
Antipole Tree Indexing to Support Range
Search and K-Nearest Neighbor Search

in Metric Spaces
Domenico Cantone, Alfredo Ferro, Alfredo Pulvirenti, Diego Reforgiato Recupero, and Dennis Shasha

Abstract—Range and k-nearest neighbor searching are core problems in pattern recognition. Given a database S of objects in a

metric space M and a query object q in M, in a range searching problem the goal is to find the objects of S within some threshold

distance to q, whereas in a k-nearest neighbor searching problem, the k elements of S closest to q must be produced. These problems

can obviously be solved with a linear number of distance calculations, by comparing the query object against every object in the

database. However, the goal is to solve such problems much faster. We combine and extend ideas from the M-Tree, the Multivantage

Point structure, and the FQ-Tree to create a new structure in the “bisector tree” class, called the Antipole Tree. Bisection is based on

the proximity to an “Antipole” pair of elements generated by a suitable linear randomized tournament. The final winners a; b of such a

tournament are far enough apart to approximate the diameter of the splitting set. If distða; bÞ is larger than the chosen cluster diameter

threshold, then the cluster is split. The proposed data structure is an indexing scheme suitable for (exact and approximate) best match

searching on generic metric spaces. The Antipole Tree outperforms by a factor of approximately two existing structures such as List of

Clusters, M-Trees, and others and, in many cases, it achieves better clustering properties.

Index Terms—Indexing methods, similarity measures, information search and retrieval.

�

1 INTRODUCTION

SEARCHING is abasicproblem inmetric spaces.Hence,much
efforts have been spent both in clustering algorithms,

which are often included in the searching process as a
preliminary step (seeBIRCH[53],DBSCAN[24],CLIQUE [3],
BIRCH* [27], WaveClusters [46], CURE [32], and CLARANS
[41]), and in the development of new indexing techniques
(see, for instance, MVP-Tree [9], M-Tree [22], SLIM-Tree [48],
FQ-Tree [4], List of Clusters [16], and SAT [40]; the reader is
also referred to [18] for a survey on this subject). For the
special case of Euclidean spaces, one can see [2], [29], [8],
X-Tree [7], and CHILMA [47].

Wecombineandextend ideas fromtheM-Tree,MVP-Tree,
andFQ-Tree structures togetherwith randomized techniques
coming from the approximate algorithms community [6], to
design a simple and efficient indexing scheme calledAntipole
Tree. This data structure is able to support range queries and
k-nearest neighbor queries in generic metric spaces.

The Antipole Tree belongs to the class of “bisector trees”
[18], [13], [42], which are binary trees whose nodes
represent sets of elements to be clustered. Its construction
begins by first allocating a root r and then selecting two
splitting points c1, c2 in the input set, which become the
children of r. Subsequently, the points in the input set are
partitioned according to their proximity to the points c1, c2.

Then, one recursively constructs the tree rooted in ci
associated with the partition set of the elements closer to
ci, for i ¼ 1; 2.

A good choice for the pair ðc1; c2Þ of splitting points
consists of maximizing their distance. For this purpose,
we propose a simple approximate algorithm based on
tournaments of the type described in [6]. Our tournament
is played as follows: At each round, the winners of the
previous round are randomly partitioned into subsets of a
fixed size � and their 1-medians1 are discarded. Rounds
are played until one is left with less than 2� elements.
The farthest pair of points in the final set is our Antipole
pair of elements.

The paper is organized as follows: In the next section, we
give the basic definitions of range search and k-nearest
neighbor queries in general metric spaces and we briefly
review relevant previous work, with special emphasis on
those structures which have been shown to be the most
effective, such as List of Clusters [16], M-Trees [22], and
MVP-Trees [9]. The Antipole Tree is described in Section 3.
Techniques to compute the approximate 1-Median and the
diameter of a subset of a generic metric space are
illustrated, respectively, in Sections 3.1 and 3.2. In
Section 4, we present a procedure for range searching on
the Antipole Tree. Section 5 presents an algorithm for the
exact k-nearest neighbor problem. The Antipole Tree is
experimentally compared with List of Clusters, M-Tree, and
MVP-Tree in Section 6. In particular, cluster diameter
threshold tuning is discussed. An approximate k-nearest
neighbor algorithm is also introduced in Section 7 and a
comparison with the version for approximate search of List
of Clusters [12] is given with a precision-recall analysis. In
Section 8, we deal with the problem of the curse of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005 535

. D. Cantone, A. Ferro, A. Pulvirenti, and D.R. Reforgiato are with the
Dipartimento di Matematica e Informatica, Università degli Studi di
Catania, Italy, Viale Andrea Doria n. 6 95125 Cantania.
E-mail: {cantone, ferro, apulvirenti, diegoref}@dmi.unict.it.

. D. Shasha is with the Computer Science Department, New York
University, 251 Mercer Street, New York, NY 10012.
E-mail: shash@cs.nyu.edu.

Manuscript received 27 Aug. 2003; revised 9 Apr. 2004; accepted 14 Sept.
2004; published online 17 Feb. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0160-0803.

1. We recall that the 1-median of a set of points S in a metric space is an
element of S whose average distance from all points of S is minimal.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

dimensionality. Indeed, in high dimension, linear scan for
uniform data sets may become competitive with the best
searching algorithms. However, most of the real-world data
sets are nonuniform. We successfully compare our algo-
rithm with linear scan in nonuniform data sets of very high-
dimensional Euclidean spaces. We draw our conclusions in
Section 9. Finally, the Appendix which can be found on the
Computer Society Digital Library at http://computer.org/
tkde/archives.htm proposes an efficient approximation
scheme for the diameter computation in the Euclidean case.

2 BASIC DEFINITIONS AND RELATED WORKS

Let M be a nonempty set of objects and let dist :
ðM �MÞ ! IR be a function such that the following
properties hold:

1. ð8 x; y 2 MÞ distðx; yÞ � 0 (positiveness);
2. ð8 x; y 2 MÞ distðx; yÞ ¼ distðy; xÞ (symmetry);
3. ð8 x 2 MÞ distðx; xÞ ¼ 0 (reflexivity) and ð8x; y 2

MÞ ðx 6¼ y ! distðx; yÞ > 0Þ (strict positiveness);
4. ð8 x; y; z 2 MÞ distðx; yÞ � distðx; zÞ þ distðz; yÞ

(triangle inequality);

then, the pair ðM;distÞ is called a metric space and dist is
called its metric function. Well-known metric functions
include Manhattan distance, Euclidean distance, string edit
distance, or the shortest path distance through a graph. Our
goal is to build a low cost data structure for the range search
problem and k-nearest neighbor searching in metric spaces.

Definition 2.1 (Range query). Given a query object q, a
database S, and a threshold t, the Range Search Problem is to
find all objects fo 2 Sjdistðo; qÞ � tg.

Definition 2.2 (k-Nearest Neighbor query). Given a query
object q and an integer k > 0, the k-Nearest Neighbor Problem
is to retrieve the k closest elements to q in S.

Our basic cost measure is the number of distance
calculations, since these are often expensive in metric
spaces, e.g., when computing the editing distance among
strings.

