

Unveiling objects in Big Data - model based approach

Amir Khatibi1, Fabio Porto1, Angelo Clarlili2, Paulo Pires3, Patrick Valduriez4, Dennis Shasha5

LNCC1

Petrópolis, RJ, Brazil
Khatibi, fporto@lncc.br

EMC Research2

Ilha do Fundão, RJ, Brazil
Angelo.ciarlini@emc.com

UFRJ, DCC3
Ilha do Fundão, RJ, Brazil

INRIA4

Montpellier, France
Patrick.valduriez@inria.fr

NYU5

New York, USA
Dennis.shasha@cs.nyu.edu

Abstract Big data processing is
expected to empower decision-making as
more information becomes accessible to
analytical tools. In this paper, we argue that
the data deluge produced by the Big Data
phenomenon blurs, amongst billions of
dataset elements, high-level objects that
can only be perceived once adequate
composition models are in place. We argue
that identifying such objects is relevant for
various disciplines and we provide an
example in astronomy. We present a
mathematical and computational model for
this problem and provide a first
implementation using a parallel
architecture.

Keywords Hidden Objects, Big Data,
model, approximate sample query, patterns
in Big Data.

1) Introduction

In recent years, Big Data has become a new
ubiquitous buzzword. Though the hype has
been excessive, the confluence of large data
sources and machine learning can
transform science, engineering, medicine,
health care, finance, business, and
ultimately society itself. The phenomenon is
fostered by a conjunction of factors like
reduced costs on persistent storage;
ubiquitous access to Internet; deployment
of high throughput instruments, and
continuous sensor based monitoring.

In this paper, we explore one aspect of Big
Data that has been given little attention. It
is based on the subtile observation that
some important information may be
blurred in huge datasets. In this context,
objects of interest may emerge as a result

of processing the big data files by means of
some composition semantics.

Such objects of interest may have been
subject to lower level capturing
mechanisms, as in the case of sensors,
discretizing a phenomenon in space and
time. Recovering the original objects from
datasets, in which they appear in a
transformed version, requires big data
analyses. In order to exemplify this
observation, consider the scenarios below:

Example 1. Astronomy catalogues hold
billions of sky objects from a region in sky.
An astronomer may be interested in
elements composing more complex
structures, such as constellations or galaxy
clusters (Allen, 2011). In this context, a
complex structure is veiled among billions
of individual sky objects.

Example 2. Environmental sensor data
(Aggarwal, 2013) is another area with huge
datasets of time-series measurements
recording, such as: temperature, humidity,
wind. We might be interested in patterns
such as the frequency of storms in a region.

Example 3. In seismic studies (Brown,
2004), a huge seismic dataset holds billions
of seismic traces, which, for each position in
space, present a list of values corresponding
to the amplitude of a seismic wave at
various depths (i.e. seismic traces). A
seismic interpreter tries to extract meaning
out of huge seismic dataset by finding
higher-level seismic objects such as: faults,
salt domes, etc. Those features may be
obtained from the seismic dataset through
a smart combination of low-level seismic
traces. Indeed, aggregation of seismic
traces in a special manner can convey
meaning to the user in terms of real seismic
objects of interest.

In the above examples, the objects of
interest are components built from the
elements held by the target dataset. They
are independent objects (e.g. constellations
in the astronomy example) that can be
treated as atoms in a higher analysis.

Thus, in this paper we first describe this

particular aspect of big data. Next, we

discuss possible efficient strategies to

search for such elements in huge datasets.

The rest of this paper is organized as
follows. Section 2 presents the problem
formulation. Next, section 3 presents a use
case scenario in astronomy. Section 4
discusses the proposed solution and section
5 presents the implementation and
experimented results. In section 6 we
mention the related works. Finally, section
7 concludes.

2) Problem Formulation

In this section, we formally introduce the
problem of Unveiling objects in Big Data.

2.1) Problem Description

Unveiling objects in Big Data entails
identifying objects in huge datasets
composed of basic elements having some
properties as individuals and then satisfy
some kind of composition property.

A Sample Query specifies the elements that
shall compose higher-level objects, and a
composition model.

In Example 1, for instance, a constellation
defines a sample query. The latter specifies
the object characteristics that determine
each of its components, and a

compositional model specifies their spatial
relationships.

2.2) Problem Statement

In this section, the problem is
mathematically formulated.

Definition 1. A Big Dataset D is defined as
D= {e1,e2,…,en } in which each ei, 1 <= i<= n
is an element of a domain Dom. Moreover,
for each element ei ∈D, ei= [atr1,atr2,…,atrm,],
such that atrj, 1<= j <= m, is a value
describing a characteristic of ei.

