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PROJECT SUMMARY “ABI Innovation: Neighborly Network Inference” 

1. Senior personnel   

     PI: Dennis Shasha (NYU Courant Institute of Mathematical Sciences) 

     Co-PIs: Gloria Coruzzi & Manpreet Katari (NYU Biology, Center for Genomics & Systems Biology)  

     Collaborator: Rodrigo Gutierrez (Pontificia Universidad Catolica de Chile) 

2. Intellectual merit of the proposed activity  

Species are being sequenced at a vastly increasing rate. When embarking on the study of a newly 

sequenced species, researchers would benefit from tools that infer gene interaction networks from 

experiments on phylogenetically neighboring species. We propose to develop such “Neighborly Network 

Inference (NNI)” tools. Our vision is to construct species-specific interaction networks of many kinds 

(transcription factor-binding networks, protein-protein, metabolic, miRNA-RNA, etc.) for many species 

synergistically. In this vision for NNI, every experiment in species s, will contribute to inferences on s, 

and all related species. The experimental bases of our inference will vary from steady-state wild-type 

experiments, to time-series experiments, to mutant experiments, all on 21 plant species whose genomes 

have been fully-sequenced, and are of great practical and research importance (e.g. Arabidopsis, rice, 

soy). This project will leverage the facilities of the current VirtualPlant software platform 

(www.virtualplant.org) developed under an NSF Grant (DBI-0445666), that includes Arabidopsis 

multinetwork data, analysis, integration and manipulation tools [1]. In this grant, we will develop tools 

that will infer gene interaction networks in a target species, based on measured results in a fully-

sequenced source species, and also an approach to select which experiments are likely to be most helpful. 

While NNI is described with respect to plants, the framework and basic algorithms may be extended to 

any under-analyzed species. This work will achieve one of the main goals of Systems Biology – 

predicting network states under untested conditions. We divide the work into three aims: 

Aim 1. Develop the Neighborly Network Inference (NNI) Model on Expression Data. Omic-

scale expression correlation is the basis for clustering, transcription factor-target inference, and many 

other goals. This aim explains a machine-learning framework to infer correlation in a little-studied target 

species, based on experiments in a well-studied and fully-sequenced source species.  

Aim 2. Proof-of-principle verification of Neighborly Network Inference (NNI) on 

heterogeneous data. This aim extends the previous model to infer non-expression edges even among 

distant species. Our preliminary results show high precision inference of metabolic and protein:protein 

networks in Rice, inferred from Arabidopsis as a reference species. The approach uses a fixed set of 

parameters. After showing the promise of this approach, the aim explains how to choose the parameters in 

a principled way using machine-learning. 

Aim 3. Predicting experimental “Pay-off”: A Framework to Determine the Next Best 

Experiments to Perform. This aim proposes a tool to help experimentalists determine how they should 

spend their assay resources. The basic idea is to define a notion of the “pay-off” of a set of experiments. 

Then the tool tries removing existing experiments, to see which already done experiments give the highest 

payoffs until now. The experiments giving highest payoff, then guide the selection of future experiments.  

 

Justification for ABI Goals:  The approach and tools we develop will be deployed using a gaggle-based 

[2] interface, so biological tools can have easy access to it. Our project addresses several ABI goals:  

1. New algorithms for network inference: Neighborly Network Inference methods for expression (Aim 

1) and the generalization to other kinds of edges (Aim 2) 

2. Heterogeneous data: Use of homology, expression, metabolic and protein-protein networks (Aim 2). 

3. Tools for biological work-flows:  Helping biologists determine the next experiment to do (Aim 3). 

3. Broader impacts of the proposed research This project is the result of a long-standing and highly 

successful collaboration between biologists at NYU and elsewhere, and computer scientists at NYU's 

Courant Institute of Mathematical Sciences. The Systems Biology tools resulting from this project will 

empower biologists to use genomic data to predict a spectrum of gene networks in biology with broad 

applications to agriculture, the environment, and health. In addition to scientific results, this collaboration 

extends to joint training of biologists and computer scientists in the field of Systems Biology. 

http://www.virtualplant.org/
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PROJECT DESCRIPTION 

Motivation:  Suppose a scientific community is working on a set of related species that have been fully 

sequenced. Experimenters around the world are doing experiments on individual species under various 

conditions, at different times. Some species enjoy more experimental attention than others.  Whereas an 

individual scientist may be interested in one or a few species, the community as a whole is interested in 

increasing knowledge about all the related species as efficiently as possible. 

 Our vision for “Neighborly Network Inference” (NNI) is to construct species-specific gene 

interaction networks of ever-better quality, using sets of related species. For each species s, we will use 

the experiments on s, but also the experiments on phylogenetically neighboring species s1, s2, ...  The 

approaches we will use to infer network edges include intra-species techniques (cis-element analysis, 

time-series analysis, knockout analysis (where feasible)), and inter-species techniques (orthology of genes 

and species). In the complete vision, every experiment on species s will add edges (or increase the 

confidence in intergenic-edges) to s, as well as to neighboring species. In addition, we propose a 

methodology for suggesting how to direct experimental effort on species s to maximize the information 

gained from a given experimental budget (measured for example as number of deep-seq runs). With the 

advent of multi-species clustering [3], co-regulated modules, as well as edges, will be found.  

As a test case, and because of their intrinsic importance, the NNI project proposes to use 21 

recently sequenced plant species: Glycine max, Medicago truncatula, Cucumis sativus, Prunus persica, 

Populus trichorpa, Manihot esculenta, Ricinus communis, Citrus sinensis, Arabidopsis thaliana, Carica 

papaya, Eucalyptus grandis, Vitis vinifera, Mimulus guttatus, Aquilegia coerulea, Sorghum bicolor, Zea 

mays, Setaria italica, Oryza sativa, Brachypodium distachyon, Physcometrille patens, Selaginella 

moellendorfii    (Fig. 1). To construct the phylogenomic tree shown in Fig. 1, we used OrthologID [4] to 

process 731,093 amino acid sequences from 21 completely sequenced land plant genomes, including two 

outgroups (Selaginella and Physcomitrella).  OrthologID produced 45,156 sets of orthologs from 10,054 

multi-species gene families, 

and assembled a simultaneous 

analysis (SA) matrix with 

21,271 partitions.  At least 5 

taxa are present in each 

partition in this matrix, which 

has 12.9 million characters. 

The total evidence (TE) tree is 

the most parsimonious tree 

generated from the SA matrix 

using a combination of drifting, 

ratchet, and fusion in TNT [5]. 

For a more detailed description 

of our method for constructing 

phylogenomic trees see [6-8].  

Next-gen sequencing 

techniques and microarray 

platforms have been used to 

generate transcriptome data for 

some of these 21 species, but 

only a few of these fully-

sequenced species have gene 

interaction networks. The 

software tools we will collect 

and build in this NNI project 

will generate gene-interaction 

Fig. 1: Phylogenomic tree of 21 plant species with complete genome sequences. 
The total evidence tree shown here, was creating using OrthologID [4]. It is the most 

parsimonious tree generated from simultaneous analysis matrix, using combination of 

drifting, rachet, and fusion in TNT [5], as described in the text and in [6,7]. 
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edges using inter-species and intra-species techniques. This is timely, because many additional plant 

species will soon be sequenced and then expression data will be available.  

