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ABSTRACT

Motivation:Microarraygeneexpressiondatahas increasingly become

the common data source that can provide insights into biological pro-

cesses at a system-wide level. One of themajor problemswithmicroar-

rays is that a dataset consistsof relatively few timepointswith respect to

a large number of genes, which makes the problem of inferring gene

regulatorynetworkan ill-posedone.Ontheotherhand,geneexpression

data generated by different groupsworldwide are increasingly accumu-

lated on many species and can be accessed from public databases or

individual websites, although each experiment has only a limited num-

ber of time-points.

Results: This paper proposes a novel method to combine multiple

time-course microarray datasets from different conditions for inferring

gene regulatory networks. The proposed method is called GNR (Gene

NetworkReconstruction tool)which isbasedon linearprogrammingand

a decomposition procedure. The method theoretically ensures the

derivation of the most consistent network structure with respect to all

of the datasets, thereby not only significantly alleviating the problem of

data scarcity but also remarkably improving theprediction reliability.We

tested GNR using both simulated data and experimental data in yeast

and Arabidopsis. The result demonstrates the effectiveness of GNR in

terms of predicting new gene regulatory relationship in yeast and

Arabidopsis.

Availability: The software is available from http://zhangorup.aporc.

org/bioinfo/grninfer/, http://digbio.missouri.edu/grninfer/ and http://

intelligent.eic.osaka-sandai.ac.jp or upon request from the authors.

Contact: chen@eic.osaka-sandai.ac.jp, xudong@missouri.edu,

zxs@amt.ac.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray technologies have produced tremendous amounts of

gene expression data (van Someren et al., 2001; Hughes et al.,
2000). Mining these data to understand gene expression and regu-

lation represents a major challenge for bioinformatics. A major

focus on microarray data analysis is the reconstruction of gene

regulatory network (GN), which aims to find the underlying network

of gene-gene interactions from the measured dataset of gene expres-

sion (Hartemink, 2005; Basso et al., 2005; Levine and Davidson,

2005; Akutsu et al., 2000; H (2000)). A wide variety of approaches

have been proposed to infer gene regulatory networks from time-

course data (Holter et al., 2001; Tegner et al., 2003; Dewey and

Galas, 2001), such as discrete models of Boolean networks and

Bayesian networks (Husmeier, 2003; Rangel et al., 2004; Beal

et al., 2005), and continuous models of neural networks, difference

equations (van Someren et al., 2001) and differential equations

(Chen and Aihara, 2001, 2002).

Since a typical gene expression dataset consists of relatively few

time points (often <20) with respect to a large number of genes

(generally in thousands), a major difficulty of GN inference for

all methods is scarcity of time-course data or the so-called dimen-

sionality problem (D’haeseleer et al., 2000; Zak et al., 2003; van
Somerenet al., 2001). Inotherwords, thenumberofgenes far exceeds

the number of time points for which data are available, making the

problem of determiningGN structure an ill-posed one. Currentmeth-

ods generally use a single set of time-course data under a specific

experimental condition, and hence often fail in using experimental

data to construct GN accurately. On the other hand, gene expression

data generated by different groups worldwide are increasingly accu-

mulated on many species and can be accessed from public databases

or individual websites, although each experiment has only a limited

number of time-points. For example, in the GEO database (http://

www.ncbi.nlm.nih.gov/geo/), currently there are 241 microarray

datasets for human alone. If such large amounts of data fromdifferent

experiments are combined and further exploited in an integrative and

systematicmanner, the scarcity of data can be greatly alleviated and a

more accurate reconstruction of GN can be expected. It is worth

mentioning that simply arranging multiple time-course datasets

into a single time-course dataset is inappropriate for GN inference

owing to data normalization issues and lack of temporal relationships

among these datasets. Hence, current GN inference methods typi-

cally cannot handle multiple sets of data.

