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Abstract

The definition of similarity measures for phylogenetic trees has been motivated by the
computation of consensus trees, the search by similarity in databases, and the assessment of
phylogenetic reconstruction methods. The transposition distance for fully resolved trees is
a recent addition to the extensive collection of available metrics for comparing phylogenetic
trees. In this paper, we generalize the transposition metric from fully resolved to arbitrary
phylogenetic trees, through a construction that involves an embedding of the set of phylo-
genetic trees (up to isomorphisms) with a fixed number of labeled leaves into a symmetric
group. We also show that this transposition distance can be computed in linear time and
we establish some of its basic properties.
Keywords: Comparison of phylogenetic trees, permutations, linear time algorithms

1 Introduction

The need for comparing phylogenetic trees arises when alternative phylogenies are obtained us-
ing different phylogenetic methods or sequences of different genes for a given set of species. The
comparison of phylogenetic trees is also used to assess the stability of reconstruction methods as
well as in the comparative analysis of clustering results obtained using different methods or dif-
ferent distance matrices, and it is also essential to performing phylogenetic queries on databases.
Many metrics for phylogenetic tree comparison have been proposed so far: among others, the
Robinson-Foulds metric, the nearest-neighbor interchange metric, the subtree transfer distance,
the triples metric, and several nodal distances. One of the most recently proposed such distances
is the transposition distance for fully resolved, or binary, phylogenetic trees [9].

In this paper, we propose a new metric between phylogenetic trees, which generalizes the
aforementioned transposition distance for fully resolved trees, and that we consistently call hence
the transposition distance. This distance is induced by the canonical distance for permutations
through an embedding of the set of isomorphism classes phylogenetic trees with leaves bijectively
labeled in a set S into a certain symmetric group of permutations, and it is directly inspired on
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the one hand by the matching representation of fully resolved phylogenetic trees [3] and on the
other hand by the involution metric for RNA contact structures [6].

We establish some basic properties of our transposition distance, like for instance its diameter,
and in particular we show that it can be computed in linear time, and thus it is one of the only
two known linear time metrics for arbitrary phylogenetic trees, together with the Robinson-
Foulds metric [7]. But, against what happens with the latter [2], the linear time computation of
the transposition distance does not need the use of sophisticated algorithms and data structures.

We have implemented in Python the algorithms for the transposition distance, as well as
other distances, and have made some computational experimentations, see section 4 for details.

2 Matching Representation of Phylogenetic Trees

Throughout this paper, by a phylogenetic tree on a set S of taxa we mean a rooted tree without
out-degree 1 nodes and with its leaves bijectively labeled in S. We shall use the following
terminology: the children of a node v in a phylogenetic tree T = (V,E) are those nodes w ∈ V
such that (v, w) ∈ E; the set of leaves of T is denoted by L(T ); the nodes of T that are not
leaves are called internal ; the height of a node v in a tree T is the length of a longest directed
path from v to a leaf.

We consider the set S ordered, and although in applications it can be any set of extant
species, in this paper we shall always take S = {1, . . . , n}, ordered in the usual way. We shall
denote by Tn the set of all phylogenetic trees with n leaves labeled 1, . . . , n (up to label-preserving
isomorphisms of rooted trees).

Definition 1. The bottom-up ordering (cf. [3, 8]) of a phylogenetic tree T = (V,E) ∈ Tn is the
injective mapping ` : V → {1, . . . , |V |} defined by the following properties: (a) If v ∈ L(T ), then
`(v) is its label; (b) If height(u) < height(v), then `(u) < `(v); (c) If 0 < height(u) = height(v)
and

min{`(x) | x ∈ children(u)} < min{`(x) | x ∈ children(v)},

then `(u) < `(v).

It is easy to notice that this bottom-up ordering is unique, and it can be computed in time
linear in the size of the tree, and hence linear in n, by bottom-up tree traversal techniques [8, 9].
First, the leaves of T are labeled by their labels in {1, . . . , n}. Then, the height 1 nodes are
labeled from n+ 1 on in the order given by the smallest label of their children: i.e., the height
1 node with the smallest child label is assigned the label n + 1, the height 1 node with the
next-smallest child label is assigned the label n + 2, etc. And this procedure is continued for
consecutively increasing heights: see Fig. 1 for an example.
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Figure 1: A bottom-up ordered phylogenetic tree.

The next definition generalizes the matching representation of fully resolved trees [3].
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Definition 2. Let T = (V,E) be a phylogenetic tree with n leaves labeled 1, . . . , n, and let
` : V → {1, . . . , |V |} be its bottom-up ordering. The matching representation M(T ) of T is the
partition of {1, . . . , |V | − 1} defined as follows:

M(T ) = {`(children(u)) | u ∈ V \ L(T )}.

It is clear that, once the bottom-up ordering of T has been obtained, the partition M(T )
can be produced in linear time.

Example 3. The matching representation of the tree in Fig. 1 is the partition of {1, . . . , 14}
given by {

{1, 5, 7, 9}, {4, 6, 10}, {2, 11}, {8, 13}, {3, 12, 14}
}
.