 

RESULTS FROM PRIOR NSF SUPPORT: This proposal leverages on the accomplishments of the 

completed parent NSF Grant DBI-0445666, “Conceptual Data Integration for the Virtual Plant”. The 

VirtualPlant software platform (www.virtualplant.org) [1] developed in that grant, integrates genome-

wide data concerning the known and predicted relationships among genes, proteins and molecules, as well 

as genome-scale experimental measurements. VirtualPlant also provides tools that render multivariate 

information into integrated visual displays (e.g. networks) to highlight biological implications. We have 

demonstrated the use of tools embodied in the VirtualPlant system to generate hypotheses that were 

subsequently experimentally validated [9-15]. 

 

Our NSF VirtualPlant grant had four goals: Integration, Visualization, Synthesis, and Prediction, 

which we have accomplished, as outlined below. 

Aim 1. Integration: The Arabidopsis Multinetwork: A systems biology tool for hypothesis generation. 

Our VirtualPlant project included assembling the first multinetwork for Arabidopsis, a first step towards a 

molecular wiring diagram of the plant cell [1,11]. The Arabidopsis multinetwork in VirtualPlant has 

16,562 nodes (of which 13,960 are genes) and 97,423 interactions (Fig. 2B, & Table 1). The 

multinetwork enables researchers to interpret transcriptome data in the context of all known sources of 

interaction including protein, DNA, RNA, etc. In one example, a query against the Arabidopsis 

multinetwork with 834 nitrogen-regulated genes resulted in a sub-network of 369 genes connected by one 

(or more) “expression correlation edges” [15]. At the top of the resulting list of network TF “hubs” (with 

47 connections to targets in the N-regulatory network) was the central clock control gene CCA1, a Myb 

family transcription factor (TF) [15] . Exploration of the network “neighborhood” surrounding this CCA1 

TF hub revealed 

connections to target 

genes in N-assimilation 

(Fig. 2C). Using 

Arabidopsis lines that 

over-express 35S::CCA1 

and by Chromatin-IP, we 

validated these predicted 

TFTarget interactions 

and showed, using phase 

response curves, that 

distinct N-metabolites can 

advance or delay the 

circadian phase of CCA1 

mRNA expression [15]. 

Thus, we derived and 

validated the novel 

hypothesis that nitrogen-

regulation of CCA1 

mRNA expression sets the 

circadian clock. Other 

examples of networks 

derived and validated 

using the VirtualPlant 

multinetwork are reported 

in [9,11,12,13].  

Fig. 2: The VirtualPlant Multinetwork.  The Arabidopsis multinetwork contains genes 

represented as nodes (A) that are connected by edges of many types (B) including metabolic, 

protein-DNA, protein-protein, microRNA-RNA, and edges derived from text mining [1]. (C) 

shows a network neighborhood resulting from querying this multinetwork with microarray 

data, uncovering a regulatory hub (CCA1) involved in nitrogen signaling [15]. 
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A complementary network tool is GeneMania [16], which generates a hypothesis for gene function based 

on interactions with other genes 

and their attributes. For a recent 

review of various plant 

multinetwork approaches, see 

[17]. 

 

Aims 2 & 3.  Synthesis and 

Visualization: VirtualPlant’s 

primary analysis tools and 

functions.  In addition to the 

multinetwork, the VirtualPlant 

platform houses other tools for 

data analysis, integration and 

visualization. Below is a list of 

three exemplary tools deployed 

through VirtualPlant. 

BioMaps: BioMaps 

takes one or more sets of genes 

and determines which functional 

terms (GO [18] or MIPS [19]) 

are statistically over-represented in each set, with respect to a background population (e.g. Arabidopsis 

genome). The output is presented in either a tabular format that can be downloaded to Microsoft Excel or 

a graphical representation based on the GO directed acyclic graph [1]. 

Sungear:  Sungear is a visually interactive and biologist-driven exploration of comparisons of the 

results of many experiments on a genomic scale. Sungear can represent an arbitrary number of 

experiments/lists, all of their disjoint intersections, and their related ontological terms. The position of a 

circle and arrows emanating from it, indicate the input lists of which it is a subset. The size of a circle is 

proportional to the number of genes in the intersection of those lists (see [20]). Many biologists find 

Sungear to be an extremely powerful and interactive tool for analyzing the interrelationships between sets 

of genes [10]. 

NetMatch: NetMatch, a Cytoscape plug-in, finds all instances of a query graph (e.g. a network 

motif) in a larger graph [21]. New versions compute the statistical significance of the motifs (e.g. 

Transcription factor motifs) found in a network. 

Up and coming tools for VirtualPlant include GeneSect, whose purpose it is to take a set of 

collections of genes and to determine whether any pair-wise intersections among those collections are 

either surprisingly large (against a variety of backgrounds), or surprisingly small.  Another new tool under 

development is a cluster management framework ClusterBoss, to run some expensive tasks such as 

correlation and network inference in parallel, which relates directly to the aims of the current NSF NNI 

proposal. 

 

Aim 4.  Predictions: Extensions into time and species. We have approached dynamic network modeling 

by applying a machine learning method called “State Space” analysis to time-series data in Arabidopsis to 

learn regulatory networks [22,23]. Our second goal, was to extend VirtualPlant to other species, such as 

Rice, which we have done as shown in Fig. 3.   

 

Virtual Plant and User Community: 

The VirtualPlant user community currently consists of 635 registered academic and commercial 

users from 36 countries. Among the 347 registered US users, 181 are from academia and 166 are from 

companies. Examples of commercial users include: Monsanto, Pioneer, Ceres, Syngenta and Unilever. 

Other countries that also have many users include: UK (78), Australia (27), Germany (24), Chile (22), 

Table 1: Quantitative Information about the Edge Types of the Arabidopsis 

Multinetwork. The multinetwork contains interaction data from several different 

sources. Here, we list some of the main sources of interactions. For a detailed 

description see [1]. 
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France (15), Italy (11), Spain (10), Canada (9), Japan (8), Korea (8). In addition, many anonymous 

unregistered users use VirtualPlant, but cannot store their datasets for later iterative analysis. 

VirtualPlant DB: The 

VirtualPlant database contains some 

of the most commonly used data 

types including metabolic pathways 

from KEGG and ARACYC, 

protein-protein interactions from 

BIND and Interolog databases, and 

GeneOntology and Gene 

annotations from TAIR (see Table I 

for a complete listing of data 

sources). The database also contains 

processed data obtained by 

analyzing publicly available 

Microarray experiments obtained 

from NASC [24].  

Software and Data 

Availability: VirtualPlant is 

accessible via the website 

www.virtualplant.org. Registered 

users (currently > 630) store their 

data sets and use many tools to 

analyze their genomic data such as 

microarray experiments. The 

website does not require a password 

and is available for free when used 

for non-for-profit purposes.  