In addition to the dimensionality problem of data, another

problem for the conventional approaches is that the derived gene

networks often have densely connected gene regulatory relation-

ships among nodes, which are not biologically plausible. A biologi-

cal gene network is expected to be sparse (Gardner and Faith, 2005;

Yeung et al., 2002), which should also be reflected in the procedure
of the network reconstruction.�To whom correspondence should be addressed.
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This paper proposes a novel method to combine a wide variety

of microarray datasets from different experiments (different

environmental conditions or perturbations) for inferring GN with

the consideration of sparsity of connections. GNR (Gene Network

Reconstruction tool), based on LP (linear programming) and a

decomposition procedure, is developed by exploiting the general

solution form of arbitrary connectivity matrix for GN. The proposed

method GNR theoretically ensures the derivation of the most con-

sistent or invariant network structure with respect to all the used

datasets, thereby not only significantly alleviating the problem of

data scarcity but also remarkably improving the reliability. Specif-

ically, inferring GN is formulated as an optimization problem with

an objective function of forced matching and sparsity terms, so that

a consistent and sparse structure that is also considered to be bio-

logically plausible can be expected. An efficient algorithm has been

developed to solve such a large-scale LP in an iterative manner.

Both simulated examples and experimental data are used to dem-

onstrate the effectiveness of GNR, which also leads to predictions of

new gene regulation relationships for yeast and Arabidopsis. GNR is

implemented in the Fortran programming language and the software

is available from http://zhangorup.aporc.org/bioinfo/grninfer/,

http://digbio.missouri.edu/grninfer/ and http://intelligent.eic.osaka-

sandai.ac.jp or upon request from the authors.

2 METHODS

Figure 1 illustrates the schematic of the proposed method. In this section, we

first describe a GN as a set of differential equations, and then derive a special

solution of the GN based on singular value decomposition (SVD) for a single

dataset (time-course data). By constructing the general solution of the GN for

each single dataset, we formulate the GN reconstruction problem as an

optimization problem which is to find the most consistent network structure

with respect to all the used datasets. The optimal solution can be viewed as a

special solution for the multiple datasets with the minimal connections or

edges. We show that such an optimization problem is equivalent to a linear

programming, and an efficient algorithm is developed to solve such an LP

based on the decomposition technique.

2.1 Gene regulatory network

Generally, a genetic network can be expressed by a set of non-linear dif-

ferential equations with each gene expression level as variables

_xxðtÞ ¼ f ðxðtÞÞ‚ ð1Þ

where x(t) ¼ (x1(t), . . . , xn(t))
T 2 Rn, and f ¼ (f1, . . . , fn)

T : Rn 7! Rn. xi(t) is
the expression level (mRNA concentrations) of gene i at time instance t.

Assume that there are a total of m time points for a given experimental

condition from microarray, i.e. t1, . . . , tm. fi is a C
1 class non-linear function.

Although gene regulations are often non-linear, most of the existing

approaches for GN inference use linear or additive models owing to unclear

structures of biological systems and scarcity of data (D’Haeseleer et al.,

1999; Gustafsson et al., 2005). From the viewpoint of dynamical systems,

linear equations can at least capture the main features of the network or the

function, in particular around a specific state of the system. The linear form

of Equation (1) with appropriate normalization is

_xxðtÞ ¼ JxðtÞ þ bðtÞ‚ t ¼ t1‚ . . . ‚ tm‚ ð2Þ

where J ¼ (Jij)n·n ¼ @f(x)/@x is an n · n Jacobian matrix or connectivity

matrix, and b ¼ (b1, . . . , bn)
T 2 Rn is a vector representing the external

stimuli or environment conditions, which is set to zero when there is no

external input.

2.2 General solution for a single dataset

To overcome the difficulty because of scarce data, many techniques, such as

clustering of genes, SVD, interpolation of data (van Someren et al., 2001)

have been developed.We first adopt the SVD technique to derive a particular

solution and further the general solution of Equation (2), using a single time-

course dataset. By rewriting Equation (2), we have

_XX ¼ JX þ B‚ ð3Þ

where X ¼ (x(t1), . . . , x(tm)), B ¼ (b(t1), . . . , b(tm)) and _XX ¼
ð _xxðt1Þ‚ . . . ‚ _xxðtmÞÞ are all n · m matrices with _xxiðtjÞ ¼ ½xiðtjþ1Þ � xiðtjÞ�/
½tjþ1 � tj� for i ¼ 1, . . . , n; j ¼ 1, . . . ,m. By adopting SVD, i.e.