Three main sources of ideas have contributed to our
work. The FQ-Tree [4], an example of a structure using
pivots (see [18] for an extended survey), organizes the items
of a collection ranging over a metric space into the leaves of a
tree data structure. Viewed abstractly, FQ-Trees consist of a
vector of reference objects r1; � � � ; rk and a distance vector vo
associated with each object o such that vo½i� ¼ distðo; riÞ. A
query object q computes a distance to each reference object,
thus obtaining a vq. Object o cannot be within a threshold
distance t from q if for any i, vq½i� > vo½i� þ t. That is, even if o
is closer to q than ri, q cannot be closer to o than t.

We use a similar idea except that our reference objects
are the centroids of clusters.

M-Trees [22], [20] are dynamically balanced trees. Nodes
of an M-Tree store several items of the collection provided
that they are “close” and “not too numerous.” If one of
these conditions is violated, the node is split and a suitable
subtree originating in the node is recursively constructed. In
the M-Tree, each parent node corresponds to a cluster with
a radius and every child of that node corresponds to a
subcluster with a smaller radius. If a centroid x has a
distance distðx; qÞ from the query object and the radius of
the cluster is r, then the entire cluster corresponding to x
can be discarded if distðx; qÞ > tþ r.

We take the idea that a parent node corresponds to a
cluster and its children nodes are subclusters of that parent
cluster from the M-Tree. The main differences between our
algorithm and the M-Tree are the construction method, that
clusters in the M-Tree must have a limited number of
elements, and the search strategy as our algorithm produces
a binary tree data structure.

VP-Trees ([49], [52]) organize items coming from a metric
space into a binary tree. The items are stored both in the
leaves and in the internal nodes of the tree. The items stored
in the internal nodes are the “vantage points.” To process a
query requires the computation of the distance between the
query point and some of the vantage points. The construc-
tion of a VP-Tree partitions a data set according to the
distances that the objects have with respect to a reference
point. The median value of these distances is used as a
separator to partition objects into two balanced subsets
(those as close or closer than the median and those farther
than the median). The same procedure can recursively be
applied to each of the two subsets.

The Multi-Vantage-Point tree [9] is an intellectual
descendant of the vantage point tree and the GNAT [10]
structure. The MVP-Tree appears to be superior to the
previous methods. The fundamental idea is that, given a
point p, one can partition all objects into m partitions based
on their distances from p, where the first partition consists
of those points within distance d1 from p, the second
consists of those points whose distance is greater than d1
and less than or equal to d2, etc. Given two points, pa and pb,
the partitions a1; � � � ; am based on pa and the partitions
b1; � � � ; bm based on pb can be created. One can then intersect
all possible a and b-partitions (i.e., ai intersect bj for 1 � i �
m and 1 � j � m) to getm2 partitions. In an MVP-Tree, each
node in the tree corresponds to two objects (vantage points)
andm2 children, wherem is a parameter of the construction
algorithm and each child corresponds to a partition. When
searching for objects within distance t of query point q, the
algorithm does the following: Given a parent node having
vantage points pa and pb, if some partition Z has the
property that for every object z 2 Z, distðz; paÞ < dz, and
distðq; paÞ > dz þ t, then Z can be discarded. There are other
reasons for discarding clusters, also based on the triangle
inequality. Using multiple vantage points together with
precomputed distances reduces the number of distance
computations at query time. Like the MVP-Tree, our
structure makes aggressive use of the triangle inequality.

Another relevant recent work, due to Cháavez and
Navarro [16], proposes a structure called List of Clusters.
Such a list is constructed in the following way: Starting
from a random point, a cluster with bounded diameter (or
limited number of objects) centered in that random point
is constructed. Then, such a process is iterated by selecting
a new point, for example, the farthest from the previous
one, and constructing another cluster around it. The
process terminates when no more points are left. Authors
experimentally show that their structure outperforms
other existing methods when parameters are chosen in a
suitable way.

Other sources of inspiration include [11], [23], [26], [30],
[45], [44], [48], [40].

3 THE ANTIPOLE TREE

Let (M, dist) be a finite metric space, let S be a subset of M,
and suppose that we aim to split it into the minimum
possible number of clusters whose radii should not exceed a

536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

given threshold �. This problem has been studied by
Hochbaum and Maass [35] for Euclidean spaces. Their
approximation algorithm has been improved by Gonzalez
in [31]. Similar ideas are used by Feder and Greene [25] (see
[43] for an extended survey on clustering methods in
Euclidean spaces).

The Antipole clustering of bounded radius � is per-
formed by a recursive top-down procedure starting from
the given finite set of points S and checking at each step if a
given splitting condition � is satisfied. If this is not the case,
then splitting is not performed, the given subset is a cluster,
and a centroid having distance approximatively less than �
from every other node in the cluster is computed by the
procedure described in Section 3.1.

Otherwise, if � is satisfied then a pair of points fA;Bg of
S, called the Antipole pair, is generated by the algorithm
described in Section 3.2 and is used to split S into two
subsets SA and SB obtained by assigning each point p of S to
the subset containing the endpoint closest to p of the
Antipole fA;Bg. The splitting condition � states that
distðA;BÞ is greater than the cluster diameter threshold
corrected by the error coming from the Euclidean case
analysis described in the Appendix which can be found on
the Computer Society Digital Library at http://computer.
org/tkde/archives.htm. Indeed, the diameter threshold is
based on a statistical analysis of the pairwise distances of
the input set (see Section 6.2) which can be used to evaluate
the intrinsic dimension [18] of the metric space. The tree
obtained by the above procedure is called an Antipole Tree.
All nodes are annotated with the Antipole endpoints and
the corresponding cluster radius; each leaf contains also the
1-median of the corresponding final cluster. Its implemen-
tation is described in Section 3.3.

3.1 1-Median

In this section, we review a randomized algorithm for the
approximate 1-median selection [14], an important sub-
routine in our Antipole Tree construction. It is based on a
tournament played among the elements of the input set S.
At each round, the elements which passed the preceding
turn are randomly partitioned into subsets, say X1; . . . ; Xk.
Then, each subset Xi is locally processed by a procedure
which computes its exact 1-median xi. The elements
x1; . . . ; xk move to the next round. The tournament
terminates when we are left with a single element x, the
final winner. The winner approximates the exact 1-median
in S. Fig. 1 contains the pseudocode of this algorithm. The
local optimization procedure 1-MEDIAN ðXÞ returns the
exact 1-median in X. A running time analysis (see [14] for
details) shows that the above procedure takes time t

2nþ
oðnÞ in the worst-case.

3.2 The Diameter (Antipole) Computation

Let ðM;dÞ be a metric space with distance function dist :

ðM �MÞ7�!IR and let S be a finite subset ofM. The diameter

computation problem or furthest pair problem is to find the pair of

points A;B in S such that distðA;BÞ � distðx; yÞ; 8x; y 2 S.
As observed in [36], we can construct a metric space

where all distances among objects are set to 1 except for one
(randomly chosen) which is set to 2. In this case, any
algorithm that tries to give an approximation factor greater
than 1=2must examine all pairs, so a randomized algorithm
will not necessarily find that pair.

Nevertheless, we expect a good outcome in nearly all
cases. Here, we introduce a randomized algorithm inspired
by the one proposed for the 1-median computation [14] and
reviewed in the preceding section. In this case, each subset
Xi is locally processed by a procedure LOCAL WINNER
which computes its exact 1-median xi and then returns the
set Xi, obtained by removing the element xi from Xi. The
elements in X1 [X2 . . . [Xk are used in the subsequent
step. The tournament terminates when we are left with a
single set, X, from which we extract the final winners A;B,
as the furthest points in X. The pair A;B is called the
Antipole pair and their distance represents the approximate
diameter of the set S.