The following result establishes that the matching representations single out phylogenetic
trees. We leave its easy proof to the reader.

Proposition 4. For every T1, T2 ∈ Tn, if M(T1) = M(T2), then T1 = T2.

3 The Transposition Distance

For every m > 1, let Sm denote the symmetric group on {1, . . . ,m}. The cycle associated to a
subset X = {i1, . . . , ik}, with i1 < · · · < ik and k > 2, of {1, . . . ,m}, is κ(X) := (i1, i2, . . . , ik) ∈
Sm. The length of a cycle (i1, i2, . . . , ik) is the number k of elements it moves.

Definition 5. The matching permutation π(T ) associated to a phylogenetic tree T = (V,E) ∈
Tn is the permutation of {1, . . . , |V | − 1} defined by the product of the cycles associated to the
members of its matching representation:

π(T ) =
∏

u∈V \L(T )

κ(`(children(u))) .

Remark 6. If u, v ∈ V \ L(T ) are two different internal nodes of T , then `(children(u)) ∩
`(children(v)) = ∅. Therefore, all cycles κ(`(children(u))) appearing in the product defining
π(T ) are disjoint to each other, and hence they commute with each other. This implies that the
product t yielding π(T ) is well defined.

Example 7. The matching permutation associated to the tree in Fig. 1 is the product of cycles

(1, 5, 7, 9)(4, 6, 10)(2, 11)(8, 13)(3, 12, 14) ∈ S14.

No element in {1, . . . , |V | − 1} remains fixed under π(T ), because every `(children(u)), with
u internal, has at least two elements and every element in {1, . . . , |V | − 1} is the bottom-up
ordering label of a child of some internal node. Now, if T = (V,E) is a phylogenetic tree with n
leaves, then |V | 6 2n− 1, the equality holding if and only if T is binary. To be able to compare
matching permutations of phylogenetic trees with the same number of leaves n but different
numbers of internal nodes, we shall understand henceforth that the matching permutation π(T )
belongs to S2n−2, leaving fixed the elements |V |, . . . , 2n− 2.

The next result is a direct consequence of the fact that the matching representation of a
phylogenetic tree uniquely determines it (Proposition 4) and every permutation has a unique
decomposition as a product of disjoint cycles of length > 2.

Proposition 8. For every T1, T2 ∈ Tn, if π(T1) = π(T2), then T1
∼= T2.
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Since the mapping π : Tn → S2n−2 that sends every T ∈ Tn to its matching permutation π(T )
is injective, any metric on S2n−2 induces a metric on Tn through it. Using with this purpose the
metric that associates to each pair of permutations (π1, π2) the least number of transpositions
necessary to represent π−1

2 · π1 and arguing as in [6, Cor. 1], we have the following result.

Theorem 9. The mapping that associates to every pair (T1, T2) of phylogenetic trees with n
leaves labeled in {1, . . . , n}, the least number d′tr(T1, T2) of transpositions necessary to represent
the permutation π(T2)−1π(T1), is a metric on Tn.

Remark 10. Recall that the least number of transpositions required to represent a cycle of
length k is k − 1 and that the least number of transpositions required to represent a product
of disjoint cycles is the sum of the least numbers of transpositions each cycle decomposes into,
and hence the sum of the cycles’ lengths minus the number of cycles.

Proposition 11. For every T1, T2 ∈ Tn, d′tr(T1, T2) is an even integer.

Proof. If each Ti, for i = 1, 2, has mi internal nodes, then π(Ti) decomposes into mi disjoint
cycles: say π(Ti) = Ci,1 · · ·Ci,mi

, with each Ci,j of length ki,j . Then, by Remark 10, π(Ti) has
a decomposition into

∑mi

j=1(ki,j−1) =
∑mi

j=1 ki,j−mi = n+mi−1−mi = n−1 transpositions.
But then π(T2)−1π(T1) admits a decomposition into 2(n − 1) transpositions. This entails that
every decomposition of this permutation into a product of transpositions must involve an even
number of them, and therefore that d′tr(T1, T2) is an even integer.

In other words, this metric d′tr has a ‘redundant’ 2 factor.

Definition 12. The transposition distance on Tn is

dtr : Tn × Tn → N
(T1, T2) 7→ 1

2d
′
tr(T1, T2)

The transposition distance dtr(T1, T2) between two phylogenetic trees T1, T2 ∈ Tn can be
easily calculated in linear time, by first computing the tables of values of π(T1) and π(T2)−1

from their decompositions into disjoint cycles (that is, from the matching representations of T1

and T2), then computing the composition of these permutations, and finally decomposing the
resulting permutation into the product of disjoint cycles and then applying Remark 10.

Proposition 13. For every n > 3, the diameter of Tn under dtr is n− 2.