ðXTÞm·n ¼ Um·nEn·nV
T
n·n, where U is a unitary m · n matrix of left

eigenvectors, E ¼ diag(e1, . . . , en) is a diagonal n · n matrix containing

the n eigenvalues and VT is the transpose of a unitary n · n matrix of right

eigenvectors. Without loss of generality, let all non-zero elements of ek
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Fig. 1. Schematic of GNR.

Y.Wang et al.

2414

http://zhangorup.aporc.org/bioinfo/grninfer/
http://digbio.missouri.edu/grninfer/
http://intelligent.eic.osakasandai.ac.jp


be listed at the end, i.e. e1 ¼ � � � ¼ el ¼ 0 and el+1, . . . , en 6¼ 0. Then we can

have a particular solution with the smallest L2 norm for the connectivity

matrix ĴJ ¼ ðĴJ ijÞn·n as

ĴJ ¼ ð _XX � BÞUE�1VT ð4Þ

where E�1 ¼ diag(1/ei) and 1/ei is set to be zero if ei ¼ 0. Thus, the network

family, or the general solution of the connectivity matrix J ¼ (Jij)n·n is

J ¼ ð _XX � BÞUE�1VT þ YVT ¼ ĴJ þ YVT ð5Þ

Y ¼ (yij) is an n · n matrix, where yij is zero if ej 6¼ 0 and is otherwise an

arbitrary scalar coefficient. Solutions of (5) represent all of the possible

networks that are consistent with the single microarray dataset, depending

on arbitrary Y. Notice that m + 1 points are required in (5) owing to the

estimation of _XX .

2.3 Special solution with minimal connections for

multiple datasets

Assume that there are multiple microarray datasets for one organism, each of

which corresponds to its own general solution of (5). Each time-course

dataset may be measured under various environments or stimuli by different

labs. Specifically, there are N datasets, and we can infer N networks

respectively as

Jk ¼ ð _XXk � BkÞUkE
�1
k VT

k þ YkVT
k ¼ ĴJ k þ YkVT

k ‚ ð6Þ

where the subscript k ¼ 1, . . . ,N is the index of the dataset-k. Note that

without normalization, Jk for each dataset is actually a normalized matrix

even for different experiments with different time intervals due to the

form of (4).

Next, we will find the most consistent network structure J¼ (Jij)n·n for all

k ¼ 1, . . . ,N of (6), with consideration of sparse structure, as illustrated in

Figure 1. Mathematically, the problem is formulated as

min
Y‚ J

XN

k¼1

Xn

i¼1

Xn

j¼1

½vkj Jij � Jkijj þ ljJijj�‚ ð7Þ

where Jkij is the function of Yk according to (6), and Y ¼ (Y1, . . . ,YN). The

variables are Y and J. The first term is the matching term which forces the

matching of J and Jk, whereas the second term is the sparsity term which

forces J sparse owing to L1 norm. l is a positive parameter, which balances

the matching and sparsity terms in the objective function. The variables in

(7) are Jij and all of non-zero ykij. v
k is a positive weight coefficient for the

dataset-k with
PN

k¼1 vk ¼ 1. Since different datasets may have different

qualities (e.g. different technologies, number of repeats in measurements,

etc.), a weight coefficient is used to represent the reliability of each dataset.

Assume that the number of the repeated experiments for the dataset-k is Nk

by using the same type of microarray. Then vk can be set as

vk ¼ NkPN
i¼1 Ni

: ð8Þ

The optimization problem for (7) is a mathematical programming problem

with positive combination of L1 norm of variables, which can be transformed

into a linear programming problem through a well-known procedure and

solved by a simple iterative procedure. Owing to L1 norm, generally the

optimal solution of (7) has the property with the zeros for jJij � Jkijj and jJijj
as many as possible, which exactly serves our purpose, i.e. consistent and

sparse structure.

