. (2002) is
based on selecting a number of genes with the highest sig-
nal to noise ratio (SNR) score. The SNR score is defined as
SNR = (µ0 − µ1)/(σ0 + σ1)where, for each gene, µ0 andσ0

are the mean and SD respectively over one group of samples,
and µ1 and σ1 are the mean and SD respectively over the
other group of samples. The 50 largest and positive scoring
genes (genes more expressed in DLBCL than in FL) and the
50 largest and negative scoring genes (genes more expressed
in FL than in DLBCL) were selected, for a total of 100 genes.
Each of these 100 genes appear to have a statistical signific-
ance better than 1% when its SNR was assessed against the
distribution of the SNRs of a similarly ranked gene in 500
class-label permutation experiments (see Shipp et al., 2002,
Supplementary materials).

The SNR ratio criterion chooses genes on the basis of a
univariate criterion. In this sense, there may be genes whose
statistical significance according to the SNR method is small,
but whose significance would be larger if a statistic based
on groups of genes rather than single genes, were used. To
explore this possibility we used Genes@Work to generate a
group of markers. To do this task, we first discover statistically
significant patterns. After the pattern discovery, the union of
the genes appearing in the patterns will constitute a list of
genes selected on the basis of a multivariate criterion.

We applied pattern discovery to the data reported in Shipp
et al. (2002) following the procedure described next. The data
consists of 77 samples of which 58 are DLBCLs and 19 are
FLs. Each sample contains the expression of 7129 genes as
measured by a single oligonucleotide microarray. A present or

absent call flag is provided for each expression value and it is
used to filter out those genes which do not have enough present
calls. Few present calls means that there is no good evidence of
the gene being expressed. Genes with present calls in <25% of
all samples were discarded, resulting in 3129 genes. Next, the
data were thresholded at 1 from below (i.e. gene expression
values less than or equal to 1 were set to 1) and transformed to
logarithmic scale. The logarithmically transformed data are
then scaled so that the average of each sample equals 1.0.

The two phenotypes of interest DLBCL and FL are analyzed
in turn, using the other phenotype as control for normalization.
For the DLBCL phenotype (with FL taken as control), the
pattern discovery parameters were set to δ = 0.1, kmin =
2, lmin = 40 (about 67% of 58 samples). For the FL phenotype
(with DLCBL taken as control), δ = 0.1, kmin = 2, lmin = 13
(about 67% of 19 samples). The pattern discovery run on the
DLBCL phenotype produced 802 patterns involving 73 genes.
The run on the FL phenotype produced 182 patterns involving
62 genes. The AddG algorithm was used, and the runs took
<5 s in a regular workstation. To select marker genes from
these pattern sets, we simply apply the criteria that any gene
that appears in at least one of these patterns may be a marker.
The union of genes from both pattern sets results in 100 genes,
which only incidentally is the same number of genes selected
in Shipp et al. (2002).

There are 41 genes that are reported by both SNR method
of Shipp et al. (2002) and our Genes@Work pattern discov-
ery method. Genes@Work chose 59 genes that SNR did not
choose and SNR chose 57 genes that Genes@Work did not
choose. The fact that the 100 most significant genes reported
by both methods are different is the result of the type of signal
sought by each method. In Genes@Work, a gene must asso-
ciate with other genes through a pattern to be reported, on the
other hand, when selecting by SNR each gene is considered
in isolation.

The gene expression patterns discovered by Genes@Work
need not be composed of genes that are either over or under
expressed in the phenotype set versus the control set. Indeed,
the requirement of a pattern is that its genes express at a con-
sistent level in the phenotype set, but such level of expression
could lay anywhere within the range of the control set. How-
ever, if the parameter δ is sufficiently small, only over or under
expressed genes in a subset of samples will tend to participate
in the formation of patterns. In this way, the parameter δ con-
trols the degree to which the selected pattern genes produce a
neat separation of phenotype and control sets into overexpress-
ing and under expressing genes. For the δ value considered in
this example, the selected genes do segregate into groups that
over and under express in phenotype versus control.