 

NOTE IN REVISION:  This proposal is a revision of a previous application to NSF Plant Genome (IOS-

1025989: TRMS “Cross species network inference: From models to crops” (January 2010), and later to 

NSF ABI Innovation (ABI-1062434): “Cross species network inference” (July 2010).  Both panel reviews 

endorsed the novelty and importance of creating tools to enable network inference across species. In the 

NSF Plant Genome panel, the reviewers noted: “Shasha et. al. propose to develop, validate and deploy an 

analysis pipeline for comparative inference of gene function and interaction based on similarities in NT 

sequence, regulatory regions and transcription patterns.  Such a tool is sorely needed with the growing 

number of genome and trancriptome sequences coming available for the emerging model and non-model 

species.  … As such, the proposed development of a web-based Cross-species network inference database 

and analysis tool would be a major contribution.”  

In the more recent ABI submission, the reviewers appreciated the “novelty and importance of the 

proposed work and its broader impacts”. “The proposed resource will contribute to increased 

understanding of biochemical, regulatory, RNA and protein-protein interactions in plant species, with 

broad applications to agricultural and environmental issues.  The biologist-friendly tools will benefit the 

plant biology research community.”  However, because that ABI submission included a mixture of 

innovation and development activities, the PIs were encouraged by the PO to select one aspect for a 

resubmission.  In this revised ABI Innovation Application, we focus on innovation, related to the creation 

of cross-species network inference tools using an approach called “Neighborly Network Inference”, 

which exploits orthology, expression and other data, as well as phylogenetic position in making inference 

about network associations across species. 

 

 

Fig. 3: The VirtualPlant Arabidopsis and Rice Home Pages.  The VirtualPlant 

software platform (www.virtualplant.org) is designed to support multiple species 

[1]. Shown are the two home pages for Arabidopsis and Rice. Each supports a 

common set of tools, but is implemented on top of a separate database. An 

analysis within a species will not be slowed down by the addition of another 

species. 

http://www.virtualplant.org/
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PUBLICATIONS: Peer reviewed journal articles, chapters and books: 

 

VirtualPlant: Tool development for Plant Systems Biology  
Katari MS, Nowicki S, Aceituno F, Nero D, Kelfer J, Thompson L, Cabello J, Davidson R, Goldberg A, 

Shasha D, Coruzzi G, Gutierrez R (2010) “VirtualPlant: A software platform to support Systems 

Biology research”. Plant Physiol. Feb; 152:500-15 

Nero D, Kelfer J, Katari MS, Tranchina D, Coruzzi G (2009) “In silico evaluation of predicted regulatory 

interactions in Arabidopsis thaliana”. BMC Bioinformatics. Dec 21;10(1):435 

Poultney C, Gutierrez R, Katari MS, Gifford M, Paley W, Coruzzi G and Shasha D (2007) “Sungear:   

Interactive visualization, exploration & functional analysis of genomic datasets”. Bioinformatics,  

23:259-61 

Ferro A, Giugno R, Pigola G, Pulvirenti A, Skripin D, Bader G, Shasha D, “NetMatch: a Cytoscape  

plugin for searching biological networks” Bioinformatics, 2007 23(7):910-912 

 

Applications of VirtualPlant: Hypothesis Generation and Testing 

Krouk, G, Mirowski, P, LeCun, Y, Shasha, D and Coruzzi, G. (2010) Predictive network modeling of the 

high-resolution dynamic plant transcriptome in response to nitrate. Genome Biology 11 (12), 

R123 

Krouk, G, Crawford, NM, Coruzzi, GM and Tsay, YF. (2010) Nitrate signaling: adaptation to fluctuating 

environments. Curr Opin Plant Biol 13 (3), 266-273 

Krouk G, Tranchina D, Lejay L, Cruikshank A, Shasha D, Coruzzi G and Gutierrez R (2009) “A  systems 

approach uncovers restrictions for signal interactions regulating genome-wide responses  to 

nutritional cues in Arabidopsis.” PloS Comp Biol. Mar;5(3):e1000326. (Highly Accessed). 

Gutierrez R, Stokes T, Thum K, Xu X, Obertello M, Katari M, Tanurdzic M, Dean A, Nero D, McClung 

R and Coruzzi G (2008) "Systems approach identifies an organic nitrogen-responsive gene 

network that is regulated by the master clock control gene CCA1" Proc. Natl Acad Sci USA 105, 

4939-4944. (Faculty of 1000 recommended: Factor 3) 

Gutierrez R, Gifford M, Poultney C, Wang R, Shasha D, Coruzzi G, Crawford N (2007) "Insights into the 

genomic nitrate response using genetics and the Sungear Software System" Journal of 

Experimental Botany doi: 10.1093/jxb/erm079 

Gutierrez R, Lejay L, Chiaromonte F, Shasha D, Coruzzi G (2007) "Qualitative network models and  

genome-wide expression data define carbon/nitrogen-responsive biomodules in Arabidopsis"  

Genome Biology, 8: R7. Faculty 1000 (Must Read: Factor 6) 

 

Plant Systems Biology: Reviews, Books and Outreach 

Ruffel S, Krouk G, Coruzzi G (2010). "A Systems View of Responses to Nutritional Cues in  

Arabidopsis: Towards a Paradigm Shift for Predictive Network Modeling”. Plant Physiol.  Feb; 

152;445-52 

Gutierrez R, Coruzzi G., Eds (2009) Book: “Plant Systems Biology”, Annual Plant Reviews; Blackwell  

Publishing: Oxford, UK, 2009, Vol. 35. 360 pages. 

Coruzzi GM, Burga A, Katari MS, and Gutierrez RA (2009) “Systems Biology: Principles and  

Applications in Plant Research”. In “Plant Systems Biology”, Annual Plant Reviews; Blackwell  

Publishing: Oxford, UK, 2009, Vol. 35. Pgs 3-31. Book Chapter. 

Gifford M, Gutierrez R, and Coruzzi G (2006) "Modeling the Virtual Plant: A Systems Approach to  

Nitrogen-Regulatory Gene Networks". Essay 12.2 Chapter 12. Assimilation of mineral nutrients; 

In A Companion to Plant Physiology, Fourth Edition, Lincoln Taiz and Eduardo Zeiger,  

http://4e.plantphys.net/article.php?ch=12&id=352 

Gutierrez R, Shasha D and Coruzzi G. (2005) "Systems Biology for the Virtual Plant". Plant Physiol.  