Definition 2. A sample query Q = [E, F-
Element, F-shape], is composed of
E={q1,q2,…qk} defining the elements that
compose a shape of interest.

Definition 3. A matching function F-
element= (𝐸, 𝑉) → ℝ, computes the
similarity between every pair of elements
(qi, dj), such that qi ∈ 𝑄. 𝐸 (Q.E represents
the elements of Q) and dj ∈ 𝑉 and V ⊆ D
arrives at a final score. A typical F-element
might perform any distance function
calculation between a query and a set of
elements and sum the distances.

Definition 4. A function F-shape takes some
global property of the query elements Q.E
(such as their pairwise distances) and
determines whether S satisfies that i.e. F-
shape (Q.E, V)→ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛.

Problem statement: given a Big dataset D,
with elements in a domain Dom, a sample
query Q, a matching threshold th1 and a
shape threshold th2, identify a set of tuples
S={S1, S2,…,Sl} , such that Si ⊆ D, and |S|
=|Q.E|, for all 1<= i <= l, and for each ek ∈ si,
for all 1<= k <= l, such exists 𝐹 −
𝑒𝑙𝑒𝑚𝑒𝑛𝑡(ek, qk) ≤ th1 and F-shape(Q.E, Si) is
true.

2.3) Implementation Considerations

Given the Big Data nature of the problem,
partitioning the dataset into smaller units is
a must. In this context, the implementation
of the two above discussed functions can be
mapped into the well-known parallel
program paradigm MapReduce (Dean, 2004).

The MapReduce paradigm has been
designed to be implemented by a system
running on a shared-nothing cluster
architecture.

A MapReduce program is composed of a
Map () and a Reduce () procedure. The first
applies its associated function on each
element of a dataset, whereas the latter
produces a final output by aggregating the
results of the first Map function. In the
context of the Unveiling objects problem,
the Map function performs the behavior of
the F-element function and the Reduce
procedure implements the F-shape
function, respectively.

3) Use case – Unveiling Objects in
Astronomy

Astronomical surveys capture data from
regions of the sky. By means of some
capturing instrument, such as an optical
telescope, sky objects are identified and
registered in a large table of sky objects,
named the sky catalog.

Surveys make possible statistical studies of
large number of objects and enable
interesting or rare examples of phenomena
to be found, which can then be studied in
greater detail. An astronomy catalogue is a
dataset that contains a list of celestial
objects and their characteristics, like
position, flux, magnitude and color. Their
spatial coordinates, assigned according to a

celestial sphere coordinate system, are
used as objects identification. An object
positioning is given by is right-ascension (ra)
and declination (dec) values. The former
assumes values between 0 and 360
degrees, whereas the latter measures its
distance from equator between -90 and +90
degrees.

Thus, a sky catalogue can be modeled as a
relation, as follows:

Cat (ra,dec, flux, photo-z,u,g,r,i,z,…) (1)

The attributes u, g, r, i, z refer to the
magnitude of light emitted by an object.
Their values are measured in logarithmic
units, through various wavebands, from
ultraviolet to infrared. The photo-z attribute
corresponds to an estimation of the
redshift, a measure of the objects distance
from earth.

4) Proposed solution

Thus, determining whether a set V satisfies
the query Q consists of applying an element
by element step F-element and then a
global F-shape function as discussed in
section 3.

S= F-shape (F-element (Q.E, D)) (2)

F-element: looks at every element of the
query independently in the dataset D and
finds a set of matches for those elements
with different distances with respect to Q.E,
indicating their difference to the desired
elements in the query. The metric applied
to compute the distance between two
elements can be varied by the nature of
every application domain and the
dimensionality of its dataset. A list of some
frequently used distance metrics includes:
Euclidean distance (Deza 2009), Dynamic

Time Warping (Berndt, 1994), Hausdorff
distance (Huttenlocher, 1993) and
Manhattan distance (Krause, 1987).

F-shape: constructs the possible
combination of elements out of sets of
matches according to some restrictions.
These restrictions verify some relationships
among the matched elements, such as
ordering or distances. Similarly to the
previous function, we can employ different
distance metrics as well. The composition of
possible shapes can be modeled as a
hypergraph, in which the hyper nodes are
sets of matches of each query element and
hyper edges are the relationships between
these sets (figure 1). There is an edge
between two hyper nodes if their elements
obey the same relationship between the
corresponding elements in the query;
furthermore, if the order of those
corresponding elements is vital, the edge
would be a directed edge. F-shape looks for
paths in this directed hypergraph that pass
through all hyper nodes.

Figure 1. q: model elements are the low level objects
in the sample query. V: hyper nodes are set of
matches for every element of query. e: hyper edges
are relations between the corresponding elements
of query.