The pseudocode of the Antipole algorithm

APPROX ANTIPOLE;

similar to that of the 1-Median algorithm, is given in Fig. 1.
A faster (but less accurate) variant of

APPROX ANTIPOLE

can be used. Such variant, called

FAST APPROX ANTIPOLE;

consists of taking Xi as the farthest pair of Xi. Its
pseudocode can therefore be obtained simply by replacing
in APPROX ANTIPOLE each call to LOCAL WINNER by
a call to FIND ANTIPOLE. In the next section, we will
prove that both variants have a linear running time in the
number of elements. We wil l also show that
FAST APPROX ANTIPOLE is also linear in the tourna-
ment size � , whereas APPROX ANTIPOLE is quadratic
with respect to � .

For tournaments of size 3, both variants plainly coincide.
Thus, since in the rest of the paper only tournaments of
size 3 will be considered, by referring to the faster variant
we will not loose any accuracy.

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 537

Fig. 1. The 1-Median algorithm.

3.2.1 Running Time Analysis of Antipole Computation

Two fundamental parameters present in the algorithm
reported in Fig. 2 (also reported in Fig. 1), namely, the
splitting factor � (also referred to as the tournament size) and
the parameter threshold, need to be tuned.

The splitting factor � is used to set the size of each subset
X processed by procedure LOCAL WINNER, with the only
exception of one subset for each round of the tournament
(whose size is at most ð2� � 1Þ), and the argument of the last
call to FIND ANTIPOLE (whose size is at most equal to
threshold). It is clear that the larger values of � are, the
better the output quality is and the higher the computa-
tional costs are. In many cases, a satisfying output quality
can be obtained even with small values for � .

A good trade off between output quality and computa-

tional cost is obtainedbychoosingasvalue for � oneunitmore

than the dimension that characterizes the investigatedmetric

space [18]. This suggestion lies on intuitive grounds devel-

oped in the case of a Euclideanmetric space IRm and is largely

confirmedby theexperiments reported in [14]. Theparameter

threshold controls the termination of the tournament. Again,

larger values for threshold ensure better output quality,

though at increasing cost. Observe that the value ð�2 � 1Þ for
threshold forces the property that the last set of elements,

where the final winner is selected, must contain at least �

elements, provided that jSj � � . Moreover, in order to ensure

a linear computational complexity of the algorithm, the

threshold value need to be Oð
ffiffiffiffiffiffi
jSj

p
Þ. Consequently, a good

choice is threshold ¼ min �2 � 1;
ffiffiffiffiffiffi
jSj

pn o
.

The algorithm APPROX ANTIPOLE given in Fig. 2 is
characterized by its simplicity and, hence, it is expected to
be very efficient from the computational point of view, at
least in the case in which the parameters � and threshold are
taken small enough. In fact, we will show below that our
algorithm has a worst-case complexity of �ð��1Þ

2 nþ oðnÞ in
the input size n, provided that threshold is oð

ffiffiffi
n

p
Þ.

P l a i n l y , t h e comp l ex i t y o f t he a l go r i t hm
APPROX ANTIPOLE is dominated by the number of
distances computed by it within calls to procedure
LOCAL WINNER. We shall estimate below such a number.

Let Wðn; �; #Þ be the number of calls to procedure
LOCAL WINNER made within the while-loops by
APPROX ANTIPOLE, with an input of size n and using
parameters � � 3 and threshold # � 1. P la inly ,
W ðn; �; #Þ � Wðn; �; 1Þ, for any # � 1, thus it will suffice
to find an upper bound for Wðn; �; 1Þ. For notational
convenience, let us put W1ðnÞ ¼ Wðn; �; 1Þ, where � has

been fixed. It can easily be seen that W1ðnÞ satisfies the
following recurrence relation:

W1ðnÞ ¼
0 if 0 � n � 2;
1 if 3 � n < 2�;
bn�c þW1 ð� � 1Þ � bn�c

� �
if n � 2�:

8<
:

By induction on n, we can show that W1ðnÞ � n. For n < 2� ,
our estimate is trivially true. Thus, let n � 2� . Then, by
inductive hypothesis, we have

W1ðnÞ ¼
�
n

�

�
þW1 ð� � 1Þ �

�
n

�

�� �
�

�
n

�

�
þ ð� � 1Þ �

�
n

�

�

¼
�
n

�

�
� 1þ ð� � 1Þð Þ ¼ n:

The number of distance computations made by a call

LOCAL WINNERðXÞ is equal to
PjXj

i¼1ði� 1Þ ¼ jXjðjXj�1Þ
2 . At

each round of the tournament, all the calls to procedure

LOCAL WINNER have an argument of size � , with the

possible exception of the last call, which can have an

argument of size between ð� þ 1Þ and ð2� � 1Þ. We notice

that the last call to procedure FIND ANTIPOLE made

within the return instruction of APPROX ANTIPOLE has

argument of size at most #. Since there are dlog�=ð��1Þ ne
rounds, it follows that the total number of distances

computed by a call of APPROX ANTIPOLEðSÞ, with

jSj ¼ n, tournament size � , and threshold #, is majorized

by the expression

Wðn; �; #Þ � �ð� � 1Þ
2

þ dlog�=ð��1Þ ne

� ð2� � 1Þð2� � 2Þ
2

� �ð� � 1Þ
2

� 	
þ #ð#� 1Þ

2

¼ �ð� � 1Þ
2

nþOðlognþ #2Þ:

By taking # ¼ oð
ffiffiffi
n

p
Þ, the above expression is easily seen to

be �ð��1Þ
2 nþ oðnÞ.

Summing up, we have:

Theorem 3.1. Given an input set of size n 2 IN, a constant

tournament size � � 3, and a threshold # ¼ oð
ffiffiffi
n

p
Þ, the

algorithm APPROX ANTIPOLE performs �ð��1Þ
2 nþ oðnÞ

distance computations.

Concerning the complexity of the faster variant
FAST APPROX ANTIPOLE, we have the following recur-
rence relation W1ðnÞ ¼ bn�c þW1 2 � bn�c

� �
, for n � 2� . By

538 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 2. The Antipole Algorithm.

induction on n, we can show that the number of calls to the
subroutine FIND ANTIPOLE is W1ðnÞ � d n

��2e. For n < 2� ,
our estimate is trivially true. Thus, let n � 2� . Then, by
inductive hypothesis, we have

W1ðnÞ ¼
�
n

�

�
þW1 2 �

�
n

�

�� �
�

�
n

�

�
þ

2 � bn�c
� � 2

�

�
�
n

�

�
�

1þ 2

� � 2

�
�

n

� � 2

�
:

Finally, much by the same arguments as those preceding
Theorem 3.1, we can show that the following holds:

Theorem 3.2. Given an input set of size n 2 IN, a constant
tournament size � � 3, and a threshold # ¼ oð

ffiffiffi
n

p
Þ, the

algorithm FAST APPROX ANTIPOLE performs �ð��1Þ
2ð��2Þnþ

oðnÞ distance computations.