Vol 138, pp 550-554. 
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Education & Training: The development of the Systems Biology tools and the Virtual Plant software 

platform has trained undergraduates (UG), MS and PhD students in Systems Biology. Students trained 

include Undergraduates: Steve Nowicki (NYU CAS), Varuni Prabhakar (Barnard College), Rebecca 

Davidson (BS Computer Science); Masters Students: Ana F. Arroja (MS student, NYU Courant), 

Ranjita Iyer (MS Computer Science), Jonathan Kelfer (MS Computer Science), Jesse Lingeman (MS 

Computer Science), Lee Parnell (MS Computer Science), Jarod Wang, (MS Computer Science); PhD 

Students: Chris Poultney (PhD student, NYU Courant), Aris Tsirigos (PhD student, NYU Courant), 

Saurabh Kumar (PhD student, NYU Courant). These students have gone on to PhD programs (Prabhakar 

and Parnell), post-docs (Poultney and Tsirigos) as well as to industry (Kelfer, Wang Medidata Solutions).  

 

RESEARCH DESIGN 

 

Aim 1: Development of the Neighborly Network Inference (NNI) model on Expression data   

Rationale. With the advent of Next-gen sequencing technologies, it will be increasingly common to find a 

newly sequenced species s, that is phylogenetically similar to other species on which there are already 

available experiments. Because many of those experiments will be genome-wide assays such as 

transcriptome expression measurements, we start with the network inference of positive and negative 

expression correlation for a hypothetical newly sequenced species s. 

Our neighboring species strategy for inferring edges between genes in species s, starts with pair-

wise gene expression correlation data on other species. From that data, we will train a machine-learning 

algorithm to determine whether there will be correlation between two genes in species s.  In addition to 

the simple Pearson correlation we use in this preliminary work, we will use related techniques such as 

mutual information [25], and Spearman correlation. (Note: It is a separate question to determine whether 

correlation signifies causality. If genes g1 and g2 correlate, g1 is a transcription factor, g2 is not, and g2 

has a transcription factor-binding site that the protein associated with g1 can bind to, then this is some 

evidence for causality. The best test is time-series experiment and analysis [22,26-29], followed by a 

knock-out or over-expression experiment. As that data becomes available, we will use it as part of our 

network inference project.).   

 

The input for our algorithm will be in the three formats described below. 

orthotab: target species| target gene | other species | other gene | orthology val1 | orthology val2 …: 

gives the gene-to-gene orthology value, according to several different orthology measures for example: 

reciprocal best blast [30] hits, OrthologID [4], OrthoMCL [31], and Inparanoid [32].  

 

edgetab: species | gene1 | gene2 | edgetype | strength | p-value | number of different experimental 

conditions: gives the strength and the p-value (the probability it could arise by chance – we evaluate this 

using a non-parametric re-sampling approach) of a given experimentally determined edge. We consider 

only experimentally determined edges as an input to this inference algorithm to avoid circular inferences. 

Note that certain edge relationships may be present only in certain conditions (e.g. drought conditions for 

plants). In that case, the tools we propose could be used just for the conditions of interest. In our 

preliminary work, we find correlations that generally hold over all conditions. 

    

species1 | species2 | species similarity measure1 | species similarity measure2: measures sequence 

similarity according to one of a number of criteria (e.g. distance based, for example average percent 

identity of protein sequences, or through parsimony).  

    

Now, to predict an edge between g1 and g2 in species s, we will combine evidence from edges in other 

species, as well as evidence from experiments in species s itself. The basic method will be regression and 

regression trees, with a penalty for complexity.  
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For the sake of performance and robustness to noise, we will use some mixture of the following three 

approaches: 

1. Random Forests [33,34] Random forests are ensembles of decision trees which are 

constructed from random subsets of the data. They're fast to train, easy to parallelize, and perform 

extremely well. 

2. Large-Scale SVM Regression [35] Bottou demonstrated that a stochastic gradient descent 

solver for a variety of learning problems (including support vector machine optimization), is able to scale 

with extremely large datasets, while converging to the predictive performance of traditional optimization 

algorithms. 

3. Large-Scale L-Regularized Learning [36] Stochastic coordinate descent (a method related to 

stochastic gradient descent, but with a slightly different update rule), can be used to learn sparse 

regression models, with small training-times, even for data sets where both the dimensionality and the 

number of training-points is large.  

 The net effect of this analysis, will be to find the weighting of different factors that will lead us to 

conclude that two genes in some species are correlated. Then, using available Arabidopsis time-series 

data [22], and other datasets that are currently being generated in our lab and others, we will combine 

correlation with time-series [22,26-29] and perturbation approaches using Graphical Lasso [37] to form 

causal networks.  

 

Preliminary Results.  In our initial case study, we 

consider steady-state data on three species 

Arabidopsis (A), Medicago (M), and Soy (G) 

(Glycine max) Fig. 4 & Table 2. We selected these 

three species as an initial test case because (i) there 

is ample and reliable Affymetrix data for each, and 

(ii) Medicago and Soybean -- both legumes -- are 

quite closely related (more so than Arabidopsis and 

Rice, as we discuss in the preliminary work for Aim 

2).  We tested the ability to infer Pearson 

correlation edges in a “target” species, knowing 

only correlation edges in a “source” species, and the 

gene-by-gene orthology between genes in the 

source species, and genes in the target species (Fig. 

4).  For this study, we analyze only those genes that 

are conserved across all three species - Arabidopsis, 

Medicago and Soybean.  Since there are a different 

number of experiments for each, and experiments 

from different sources, the distribution of 

correlation values can vary. So, we define two genes 

as “highly positively correlated”, if their correlation 

is in the top 5%, and “highly negatively correlated”, 

if their correlation is in the bottom 5%, and “in 

between” otherwise. Thus, our machine-learning 

algorithm predicts which of these three categories 

(positive, between, or negative) an edge in the target 

species is in. To assess the quality of the predictions, 

we compare the predicted results (that use no 

expression experiments in the target species), with 

the results from the experiments in the target 

species.  

Neighborly Network Inference Model.  Panel A, describes 

the equation used on the training data to determine the 

coefficients (a1, a2, a3..), which are then used for predicting 

the correlation edges in Panel B. Panel B shows an example 

where the model is trained (e.g. coefficients are determined) 

using correlation data in Arabidopsis (A) and Soy (G, Glycine 

max) as well as orthology data between A and G. Then, the 

model is used to predict correlated edges in M (Medicago) (a 

neighbor species of G), given the coefficients determined in 

training, and orthology between genes in A and M and 

correlations in A. The results of those predictions are then 

compared to experimentally determined correlation edges in 

M for validation.  When training on several pairs of species, 

then coefficient a4 species distance measure will be used in 

training and predictions. 
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 Because stochastic gradient descent is a machine learning technique, we train a linear equation of 

the form estimated correlation in target = a1*mean of orthologous values + a2*correlation of source pair 

+ a3*p-value of correlation of source pair, and + a4*species distance measure (Fig. 4). Here, mean of 

orthologous values is calculated as follows: if g1 and g2 are the source pair, and g1' and g2’ are the 

potential target pair, and g1 and g1’ are reverse top blast hit matches (as are g2 and g2’), then we take the 

mean of the orthology values, in this case percent identity, between g1 and g1', and between g2 and g2'.  