4.1) Astronomy Implementation

In this section, we elaborate on two
functions F-element and F-shape
customized to the astronomy application
domain. The functions express the criteria
for selecting elements of the dataset that
match the sample query. The result is
composed of elements of an astronomy
dataset that describe high-level sky object
similar to the sample query, representing a
sky complex structure, such as a
constellation, a solar system, etc. The
description of the higher-level object of
interest is indirect and is obtained through
marking a set of low-level objects (i.e.
elements) in the astronomy dataset. Once
the sample query has been defined, it is
used in the definition of the unveiling
functions, F-element and F-shape.

The sample query is, in this context, defined
as:

query (SkyObjects, PairWiseDistances)
(3)

where SkyObjects is a set of objects whose
property values must approximately match
with those of elements in the solution. The
approximate matching semantics is
implemented by the F-element function.
Correspondently, the PairWiseDistances is
an array of distances between each pair of
elements in SkyObjects, which defines the
F-Shape composition semantics.

Thus, a n-tuple of Cat participates in a
solution if its evaluation by the F-element
function against any of the elements in
SkyObjects returns a matching value above
a threshold, and it has neighbours whose
distances are close to the ones in
PairWiseDistances.

In the astronomy scenario discussed here, a
predicate is defined on the value of the flux
attribute of the Cat relation. Ounce the
whole astronomy dataset has been
evaluated, the F-element function places
matched elements in buckets. Each bucket
holds elements matching with a sample
query element, in SkyObjects. Accordingly,
the F-shape function constructs the possible
combinations of elements out of buckets
produced by F-element, using a nested-join
algorithm (Elmasri, 1989). The join criterion
considers the distances between matched
elements in different buckets with respect
to those specified in PairWiseDistances, to
form shapes similar to the sky model. The
distances between pair of sky objects is
assessed by computing the Euclidean
distance considering the position of objects
as specified by the values of their
coordinate in right-ascension (ra) and
declination (dec). The pairwise comparison
between the space correlation in the model
and that produced by joining matched
elements in buckets produce candidate
solutions.

In the following, we present the algorithms
for F-element and F-shape for this scenario.

Algorihtm F_Element

Input: SkyObject [] SkyObjects,
 Table Cat,
 real th_e
Output: Bucket [|SkyObjects|] bucket

1: Begin
2: for e in Cat do {
3: for q in SkyObjects do {
4: dist:= Match (e, q)
5: if (dist ≤ th_e) then
6: bucket[q]:= e;
7: }
8: }

9: End

Algorithm F-Shape

Input: int SkyObjectsSize
 Bucket [SkyObjectsSize] bucket,
 Real[][] PairWiseDistances

real th_s
Output: Table Solutions

1: Begin
2: tree := build_nested-loop-tree

 (buckets);

/* build a deep-left tree having each
set in bucket as a leaf */

3: tree.pushdown (PairWiseDistances);

/* place each pair of distance as a
condition on the corresponding
buckets join node of the tree. The
approximate match occurs when the
distances between the joining
elements are similar to the one from
the PairWiseElements within a scale
factor defined by the user. */

4: while (s:= tree.moreRecords()) {
5: if (s.th ≤ th_s) {
6: Solutions.add (s);
7: }
8: }
9: End

The details of this use case accompanying
the experiments are given in the section 5.

5) Implementation

We adopt the MapReduce model to
introduce the two functions used for

unveiling objects in big data. MapReduce is
a parallel programming paradigm (see
Section 2.4). Various software
implementations exist, such as Apache
Hadoop that materialize the paradigm into
a system. Such systems allow developers to
write programs that process massive
amounts of unstructured data in parallel
across a distributed cluster of processors or
stand-alone computers. In the following, we
describe our implementation in Hadoop.
The description will consider the astronomy
scenario presented in section 3:

5.1) Hadoop Implementation

This section presents a MapReduce solution
to the Unveiling Objects in Big Data
problem using a cluster environment: 1)
Map function is invoked for each element of
the dataset to check whether it matches
with elements of the sample query. It
checks all the matches for every record of
dataset in one traversal of the big dataset
and then partitions the results between
reducers which then will run the Reduce
function. In this fashion, we try to pass
approximately the same amount of matches
to every reducer. Here, is the Map
algorithm:

Algorithm Mapper

Input: SkyObject [] SkyObjects,
 real th_e
Output: (key) Int PartitionID,

 (value) Text MatchedElement

 Map {
 input: (key) Int ID,

 (value) CatalogRecord e
 output: (key) Int PartitionID,

 (value) Text MatchedElement
1: Begin

2: for q in SkyObjects do {
3: dist:= Match (e, q)
4: if (dist ≤ th_e) then
5: output (partition(e.dec),

 q.qID, e, dist)