The usual method used in the literature for the validation
of a set of markers consists of performing a classifica-
tion check on the same dataset on which the markers were
found (using approaches such as leave-one-out cross valida-
tion), or by choosing a somehow stringent threshold for the
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Fig. 8. (a) Verification of gene signatures with an independent dataset. WI are the Whitehead Institute samples, CU are the Columbia
University samples. The left dendrogram plots genes reported only by the SNR method. The right dendrogram plots genes reported by both
the SNR method and the Genes@Work based method. (b) Verification of gene signatures with an independent dataset. The dendrogram plots
genes reported only by Genes@Work and not by the SNR method.
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statistical significance when choosing the markers. In Shipp
et al. (2002), e.g. 30 of the 100 markers were verified as
informative by using the gene voting scheme introduced in
Golub et al. (1999). As stated above, all the 100 mark-
ers also passed a test of statistical significance. In our case,
we could state that the statistical significance of the patterns
found by Genes@Work was stringent given that the p-value
of the least significant pattern was 10−10. However, statistical
significance need not mean biological relevance.

To demonstrate further that the extra 59 genes reported by
Genes@Work are not the result of artifacts, but contain repro-
ducible information about the phenotypes DLBCL and FL, we
obtained an independent dataset on the same types of lymph-
omas. This independent dataset, from Riccardo DallaFavera’s
laboratory at Columbia University (CU), contains 14 DLBCL
samples and 7 FL samples. [This data had previously been
used in Klein et al. (2001) and Kuppers et al. (2003).] We
plot the data from the Whitehead Institute (WI) used in Shipp
et al. (2002) and CU side-by-side in Figure 8a and b, so we can
visually inspect if a gene reproduces its behavior across the
independent dataset. Figure 8a considers two groups of genes,
those reported only by the SNR method and those reported by
both SNR and Genes@Work. Figure 8b shows those genes
only reported by Genes@Work. Figure 8b shows that the
genes reported only by Genes@Work maintain their signa-
ture in a dataset independent from the dataset used for analysis.
Each gene exhibits a relatively homogeneous profile inside the
DLBCL and FL phenotypes because each gene is constrained
to form a pattern covering at least 67% of samples, see set-
ting of lmin parameter above. A reasonable formalization of
the visual consistency observed in Figure 8b is necessary. We
will say that a gene is consistent if the sign of the differ-
ence of the average expression in DLBCL and FL is the same
in both datasets. The p-value for the number of consistent
genes is defined as the probability that the same number of
genes found to be consistent in the two datasets were to be
found consistent if the genes were independent random vari-
ables with equal probability of being consistent or not (i.e.
the null hypothesis assumes that in the test dataset each gene
is independent and has equal probability of overexpressing
or underexpressing in DLBCL versus FL). Of the 59 genes
found uniquely by Genes@Work in the Whitehead dataset,
58 genes were consistently expressed in the Columbia data-
set, which corresponds to a consistency p-value of 10−16. We
conclude that the new genes identified by Genes@Work are
highly reproducible in the independent dataset.

Finally, the question remains as to whether the 59 genes
specific of the Genes@Work method would have been found
by the SNR method if we relaxed the stringency of the latter to
allow for a few more genes than the 100 reported in Shipp et al.
(2002). To account for 75% of the 59 genes, the stringency
of the SNR method has to be relaxed to allow for more than
700 extra genes, indicating that many of these Genes@Work
specific genes are of low statistical significance according to

the SNR method. In other words, Genes@Work rescues as true
positives genes that the SNR method deemed as negatives.

SUMMARY AND CONCLUSIONS
In this paper, we have described the Genes@Work approach
for pattern discovery in gene expression data. At the core
of Genes@Work, the AddG algorithm shows good perform-
ance and scalability under most conditions of interest. As an
application of Genes@Work, we showed an example of how
patterns can be used to identify genes that express differen-
tially in two lymphomas, DLBCL and FL, as seen in the case
study above. We found a subset of 59 genes that were specific-
ally picked by pattern discovery in Genes@Work but not by
the SNR method. Of the 59 genes, all but one showed the same
profile of expression in the independent dataset, thereby val-
idating the differential expression of those genes in DLBCL
and FL.

Because Genes@Work probes the data with questions not
usually asked by other methods, our approach can be comple-
mentary to other analytical methods. Let us emphasize that
in no way do we wish to imply that Genes@Work is a better
method than others under all circumstances. Our results sug-
gest that the richness of the gene expression data demands
that more than one method be used in its analysis. In this
way, we believe that Genes@Work should share with other
single gene and multivariate methods in the gene expression
analyst’s tool kit.
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