However, this equation is too simple because (i) it ignores experiments already done in the target 

species, and (ii) many gene pairs (besides reverse top blast hits) in the source species, may be relevant to 

the target pair g1 and g2, for example paralogs. For point (i), when some expression data about the target 

species is available, we will add a term of the form c*prelimcorrelation(g1,g2), that takes into account the 

correlation between g1 and g2, based on the experiments performed so far, though we did not do that 

here. For point (ii), we may require some form of aggregation over the gene pairs of the source species 

that are orthologous above a threshold to g1 and g2. (Note: That is unnecessary in this preliminary study, 

where we focus on reverse top blast hits.) When using a threshold, cross-validation on a training set, 

would set the level of the threshold. Finally, once we have data on many pairs of species, we will include 

a term that measures the similarity of species. 

We have assigned coefficients to the linear equation using Arabidopsis (A) as source species, and 

Soy (G, Glycine max) as the target. Then, we use those coefficients to infer edges in Medicago (M), based 

on edges in Arabidopsis. Then, we will do another test in which Soy and Medicago reverse roles. 

Examples of these results are summarized in Fig. 4 and Table 2. 

When we train using Arabidopsis (A) and Medicago (M) data, we get values a1 = 0.0276, a2 = 

1.2619, a3 = -0.8109.  We then test this using Arabidopsis and Soy (G), to get 18,292 predicted highly 

positive correlations, 3,684 predicted highly negative correlations. This gives us a recall of 0.91, for 

highly positive correlations, with a precision of 0.96, and for highly negative correlations, we get a recall 

of 0.62, and precision of 0.89 (Table 2). 

 When we train using Arabidopsis (A) and Soy (G) data, we get values a1 = 0.0894, a2 =1.0571, 

a3 =-0.0063. We then test this using Arabidopsis (A) and Medicago (M), to get 21,384  predicted highly 

positive correlations, and 228 predicted highly negative correlations. This gives us a recall of 0.99 for 

highly positive correlations, with a precision of 0.98, and recall of 0.01 and precision of 0.8, for highly 

negative correlations. Recall is less for negative correlation values because the training set is smaller 

(Table 2). 

In this preliminary test, we only used one pair of species to train.  As we develop this aim, we 

will train on several pairs of species, in which case coefficient a4*species distance measure will be used 

in both training and predictions.  Note also that this preliminary experiment makes predictions only about 

pairs in the target species whose members are highly orthologous to some pair in the source species. Our 

recall numbers would be much lower if we were measuring our success against identifying ALL 

Table 2: Neighborly Network Inference between Arabidopsis (A), Medicago (M), and Soy (G, Glycine max). The table is 

separated into two parts – (Left) Coefficients obtained from training and (RIGHT) The precision and recall of the correlation 

predictions. The analysis was performed reciprocally, using A M for training, and then predicting G, or using A G as 

training, and M for test. Recall is less for negative correlation values because the training set is smaller. 
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correlation edges in the target species. Orthology helps and may identify some of the most important 

edges, but this technique complements rather than replaces in-species experimentation. 

 

Expected Outcomes of Aim 1.  Our goal in this Aim, is to construct a machine-learning model that can 

predict, with high recall and precision, the expression correlation of edges between genes in a little-

studied species, by inference from a well-studied species. As more data about the species becomes 

available, we then apply the rest of our workflow to find a refined causal network.  

 

Aim 2: Proof-of-principle verification of Neighborly Network Inference (NNI) on heterogeneous 

data.  Rationale. In production, Neighborly Network Inference (NNI) will be used to infer edges between 

genes of many types. In Aim 1, we concerned ourselves only with expression correlation. The purpose of 

Aim 2, is to apply the NNI methodology to other kinds of networks (e.g. metabolic and protein-protein). 

As a test case, we infer such networks in species for which networks have been experimentally 

determined, and then evaluate the accuracy with which the inferred network predicts the experimental 

network. Here, we have chosen Arabidopsis and Rice, because they each have the most complete genomic 

data set to test our methods.  Despite the fact that these species are phylogenetically far apart (Fig. 1), the 

high accuracy obtained in our preliminary studies, suggests that the approach could have wide 

applicability.  We discuss 1) our preliminary analysis and results, 2) the overall objectives of this aim, and 

3) its expected outcomes. 

 

Preliminary results. Our preliminary results demonstrate NNI's ability to infer gene networks from 

Arabidopsis to Rice with impressive accuracy, as shown in Table 3.  For the data in Table 3, NNI was 

used to infer a Rice network that was then compared to the known validated data for Rice, including 

metabolic data from KEGG [38], 

and protein-protein interaction data 

from BIND plus other 

experimentally determined protein 

interactions  [39-43]. Our approach 

builds on inference approaches 

based on expression and homology  

[44-46], and also based on 

integration of several different types 

of associations [45,47].   

 

Below are the steps used in the NNI approach: 

Step 1. Obtain a reference validated Arabidopsis interaction network based on experimentally 

supported data. For our validated Arabidopsis networks, we assembled metabolic interactions (KEGG; 

19,688 interactions) [38], protein-protein interaction data from BIND (949 interactions) [48], protein-chip 

interaction data for MADS box (272 interactions) [39] and protein chip interactions for Calmodulin (755 

interactions) [42], and the Plant Interactome project (11,374 interactions) 

(http://signal.salk.edu/interactome.html). Many of the metabolic pathways in the KEGG and AraCyc 

databases are based on computational predictions, while 25% are validated experimentally in the literature 

[49,50]. 

 

Step 2. Identify Rice homologs of Arabidopsis interaction pairs. Connect every gene in the 

Arabidopsis interaction network with its Rice homologs. This technique can employ various homology 

methods, including either distance or parsimony based. In our preliminary analysis (Table 3), we obtained 

homologs via two commonly used methods, InParanoid [32] and OrthoMCL [31].  We also experimented 

with distance-based homology, selecting homologs with BLAST matches stronger than E-value of E-20 

Table 3: Validation of Network Inference using Arabidopsis (Reference) 

and Rice (Target). Inferring metabolic or protein interaction relationships in 

Rice based on homology alone (to Arabidopsis) data (using Rice expression 

data), yields high precision relative to the validated network (of Rice). 
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to capture one-to-many homology relationships [51], which captures the gene duplication events 

prevalent in plant genomes [52].  

 

Step 3. Build a Rice correlation network based on publicly available Rice microarray expression 

experiments. We downloaded all 48 Rice gene expression experiments on the Affymetrix GPL2025 

platform from GEO [53]. With the aim of finding experiments that both repress and induce the genes of 

interest (the Rice genes homologous to the genes in the Arabidopsis network), we selected the 

experiments with the highest variability of expression level across assays for these genes. These were 

experiments in which at least half the individual gene Z-scores across the assays exceeded 0.5. This 

selected 8 experiments, with a total of 169 assays (e.g. cel files). We then computed the Pearson 

correlation of all pairs of the genes of interest. We retain correlation edges between gene pairs whose 

expression vectors were significantly correlated (p-value <0.05, meaning less than a 5% chance of a non-

zero correlation by chance), and absolute value of correlation > 0.5 or >0.7 (Table 3).  

