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The statistical methods applied to the analysis of genomic data do not account for uncertainty in
the sequence alignment. Indeed, the alignment is treated as an observation, and all of the
subsequent inferences depend on the alignment being correct. This may not have been too
problematic for many phylogenetic studies, in which the gene is carefully chosen for, among other
things, ease of alignment. However, in a comparative genomics study, the same statistical methods
are applied repeatedly on thousands of genes, many of which will be difficult to align. Using
genomic data from seven yeast species, we show that uncertainty in the alignment can lead to
several problems, including different alignment methods resulting in different conclusions.

Acommon theme in comparative genomics
studies is a flow diagram, or chart, trac-
ing the various steps and algorithms used

during the analysis of a large number of genes.
Flow charts can be quite sophisticated, with steps
such as identifying orthologous gene sets, align-
ing the genes, and performing different statistical
analyses on the resulting alignments. The key point,
and a great practical difficulty in comparative
genomics studies, is that the analyses must be
repeated many times. The procedure, then, is
largely automated, with scripting languages such
as Perl or Python cobbling together individual
programs that perform each step. In addition,
many of the individual steps involve procedures
originally developed in the evolutionary biology
literature, to perform phylogeny estimation or to
identify individual amino acid residues under
the influence of positive selection (1). Statistical
methods that until recently would have been ap-
plied to a single alignment, carefully constructed,
are now applied to a large number of alignments,
many of which may be of uncertain quality and
cause the underlying assumptions of the meth-
ods to fail.

How might alignment uncertainty affect ge-
nomic studies? We performed a study designed
to uncover the effect that alignment has on in-
ferences of evolutionary parameters. We exam-
ined genomic data from seven yeast species
(Saccharomyces cerevisiae, S. paradoxus, S.
mikatae, S. kudriavzevii, S. bayanus, S. castellii,
and S. kluyveri). Earlier molecular evolution
studies that included these species established
the appropriateness of sequence comparisons
between them (2–4), with estimated divergence
dates from S. cerevisiae ranging from as little as
5 million years for S. paradoxus to about 100
million years for S. kluyveri and average pair-
wise sequence similarity ranging from 54 to
89%. The comparisons we carried out among

the seven yeast species are, thus, reasonable and
of the sort that any evolutionary biologist might
make. Accurate inference of evolutionary pro-
cesses from molecular sequences also relies on
the compared sequences being orthologous.
However, correct identification of orthologous
sequences is not trivial because current align-
ment algorithms do not evaluate homology and
will align sequences regardless of proper evolu-
tionary relationships. We combined two earlier
data sets of previously identified orthologous
open reading frames (ORFs) from studies on the
comparative genomics analysis of yeast (3, 4).
The orthologs identified from the Kellis et al.
(4) study were used for species that overlapped
between the two studies (S. mikatae and S.
bayanus), and only those ORFs for which all
seven species contained a detected ortholo-
gous sequence were included in the analysis.
Overall, we considered a total of 1502 sets of
orthologous gene sequences.

For each orthologous gene set, we applied
seven different alignment programs—Clustal W,
Muscle, T-Coffee, Dialign 2, Mafft, Dca, and
ProbCons (5–11)—aligning data by amino acid
sequence under default program settings and
using the aligned amino acid sequences to con-
struct nucleotide alignments. From this intensive
undertaking, we produced a table of 1502 × 7
alignments. Alignments were then subjected to
several statistical analyses of the sort that an
evolutionary biologist might apply; specifically,
we estimated the phylogeny using maximum
likelihood under the GTR+G model of DNA sub-
stitution and the number of positively selected sites
for each alignment (1).