3.3 The Antipole Tree Data Structure in General
Metric Spaces

The Antipole Tree data structure can be used in a generic
metric space ðM;distÞ, where dist is the distance metric.
Each element of the metric space along with its related data
constitutes a type called object. An object O (Fig. 3a) in the
Antipole data structure contains the following information:
an element x, an array DV storing the distances between x
and all its ancestors (the Antipole pairs) in the tree, and a
variable DC containing the distance from the centroid C of
x’s cluster. A data set S is a collection of objects drawn from
M. Each cluster (Fig. 3b) stores the following information:

. centroid, C, the element that minimizes the sum of
the distances from the other cluster members;

. radius, Radius, containing the distance from C to the
farthest object;

. member list, CList, storing the catalog of the objects
contained in the cluster;

. size of CList, Size, stored in the cluster.

The Antipole data structure has internal nodes and leaf
nodes:

. An internal node stores 1) the identities of two
Antipole objects A and B, called the Antipole pair of
distance at least 2� apart, 2) the radii RadA and RadB
of the two subsets (SA, SB obtained by splitting S
based on their proximity to A and B, respectively),
and 3) pointers to the left and right subtrees left and
right.

. A leaf node stores a cluster.

To build such a data structure, the procedure BUILD (see
Fig. 4) takes as input the data set S, a target cluster radius �,
and a set Q (empty at the beginning). The algorithm starts
by checking if Q is empty and, if so, it calls the subroutine
ADAPTED APPROX ANTIPOLE,2 which returns an Anti-
pole pair. Then, the Antipole pair is inserted into Q.

Next, the algorithm checks if the splitting condition is
true. If this is the case, the set S is divided into SA and SB,
where the objects closer to A are put in SA and symme-
trically for B. Otherwise, a cluster is generated. The other
subroutine used in BUILD is CHECK which checks
whether there is an object O in SA (or SB) that may become
the Antipole of A (or B), by using the distances already
computed and cached. If an Antipole is found, it is inserted
into Q and then the recursive call in BUILD skips the
computation of another Antipole pair.

The routineMAKE CLUSTER (Fig. 4) creates a cluster of
objects with bounded radius. This procedure computes the
cluster centroid C with the randomized algorithm
APPROX 1 MEDIAN and then computes the distance
between each O in the cluster and C.

The data structure resulting from BUILD is a binary
tree whose leaves contain a set of clusters, each of which
has an approximate centroid and the radius, based on
that centroid, is less than �. Fig. 5a shows the evolution
of the data set during the construction of the tree. At the
first step, the pair A, B is found by the algorithm
ADAPTED APPROX ANTIPOLE, then the input data set
is split into the subsets SA and SB. The second step
proceeds as the first for the subset containing A while, for
the subset containing B, it produces a cluster since its
diameter is less than 2�. The third and final step produce
the final clusters for the subsets containing A1 and B1.
Fig. 5b shows the corresponding Antipole data structure.

3.3.1 Construction Time Analysis

Let us compute the running time of each routine.
Building the Antipole Tree takes quadratic time in the
worst case. For example, let us consider a metric space in
which the distance between any pair of distinct objects is
2�þ 1. In this case, if the subsets SA and SB have size 1
and jSj � i respectively, where i is the ith recursive call,
then the complexity becomes Oðn2Þ. Notice that
ADAPTED APPROX ANTIPOLE will take constant com-
putational time in this case because all the pairwise
distances are supposed to be strictly greater than 2�.

4 RANGE SEARCH ALGORITHM

The range search algorithm takes as input the Antipole Tree
T , the query object q, the threshold t, and returns the result
of the range search of the database with threshold t. The
search algorithm recursively descends all branches of the
tree until either it reaches a leaf representing a cluster to be
visited or it detects a subtree that is certainly out of range
and, therefore, may be pruned out. Such branches are
filtered by applying the triangle inequality. Notice that the
triangle inequality is used both for exclusion and inclusion.
The use for exclusion establishes that an object can be
pruned, thus avoiding the computation of the distance
between such an object and the query. The other usage
establishes that an object must be inserted because the

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 539

2. Notice that this algorithm is a variation of FIND ANTIPOLE that
stops when a pair of objects with distance greater than 2� is found,
otherwise, it returns an empty set.

Fig. 3. (a) A generic object in the Antipole data structure. (b) A generic

cluster in the Antipole data structure.

object is close to its cluster’s centroid and the centroid is

very close to the query object (see Figs. 6 and 7 for the

pseudocode).

5 K-NEAREST NEIGHBOR ALGORITHM

The k-nearest neighbor search algorithm takes as input the

Antipole Tree T , the query object q, and the k parameter

indicating the number of objects requested. It returns the set
of objects in S which are the k-nearest neighbors of q.
Hjaltason and Samet in [34] propose a method called
Incremental Nearest Neighbor to perform k-nearest neigh-
bor search in spatial databases. Their approach uses a
priority queue storing the subtrees that should be visited,
ordered by their distance from the query object. The authors
claim that their approach can be applied to all hierarchical

540 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 5. A clustering example (a) in a generic metric space and (b) the corresponding Antipole data structure.

Fig. 4. The algorithm Build Antipole Tree and the routine MakeCluster.

Fig. 6. The Range Search algorithm.

data structures. Here, we propose an application of such a
method to Antipole Tree.

The algorithm described below uses two different
priority queues. The first one stores the subtrees of the
Antipole data structure which may be visited during the
search (left subtree, right subtree, or leaf); the second one
keeps track of the objects that will be returned as output.

The incremental nearest-neighbor algorithm starts by
putting the root of the Antipole Tree in the priority queue
pQueue. Then, it proceeds by extracting the minimum from
the priority queue. If the extracted node is a leaf (cluster), it
visits it. Otherwise, it decides to visit each of its subtrees on
the basis of the subtree’s radius, the distance of the Antipole
endpoint from the query, and a threshold t by applying the
triangle inequality. The threshold t, which is initialized to
1, stores the largest distance from the query q to any of the
current k-nearest neighbors. Subtrees which need to be
visited will be put in the priority queue. All current
k-nearest neighbors found are stored in another heap
outQueue in order to optimize the dynamic operations
(such as insertions, deletions, and updates). Figs. 8 and 9
summarize the pseudocode.

6 EXPERIMENTAL ANALYSIS

In this section, we evaluate the efficiency of constructing
and searching through an Antipole Tree. We have im-
plemented the structure using the C programming lan-
guage under Linux operating system. The experiments use
synthetic and real data sets. The synthetic data sets are
based on those ones used by [9]:

. uniform 10-dimensional Euclidean space (sets of
100; 000; 200; 000; . . . ; 500; 000 objects uniformly
distributed in ½0; 1�10);

. clustered 20-dimensional Euclidean space. More
precisely, a set of 100,000 objects obtained in the
following way: By using uniform distributions, take
100 random spheres and select 1,000 random points
in each of them.

The real data sets are, respectively:

. a set of 45,000 strings chosen from the Linux
dictionary with the editing distance;

. a set of 42,000 images chosen from the Corel image
database with the metric L2;

. high-dimensional Euclidean space sets of points
corresponding to textures of VISTEX database [50]
with the metric L2.

For each experiment, we ran 100 random queries: half of
them were chosen in the input set, the remaining ones in the
complement.