 

Step 4.  Build an inferred Rice network. Initially, we infer a Rice network that contains the edges that 

connect homologs to the network in Arabidopsis. We then refine the inferred Rice network, by retaining 

only edges that both connect homologs to the network in Arabidopsis, and connect genes whose 

expression values in the Arabidopsis experiments selected in Step 3, correlate more strongly than 0.5 or 

0.7.  Conceptually, homology suggests a set of possible network edges in the target species, and strong 

correlation of expression levels refines the set. Notice that we are using expression to infer other 

relationships (metabolic and protein-protein). This network is called the inferred Rice network.  

 

Step 5. Obtain a reference validated Rice network that contains edges representing known 

interactions. Our initial Rice validated network was constructed from 10,976 metabolic interactions and 

334 protein-protein interactions for Rice from KEGG [38] and BIND [48]. 

 

Step 6. Evaluate Inferred Rice Network. This step computes the similarity and p-value (significance) 

between the inferred and validated Rice networks, by using a network intersection tool called NetSect 

which is described below. We evaluated the quality of each subset of edge types in the inferred network. 

NetSect. Evaluating the Accuracy of the Inferred Network. Given networks N (“inferred”) and 

M (validated), with edges E(N) and E(M) respectively, one can measure their similarity by computing 

size( intersection( E(N), E(M) )) / size(union( E(N), E(M) ) ), which equals 1 when E(N) and E(M) are 

identical and zero when they are disjoint. We will also compute the recall and precision of the inferred 

network’s ability to predict edges in the reference network. To compute a p-value for the inferred 

network's reconstruction of the reference network, NetSect computes the similarity of the inferred and 

validated networks and then computes a p-value by comparing the sample similarity with the similarity of 

a collection of random networks having the same topology (i.e. isomorphic) as the inferred network, with 

vertices drawn from the entire genome. This use of randomness corresponds to the null hypothesis that 

the inferred network is no better than a random choice of edges. 

 

Analysis of preliminary results. Two main conclusions arise from our preliminary analysis of 

Neighborly Network Inference (Steps 1-6, above)  for Rice networks inferred from Arabidopsis data, and 

validated using rice data, as shown in Table 3.  First, homology alone does an excellent job of inferring 

networks, even for distantly related species. For metabolic edges, of the 2,165 edges in the Rice metabolic 

network inferred via homologs from InParanoid, 94.8% or 2,053 are validated in the Rice KEGG 

metabolic interactions, while the inferred network's recall is 17.8%. The precision of the metabolic 

network prediction is so high, that we hypothesize many of the predicted protein interaction edges that 

haven’t yet been detected experimentally. Second, restricting inferred edges to gene pairs with highly 

correlated expression data, enhances the inference's precision, but invariably dramatically worsens its 

recall. For example, intersecting with edges between genes with |correlation| > 0.5, reduces the recall to 

0.6% for metabolic edges (not shown).  
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To determine whether our general homology plus expression correlation technique would work 

for other kinds of edges, we tried to infer Rice protein-protein edges from Arabidopsis protein-protein 

edges and expression data. Unfortunately, there are only 11,241 non-redundant validated protein-protein 

edges in Arabidopsis and only 344 in Rice [48], so many of our predictions did not fall among those 344, 

but may one day be validated. Surprisingly, simple homology techniques (reciprocal top Blast hits and 

InParanoid with homologs of paralogs) each obtained a quite high precision of about 50%, and recall of 

between 4% and 8%. In those techniques, an edge between rice genes r1 and r2, would be inferred when 

r1 was homologous to a1, r2 to a2, and a1 and a2 formed a validated protein-protein edge in Arabidopsis. 

Expression data (either on all experiments or just those in which the expression value of potential 

homologs varied the most) sometimes improved precision, but at a severe loss in recall.  

These very preliminary results suggest that machine-learning techniques, like the stochastic 

gradient descent method used in Aim 1, can help determine the proper weights of different forms of 

evidence.  

 

Step 7. Expand validated and network inference into a “multinetwork” containing multiple edge 

types.  We will use techniques analogous to Steps 1-6 to infer networks based on other edge types. For 

example, we will add miRNA:RNA interactions [54-56]. Expanding the validated networks to include 

these datasets will enable us to create an inferred multinetwork that includes: protein-protein, 

Protein:DNA, miRNA-RNA and Metabolic edges.  

 

Role of machine-learning. As one would expect, the choice of data sources, expression experiment 

selection methods and homology algorithms and parameters, greatly influence the accuracy of the inferred 

Rice networks. That is why the machine learning techniques outlined in Aim 1 will be used. The 

experiments used for gene expression correlation, will include many different developmental stages, 

different organs, and different biotic and abiotic treatments, such as the ones recently released for Rice on 

GEO NCBI [57]. 

 

Expected outcomes and objectives of Aim 2. Through this work, we will evaluate the accuracy of NNI 

on additional species pairs and data sets. These will include: 

1. Tailor the selection of parameters and data sources to each form of information (edge type, 

similarity of species, etc.)  For example, our preliminary results (not shown) indicate that Kinase 

networks [40,41,43] cannot be accurately inferred between Arabidopsis to Rice (e.g. recall and 

precision each top out at a few percent). One reason for this may be that Transcription Factors – 

which constitute the majority of targets in Kinase networks – evolve too rapidly to be conserved at the 

Arabidopsis to Rice phylogenetic distance. 

2.  As new data become available on an ongoing basis, we will evaluate the accuracy of NNI for other 

species pairs and data sets. For example, NCBI now contains 387 Affymetrix experiments on Zea 

mays, and 145 for Medicago truncatula, and large-scale Arabidopsis and Rice protein interaction 

datasets are being created and will be made available (NSF Plant Interactome Project, 

http://signal.salk.edu/interactome.html). For some edge types, we expect that gene network inference  

will perform better between species that are phylogenetically closer. For example, we predict that 

inference between Zea mays and Rice, will perform better than inference between Zea mays and 

Arabidopsis, because the former are both monocots.   

3. We will stress-test our algorithms for their sequential and parallel performance, by generating large- 

scale artificial data sets. The results of this test will be to choose and design machine-learning 

algorithms that scale better while giving as promising results. 

 

Aim 3: Predicting experimental “Pay-off”: Framework to Determine the Next Best Experiment to 

Perform.  Rationale: In Aim 3, we propose a framework to estimate the information we might learn from 

a new set of experiment assays (hereafter simply “assay”) on a given species, in order to determine which 

types of new experiments will be most useful. The goal is to minimize experimental time and expense, 
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with respect to creating a network. We understand the importance of replicates with respect to identifying 

differentially expressed genes, however, replicates may not be as informative as new experiments for 

calculating condition-independent correlation between genes. 

To establish intuition for this aim, suppose that some species has many replicates/assays in some 

experimental conditions already, but many important conditions remain experimentally unexplored. It 

will probably be less useful to perform yet more assays on the already studied conditions, rather than to 

study new ones. On the other hand, if some important experimental conditions are particularly vulnerable 

to noise, then it may be useful to repeat assays in those conditions. The question is: how do we anticipate 

which experimental strategy will be most useful? 