Estimates of phylogeny and inferences of pos-
itive selection were sensitive to alignment treat-
ment. Confirming previous studies showing that
alignment method has a considerable effect on
tree topology (12–14), we found that 46.2% of
the 1502 ORFs had one or more differing trees
depending on the alignment procedure used.
The number of unique trees outputted for each
ORF varied from one to six, and the average
symmetric-difference distance (15) between trees
for each ORF ranged from 0 to 6.67 (for trees of
seven species, the maximum possible value is
eight). Figure 1 shows a case in which align-

ments produced by the seven different align-
ment programs resulted in six different estimates
of phylogeny. In general, phylogenies estimated
from different alignments for an ORF were more
concordant when the alignments were similar.
Figure 2A shows a strong positive relation be-
tween a measure of variability in alignments across
alignment treatments and the average topolog-
ical distance between estimated trees (15). The
support for the maximum-likelihood trees, mea-
sured by the nonparametric bootstrap, was gen-
erally lower when alignments were dissimilar
across treatments (Fig. 2B). One does not
usually find strongly supported, but conflicting,
phylogenies produced by different alignment
treatments.

Previous studies on the effects produced by
different alignment methods focused on tree
topology. Yet, other commonly estimated evolu-
tionary parameters, such as substitution rates
and the frequency of positively selected sites,
are also alignment dependent. To examine if
variable alignments for an ORF affect the in-
ference of these parameters, we estimated the
synonymous (dS) and nonsynonymous (dN) sub-
stitution rates for each gene and inferred sites
under positive selection using Paml, under the
M2 model with (initially) a threshold of 0.5 for
inferring a site to be under positive selection (1).
Overall estimates of substitution rates did not
differ significantly among alignment treatments
(Kruskal-Wallis test: dN, P = 0.59; dS, P = 0.08;
dN/dS, P = 0.51), and for most ORFs none of the
sites were inferred as under positive selection,
regardless of the alignment treatment (1032
ORFs). However, of the remaining 470 ORFs,
only 44 showed a consistent number of posi-
tively selected sites. Thus, in 28.4% of the cases,
we found that the inference of positively selected
sites was also sensitive to the method of align-
ment. Raising the threshold for flagging sites as
under the influence of positive natural selection
to 0.95 reduced the number of conflicting ORFs
(Fig. 3); in 14.8% of the cases, positive-selection
inference was sensitive to alignment treatment.
However, reducing conflict among alignment
treatments comes at the cost of finding fewer
sites under positive selection, and in many cases
alignment treatments still produce discordant in-
ferences of positive selection.

We hypothesize that the inconsistent infer-
ences of alignments produced by the seven
different alignment methods examined here is
not necessarily a fault of the alignment proce-
dures, but rather reflects underlying variability
in the processes of substitution, insertion, and
deletion that makes some ORFs inherently more
difficult to align. We examined alignment varia-
bility by approximating the marginal posterior
probability distribution of the alignment for each
ORF, using the program BAli-Phy (16, 17). BAli-
Phy implements a stochastic model of insertion
and deletion and explores posterior probability
distributions of phylogenetic model parameters,
such as the tree and branch lengths, as well as the
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probability distribution of alignment by Markov
chain Monte Carlo (MCMC). Quantifying the
uncertainty of complex discrete random variables,
such as alignments, is a formidable task. We de-
veloped a crude summary statistic that reflects
variability of the alignments sampled with MCMC
for each ORF; we calculated a distance between
all pairs of sampled alignments and considered
the mean of these pairwise distances as a mea-
sure of inherent alignment uncertainty for each
ORF. To measure distances between alignments,
we exploited the metric of Schwartz et al. (18).
Effectively, this metric counts the number of pair-
wise homology statements upon which two align-
ments disagree. We found that alignment variability,

as reflected by the marginal posterior probability
distribution of alignments, was associated with
the inconsistency of alignments produced by the
seven different alignment methods (Fig. 2C) and
with the number of estimated nonsynonymous
substitutions for an ORF (Fig. 2D).

The problem of alignment uncertainty in ge-
nomic studies, identified here, is not a problem
of sloppy analysis. Many comparative genomics
studies are carefully performed and reasonable
in design. However, even carefully designed and
carried out analyses can suffer from these types
of problems because the methods used in the
analysis of the genomic data do not properly
accommodate alignment uncertainty in the first

