AQuery: A Query Language for Order in Data
Analytics: Language, Optimization, and
Experiments

Dennis Shasha (joint work with José Pablo Cambronero)

Courant Institute/New York University

June 6, 2016

Introduction

» Success of the relational model results from happy
combination of expressive power and simplicity

» Single data type + few operations
(select/project/join/aggregate) — simplicity

» Programmers of applications that depend on ordered events
face a dilemma

» They would like to use a relational database system, but the
model makes it hard to express queries over order.

» AQuery (and others) embodies philosophy that order can be
introduced without affecting simplicity (and improving
performance)[14][8][3]

AQuery: Sales Query

Please return the running three month moving average of sales.

SELECT month, avgs(sales, 3)
FROM Revenue
ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.
That's (most of) AQuery!

AQuery

» Modest syntactic and semantic extension to SQL 92

» Replaces unordered relational tables by ordered tables
(arrables which stands for array-tables), which can be sorted
by one or more columns[4]

» Modest syntactic and semantic extension to SQL 92: (i) Adds
one clause: assuming clause (order) (ii) Provides
order-senstive aggregates

AQuery: Sales Query (again)

Please return the running three month moving average of sales.

SELECT month, avgs(sales, 3)
FROM Revenue
ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.

SQL 92: Sales Query — inefficient AND incorrect

Please return the running three month moving average of sales.

SELECT tl1.month, tl.sales,
(tl.sales+t2.sales+t3.sales)/3

FROM Revenue tl, Revenue t2, Revenue t3
WHERE tl1.month — 1 = t2.month and
tl.month — 2 = t3.month

Three-way join (inefficient) and misses the first two months. Can
be written correctly in SQL 99 but complex and inefficient.

AQuery: Moving Variance Query

Assume a table of the form prices(ID, Date, EndOfDayPrice) with
the last ten years' data. Calculate a 12-day moving variance in
returns for stock tickers Leverages: assuming clause,
order-dependent aggregate (vars over 12 previous value, ratios
based on consecutive days). Gives for each ID, a vector of Dates
and variances.

SELECT ID, DATE,

vars(12, ratios (1, EndOfDayPrice) — 1)
FROM prices

ASSUMING ASC Date

GROUP BY ID

SQL-99: Moving Variance Query

Assume a table of the form prices(ID, Date, EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

SELECT ID, Date,
VARIANCE(rets) OVER (
ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW
) as mv
FROM
(SELECT
curr.Date, curr.ID,
curr.EndOfDayPrice /
prev.EndOfDayPrice — 1 as rets
FROM
prices curr LEFT JOIN prices prev
ON curr.ID = prev.ID
AND curr.Date = prev.Date + 1)
GROUP BY ID

AQuery: Correlation Pairs (for self-study)

WITH
stocksGrouped (ID, Ret) AS (
SELECT 1D,
ratios (1, EndOfDayPrice) — 1
FROM prices

ASSUMING ASC ID, ASC Date
WHERE Date >= max(Date) — 31 * 6
GROUP BY ID)

pairsGrouped (ID1, ID2, R1, R2) AS (
SELECT st1.ID, st2.1D,
stl.Ret, st2.Ret
FROM
stocksGrouped stl, stocksGrouped st2)

SELECT ID1, ID2,

cor(R1, R2) as coef

FROM FLATTEN(pairsGrouped)
WHERE ID1 != ID2

GROUP BY ID1, ID2

Optimizations for both sequential and parallel
implementations

» Rule-based optimization for predictability
» Tranformation rules yield demonstratable advantages

» Rules implemented as rewrites on abstract syntax tree.

Sort minimization [new, but clear]

> Detect order-dependent vs order-independent operations
» Sort only columns upon which operations are order-dependent.

» od(t) returns all columns affected by order-dependence, and
necessary to maintain semantics

SELECT ... FROM t ASSUMING S

sorts(t)
—
sorts(od(t)), (columns(t) \ od(t))

Push selections [classical]

> Generally perform selections before sorting and joins

> Except when doing so loses the benefits of indexes.

t' < ow(sorts(t))
_>

t' « owr(sorts(ow:(t)))

where W’ includes all selections up to first use of an
order-dependent aggregate, and W” contains remaining selections.

Push selections inside joins [classical]

t' < ow(sorts(ty > tp))
_>

t' < own(sorts(ow (ow, (t1) > ow,(t2))))

Selections before the first order-dependent aggregate can be
pushed down to join arguments, if all columns for a selection
pertain to a single argument. Equality-based selections are pushed
down (W and W,). W’ contains single-argument selections,
which are pushed below the join while preserving helpful indexes.