2.3.1 Decomposition and algorithm Clearly when J is fixed, the

original problem of (7) can be divided into N independent subproblems.

We decompose (7) into the following form.

min
J

min
Y

XN

k¼1

Xn

i¼1

Xn

j¼1

½vkjJij � Jkijj þ ljJijj� ð9Þ

Since (9) is a large-scale linear programming (LP) problem owing to a large

number of variables, we adopt an iterative technique to solve (9). Specif-

ically, first we fix J to solve N small-size matching subproblems Y, and

then update J based on the results of Y for N subproblems. Such iteration

continues until converged.

Therefore, we have the following algorithm for deriving gene network.

� STEP-0: Initialization. Obtain all of the particular solution ĴJ k by SVD

from (4), and vk from (8). Set initial value Jij(0) ¼ 0, Yk
ijð0Þ ¼ 0 and

Jkijð0Þ ¼ ĴJ k, andpositivevalues l,«. Let iteration indexbeqandsetq¼1.

� STEP-1: Set JkðqÞ ¼ Jkðq � 1Þ þ YkðqÞVT
k and solve ykijðqÞ at iteration

q by LP for each subproblem from (9) with J (q � 1) fixed, i.e. solve

YkðqÞ ¼ ðykijðqÞÞm·m of the following subproblem for k ¼ 1, . . . ,N with

J(q � 1) given

min
YkðqÞ

Xn

i¼1

Xn

j¼1

jJijðq � 1Þ � JkijðqÞj ð10Þ

Note that ykijðqÞ ¼ 0 if j > lk according to (5).

� STEP-2: Solving Jij(q) at iteration q by LP with all of ykijðqÞ given, i.e.
solve J(q) of the following problem with all of Jk(q) fixed.

min
JðqÞ

XN

k¼1

Xn

i¼1

Xn

j¼1

½vkjJijðqÞ � JkijðqÞj þ ljJijðqÞj� ð11Þ

Thedetail proceduresof solving (10) and (11)are described inSupporting

Material.

� STEP-3: If J is converged, i.e. jjJ(q)� J(q� 1)jj < «, then terminate the

computation. Otherwise, go to STEP-1 by q ! q + 1.

Although the solution may depend on l, it is a single parameter which can

be tuned in a relatively easy manner or be simply tested for a range of its

value. A flowchart of the algorithm is illustrated in Supplementary Material.

The non-linear network (e.g. with quadratic form) can also be derived with

similar form of (7) in a self-consistent way.

2.3.2 Confidence evaluation Let the optimal solution of (7) be J*
and Y�k. Then, the variances vij and deviation sij of each element Jij for J can

be easily estimated by

vij ¼

XN

k¼1

vk½J*ij � JkijðY*kÞ�2

N
ð12Þ

sij ¼
ffiffiffiffiffi
vij

p ð13Þ
By computing their average, we have

�ss ¼
Xn

i¼1

Xn

j¼1

sij

n2
ð14Þ

In addition, the proposed approach can be further improved by combining

with other methods, such as, the data expanding technique developed by van

Someren et al. (2001).

3 RESULTS

In this section, we first report on several numerical tests that we have

designed to benchmark GNR using multiple simulated datasets.

Then we will describe the GN inference using yeast and Arabidopsis
microarray gene expression data. As analysed in Methods, when

a single time-course dataset is adopted, GNR is similar to the

method of Yeung et al. (2002), which can recover the network

connectivity from gene expression measurements in the presence

of noise by SVD and regression. For a single time-course dataset, it

is easy to show that the smallest number of time points needed is

O(log n) to reconstruct the n · n connectivity matrix for an n-gene
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network (Yeung et al., 2002). When adopting multiple datasets, we

can further infer the most consistent network structure with respect

to all the datasets in a more accurate and robust manner.

