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Introduction

I Success of the relational model results from happy
combination of expressive power and simplicity

I Single data type + few operations
(select/project/join/aggregate) → simplicity

I Programmers of applications that depend on ordered events
face a dilemma

I They would like to use a relational database system, but the
model makes it hard to express queries over order.

I AQuery (and others) embodies philosophy that order can be
introduced without affecting simplicity (and improving
performance)[14][8][3]



AQuery: Sales Query

Please return the running three month moving average of sales.

SELECT month , avgs ( s a l e s , 3)
FROM Revenue
ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.
That’s (most of) AQuery!



AQuery

I Modest syntactic and semantic extension to SQL 92

I Replaces unordered relational tables by ordered tables
(arrables which stands for array-tables), which can be sorted
by one or more columns[4]

I Modest syntactic and semantic extension to SQL 92: (i) Adds
one clause: assuming clause (order) (ii) Provides
order-senstive aggregates



AQuery: Sales Query (again)

Please return the running three month moving average of sales.

SELECT month , avgs ( s a l e s , 3)
FROM Revenue
ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.



SQL 92: Sales Query – inefficient AND incorrect

Please return the running three month moving average of sales.

SELECT t1 . month , t1 . s a l e s ,
( t1 . s a l e s+t2 . s a l e s+t3 . s a l e s )/3
FROM Revenue t1 , Revenue t2 , Revenue t3
WHERE t1 . month − 1 = t2 . month and
t1 . month − 2 = t3 . month

Three-way join (inefficient) and misses the first two months. Can
be written correctly in SQL 99 but complex and inefficient.



AQuery: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice) with
the last ten years’ data. Calculate a 12-day moving variance in
returns for stock tickers Leverages: assuming clause,
order-dependent aggregate (vars over 12 previous value, ratios
based on consecutive days). Gives for each ID, a vector of Dates
and variances.

SELECT ID , DATE,
v a r s ( 1 2 , r a t i o s ( 1 , EndOfDayPrice ) − 1)
FROM p r i c e s
ASSUMING ASC Date
GROUP BY ID



SQL-99: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

SELECT ID , Date ,
VARIANCE( r e t s ) OVER (

ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW

) as mv
FROM
(SELECT

c u r r . Date , c u r r . ID ,
c u r r . EndOfDayPrice /
p r e v . EndOfDayPrice − 1 as r e t s
FROM
p r i c e s c u r r LEFT JOIN p r i c e s p r e v

ON c u r r . ID = p r e v . ID
AND c u r r . Date = p r e v . Date + 1)
GROUP BY ID



AQuery: Correlation Pairs (for self-study)

WITH
s t o c k s G r o u p e d ( ID , Ret ) AS (

SELECT ID ,
r a t i o s ( 1 , EndOfDayPrice ) − 1

FROM p r i c e s
ASSUMING ASC ID , ASC Date
WHERE Date >= max ( Date ) − 31 ∗ 6
GROUP BY ID )

p a i r s G r o u p e d ( ID1 , ID2 , R1 , R2 ) AS (
SELECT s t 1 . ID , s t 2 . ID ,
s t 1 . Ret , s t 2 . Ret
FROM
s t o c k s G r o u p e d st1 , s t o c k s G r o u p e d s t 2 )

SELECT ID1 , ID2 ,
c o r (R1 , R2 ) as c o e f
FROM FLATTEN( p a i r s G r o u p e d )
WHERE ID1 != ID2
GROUP BY ID1 , ID2



Optimizations for both sequential and parallel
implementations

I Rule-based optimization for predictability

I Tranformation rules yield demonstratable advantages

I Rules implemented as rewrites on abstract syntax tree.



Sort minimization [new, but clear]

I Detect order-dependent vs order-independent operations

I Sort only columns upon which operations are order-dependent.

I od(t) returns all columns affected by order-dependence, and
necessary to maintain semantics

SELECT ... FROM t ASSUMING S ....

sortS(t)

→
sortS(od(t)), (columns(t) \ od(t))



Push selections [classical]

I Generally perform selections before sorting and joins

I Except when doing so loses the benefits of indexes.

t ′ ← σW (sortS(t))

→
t ′ ← σW ′′(sortS(σW ′(t)))

where W ′ includes all selections up to first use of an
order-dependent aggregate, and W ′′ contains remaining selections.



Push selections inside joins [classical]

t ′ ← σW (sortS(t1 ./ t2))

→
t ′ ← σW ′′(sortS(σW ′(σW1(t1) ./ σW2(t2))))

Selections before the first order-dependent aggregate can be
pushed down to join arguments, if all columns for a selection
pertain to a single argument. Equality-based selections are pushed
down (W1 and W2). W ′ contains single-argument selections,
which are pushed below the join while preserving helpful indexes.