6.1 Construction Time

We measure construction time in terms of the number of
distance computations and CPU time on uniformly dis-
tributed objects in ½0; 1�10, as described above. Fig. 10a
illustrates a comparison between the Antipole Tree, the
MVP-Tree, and the M-Tree, showing the distances needed
during the construction. Data were taken again in ½0; 1�10
with size from 100,000 to 500,000 elements. The cluster
radius � used was � ¼ 0:625, as found by our estimation
algorithm described below. We used the parameter settings
for MVP-Trees and M-Trees suggested by the authors [9],
[20]. Fig. 10a shows also that building the Antipole Tree
requires fewer distance computations than the M-Tree but
more than the MVP-Tree. The difference is roughly a factor
of 1.5. Fig. 11 shows that the difference in construction costs
can be compensated by faster range queries on less than

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 541

Fig. 7. The Visit Cluster algorithm.

Fig. 8. The incremental k-nearest neighbor search algorithm.

Fig. 9. A procedure for checking whether the object O should be added

to the OUT set.

0.2 percent of the entire input database. Thus, unless
queries are very rare, the Antipole Tree recovers in terms of
queries cost what it loses in construction. Experiments
proving this fact are reported in Section 6.3.

Fig. 10b shows the CPU time needed to bulk load the
proposed data structure; it also shows that the CPU time
needed to construct the Antipole Tree grows linearly in
many cases. Because the MVP-Tree entails sorting, it
requires at least O(n logn) operations (though not distance
calculations) to build the data structure.

6.2 Choosing the Best Cluster Diameter

In this section, we discuss how to tune the Antipole Tree for
range queries. We measure the cost by the number of
distance calculations among objects of the underlying
metric space.

Before the Antipole data structure can be used, it needs
to be tuned. To tune the Antipole Tree, we must choose the
radius � of the clusters very carefully by analyzing the data
set properties. In what follows, we will show that optimal
cluster radius depends on the intrinsic dimensionality of the
underlying metric space.

We performed, as described before, our experiments in
10 and 20-dimensional spaces with uniform and clustered
distributions having size 100,000. However, the methodol-
ogy of finding the optimal diameter can be applied to other
dimensions and arbitrary data sizes.

Figs. 12 (Uniform) and (Clustered) show that across
different values of the threshold t of the range search, the
best choice of the cluster diameter is 0.625 for the uniform
data set and 2.5 for the clustered one.

Experiments with real and synthetic data showed that
choosing the cluster diameter 10 percent less than the
median pairwise distance value gives, regardless of the
range search threshold, a quite surprising result.

6.3 Range Search Analysis and Comparisons
In this section, we present an extensive comparison among
the Antipole Tree, the MVP-Tree, the M-Tree, and List of
Clusters in terms of the number of distance computations
for range queries. The number of distance computations
required by each query has been estimated as the average
value in a set of 100 queries. In order to perform a fair
comparison with the three competing data structures,
MVP-Tree, M-Tree, and List of Cluster, we have set their
implementation parameters to the best values according to
the ones suggested by the authors. For the MVP-Tree, in [9]
it is shown that its best performance is achieved by setting
the parameters in the following way:

1. Two vantage points in every internal node v1 and v2.
2. m2 ¼ 4 partition classes. Four children for each pair

of vantage points.
3. k ¼ 13 maximum number of objects in a leaf node.
4. p unbounded, the size of the vector storing the

distances between the objects in a leaf and their
ancestors in the tree (the vantage points). Such a
vector is used during the range search to discard
objects without having to compute their distance
from the query object. Notice that the higher the
dimension is of such a vector the more distances
from vantage points can be used to prune candidates
and this improves the performance of the MVP-Tree
in terms of distance computations. For this reason,
we have set this parameter to its maximum value:
the height of the MVP-Tree.3

For the M-Tree implementation, we made use of the
BulkLoading4 algorithm [20]. The two parameters needed to
tune the data structure in order to obtain better perfor-
mance are the minimum node utilization and the secondary
memory page size. The best performance observed during

542 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 10. (a) Construction complexity using uniformly generated data measured by the number of distance computations needed by the Antipole Tree

with cluster diameter 1.25 versus M-Tree and MVP-Tree. (b) CPU time in seconds needed to build the Antipole Tree.

Fig. 11. Number of range queries, as a fraction of the data set size,

which are sufficient to recover the higher cost of Antipole Tree

construction with respect to MVP-Tree construction.

3. The authors are grateful to T. Bozkaya and M. Ozsoyoglu for
providing them the program to generate the input for the clustered data set.

4. The authors are grateful to P. Ciaccia, M. Patella, and P. Zezula for
providing them the source code of the M-Tree.

the search was obtained with minimum node utilization 0.2
and page size 8K.

Concerning List of Clusters, we used fixed bucket size
according with heuristics p3 and p5 suggested by the
authors in [16]. p3 consists in choosing the center of the
ith cluster as the furthest element from the ði� 1Þth center,
whereas p5 picks the element which maximizes the sum of
distances from previous centers.

In the first experiment (Fig. 13), we compare the four
data structures in a uniform data set taken from ½0; 1�n with
n ¼ 10, varying the query threshold from 0.1 to 0.8, and
using a data set of size 300,000. For the Antipole, we used
two different cluster radii �: 0.5 and 0.625, respectively.
Antipole Tree performs better than the other three data
structures computing less distances during the search.

Notice that using a query threshold from 0.1 to 0.7, we
capture in the outputdata set from 0% to 1%of the elements of
the entire data set (0.8 captures the 3% of the entire set). Fig. 14
shows that with query thresholds from 0.4 to 0.6, we save
between 10 percent and 70 percent of the distance computa-
tions, which, in the figure, is indicated as the gain percentage.

The next set of experiments (see Fig. 15) was designed to
compare the four data structures in different metric spaces:
the clustered Euclidean space IR20, a string space under an
editing distance metric, and an image histogram space with
an L2 distance metric. The corresponding data sets are:
100,000 clustered points, 45,000 strings from the Linux
dictionary, and 42,000 image histograms from the Corel
image database,5 respectively. Results show a 30 percent of
savings in distance computations.

Since List of Clusters reportedly works well in high
dimension in Fig. 16, we show a comparison in range search
in very high dimension Euclidean spaces IR147 and IR267,

with a database size 3,000 obtained from the VISTEX [50]
texture database. Notice that by using the query thresholds
depicted in Fig. 16, the output set captures from 0 percent to
5 percent of the elements of the entire data set in IR147 and
from 0 percent to 10 percent of the elements of the entire
data set in IR267. Antipole Tree shows a better behavior with
regard to List of Clusters tuned with the best fixed bucket
size we noticed.

6.4 K-Nearest Neighbor Comparisons

In Fig. 17, we present a set of experiments in which the
K NEAREST NEIGHBOR algorithm is compared with the
M-Tree and the List of Clusters. Notice that we compared the
Antipole Tree with just the M-Tree and List of Clusters
because the k-nearest neighbor search is not discussed for the
MVP-Tree (see [9]). As described in Section 6.3, we choose
uniform and clustered data in IR10 and IR20. Each data set has
size 100,000. We run the K NEAREST NEIGHBOR algo-
rithm with k ¼ 1; 2; 4; 6; 8; 10; 15; 20 using 100 queries for

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 543

5. Obtained from the UCI Knowledge Discovery in Databases Archive,
http://kdd.ics.uci.edu.

Fig. 12. Diameter tuning using uniformly and clustered generated points in dimensions 10 and 20, respectively.