3.1 Simulated data

The first example is a small simulated network with five genes

governed by

_xx1ðtÞ ¼ �2x2ðtÞ þ j1ðtÞ‚
_xx2ðtÞ ¼ �x3ðtÞ þ j2ðtÞ;
_xx3ðtÞ ¼ �3x4ðtÞ þ j3ðtÞ‚
_xx4ðtÞ ¼ �1:5x5ðtÞ þ j4ðtÞ‚
_xx5ðtÞ ¼ 2x1ðtÞ þ j5ðtÞ‚

where xi reflects the expression level of the gene-i and ji(t)
represents noise for i¼ 1, 2, 3, 4, 5. Clearly, the system is a negative

gene regulation loop with genes 2, 3, 4, 5 repressing genes 1, 2, 3, 4

respectively, and with gene 1 in turn enhancing gene 5.

To test GNR, we randomly choose the initial condition of the

system and take several points of x as a measured time-course

dataset. With three different initial conditions, we obtained three

different datasets with 4, 4 and 3 time points respectively, and

applied GNR to reconstruct the connectivity matrix or the Jacobian

matrix J. To measure the discrepancies between the true network

and the inferred network with n genes, we adopt the simple criterion

in Yeung et al. (2002) as E0 to assess the basic recovering ability:

E0 :¼
Xn

i¼1

Xn

j¼1

eij‚ ð15Þ

where eij takes 1 if jjJTij � JRij jj > d, otherwise 0. d is a prescribed

small value for error tolerance related to noise level of the system.

JTij and JRij are interaction strength from gene-j to gene-i for the true
and inferred networks, respectively.

Furthermore to depict the accuracy or correctness of GNR, we

introduce the following two criteria E1 and E2 as

E1 :¼
Xn

i¼1

Xn

j¼1

jJTij � JRij j ð16Þ

E2 : ¼
Xn

i¼1

Xn

j¼1

ðJTij � JRijÞ
2 ð17Þ

which are L1 norm and L2 norm errors respectively for all of

interaction strengths.

The numerical results are depicted in Figures 2 and 3, which

show the reconstructed networks without and with noises respec-

tively. As indicated in Figure 2, clearly the more the datasets, the

more accurate the inferred network. When using one dataset

(Fig. 2b), it contains a wrong relation between x5 and x3. As two
datasets are used, the topology of the network becomes correct

(Fig. 2c). After using all three datasets, the predicted connectivity

matrix, which represents the strengths among gene interactions, is

very close to the true one (Fig. 2c). Such results imply that GNR is

able to infer the solution of the highly under-determined problem

in an accurate manner when a sufficient number of datasets (or

experiments) are available even though each dataset has only a

few time points and starts from different initial conditions. In

GNR, we also introduce a scalar parameter l to control the sparsity

of the inferred network (see Methods for details). When there are

multiple solutions (which are typical) due to the under-determined

nature, GNR prefers to infer a network with a sparse structure.

Figure 3 shows the results when noises are added to the dynamics.

As indicated in Tu et al. (2002), the distribution function of the

noise in microarray is more like a Gaussian distribution. Therefore

we set all of noises ji(t), i¼ 1, 2, 3, 4, 5 obeying normal distribution

in the simulated example. With gradual increase of noise level to

N(0, 0.005), the network eventually cannot be correctly inferred

even using all three datasets (Fig. 3c) due to the effect of noises. For

such an under-determined case, GNR can reconstruct the network

by an additional constraint of sparsity, i.e. introducing a positive

parameter l, as shown in Figure 3d. With such a constraint, gen-

erally there is a better chance to construct a biologically plausible

structure (Yeung et al., 2002) but at the expense of accuracy of
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interaction strengths. We have also tested for a nonlinear gene

network by replacing all linear terms into quadratic terms. As

demonstrated in Supplementary Material (in particular Supplemen-

tary Figure A2 and Table A1), comparing with the linear and noise

cases, the link strengths of reconstructed networks have certain

errors. Nevertheless, the topology of the network can be correctly

inferred using all three datasets (Supplementary Figure A2c).