place. Moreover, the genes that are of greatest
interest to the evolutionary biologist probably
suffer disproportionately. For example, in sev-
eral studies, the genes of greatest interest were
the ones that had diverged most in their non-
synonymous rate of substitution (19). But, these
are the very genes that should be the most dif-
ficult to align in the first place. We also do not
believe that the alignment uncertainty problem
is one that can be resolved by simply throwing
away genes, or portions of genes, for which align-
ment differs. Quality checks are common in com-
parative genomics studies, often referred to as
“filters” in a flow diagram showing the analyses
that were performed. The filters usually exclude
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Fig. 1. An example, involving ORF YPL077C, in which alignments produced by seven different alignment methods produce six different estimated
trees, albeit with low bootstrap support (bootstrap proportions shown parenthetically for each tree).
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ambiguous alignment regions according to some
criterion. Discarding information from alignments
is inadvisable for at least two reasons. First, one
may end up discarding considerable portions of
the primary data, some of which may be inform-
ative. In some cases, insertion and deletion events
themselves are informative for phylogeny estima-
tion (20). In other cases, excluding a gapped
position leads to excluding substitutions that
occur elsewhere in the tree at that site and are
informative (21). Moreover, excluding data does
not necessarily result in more concordant infer-
ences. Figure 2E shows results of phylogenetic

analyses in which gapped sites were excluded
from the alignments. One still finds many genes
for which phylogenetic inferences differ among
alignment treatments. Second, when an appro-
priate statistical method of analysis is applied,
one may be able to make conclusions even in
the face of alignment uncertainty. For example,
it might be that the number and identity of pos-
itively selected sites differ among alignment
treatments. However, when the alignment un-
certainty is properly accounted for, one may still
be able to pick out some sites that are consist-
ently under positive selection.

The common statistical procedure for ac-
counting for parameter uncertainty is to treat the
parameter as a random variable and sum or in-
tegrate over the uncertainty, weighting each pos-
sible value of the parameter by its prior probability.
In a comparative genomics study, we advocate
that alignment be treated as a random variable,
and inferences of parameters of interest to the ge-
nomicist, such as the amount of nonsynonymous
divergence or the phylogeny, consider the differ-
ent possible alignments in proportion to their
probability. Considering alignment as a random
variable is innate to the statistical alignment pro-
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Fig. 2. (A) Positive correlation between a measure of
topological distance among trees estimated from
different alignment methods and alignment variabil-
ity among alignment treatments (Spearman’s rank
correlation: rs = 0.53, P < 0.0001). (B) Conflicting
trees estimated from different alignment treatments
tend to be poorly supported by the nonparametric
bootstrap method (rs = −0.37, P < 0.0001). MLE,
maximum likelihood estimate. (C) Positive correlation
between the Bayesian-inferred alignment variability
and average distance between alignments from
different methods for each ORF (rs = 0.92, P <
0.0001). (D) Alignment variability for an ORF
positively correlates with the number of nonsynon-
ymous substitutions (rs = 0.42, P < 0.0001). (E)
Removing gapped sites from alignments does not
remove conflict among trees estimated from different
alignment treatments (rs = 0.52, P < 0.0001).

Fig. 3. (A) The range in the
number of positively selected
sites for each ORF. Inferences
of positive selection for an ORF
are consistent across alignment
treatments when the minimum
and maximum number of posi-
tively selected sites are equal. In
many cases (426 of 1502 ORFs),
inferences of positive selection
varied depending upon the align-
ment treatment. (B) Increasing
stringency for inferring positive
selection to 0.95 decreases the
number of sites inferred to be under positive selection; there remain many cases (222 of 1502 ORFs) in which inferences of positive selection differ according to
alignment treatment.
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cedure advocated by many (22–24). Statistical
alignment, however, generally assumes that the
phylogeny is known, a condition often violated in
comparative genomics studies. Moreover, many
biologists appear to take the position that when an
alignment has been carefully constructed, incor-
porating uncertainty is unnecessary; in a phylo-
genetic study, for example, the phylogenetic
marker is carefully selected because it is easy to
align and has a substitution rate appropriate to the
phylogenetic problem of interest (25), a selectivity
that may help, but probably does not solve, the
alignment uncertainty problem in many phyloge-
netic studies, especially those for anciently di-
verged species. In comparative genomics studies,
however, the goal is to analyze all of the genes in
the genome. As we have shown here, many of
these genes will be difficult to align and result in
highly variable evolutionary parameter estimates.
Allowing for uncertainty in the alignment and,
possibly, phylogeny simultaneously, through statis-

tical phylo-alignment, should be of special im-
portance in comparative genomics studies.
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NFAT Binding and Regulation of T Cell
Activation by the Cytoplasmic
Scaffolding Homer Proteins
Guo N. Huang,1,2* David L. Huso,3† Samuel Bouyain,4† Jianchen Tu,2† Kelly A. McCorkell,5†
Michael J. May,5 Yuwen Zhu,6 Michael Lutz,7 Samuel Collins,7 Marlin Dehoff,2 Shin Kang,2