Fig. 13. Comparisons in IR10 using 300,000 randomly generated vectors.

The query threshold goes from 0.1 to 0.8.

each experiment (half belonging to thedata structure andhalf
not). Using the Antipole Tree, we save up to 85 percent of
distance computations.

Concerning experiments in very high dimension, in
Fig. 18 we show a comparison with List of Clusters using a
data set of 3,000 elements in Euclidean IR147 and IR267 from
VISTEX [50]. Antipole Tree clearly outperforms List of
Clusters.

7 APPROXIMATE K-NEAREST NEIGHBOR SEARCH

VIA ANTIPOLE TREE

When the dimension of the space becomes very high (say
� 50), all existing data structures perform poorly on range
and k-nearest neighbor searches. This is due to the well-
known problem of the curse of dimensionality [37]. Lower
bounds [19] show that the search complexity exponentially
grows with the space dimension. For generic metric spaces,
following [17] and [18], we introduce the concept of intrinsic
dimensionality:

Definition 7.1. Let ðM;distÞ be a metric space, and let S � M.
The intrinsic dimension of S is � ¼ �2

S

2�2
S

, where �S and �2
S are

the mean and the variance of its histogram distances.

A promising approach to alleviate at least the curse of
dimensionality is to consider approximate and probabilistic
algorithms for k-nearest neighbor search. In some applica-
tions, such algorithms give acceptable results. Several
interesting algorithms have been proposed in the literature
[17], [21], [39], [28]. One of the most successful data
structure seems to be the Tree Structure Vector Quantiza-
tion (TSVQ). Here, we will show how to use the Antipole
Tree to design a suitable approximate search algorithm for

the nearest neighbor search. A first simple algorithm, called
BEST PATH SEARCH, follows the best path in the tree
from the root to the leaf, and returns the centroid stored in
the leaf node. This algorithm uses the same strategy as the
TSVQ to find quickly an approximate nearest neighbor of a
query object.

In what follows, we present a set of experiments where
TSVQ and Antipole Tree are compared. The experiments
refer to uniformly generated objects in spaces whose
dimension ranges from 10 to 50. For each input data set,
100 queries were executed. In order to evaluate the quality
of the results, we run the exact search first. Then, the error �
is computed in the following way:

� ¼
jdistðOopt; qÞ � distðOTSVQ=Antipole; qÞj

distðOopt; qÞ
:

In Fig. 19a, the errors introduced by the two approximate
algorithms in uniformly generated set of points (upper
figures) and clustered set of points (lower figures) are
depicted. On the other hand, Figs. 19b and 19d show the
number of distances computed by the two algorithms.

The experiments clearly show that the Antipole Tree
improves on TSVQ. We think that this is due to the better
position of the Antipole pairs.

A more sophisticated approximation algorithm to solve
the k-nearest neighbor problem can be obtained by using the
K NEAREST NEIGHBOR algorithm. The idea is the follow-
ing: For each cluster reached during the search, the algorithm
compares the query object with the cluster centroid without
taking into consideration the objects inside it.

This search is slower than theBEST PATH SEARCH, but
ismoreprecise and canbeused toperform k-nearest neighbor
search. Fig. 20a shows a set of experiments done in uniform
spaces in dimension 30 with radius � set to 1 and 1.5.

544 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 14. Each picture shows the number of distances computed by the compared data structures using threshold from 0.4 to 0.6. The respective gain
percentage (percentage of distances saved) of the Antipole Tree with regard to the MVP-Tree, the M-Tree, and the List of Clusters is also plotted.

In approximate matching, precision and recall [38] are
important metrics. Following [38], we call the k-nearest
neighbor elements of a query q: the k golden results. Then,
the recall after quota distances can be defined as the fraction
of the k top golden elements retrieved fixing a bound, called
quota, in the number of distances that can be computed
during the search. The precision is the number of golden
elements retrieved over the number of distances computed.
On the other hand, if the recall R is fixed (i.e. 50 percent),

the R-precision (precision after R recalls) gives the number
of distances which must be computed to obtain such recall.
We performed precision-recall analysis between Antipole
Tree and the approximate version of List of Clusters [12].
Experiments in Fig. 22 made use of 100,000 elements of
dimension 30. We fixed several quotas and recalls ranging
from 7,000 to 42,000 and from 0.5 to 0.9, respectively.
Results clearly show that Antipole Tree gives precision-
recall factors better than List of Clusters (with fixed bucket

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 545

Fig. 15. (top) Comparisons of Antipole Tree versus MVP-Tree, M-Tree, and List of Clusters in a clustered space from IR20 varying the query

threshold from 0.1 to 1, with cluster radius 2. (middle) Antipole Tree versus MVP-Tree, M-Tree, and List of Clusters using an editing distance metric

with cluster radius 5. (bottom) Antipole Tree versus MVP-Tree, M-Tree, and List of Clusters using a set of image histograms with cluster radius 0.4.

Fig. 16. A comparison between Antipole Tree and List of Clusters using real database in IR147 (left) and IR267 (right).

size). Fig. 21a makes the same comparison but using Image

histogram database, also Fig. 21b illustrates the effect of

curse of dimensionality in precision-recall factor analysis

for the Antipole Tree using uniformly distributed objects in

Euclidean spaces of dimension ranging from 30 to 50.

8 A COMPARISON WITH LINEAR SCAN

In this section, we present a set of experiments in which we

compare the proposed data structure with a naive linear

scan. We used a set of very high-dimensional Euclidean

data sets. Such data sets were obtained from a set of

textures taken from the VISTEX database [50]. Starting from

546 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 17. k-nearest neighbor comparisons. (a) 100,000 uniformly generated points in ½0; 1�10. (b) 100,000 points from IR20 generated in clusters.
(c) Comparisons using the image histogram database.

Fig. 18. k-nearest neighbor search using real data from the VISTEX database in dimension IR147 and IR267.

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 547

Fig. 19. A comparison between the approximate Antipole search and TSVQ search. (a) Shows the average error introduced by the two algorithms in

uniformly generated points with � ¼ 0:5 varying the space dimension from 10 to 50. (b) Shows the number of distances computed. (c) Shows the

average error introduced using points generated in clusters of space dimension 20 varying the cluster radius �. (d) Shows the corresponding number

of distances needed.

Fig. 20. An experiment with the approximate k-nearest neighbor algorithm in dimension 30. In (a), the average error is showed. (b) Depicts the gain

percentage in the number of distance computations.

Fig. 21. (a) Analysis of curse of dimensionality using Antipole Tree from dimension 30 to 50. Number of distances needed fixing the recall.
(b) Comparisons using the image histogram database between the Antipole Tree and List of Clusters with regard to approximated k-nearest
neighbor. The recall varying the quota is depicted.

548 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 22. Comparing Antipole Tree and List of Clusters with regard to approximated k-nearest neighbor. In (a), the Recall varying the quota is

depicted. In (b), the number of distance computations with fixed recall are shown.