Table 1 shows the accuracies of different error criteria, i.e. E0,

E1 and E2 in the two cases without noise and with noise obeying

N(0, 0.005) normal distribution, which indicate that adding

datasets improves the accuracy of the network reconstruction,

e.g. the more the datasets, the smaller are the E0, E1 and E2 values.

This table also implies that a solution of GNR is a balance between

the topology reconstruction (evaluated mainly by E0) and the

accuracy of interaction strength (evaluated mainly by E1 or E2).

The trade-off between E0 and E1 (or E2) can be controlled by the

parameter l. The deviation �ss in Table 1 is introduced to evaluate

the confidence of the inferred network (see Methods for details).

The tendency of �ss also indicates that adding datasets improves the

confidence of the network reconstruction.

We also consider a large system to calibrate the proposed reverse

engineering scheme. The results are listed in the Supplementary

Material, which further confirm the effectiveness of GNR.

3.2 Application to experimental data

We applied GNR to experimental data. To ensure high quality of the

data, we only used whole genome Affymetrix chips microarray

experimental data, instead of any oligo or cDNA array data.

3.2.1 Heat-shock response data for yeast We first test GNR

using a small number of genes. We created an input dataset for

10 transcription factors related to heat-shock response in yeast

Saccharomyces cerevisiae. Out of the 10 transcription factors 2

(Hsf1p and Skn7p) are known to be directly involved in heat

shock response. Hsf1p and Skn7p each are known to regulate 4

other transcription factors among the 10. This information was

obtained from YEASTRACT (http://www.yeastract.com/index.

php). For the 10 transcription factors, we used 4 microarray datasets

at the Stanford Microarray Database (http://smd.stanford.edu/)

(y11, y14, y16:57–60, y16:109–112, with 7, 5, 5, 4 time points,

respectively) for gene expression under heat shock conditions.

We applied GNR to this dataset. As shown in Figure 4, the pre-

diction succeeded in reconstructing four edges of the network with

documented known regulation and 1 edge with documented

potential regulation.

3.2.2 Cell cycle data for yeast We tested GNR using the experi-

mental data for cell cycle studies in Saccharomyces cerevisiae
obtained from the Stanford Microarray Database (http://smd.

stanford.edu/). We generated four datasets with different conditions.

Supplementary Table A5 lists the experimental conditions and time

points used for analysis. Among all the yeast genes, 140 of them

have change of 2-fold up or down in at least 20% of the expression

level across all datasets.

Application of GNR to the 140 differentially expressed genes of

the four datasets generated consistent subnetworks with 64 links,

431 links, etc. depending on the scalar parameter used to control the

sparsity or consistency of the subnetwork. Figure 5 shows a rep-

resentation of the 64-link GN model. Figure 5a shows YGP1 in the

center which is a cell wall-related secretory glycoprotein and

induced by nutrient deprivation-associated growth arrest and

upon entry into the stationary phase (Destruelle et al., 1994). In
the predicted model, YGP1 activates three genes, i.e. DSE2, PIR3

and FET3. Both DSE2 and PIR3 relate to cell wall organization and

biogenesis (Doolin et al., 2001; Mrsa and Tanner, 1999), whose

activations may follow YGP1 at the entry of the stationary phase.

Among the genes that YGP1 suppresses in the model, it is known

that HLR1 suppresses the cell wall phenotypes (Alonso-Monge

et al., 2001). Suppressing HLR1 by YGP1 is equivalent to enhance

cell wall development, which is consistent to the activation of DSE2

and PIR3. TFA2 is TFIIE small subunit, involved in RNA poly-

merase II transcription initiation (Kornberg, 1998). In addition to

the genes in Figure 5, other genes in the network show negative self

regulation (data not shown).