To start, we will evaluate the “payoff” of performing a set of assays as follows: compare our state 

of knowledge before doing them, with our state of knowledge afterwards. To measure the difference, 

consider the edges after the assays to be closer to the truth.  The payoff is the number of edges that have 

improved, i.e. how many false-positives have been corrected, how many false-negatives have been 

corrected, and how many borderline cases have been resolved. For example, suppose we are interested in 

determining which pairs of genes have a correlation threshold above 0.7 (in absolute value), with a p-

value below 0.2. Then, we determine for each gene pair, both before and after the set of experiments, 

whether that pair achieves the threshold (a positive), doesn’t (a negative), or might (e.g. the mean is above 

0.7 but the p-value is too large). Pairs that have changed categories contribute to the payoff. 

 Suppose we are given a “budget” of n assays, e.g. a single microarray or chip-chip assay. We will 

use the above payoff measure, to determine which mix of replicates under existing conditions, replicates 

under c new conditions, with r replicates each (where n = rc), or some number of time-series experiments, 

where there are r replicates during each time-point. The computational method will not determine which 

conditions to try (that requires biological insight), just how many new conditions would probably lead to 

the most learning. For example, suppose that removing replicate assays from the database of assays for 

some species s, leads to almost the same correlation predictions as including those replicates (i.e. the 

payoff from including those replicates is low). Suppose, further, that removing conditions changes 

correlation predictions a lot. Then, our next experiments should explore more conditions. 

For a certain little-studied species s, this “take-away-and-simulate” strategy may not work, 

because there may not be enough assays to take away in that species. For that reason, we might use a 

different species s’, that is more studied and is statistically similar to this one. Statistical similarity will be 

measured as follows: take from s’ a subset of its experiments that reflects the diversity of the experiments 

done on s. For example, if three conditions have been tried on s, having 2, 3, and 4 replicates respectively, 

then find the subset of experiments on s’ having three conditions with 2, 3, and 4 replicates.  Next, using 

only those three conditions having those replicates, find the number of edges calculated to be above 

threshold in s’, the number calculated to be below threshold, and the number in between. If those numbers 

are similar for s’ and s, then try computational experiments on s’, in which we use the take-away-and-

simulate strategy for n assays on s' to determine the best strategy for s. 

 In many ways, this work falls in the pool-based sampling subcategory of the active learning 

framework [58]. In active learning, the learning algorithm “asks questions” to try to optimize the amount 

of information gained. An example in biology was done by King et al. [59,60] to discover metabolic 

pathways. The idea is that the active learner chooses a mutant and growth medium, and sees whether the 

mutant survives, and chooses the most useful growth medium for the purpose. Pool-based sampling, is the 

idea that there exists a large pool of potential experiments to be performed, and one must choose among 

them. The most common approach is “uncertainty sampling”, in which one performs experiments on data 

that one is least certain about (in information theoretic terms, the ones with maximum entropy) [61,62]. 

Another approach is called Expected Model Change, in which we try to learn the assays that would 

improve our current model as much as possible, if we knew the outcome [63]. Our approach attempts to 

follow the Expected Model Change approach. 

 

Preliminary results: 1) Table 4, shows the number of experimental conditions, and total number of 

assays on the species of interest to us. In this case, Soy (Glycine max) and Medicago.  We also note how 
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many expression correlation edges have an absolute value as great as 0.7, and a p-value of 0.2 or less. 

Given a budget of 60 assays, we use our method to calculate the payoff in each case. For the purposes of 

this preliminary work, we do the analysis on each species independently of others. In our research for the 

proposal, we will use orthology-inferred edges as well. 

In our test case, we “took away” 60 assays from Soy (Glycine max) using two strategies: (i) 

Remove conditions having the smallest number of replicates until the total number of assays removed 

equals 60, OR (ii) Take away assays from conditions having the most replicates first, until the total 

number of assays removed equals 60. We did the same for Medicago, but only removed 20% of the 

assays (29). 

Our preliminary experiments (Table 4) showed that for Soy (Glycine max) more conditions gave 

a bigger payoff, than more replicates. Specifically, 6,764 gene-pair correlations changed categories (e.g. 

from negative to between or from between to positive) when replicates were removed, and 8,012 gene 

pairs changed categories when experimental conditions were removed. Surprisingly, Medicago gave the 

opposite results. For 

Medicago, more genes 

changed categories where 

replicates were removed 

(10,029), compared to when 

conditions were removed 

(8,799). There are many 

reasons why different 

strategies would be better for 

different species or 

experimental datasets, but it is 

important note that our 

algorithm can capture such 

discrepancies. 

 

Expected Outcomes and Objectives of Aim 3. Our objective is to provide a tool for experimentalists to 

suggest which group of assays to try next on some species s, in order to learn as much as possible. If the 

experimentalist wants to learn about a whole group of related species, then our method will use the 

Neighborly Network Inference (NNI) framework to estimate the experimental payoff for other species, as 

well as for s itself. While our preliminary work has been concerned with expression correlation, inference 

of other kinds of edges (e.g. metabolic, protein-protein as discussed in Aim 2) can use the same 

technique. Neighborly Network Inference will both infer edges Aims 1 and 2, and also suggest 

experimental strategies in Aim 3. These two goals work nicely together because inference is needed to 

calculate the payoff of an experiment. 

 

VISUALIZING AND INTEGRATING OUTCOMES OF NNI:  When we succeed, Neighborly 

Network Inference will provide a collection of computational tools to help infer pair-wise relationships 

(correlation, protein-protein relationships etc.) among plant genes, though similar techniques could be 

used for other biological entities for which orthology is important. Our goal is to help biologists do their 

job efficiently and economically. To help them gain insight, we will integrate results across all 21 species 

(or any phylogenetically related group) using the following simple visualization.  

Visualizing the phylogenetic placement of correlated gene pairs. Suppose that g1 and g2 are 

highly correlated across many species in a clade c, but none outside c.  In this instance, we will “decorate” 

the phylogenetic tree (Fig. 1), at the basal node of c with g1 and g2, and record the source and number of 

species having a high correlation value between g1 and g2 within c. This will permit queries of the form: 

which gene pairs are highly correlated at some clade? For which clades does this gene pair show high 

correlation for at least a fraction f, of the species in that clade? (refer to Fig. 1).  This visualization will 

enable a cumulative analysis of gene pair correlations across many species.  This will reveal which gene 

Table 4: Experimental “Pay-off” prediction. Affymetrix data for Medicago or Soy 

(Glycine max) was downloaded from GEO [53] and normalized. Assays (individual 

hybridizations) were removed in two strategies: entire experimental conditions or 

individual replicates across many conditions. A significant correlation is defined as 

>=0.7 or <=-0.7 and p-value <=0.2. Results suggest that for Medicago it is better to add 

replicates and for Soy it is better to add new conditions. 
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pairs are highly conserved across deep nodes of the phylogenetic tree, and which gene pair correlations 

are derived.  Such information will be useful for practical purposes in inspiring experimental studies from 

our findings.   