Reorder selections [classical]

I Selections are reordered, while maintaining semantics, to use
helpful indices

σW (t)

→
W ′ ← [W1,W2, ...,Wn]

W ′′ ← Σn
i reorder(Wi )

σW ′′(t)

where W ′ is partitioned at each order-dependent aggregate,
guaranteeing safe commutation of selections. reorder rearranges
selections so as to take advantage of indices.



Sequential Implementation

I Compiler tools: C[2] + flex + bison[5]

I Execution engine: q[17]

I Workflow: write AQuery code, compiler generates optimized q
code, execute using q interpreter

I Advantages: portability, transparency (user able to inspect
generated q code)



Related Work
I Among the excellent work in the development of time series

databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

I DruidIO[18]: open source data store for analytics. Column
oriented, but query language doesn’t suport common
functionality like joins

I Influxdb[1]: Limited query language, no user-defined
functions, no arbitrary sorting

I SciQL[3]: extends MonetDB[7] with first-class arrays for
scientific applications, allowing direct manipulation of array
and matrix structures. Comparable in expressability to
AQuery, but AQuery is designed to be a natural extension of
sql (and is faster).

I Excellent work but focused on reliability and
scalability[10][15], not query plans



Benchmarks

I Compare: AQuery, Python’s Pandas[9], Sybase IQ[13], and
MonetDB (with imbedded Python)[11]

I Experiments: financial benchmark from Sybase[12],
MonetDB’s benchmarking operation of quantile calculation,
various Pandas benchmarking operations from Panda’s
historical performance benchmark[16]

I We compare on our competitors’ benchmarks.



Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase IQ comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

I Pandas version 0.17.0

I Numpy version 1.10.1

I Python version 2.7.5

I MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

I Sybase IQ version 16.0

I q version 3.2 2014.11.01

I AQuery compiler a2q version 1.0



Finance Benchmark

I Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons, test trading strategies)

I Simulated data, randomized as necessary (various parameter
values) data at different sizes (100K, 1M, and 10M
observations)

I Present average response time

I Data and sequential system soon available.



Finance Benchmark: Pandas Results
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Figure 1: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.



Finance Benchmark: Pandas Results
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Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.



Finance Benchmark: MonetDB Results
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Figure 3: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.



Finance Benchmark: Sybase IQ Results
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Figure 4: With 100K and 1M rows, AQuery outperforms Sybase IQ in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.



Pandas Benchmark: Data Science Operations

I Picked a subset of operations used by Pandas to track
library’s historical performance evolution[16]

I Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

I Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

I Randomly generate data and repeat experiments



Pandas Benchmark: AQuery Results
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Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.



Pandas Benchmark: AQuery Results
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Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.



MonetDB Benchmark: Quantiles

I MonetDB’s ability to embed R[6], and more recently,
Python/NumPy [11], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

I AQuery’s performance in quantile calculation compared to
MonetDB’s performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

I 100K, 1M, 10M, and 25M values

I Repeatedly generate random data sets



MonetDB Benchmark: AQuery Results
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Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.



Parallel AQuery: newest work

I Simple architecture, allows deeper reasoning for query
generation/transformation

I Novelty: Explores order-based optimizations in a distributed
setting



Parallel AQuery: Architecture

I Supermaster-master-worker architecture

I Supermaster: Communicates with user and assigns queries
provided by user to masters (each associated with one cohort
of workers)

I Each cohort has the same data as each other cohort.

I Reads go to one cohort and writes to all.



Parallel AQuery: Sample Architecture

Super-master

Master

Worker



Parallel Primitives

I Encapsulate all parallelism, allowing compositional reasoning
I Shuffle
I Map (-Reduce)
I Carry-lookahead
I Edge-extension

*Note on diagrams in following slides: red/solid lines repre-
sent instructions sent across nodes, while green/dashed lines
represent data sent across nodes



Map [classical]

I Predicate based partitioning of say table t – like the map in
the classic map-reduce.

I Intra-cohort

X

par
titi

on(t)

partition(t)
partition(t)

X

t ′

t ′′

t
′′′



Staged Reduce [classical]

I Each worker does its own reduction.

I Optionally, stage reduced results into smaller and smaller
summaries (e.g. for a global sum)



Carry-Lookahead Calculations [new]

I Some operations lend themselves to parallelizing intermediate
results followed by adjustments

I Example: Running (i.e., cumulative) sum of stock volumes
entails partitioning into separate chunks of time, performing
running sum in each chunk and then adding the intermediate
results. Like a carry-lookahead adder.