3.2.3 Stress response data for Arabidopsis We also applied our

method in studying stress response in Arabidopsis thaliana. We

used whole genome Affymetrix chips microarray experimental

data for Arabidopsis thaliana from the ATGenExpress database

at The Arabidopsis Information Resources (TAIR) (http://www.

arabidopsis.org/). We applied nine datasets related to the stress

responses, each with six or more time points and each for the

Table 1. Accuracies for different error criteria and confidence evaluation

l E0 E1 E2 �ss

Without noise

One dataset 0.0 1 1.38 0.22 0.4145

Two datasets 0.0 0 1.16 0.21 0.0075

Three datasets 0.0 0 0.93 0.15 0.0032

With noise

One dataset 0.0 2 1.42 0.27 0.4105

Two datasets 0.0 2 1.36 0.21 0.0131

Three datasets 0.0 1 0.93 0.13 0.0035

Three datasets 0.3 0 0.93 0.19 0.0197

Hsf1 Rpn4 Reb1

Skn7 Tye7 Rox1

Sok2 Sip4

Yap1
Sfl1

Fig. 4. Regulatory network reconstruction for set of 10 transcription factors

for heat shock response microarray data in yeast. Activation is shown in red

and repression in blue arrows. The confirmed edges are shown in bold arrows,

while the potential edge is shown in yellow-red arrow indicating activation.
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root and shoot experiments. Supplementary Table A6 lists the

experimental details and the time points used. We used the log

ratios of the expression values for a treatment condition against

the mock condition. We narrowed down the list of genes to 226

genes for the root experiments and 246 genes for the shoot

experiments based on two-fold change (either up or down) in at

least 70% of the ratios of a gene. This list represents the most

statistically significant genes differentially expressed under stress

in root and shoot based on all experiments.

GNR was applied to the 226 genes with the above nine datasets.

Using different thresholds, we can predict various networks

with different edge density, which are consistent with respect to

all datasets. Figure 6 represents a 35-link sub-network in shoots.

The network shows that the genes AT1G56600 and ATERF6

(AT4G17490) control the neighboring genes by either activating

or suppressing them. We found that our network relates to some

knowledge while predicting novel regulations. ATERF6 is a

member of the ERF (ethylene response factor) subfamily B-3 of

ERF/AP2 transcription factor family (Fujimoto et al., 2000). It is
predicted to activate three genes encoding known or putative tran-

scription factors, i.e. AT2G12940, AT3G49760 and AT2G40750.

AT2G12940 is similar to transcription factor VSF-1; AT3G49760

is a Bzip transcription factor; AT2G40750 is a member of WRKY

transcription factor family. Other genes have functions related to

stress response. AT1G52560 is a heat shock protein. AT1G36030

encodes a member of the F-box family, whose members involved in

regulating diverse cellular processes including cell cycle transition,

transcriptional regulation and signal transduction.

4 DISCUSSION

Microarray gene expression data has increasingly become the com-

mon data source that can provide insights into biological processes

at a system-wide level. As indicated in Soinov (2003), although a

large amounts of data are increasingly accumulated, one of the

major problems with microarrays is that data often come from

different platforms, laboratories, etc. It is often difficult to compare

or combine results of experiments done by different research groups

for biological inference. In contrast to the conventional methods

which require more time points in a single dataset to infer more

accurate network owing to the dimensionality problem, the main

contribution of this paper is that we developed a methodology to

reconstruct GN using multiple datasets from different sources with-

out normalization among the datasets. In other words, we provide a

general framework to handle the microarray data by fully exploiting

all available microarray data for a given species, so as to alleviate

the problem of dimensionality or data scarcity. As a byproduct of

the new method, it provides a new way to compare hypotheses

generated from different datasets, and also a new way to derive

a common substructure not from network alignment but from the

raw microarray datasets. In particular, it is very effective to find an

invariant structure when multiple datasets with different conditions

or perturbations are used.

We have tested our approach on both simulated problems and

experimental biological data, which verified the efficiency and

effectiveness of the algorithm. Depending on the trade-off parame-

ter l, we can derive either a global structure with dense connection

for a small l or local substructure with sparse connection for a

large l. Furthermore, the role of parameter l in the inference algo-

rithm is discussed and tested by comparing the inferred network

structures for different ls. Also we discuss how to specify the proper

value and the searching strategy in the parameter space of l (see the

details in Supplementary Material).