 

TIMELINE: Year 1: Aim 1. Implement Neighborly Network Inference using a variety of machine 

learning methods, starting with linear regression and extending to various flavors of stochastic gradient 

descent. Verify the algorithms on simulated data (where we know the ground truth). Cross-validate on 

the expression experiments from our 21 species. Try the same approach among other eukaryotes. Aim 2. 

Gather and normalize the data for validated protein-protein and metabolic interaction networks for plant 

species. Years 2-3: Aim 2. Extend the Neighborly Network Inference to other species and d ata 

types. Aim 3. Build the framework for determining the best new experiments on cross -validated 

data. Deploy the first version of the NNI analysis to collaborators (R. Gutierrez, Chile), and 

other beta-testers.  

 

Future directions:  In this NSF ABI innovation grant, in Years 1-3, we will be developing and testing 

methods for gene network inference across species.  As we validate our NNI approaches, we would like 

to make them available to the plant community to empower network studies across species and generate 

testable hypotheses for interactions of genes whose functions are conserved across species.  Therefore, in 

the future, we envision developing an NNI analysis pipeline and interface using our software platform 

VirtualPlant (www.virtualplant.org), which could potentially be implemented as an extension of this 

NSF ABI innovation grant in years 4 and 5, under NSF ABI development funding. 

 

PLAN TO INTEGRATE RESEARCH AND EDUCATION: 

 Cross training of Biologists and Computer Scientist in Systems Biology. The development of 

Systems Biology tools in this project has and will involve biologists teaching computer scientists about 

topics like genetics, experimental genomics, and the computational challenges of analyzing genomic data. 

We do this informally at our weekly joint lab meetings at which graduate students and post docs from 

NYU Biology and NYU Courant each present their work to the group.  This project involves a resident 

full-time senior programmer (Arthur Goldberg) and part-time systems administrator (Roberto Jimenez) 

working within a Biology lab, interacting closely with wet-bench biologists.  The PI computer scientists 

(Shasha and Katari), are also involved in training and engaging computer scientist students at all levels in 

the emerging field of Systems Biology.  In the last year, they have trained two PhD students, two interns 

and two MS students from Courant working in this environment. For a complete listing of students 

trained in the past 4.5 years, see Education and Training section in Results from Prior support. 

 Workshops and Classroom Training in Genomics and Systems Biology: We also provide 

formal training in the form of workshops and classes to enable Systems Biology.  Examples of this 

include a weekly software workshop in “R”, which aims to teach biologists how to analyze their own 

genomic data.  A workshop on Virtual Plant has been taught two times, once by Jonathan Kelfer, a MS 

student working on the project and most recently by Manpreet Katari, co-PI.  Students have included 

several faculty on sabbatical at NYU including most recently:  Mary Lou Guerinot and Rob McClung of 

Dartmouth. Students will be exposed to Genomics and Systems Biology also through a series of formal 

courses offered by faculty at NYU’s Center for Genomics and Systems Biology including: G23.1128 

Systems Biology; G23.1130 Applied Genomics: Introduction to Bioinformatics & Network Modeling; 

G23.1127 Bioinformatics & Genomes. PhD students have and will continue to present their work in the 

weekly PhD seminar series hosted by the Biology Department.  Computational students will be involved 

in constructing the pipeline and making it perform through the use of parallelization. Such students will 

also help to develop and test optimization and machine learning algorithms for network inference.  

 

PLAN TO INTEGRATE DIVERSITY: We are committed to training scientists at the graduate and 

postdoctoral levels who can do independent research that cuts across fields and expertise in genomics.  

Our research team is also committed to diversity.  Researchers in our current and previous NSF grants 

http://www.virtualplant.org/
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included Hispanic and African-American scientists.  We will continue to actively seek out and recruit 

scientists from under-represented minorities to participate in our research in our continuing commitment 

to increase diversity in our research program. Five female scientists are associated with this project: 

Coruzzi (co-PI); Rebecca Davidson (Programmer); Varuni Prabhakar (UG Programmer); Ana Arroja 

(MS); Ranjita Iyer (MS Courant). Damion Nero a minority, recently graduated PhD student, has written 

programs contributing to the Virtual Plant project. Roberto Jimenez (Systems Admin) associated with this 

project is of Hispanic origin. 

 

SHARING OF RESULTS: 

Publications: The results of our analysis of the data we generate will be made available through peer- 

reviewed literature as it is the most appropriate way to make this information available. 

 

MANAGEMENT PLAN: To coordinate and facilitate interactions between individuals, Dennis Shasha, 

the PI (NYU Computer Science) will also serve as the overall Project Manager.  Gloria Coruzzi (NYU 

Biology) will serve as a biological advisor and conduit to a working lab and the wider plant community. 

The role of the Project Manager is to oversee the daily operations of the project and ensure that the needs 

and concerns of the participants are addressed on a day-to-day basis between the participants 

involved. We will also schedule day-long meetings twice a semester with our collaborator (Rodrigo 

Gutierrez, Chile), to do evaluation of work status and long-term planning. 

Bioinformatics manager: Dr. Manpreet Katari (NYU Biology) will be in 

charge of the bioinformatics data. To enable efficient information exchange of raw and processed data, 

a file server has been set up at the NYU to store and distribute data and its analysis among users at NYU 

Biology and NYU Courant.  This will be maintained by Dr. Roberto Jimenez, the Systems 

Administrator for this project, who will also maintain the web server, database server, and update the 

multinetwork databases. 

Senior Programmer: Dr. Arthur Goldberg (NYU Courant, current affiliation- 

Memorial Sloan Kettering) will manage the development of new software analysis tools and 

pipelines to enable Neighborly Network Inference (NNI) which will support the different species and 

inference, and also new pipelines for cross species analysis, especially as they relate to crop species in 

coordination with the PI, and a computer science doctoral student. 

Principal Investigators: Shasha and Coruzzi will each supervise personnel, organization, 

intellectual developments and contributions. 

 

Role of Participants: 

N a m e  I n s t i t u t i o n  R o l e  

Dennis Shasha-PI NYU Courant Project Leader: Computational 

Gloria Coruzzi-Co-PI NYU Biology Co-leader: Biological 

Manpreet Katari-Co-PI NYU Biology Bioinformatics Manager 

Arthur Goldberg-Senior Programmer NYU Courant Programmer 

Rodrigo Gutierrez-Consultant UCatolica Chile Assembling validated networks for target species  
 

 

COORDINATION WITH OUTSIDE GROUPS: 

Please see attached letter of collaboration: 
Rodrigo Gutierrez (U Catolica, Chile) Dr. Gutierrez, the creator of the Arabidopsis 

multinetwork (Gutierrez et al 2007) will assist in the assembly of multi-networks for crop species in the 

list of 21 species including Vitis (Grape), Corn, and Medicago. 
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