Reorder selections [classical]

» Selections are reordered, while maintaining semantics, to use
helpful indices

ow(t)
N
W'« [Wl, Wo, ..., Wn]
W" <« ¥ "reorder(W;)
UW//(t)
where W’ is partitioned at each order-dependent aggregate,

guaranteeing safe commutation of selections. reorder rearranges
selections so as to take advantage of indices.

Sequential Implementation

v

Compiler tools: C[2] + flex + bison[5]

» Execution engine: q[17]

v

Workflow: write AQuery code, compiler generates optimized q
code, execute using g interpreter

v

Advantages: portability, transparency (user able to inspect
generated q code)

Related Work

» Among the excellent work in the development of time series
databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

» DruidlO[18]: open source data store for analytics. Column
oriented, but query language doesn't suport common
functionality like joins

» Influxdb[1]: Limited query language, no user-defined
functions, no arbitrary sorting

» SciQL[3]: extends MonetDB[7] with first-class arrays for
scientific applications, allowing direct manipulation of array
and matrix structures. Comparable in expressability to
AQuery, but AQuery is designed to be a natural extension of
sql (and is faster).

» Excellent work but focused on reliability and
scalability[10][15], not query plans

Benchmarks

» Compare: AQuery, Python's Pandas[9], Sybase IQ[13], and
MonetDB (with imbedded Python)[11]

» Experiments: financial benchmark from Sybase[12],
MonetDB's benchmarking operation of quantile calculation,
various Pandas benchmarking operations from Panda’s
historical performance benchmark|[16]

» We compare on our competitors’ benchmarks.

Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase 1Q comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

» Pandas version 0.17.0

» Numpy version 1.10.1

v

Python version 2.7.5

v

MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

Sybase 1Q version 16.0
q version 3.2 2014.11.01

AQuery compiler a2q version 1.0

v

v

v

Finance Benchmark

» Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons, test trading strategies)

» Simulated data, randomized as necessary (various parameter
values) data at different sizes (100K, 1M, and 10M
observations)

> Present average response time

» Data and sequential system soon available.

Finance Benchmark: Pandas Results

100k
400 -

3000 -

T

N

0-

Average Response Time (ms)
N
O

o
4 5 6
Query

System .AQuery. Pandas
Figure 1: AQuery is faster with stock history of 100K, 1M and 10M rows across

all queries. In various of these, AQuery's average response time is orders of
magnitude shorter.

7 8

Finance Benchmark: Pandas Results

100k iMm 10M

1500 -

900 - 1000 -

1000 -

=

=1

S
1

500 -

300 - 500 -

Average Response Time (ms)

0-

0 0 0
Query

System .AQuery. Pandas
Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows across

all queries. In various of these, AQuery's average response time is orders of
magnitude shorter.

Finance Benchmark: MonetDB Results

100k 10M
1000 -
6000 -
2‘90-
= 750 -
[
£
[= 4000 -
[
260 -
S 500 -
0
(4]
x
(]
gso 2000 -
[250 -
; j -I
01234567829 0123456789 0123456789
Query

System .AQuery. MonetDB + Embedded Python/NumPy

Figure 3: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.

Finance Benchmark: Sybase 1Q Results

100k M 10M
15000 -
1500 - 7500 -
@
E
Q
E
[10000 -
@ 1000 - 5000 -
(2]
c
=}
o
0
[0}
o
)
© 500 - 2500 - 5000 -
[
>
< jj jj j
o j o oAl 5= il - | JEL jﬂ
0123458672809 01234586789 0123456789
Query

System . AQuery. Sybase 1Q

Figure 4: With 100K and 1M rows, AQuery outperforms Sybase 1Q in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.

Pandas Benchmark: Data Science Operations

> Picked a subset of operations used by Pandas to track
library’s historical performance evolution[16]

» Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

» Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

» Randomly generate data and repeat experiments

Pandas Benchmark: AQuery Results

= =)
[S) o o
1 1 1

Average Response Time (ms)
(%)
i

0-

100k

1 1 1 1 1 1
0 1 2 4 5 6

500 -

400-

300-

200-

100 - i
i

Query

1000 -

500 -

il

System . AQuery . Pandas

Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.