Fig. 23. Comparing Antipole Tree and linear scan with regard to k-nearest neighbor (left side) and range search (right side) in IR267 top, IR147 middle,

and IR63 bottom.

a given texture, the data sets of tuples were built in the
following way: For each pixel p in the texture, we
considered, per color channel, half of its h� h neighbor-
hood (see [51] for more details). We obtained data sets of
dimension ranging from 63 to 267. Results, which are
plotted in Fig. 23, show that the proposed data structure
outperforms the linear scan in such high-dimensional data
sets. We have also noticed that the intrinsic dimension of
these spaces goes from 5 to 10.

9 CONCLUSIONS

We extended the ideas of the most successful best match
retrieval data structures, such as M-Tree, MPV-Tree,
FQ-Tree, and List of Clusters, by using pivots based on
the farthest pairs (Antipoles) in data sets. The resulting
Antipole Tree is a bisector tree using pivot-based clustering
with bounded diameter. Both range and k-nearest neighbor
searches are performed by eliminating those clusters which
cannot contain the result of the query. Antipoles are found
by playing a linear time randomized tournament among the
elements of the input set.

Proliferation of clusters is limited by using a suitable
diameter threshold,which is determined through a statistical
analysis on the set of distances. Moreover, an estimate of the
ratio between pseudodiameter (Antipole length) and the real
diameter is used to determine when a splitting is needed.
Since no guaranteed approximation algorithm for diameter
computation in general metric spaces can exist, we used the
approximation ratio given by a very efficient algorithm for
diameter computation in Euclidean spaces together with the
intrinsic dimension of the given metric space (Appendix,
which can be found on the Computer Society Digital Library
at http://computer.org/tkde/archives.htm).

By using the tournament size equal to 3 or d� 1, where d
is the intrinsic dimension of the metric space, we obtained
good experimental results. However, we are currently
investigating from a theoretical point of view how to
determine an optimal value for the tournament size
parameter. Extensive experimentations have been per-
formed on both synthetic and real data sets, with normal
and clustered distributions. All the experiments have
shown that our proposed structure outperforms the most
successful data structures for best match search by a factor
ranging between 1.5 and 2.5.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for
useful suggestions and comments.

REFERENCES

[1] P. Agarwal, J. Matousek, and S. Suri, “Farthest Neighbors,
Maximum Spanning Trees, and Related Problems in Higher
Dimensions,” Computational Geometry: Theory and Applications,
vol. 1, pp. 189-201, 1991.

[2] C. Aggarwal, J.L. Wolf, P.S. Yu, and M. Epelman, “Using
Unbalanced Trees for Indexing Multidimensional Objects,” Knowl-
edge and Information Systems, vol. 1, no. 3, pp. 157-192, 1999.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional Data for
Data Mining Applications,” Proc. ACM SIGMOD, pp. 94-105, 1998.

[4] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu, “Proximity
Matching Using Fixed-Queries Trees,” Proc. Combinatorial Pattern
Matching, Fifth Ann. Symp., pp. 198-212, 1994.

[5] G. Barequet and S. Har-Peled, “Efficiently Approximating the
Minimum-Volume Bounding Box of a Point Set in Three
Dimensions,” Proc. 10th Ann. ACM-SIAM Symp. Discrete Algo-
rithms, pp. 82-91, 1999.

[6] S. Battiato, D. Cantone, D. Catalano, G. Cincotti, and M. Hofri,
“An Efficient Algorithm for the Approximate Median Selection
Problem,” Proc. Fourth Italian Conf. Algorithms and Complexity,
pp. 226-238, 2000.

[7] S. Berchtold, D.A. Keim, and H.-P. Kriegel, “The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. 22nd Int’l Conf. Very
Large Databases, pp. 28-39, 1996.

[8] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
Nearest Neighbor Meaningful?” Proc. Seventh Int’l Conf. Database
Theory, vol. 1540, pp. 217-235, 1999.

[9] T. Bozkaya and M. Ozsoyoglu, “Indexing Large Metric Spaces for
Similarity Search Queries,” ACM Trans. Database Systems, vol. 24,
no. 3, pp. 361-404, 1999.

[10] S. Brin, “Near Neighbor Search in Large Metric Spaces,” Proc. 21st
Int’l Conf. Very Large Data Bases, pp. 574-584, 1995.

[11] W.A. Burkhard and R.M. Keller, “Some Approaches to Best-Match
File Searching,” Comm. ACM, vol. 16, no. 4, pp. 230-236, 1973.

[12] B. Bustos and G. Navarro, “Probabilistic Proximity Searching
Algorithms Based on Compact Partitions,” Proc. Symp. String
Processing and Information Retrieval, pp. 284-297, 2002.

[13] I. Calantari and G. McDonald, “A Data Structure and an
Algorithm for the Nearest Point Problem,” IEEE Trans. Software
Eng., vol. 9, no. 5, pp. 631-634, 1983.

[14] D. Cantone, G. Cincotti, A. Ferro, and A. Pulvirenti, “An Efficient
Algorithm for the 1-Median Problem,” SIAM J. Optimization, to
appear.

[15] T.M. Chan, “Approximating the Diameter, Width, Smallest
Enclosing Cylinder, and Minimum-Width Annulus,” Int’l J.
Computational Geometry and Applications, vol. 12, nos. 1-2, pp. 67-
85, 2002.

[16] E. Chávez and G. Navarro, “An Effective Clustering Algorithm to
Index High Dimensional Metric Spaces,” Proc. 11th Ann. ACM-
SIAM Symp. Discrete Algorithms, pp. 75-86, 2000.

[17] E. Chávez and G. Navarro, “A Probabilistic Spell for the Curse of
Dimensionality,” Proc. Third Workshop Algorithm Eng. and Experi-
mentation (ALENEX ’01), pp. 147-160, 2001.

[18] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquin,
“Searching in Metric Spaces,” ACM Computing Surveys, vol. 33,
no. 3, pp. 273-321, 2001.

[19] B. Chazelle, “Computational Geometry: A Retrospective,” Proc.
26th Ann. ACM Symp. Theory of Computing, pp. 75-94, May 1994.

[20] P. Ciaccia and M. Patella, “Bulk Loading the M-Tree,” Proc. Ninth
Australasian Database Conf. (ADC), pp. 15-26, 1998.

[21] P. Ciaccia and M. Patella, “PAC Nearest Neighbor Queries:
Approximate and Controlled Search in High-Dimensional and
Metric Spaces,” Proc. 16th Int’l Conf. Data Eng.,, pp. 244-255, 2000.

[22] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. 23rd Int’l
Conf. Very Large Data Bases, pp. 426-435, 1997.

[23] K. Clarkson, “Nearest Neighbor Queries in Metric Spaces,” Proc.
29th Ann. ACM Symp. Theory of Computing, pp. 609-617, May 1997.

[24] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Second Int’l Conf. Knowledge Discovery in
Databases and Data Mining, pp. 226-231, 1996.

[25] T. Feder and D. Greene, “Optimal Algorithms for Approximate
Clustering,” Proc. 20th Ann. ACM Symp. Theory of Computing,
pp. 434-444, 1988.

[26] A.W.-C. Fu, P.M. Chan, Y.-L. Cheung, and Y. Moon, “Dynamic
VP-Tree Indexing for n-Nearest Neighbor Search Given Pair-Wise
Distances,” The VLDB J., vol. 9, no. 2, pp. 154-173, 2000.

[27] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French,
“Clustering Large Datasets in Arbitrary Metric Spaces,” Proc. IEEE
15th Int’l Conf. Data Eng., pp. 502-511, 1999.