Katharine Whartenby,7 Jonathan Powell,7 Daniel Leahy,4 Paul F. Worley2,8‡

T cell receptor (TCR) and costimulatory receptor (CD28) signals cooperate in activating T cells,
although understanding of how these pathways are themselves regulated is incomplete. We found
that Homer2 and Homer3, members of the Homer family of cytoplasmic scaffolding proteins, are
negative regulators of T cell activation. This is achieved through binding of nuclear factor of
activated T cells (NFAT) and by competing with calcineurin. Homer-NFAT binding was also
antagonized by active serine-threonine kinase AKT, thereby enhancing TCR signaling via
calcineurin-dependent dephosphorylation of NFAT. This corresponded with changes in cytokine
expression and an increase in effector-memory T cell populations in Homer-deficient mice, which
also developed autoimmune-like pathology. These results demonstrate a further means by which
costimulatory signals are regulated to control self-reactivity.

Tcells are activated through the TCR and
costimulatory pathways predominantly
mediated by the cell surface receptor

CD28. Although these pathways are relatively
well defined, questions still remain about how
costimulatory signals are regulated. The Homer
family of cytoplasmic scaffolding proteins are
known to function at the neuronal excitatory
synapse (1, 2), although their wide tissue dis-
tribution, including within the immune system,
suggests that their functions may be relatively
broad.

To investigate the in vivo functions of the
Homer proteins, we generated mice in which
the loci for each Homer gene were deleted
(Homer1, 2, and 3). Of these, we noted that
the Homer3-deficient mice (3) displayed lym-
phocyte infiltration of multiple organs and hy-
perplasia in lymph nodes by 10 weeks of age

(fig. S1), which suggested that at least one
of the family might possess some level of
immune function. Because Homer proteins
typically have redundant roles (1, 2), we first
assessed their possible role in T cell activa-
tion, by assaying interleukin-2 (IL-2) produc-
tion in T cells lacking all three genes (TKO).
IL-2 production was increased by a factor of 2
to 6 in anti-CD3–stimulated T cells from Homer
TKO mice relative to wild-type controls (Fig.
1A). By contrast, when T cells were activated
by costimulation of both CD3 and CD28, no
measurable difference in IL-2 production was
detected between wild-type and Homer-deficient
mice (fig. S2).

To examine the potential role of Homer pro-
teins in T cell activation in more detail, we used
short hairpin RNAs (shRNAs) to knock down
Homer gene expression in human Jurkat T cells

(Fig. 1B). Knockdown of Homer2 or Homer3,
but not Homer1, enhanced the expression of a
luciferase reporter driven by the IL-2 promoter
by a factor of 3 to 6 (Fig. 1C). Homer2 and
Homer3 appeared to have redundant functions in
these assays because overexpression of Homer2,
but not Homer1, could rescue the loss of Homer3
(Fig. 1D). The IL-2 promoter integrates signals
from the calcineurin-NFAT, MAPK-AP1, and
NF-kB pathways (4, 5); to identify which path-
ways might be regulated by Homer, we used
luciferase reporter constructs under the control of
multimerized binding elements for individual
transcription factors. The calcineurin-NFAT path-
way was preferentially enhanced in cells de-
pleted of Homer2 or Homer3 (Fig. 1E). To
respond to calcium signals, NFAT is first de-
phosphorylated by calcineurin (4), and in Jurkat
Tcells that expressed shRNAs targeting Homer3,
enhanced dephosphorylation of the NFATc2
isoform was observed after activation but not
under basal conditions (Fig. 1F). No difference
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