Pandas Benchmark: AQuery Results

100k M 3m
5000 -

20000 -

-
a
i

4000 -

15000 -
3000 -

o
=}
1

10000 -
2000 -

Average Response Time (ms)
N
(&)
|

1000 - 5000 -

3
Query

System . AQuery. Pandas

Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.

MonetDB Benchmark: Quantiles

» MonetDB's ability to embed R[6], and more recently,
Python/NumPy [11], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

» AQuery's performance in quantile calculation compared to
MonetDB's performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

» 100K, 1M, 10M, and 25M values

» Repeatedly generate random data sets

MonetDB Benchmark: AQuery Results

100k

A1
il

200 -

N
(=]
1

100 -

7500 -
5000 -
2500 -

Query

i
o
1

3000 -

Average Response Time (ms)
g
o

1000 -

0-

System .AQuery. MonetDB + Embedded Python/NumPy

Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.

Parallel AQuery: newest work

» Simple architecture, allows deeper reasoning for query
generation /transformation

» Novelty: Explores order-based optimizations in a distributed
setting

Parallel AQuery: Architecture

» Supermaster-master-worker architecture

» Supermaster: Communicates with user and assigns queries
provided by user to masters (each associated with one cohort
of workers)

v

Each cohort has the same data as each other cohort.

v

Reads go to one cohort and writes to all.

Parallel AQuery: Sample Architecture

Worker

/
Super-master —
AN

Parallel Primitives

» Encapsulate all parallelism, allowing compositional reasoning
Shuffle

Map (-Reduce)

Carry-lookahead

Edge-extension

v

v vy

*Note on diagrams in following slides: red/solid lines repre-
sent instructions sent across nodes, while green/dashed lines
represent data sent across nodes

Map [classical]

» Predicate based partitioning of say table t — like the map in
the classic map-reduce.

» Intra-cohort

Staged Reduce [classical]

» Each worker does its own reduction.

» Optionally, stage reduced results into smaller and smaller
summaries (e.g. for a global sum)

Carry-Lookahead Calculations [new]

» Some operations lend themselves to parallelizing intermediate
results followed by adjustments

» Example: Running (i.e., cumulative) sum of stock volumes
entails partitioning into separate chunks of time, performing
running sum in each chunk and then adding the intermediate
results. Like a carry-lookahead adder.

» Effectively, a map-reduce operation with: order-dependent
scan + adjustment function as a reduction operation

Carry-Lookahead Calculations

> partition(c): initial partition on column c

» adj(x,y): adjusts y by combining with x

Edge-Extension

» Window-based operations abound in order-dependent data
analysis

» Example: 7-day moving average of stock prices
» Dependencies across worker processes

» Solution: extend partitioned data with necessary replicated
data (maintaining order of tuples)

> Allows parallelized window-based computation

Edge-Extension

» drop(x,y): drop first x tuples of y
» last(x,y): last x tuples of y

» Results can be kept in worker processes, or sent back to
master (yellow) if these are final results

‘ ‘D t; = agg(t1)

edge; = last(n, t;)

|
|
1
1
|
|
v

® @ iminmw

edgey = last(n, to)

|
|
1
1
|
|
v

‘ .D ty = drop(n, agg(edges, t3))

Synchronize

» Maintains replication

» Upon a write-query g, results are copied from each worker in
the cohort to all of their respective counterparts

» Guarantees results available for later queries

Implementation

» Developed open-source library implementing primitives:
parallel.q

» Composes primitives to yield: distributed sorting, distributed
grouping, distributed crossing, distributed reference joins, in
addition to standard selections/projections/etc

» Standalone library allows users to write distributed queries in
an intuitive fashion

» Parallel AQuery translates standard queries into calls to
parallel.q, modularizing distributed logic

» Prior optimizations still apply (as rewritten abstract syntax
tree)

https://github.com/josepablocam/aquery2q/blob/parallel/src/parallel/parallel.q

Parallel.q Performance: Setting

v

We provide preliminary measurements using
parallel.g-formulated queries for our finance benchmark

» Compare use of parallel.q vs. standard query formulation

» Multi-user setting, 20 cores, 18 workers, 2GB RAM per-core,
32-bit q executable

» Query execution time averaged over 5 iterations

» We scaled up parameters in queries from standard benchmark

(i.e. more tickers and more days in interval-based queries)

Parallel.q Performance: Query description

v

Query 0: Weekly/monthly/yearly price aggregates for 5000 stocks over 10 years
Query 1: Adjust prices/volumes for splits over 1800 period for 5000 stocks

Query 2: Difference in high/low price on stock split dates for 5000 stocks over a
specified period of time.