[28] A. Gersho and R. Gray, Vector Quantization and Signal Compression.
Kluwer Academic, 1992.

[29] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” Proc. 25th Int’l Conf. Very Large Data
Bases, pp. 518-529, 1999.

[30] T. Gonzalez, “Clustering to Minimize the Maximum Intercluster
Distance,” Theoretical Computer Science, vol. 38, pp. 293-306, 1985.

[31] T. Gonzalez, “Covering a Set of Points in Multidimensional
Space,” Information Processing Letters, vol. 40, pp. 181-188, 1991.

CANTONE ET AL.: ANTIPOLE TREE INDEXING TO SUPPORT RANGE SEARCH AND K-NEAREST NEIGHBOR SEARCH IN METRIC SPACES 549

[32] S. Guha, R. Rastogi, and K. Shim, “Cure: An Efficient Clustering
Algorithm for Large Databases,” Proc. ACM SIGMOD, pp. 73-84,
1998.

[33] S. Har-Peled, “A Practical Approach for Computing the Diameter
of a Point Set,” Proc. 17th Symp. Computational Geometry, pp. 177-
186, 2001.

[34] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Database,” ACM Trans. Information Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[35] D.S. Hochbaum and W. Maass, “Approximation Schemes for
Covering and Packing Problems in Image Processing and VLSI,”
J. ACM, vol. 32, no. 1, pp. 130-136, 1985.

[36] P. Indyk, “Sublinear Time Algorithms for Metric Space Problems,”
Proc. 31st Ann. ACM Symp. Theory of Computing, pp. 428-434, 1999.

[37] P. Indyk and R. Motwani, “Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality,” Proc. 30th Ann.
ACM Symp. Theory of Computing, pp. 604-613, 1998.

[38] C. Li, E. Chang, and H.G.-M.G. Wiederhold, “Clustering for
Approximate Similarity Search in High-Dimensional Spaces,”
IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 792-808,
July-Aug. 2002.

[39] T.M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[40] G. Navarro, “Searching in Metric Spaces by Spatial Approxima-

tion,” The VLDB J., vol. 11, pp. 28-46, 2002.
[41] R. Ng and J. Han, “Clarans: A Method for Clustering Objects for

Spatial Data Mining,” IEEE Trans. Knowledge and Data Eng., vol. 14,
no. 5, pp. 1003-1016, Sept./Oct. 2002.

[42] H. Noltemeier, K. Verbarg, and C. Zirkelbach, “Monotonous
Bisector* Trees—A Tool for Efficient Partitioning of Complex
Scenes of Geometric Objects,” Data Structure and Efficient
Algorithms, Lecture Notes in Computer Sciences, vol. 594,
pp. 186-203, Springer-Verlag, 1992.

[43] C. Procopiuc, “Geometric Techniques for Clustering Theory and
Practice,” PhD dissertation, Duke Univ., 2001.

[44] M. Shapiro, “The Choice of Reference Points in Best-Match File
Searching,” Comm. ACM, vol. 20, no. 5, pp. 339-343, 1997.

[45] D. Shasha and T.-L. Wang, “New Techniques for Best-Match
Retrieval,” ACM Trans. Information Systems, vol. 8, no. 2, pp. 140-
158, 1990.

[46] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A
Wavelet Based Clustering Approach for Spatial Data in Very
Large Databases,” The VLDB J., vol. 8, nos. 3-4, pp. 289-304, 2000.

[47] S. Sumanasekara and M. Ramakrishna, “CHILMA: An Efficient
High Dimensional Indexing Structure for Image Databases,” Proc.
First IEEE Pacific-Rim Conf. Multimedia, pp. 76-79, 2000.

[48] C. Traina Jr., A. Traina, B. Seeger, and C. Faloutsos, “Slim-Trees:
High Performance Metric Trees Minimizing Overlap between
Nodes,” Proc. Seventh Int’l Conf. Extending Database Technology,
vol. 1777, pp. 51-65, 2000.

[49] J. Uhlmann, “Satisfying General Proximity/Similarity Queries
with Metric Trees,” Information Processing Letters, vol. 40, pp. 175-
179, 1991.

[50] VisTex, http://graphics.stanford. edu/projects/texture/demo/
synthesis_VisTex_192.html, Texture Synthesis: VisTex Texture,
2004.

[51] L. Wei and M. Levoy, “Texture Synthesis over Arbitrary Manifold
Surfaces,” Proc. ACM-SIGGRAPH ’01, pp. 355-360, 2001.

[52] P. Yianilos, “Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Saces,” Proc. Third Ann.
ACM-SIAM Symp. Discrete Algorithms, pp. 311-321, Jan. 1993.

[53] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. ACM
SIGMOD Conf. Management of Data, pp. 103-114, 1996.

Domenico Cantone received the BS degree in
mathematics from the University of Catania,
Italy, in 1982. In 1985 and 1987, he received the
MS and PhD degrees in computer science from
New York University. In 1990, he became a
professor of computer science at the University
of L’Aquila, Italy. In 1991, he moved to the
University of Catania, where since 2002 he has
been the director of the graduate studies in
computer science. Since 1995, he has also been

a member of the Board of Directors of the journal Le Matematiche. His
main scientific interests include: computable set theory, automated
deduction in various mathematical theories, and, more recently, string
matching and algorithmic engineering. In the field of computable set
theory, he has coauthored two monographs published in 1989 and 2001,
and he is currently working on a third monograph which will be published
in 2005.

Alfredo Ferro received the BS degree in
mathematics from Catania University, Italy, in
1973 and the PhD degree in computer science
from New York University (NYU) in 1981 (Jay
Krakauer Award for the best dissertation in the
field of sciences at NYU). He is currently
professor of computer science at Catania Uni-
versity and has been director of graduate studies
in computer science for several years. Since
1989, he has been the director of the Interna-

tional School for Computer Science Researchers (Lipari School, http://
lipari.cs.unict.it). Together with Michele Purrello, he is the director of the
International School in BioMedicine and BioInformatics (http://lipari.c-
s.unict.it/bio-info/). His research interests include bioinformatics, algo-
rithms for large data sets management, data mining, computational
logic, and networking.

Alfredo Pulvirenti received the BS degree in
computer science from Catania University, Italy,
in 1999 and the PhD degree in computer science
from Catania University in 2003. He has cur-
rently a postdoctoral position in the Department
of Computer Science at Catania University. His
research interests include bioinformatics, data
structure, approximate algorithms, structured
databases, information retrieval, graph theory,
and networking.

Diego Reforgiato Recupero received the BS
degree in computer science in 2001 from the
University of Catania, Italy. He is currently a PhD
candidate in computer science at the same
university. His research interests include data-
base systems and information technologies. In
particular, he has been working on clustering
data in high-dimensional spaces, graphs cluster-
ing, and graph matching problem.

Dennis Shasha is a professor of computer
science in the Courant Institute at New York
University, where he works with biologists on
pattern discovery for microarrays, combinatorial
design, and network inference; and with physi-
cists and financial people on algorithms for time
series. Other areas of interest include database
tuning, tree and graph matching, and crypto-
graphic file systems. In his spare time, he has
written three books of puzzles, a biography of

great computer scientists, and technical books about database tuning,
biological pattern recognition, and a book on time series. He also writes
the puzzle column for Scientific American and Dr. Dobb’s Journal.

550 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