I Effectively, a map-reduce operation with: order-dependent
scan + adjustment function as a reduction operation



Carry-Lookahead Calculations

I partition(c): initial partition on column c

I adj(x , y): adjusts y by combining with x

t1

t2

t3

pa
rti
tio
n(
c)

partition(c)

partition(c)

t1

t ′2

t ′3

t1

t ′2 = adj(last(t1), t2)

...



Edge-Extension

I Window-based operations abound in order-dependent data
analysis

I Example: 7-day moving average of stock prices

I Dependencies across worker processes

I Solution: extend partitioned data with necessary replicated
data (maintaining order of tuples)

I Allows parallelized window-based computation



Edge-Extension

I drop(x , y): drop first x tuples of y

I last(x , y): last x tuples of y

I Results can be kept in worker processes, or sent back to
master (yellow) if these are final results

t1

t2

t3

ed
gev

als
(w

, t)

edgevals(w , t)

edgevals(w , t)

t1

t ′2

t ′3

t′1 = agg(t1)

edge1 = last(n, t1)

t′2 = drop(n, agg(edge1, t2))

edge2 = last(n, t2)

t′3 = drop(n, agg(edge2, t3))



Synchronize

I Maintains replication

I Upon a write-query q, results are copied from each worker in
the cohort to all of their respective counterparts

I Guarantees results available for later queries

q

...

...



Implementation

I Developed open-source library implementing primitives:
parallel.q

I Composes primitives to yield: distributed sorting, distributed
grouping, distributed crossing, distributed reference joins, in
addition to standard selections/projections/etc

I Standalone library allows users to write distributed queries in
an intuitive fashion

I Parallel AQuery translates standard queries into calls to
parallel.q, modularizing distributed logic

I Prior optimizations still apply (as rewritten abstract syntax
tree)

https://github.com/josepablocam/aquery2q/blob/parallel/src/parallel/parallel.q


Parallel.q Performance: Setting

I We provide preliminary measurements using
parallel.q-formulated queries for our finance benchmark

I Compare use of parallel.q vs. standard query formulation

I Multi-user setting, 20 cores, 18 workers, 2GB RAM per-core,
32-bit q executable

I Query execution time averaged over 5 iterations

I We scaled up parameters in queries from standard benchmark
(i.e. more tickers and more days in interval-based queries)



Parallel.q Performance: Query description

I Query 0: Weekly/monthly/yearly price aggregates for 5000 stocks over 10 years

I Query 1: Adjust prices/volumes for splits over 1800 period for 5000 stocks

I Query 2: Difference in high/low price on stock split dates for 5000 stocks over a
specified period of time.

I Query 3 + 4: Index calculation for 1000 and 5000 stocks

I Query 5: 21-day and 5-day moving average prices for 5000 stocks in 1800 day
period (adjusted for splits)

I Query 6: Find intersection of averages in Query 5 (without using previously
calculated results)

I Query 7: Simple trading strategy for 1000 tickers based on moving average
crossings over a year

I Query 8: Pairwise correlation for 1000 stocks over 2 years

I Query 9: Yearly dividends and annual yield for 5000 stocks with no splits in 20
year period.



Parallel.q Performance: Results

Table 1: Performance for 20MM row historical price table (avg. execution time
in ms)

Query parallel.q standard

0 5762.8 7163
1 8415.4 Out of memory
2 592.6 2724.4
3 77.8 50.2
4 153.4 126.4
5 5970.8 Out of memory
6 3780.2 Out of memory
7 567.6 481.6
8 2782.4 3758.2
9 3805 1859.6



Parallel.q Performance: Results (Continued)

Table 2: Performance for 200MM row historical price table (avg. execution
time in ms)

Query parallel.q standard

0 9081 Out of memory
1 17546 Out of memory
2 2667 9063
3 202.6 181
4 859 920
5 14960 Out of memory
6 7637.4 Out of memory
7 776.8 711
8 3194.8 4031
9 10045.8 5259



Conclusions

I AQuery is a linguistically simple high performance database
system for time series and other ordered data.

I The concept of arrables and assuming and moving averages
constitute the backbone of the system

I Some new optimization problems can be handled with simple
powerful primitives.

I Here is a demo of the sequential version:

https://www.youtube.com/watch?v=ifIsj0Qr-qc&feature=youtu.be


Future Work

I Improve parallel system performance.

I Incorporate time series machine learning primitives.

I For this evening: tango
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