Query 3 + 4: Index calculation for 1000 and 5000 stocks

Query 5: 21-day and 5-day moving average prices for 5000 stocks in 1800 day
period (adjusted for splits)

Query 6: Find intersection of averages in Query 5 (without using previously
calculated results)

Query 7: Simple trading strategy for 1000 tickers based on moving average
crossings over a year

Query 8: Pairwise correlation for 1000 stocks over 2 years

Query 9: Yearly dividends and annual yield for 5000 stocks with no splits in 20
year period.

Parallel.q Performance: Results

Table 1: Performance for 20MM row historical price table (avg. execution time
in ms)

Query parallel.g standard

5762.8 7163

8415.4 Out of memory
592.6 2724.4

77.8 50.2

153.4 126.4

5970.8 Out of memory
3780.2 Out of memory
567.6 481.6

2782.4 3758.2

3805 1859.6

© oo NOOT P~ WD+ O

Parallel.q Performance: Results (Continued)

Table 2: Performance for 200MM row historical price table (avg. execution
time in ms)

Query parallel.g standard

9081 Out of memory
17546 Out of memory
2667 9063

202.6 181

859 920

14960 Out of memory
7637.4 Out of memory
776.8 711

3194.8 4031

10045.8 5259

© oo NOOT P~ WD+ O

Conclusions

» AQuery is a linguistically simple high performance database
system for time series and other ordered data.

» The concept of arrables and assuming and moving averages
constitute the backbone of the system

» Some new optimization problems can be handled with simple
powerful primitives.

» Here is a demo of the sequential version:

https://www.youtube.com/watch?v=ifIsj0Qr-qc&feature=youtu.be

Future Work

> Improve parallel system performance.
» Incorporate time series machine learning primitives.

» For this evening: tango

References |

B
B

Influxdb.
InfluxDB: Overview, 2015 (accessed November 6, 2015).

Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint.
The C programming language, volume 2.
prentice-Hall Englewood Cliffs, 1988.

M Kersten, Ying Zhang, Milena lvanova, and Niels Nes.
Sciqgl, a query language for science applications.

In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pages 1-12. ACM, 2011.

Alberto Lerner and Dennis Shasha.

Aquery: Query language for ordered data, optimization
techniques, and experiments.

In Proceedings of the 29th international conference on Very
large data bases-Volume 29, pages 345-356. VLDB
Endowment, 2003.

References |l

[3 John Levine.
Flex & Bison: Text Processing Tools.
" O'Reilly Media, Inc.”, 20009.

[MonetDB.
Embedded R in MonetDB, 2014 (accessed November 18,
2015).

[§ Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold
Sjoerd Mullender Martin Kersten.
Monetdb: Two decades of research in column-oriented
database architectures.
Data Engineering, page 40, 2012.

References 1l

[d Wilfred Ng.
An extension of the relational data model to incorporate
ordered domains.
ACM Transactions on Database Systems (TODS),
26(3):344-383, 2001.

[@ pandas development team.
pandas: powerful python data analysis toolkit (version 0.17.0),
2015 (accessed November 7, 2015).

ﬁ Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan.
Gorilla: a fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment, 8(12):1816-1827,
2015.

References IV

B

Mark Raasveldt.
Embedded Python/NumPy in MonetDB.
MonetDB, 2015 (accessed November 06, 2015).

SAP.
Sybase IQ 15.3: Understanding User-Defined Functions, 2008
(accessed November 8, 2015).

SAP.
Introduction to SAP Sybase 1Q: SAP Sybase IQ 16.0, 2013
(accessed November 8, 2015).

Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan.
SEQ: Design and implementation of a sequence database

system.
Citeseer, 1996.

StumpleUpon.
FAQ, 2015 (accessed November 6, 2015).

References V

[@ the pandas development team.
Vbench performance benchmarks for pandas, 2011 (accessed
November 18, 2015).

[§ Arthur Whitney.

Abridged Q Language Manual, 2009 (accessed November 6,
2015).

[d Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian
Merlino, and Deep Ganguli.
Druid: a real-time analytical data store.
In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 157-168. ACM,
2014.

	AQuery Introduction
	AQuery Sampler
	AQuery Sample – again
	Optimizations
	Implementation
	Sequential Performance
	Parallel