Proof. Let us prove first that dtr(T1, T2) 6 n− 2 for every T1, T2 ∈ Tn. Indeed, the permutation
π(T2)−1π(T1) belongs to S2n−2, and therefore, by Remark 10, a minimal decomposition of this
permutation into transpositions will involve at most (2n − 2) − 1 transpositions. Therefore,
d′tr(T1, T2) 6 2n − 3, and since d′tr(T1, T2) is an even number, d′tr(T1, T2) 6 2n − 4, and hence
dtr(T1, T2) 6 n− 2.

It remains to show a pair of phylogenetic trees in Tn at transposition distance n − 2. Let
T1, T2 ∈ Tn be the binary phylogenetic trees described by the Newick strings

T1 : ((. . . ((((1, 2), 3), 4), 5) . . . , n− 1), n), T2 : ((. . . ((((2, 3), 4), 5), 6) . . . , n), 1)

Their matching permutations are

π(T1) = (1, 2)(3, n+ 1)(4, n+ 2) · · · (n, 2n− 2), π(T2) = (2, 3)(4, n+ 1)(5, n+ 2) · · · (1, 2n− 2)

and therefore

π(T2)−1π(T1) = (1, 3, 5, 7, . . . , 2n− 3)(2n− 2, 2n− 4, 2n− 6, . . . , 2)

which shows that dtr(T1, T2) = 1
2 (2n− 2− 2) = n− 2.

4



In the Introduction we mentioned that the transposition distance defined in this paper gen-
eralizes the transposition distance for fully resolved phylogenetic trees introduced in [9]. This
will be a direct consequence of [9, Thm. 1] and the following result; the example given in the
proof of the last proposition is a special case of its proof.

Proposition 14. For every pair of fully resolved phylogenetic trees T1, T2 ∈ Tn, let G = (V,E)
be the undirected multigraph with V = {1, . . . , 2n − 2} and E = M(T1) tM(T2), and let κ be
the number of connected components of G. Then, dtr(T1, T2) = n− 1− κ.

Proof. If T1 and T2 are fully resolved, then π(T1) and π(T2) = π(T2)−1 are products of disjoint
transpositions and have not fixed point. Then, every connected component of G corresponds to
2 disjoint cycles in the decomposition of π(T2) ·π(T1) and therefore, by Remark 10, dtr(T1, T2) =
1
2 (2n− 2− 2κ) = n− 1− κ.

4 Computational Experiments

We have implemented all the algorithms described in this paper in PhyloNetwork.py, a Python
package which also deals with phylogenetic networks and computes, among other things, the
Robinson-Foulds [7] and splitted nodal [1] distances. We have also implemented the algorithm
described in [5] for the generation of uniformly distributed random trees with a given set of
taxa, as well as an adaptation of it for the sequential generation of all trees (which only makes
sense for an small number of leaves), in the Python package TreeGenerator.py. Both packages
will be shortly available to the public domain.

Using the aforementioned packages we have generated all trees with up to 7 taxa, and
random samples (each one with approximately 20 000 trees) of trees with from 8 to 14 taxa.
For each pair with the same taxa, we have computed their transposition, Robinson-Foulds, and
splitted nodal distances. In Figure 2 we give histograms of the distributions of these three
distances for n = 7 and n = 14 leaves (which are the most significative ones where we have
generated, respectively, the set of all trees and a random sample). In the supplementary material
webpage http:/bioinfo.uib.es/~recerca/phylotrees/transdist/ we provide the data for
the remaining cases.
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Figure 2: Histograms of distributions of the transposition (left), Robinson-Foulds (center) and
splitted nodal (right) distances for trees with 7 leaves (top) and 14 leaves (bottom).
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A parameter that shows how two different distances within the same set are related is the
Spearman’s rank correlation. In Table 1 we give the correlations between the Robinson-Foulds,
the splitted nodal and the transposition distances, for different values of the number of leaves.
Since the correlations of the transposition distance with the other ones are small enough, the
distance we have defined is not related (from an ordinal point of view) to the other known ones.

Table 1: Spearman’s rank correlation for the transposition (TR), Robinson Foulds (RF), and
splitted nodal (SN) distances for small number n of leaves.

n TR/RF TR/SN RF/SN

3 1.0000 1.0000 1.0000
4 0.4757 0.5258 0.8247
5 0.4651 0.4485 0.7419
6 0.4520 0.3900 0.6658
7 0.4480 0.3481 0.6039
8 0.4509 0.3213 0.5589

n TR/RF TR/SN RF/SN

9 0.4536 0.2955 0.5152
10 0.4629 0.2882 0.4968
11 0.4705 0.2740 0.4723
12 0.4728 0.2616 0.4516
13 0.4747 0.2506 0.4344
14 0.4834 0.2464 0.4238

5 Conclusions

In this paper we have defined and analyzed a metric for arbitrary phylogenetic trees on a given
set of taxa that generalizes the transposition distance for fully resolved phylogenetic trees and
that can be computed in linear time. This metric adds to the number of other metrics for
phylogenetic trees defined so far. As Moulton, Zuker et al claimed in the context of RNA
secondary structure comparison, “[...] generally speaking, it is probably safest to try as many
metrics as possible” [4, p. 290].
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