There is an important assumption for the proposed method in this

paper, i.e. the structure of the regulatory network is stationary, and

does not ‘rewire’ under the environmental conditions for those

different datasets. This means that the change of environmental

conditions alters the level of gene expression instead of the network

structure. Another assumption is that high resolution time-course

microarray datasets are required so as to accurately infer the net-

work structure because a genetic network is expressed by a set of

differential equations with each gene expression level as a variable

shown in Equation (1). Here high resolution data mean high quality

time-course microarray data which are expected to capture the

dynamic behavior of the gene regulatory network.

The linear differential equation model in this paper is used to

identify gene regulation between RNA transcripts (Gardner and

Faith, 2005). An advantage of such a strategy is that the model

can implicitly capture regulatory mechanisms at the protein and

metabolite levels that are not physically measured. That is, it is

not restricted to describe only transcription factor/DNA inter-

actions. By construction, the inferred model may accurately reflect

a physical interaction if the regulator transcripts encode the tran-

scription factors that directly regulate transcription. On the other
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Fig. 5. Partial representation (with two connected sub-networks) of the 64-

link inferred network in yeast based on cell cycle microarray experimental

datasets. The isolated genes without interaction with others are not shown.

The red arrows in the figure indicate repressionwhile the blue arrows indicate

activation. The circles in the same color indicate the same biological function.
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hand, the implicit description of hidden regulatory factors by this

approach may lead to prediction errors. Generally, the mRNA

levels measured in a microarray experiment are the results of

a variety of complex events including gene transcription and

mRNA degradation (Gardner and Faith, 2005). With such events,

dynamic Bayesian networks can be used to derive the regulations

among biomolecules (Nachman et al., 2004; Rangel et al., 2004;
Beal et al., 2005; Li and Zhan, 2006).

To examine causal relation among genes, a major source of errors

comes from the noises of the gene expression data intrinsic to

microarray technologies (Thattai and van Oudenaarden, 2001).

To reduce the defect of unreliable data, GNR is able to assess

the quality of microarray datasets by comparing their inferred

results, and remove the inconsistent dataset using a clustering

method according to their degree of inconsistency. As a result,

GNR can alleviate the impact of noises to improve the prediction

accuracy. In addition, GNR is also effective for reducing the effects

of stochastic fluctuations by introducing the sparsity leverage l and

combining the several datasets together (see the details in the Sup-

plementary Material). Depending on the prior information of the

data (e.g. reliability of experiments or number of experiments), we

can also allocate different weights for the datasets to maximally

utilize the information of reliable gene expression data.

Our method also has some limitations owing to the nature of

microarray gene expression data, like other existing methods for

GN inference. In particular, although GNR can provide a relation-

ship in which the expression of one gene can lead to an increased

(or decreased) expression of another gene, such a relationship does

not show the exact mechanism. A predicted regulatory relation-

ship does not always mean genetic regulation by a transcriptional

factor. Some regulation can be at the post-transcriptional or post-

translational level, which are often not reflected in mRNA expres-

sion levels detected by microarrays. Therefore, there is a need for

integration with other information sources to derive regulatory net-

works in an accurate manner. In other cases, the transcriptional

factors for direct regulation are not selected for GN construction

due to their low expression levels or statistically insignificant

changes. Hence, the GN models that we predicted include both

direct and indirect regulations (i.e. via hidden variables). Typically

one can interpret an edge in a GN model as the net effect if the gene

from the source is deleted. For example, if an arrow pointing from

gene A to gene B for activation, it is expected that deleting gene A

will lead to an increased expression of gene B. Notice that the

inferred results by GNR are only valid on the assumption that

the dynamics of the system can be captured by the time intervals

between the data points. Nevertheless, our predicted regulatory

network is testable through a comparison in microarray data

between wild type and mutant with specific deletion.

Currently, GNR is aimed to infer the consistent structure from a

variety of datasets but for the same species or organism. With the

similar mechanism, GNR can be extended to identify the conserved

network patterns or motifs (Kelly et al., 2003) from the datasets of

either the same species or different species, by adjusting the

parameter l, i.e. a higher l results in a more consistent or conserved

network.
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