6: /* the partitioning function operates
on the declination (dec) value of
every sky object. It splits the sky
plane into equal intervals according
to the dec value (-90 to +90) of sky
objects divided by the number of
available slaves in the cluster*/

7: }
8: End
9: }

2) Reduce function, firstly materializes the
input matches by putting them into the
separate buckets according their matched
element; as a result, every bucket contains
all the matches of corresponding element
of the query stored into the disk; secondly,
it produces the set of sky objects matching
the model by joining the elements in the
buckets using the nested-join operation
(Elmasri, 1989); finally, it outputs the
solutions which passed the join spatial
constraints. For the sake of simplicity, in the
current implementation, we didn’t consider
possible solutions in the boundaries of
partitions. Instead, we simply look for
solutions with element from the same
partition. Here, is the Reduce algorithm:

Algorithm Reducer

Input: int SkyObjectsSize,
 Bucket [SkyObjectsSize] bucket,
 Real[][] PairWiseDistances

real th_s
Output: Text solutions

 Reduce {
 input: (key) int PartitionID,

 (value) Iterator<Text>
 MatchedElements

 output: Text solutions

1: Begin
2: while (MatchedElements.hasNext())
3: bucket[MatchedElements.qID]

 := MatchedElements;

/* Here, in every reducer, we
separate the received
MatchedElements into their
correspondent buckets.*/

4: tree := build_nested-loop-tree

 (buckets);
5: tree.pushdown (PairWiseDistances);
6: while (s:= tree.moreRecords()) {
7: if (s.th ≤ th_s) {

 solution.add (s);
8: }
9: }

10: End
11: }

5.2) Experimental Results

In this section, we present our experimental
results in the context of astronomy data. To
run our tests over Map Reduce functions,
we used a clustered framework with two
types of slave machines. Here, in table 1 are
the system configurations:

 Programming Language: Java
o IDE: NetBeans 8.0.2
o JDK: 7 update 80

 Operating System: Linux Ubuntu
15.04

 Map Reduce version 2.6.0

Property Master Slaves
Type 1

Slaves
Type 2

CPU Intel Xeon
E5 2420,
2.2Ghz

Intel Xeon
E5 2620,
2.00Ghz

Intel Xeon
E5 2420,
2.2Ghz

Logical CPUs 16 2 6

Cores 16*6 2*2 6*6

RAM 10 GB 8 GB 4 GB

Disk 200 GB 200 GB 200 GB

virtual
system of this
type

1 4 2

Table 1: Hadoop master and slaves configurations

In figure 2, we show the results comparing
the execution time using different dataset
1sizes over models of sizes 3, 5 and 7
elements. Furthermore, we varied the
catalogue size from 0.5 GB to 10 GB.

Figure 2. Experimental results

1 All the datasets has been queried and downloaded
from the Sloan Digital Sky Survey (SDSS) -
http://skyserver.sdss.org/

One may observe an interesting duality as
an effect of the F-element and F-shape
functions with respect to the size of the
model, i.e. the number of elements in the
sample query. As the latter increases, the
number of F-element invocation also
increases, per dataset records, potentially
increasing the number of matched records.
Conversely, as the model size increases, it
becomes more constrained, reducing the
potential number of candidate solutions.
This is indeed observed in Figure 3.

Figure 3. The growth in the number of matches and
solutions by increasing the model size from 3 to 7 in
dataset size 500 MB. By increasing the number of
elements in the model, the number of matches
increases and conversely the number of solutions
decreases. We observed the same behavior in other
dataset sizes (2, 5, 10 GB) as well.

6) Related works

Some previous work has investigated
pattern queries over graphs. In (Zou, 2009),
to solve the pattern match query in graph

48

91

148

280

47

72

156

287

40

76

147

245

0 100 200 300 400

0.5

2

5

10

execution time (second)

D
at

as
et

 s
iz

e
(G

B
)

Exprimental results

Model_3 Model_5 Model_7

model
_3

model
_5

model
_7

No of
Matches

250,389 471,488 535,493

No of
Solutions

39321 6398 359

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0

100,000

200,000

300,000

400,000

500,000

600,000

No of Matches vs. No of Solutions

databases, the authors transform the
vertices into points in a vector space via
graph embedding techniques, converting a
pattern match query into a distance-based
multi-way join problem over the converted
vector space and finally they process the
multi-way join operation. In (Zou, 2012), the
authors answer the pattern queries through
graph embedding. They define the problem
as finding the shortest path in a graph.

Our work is based on their work but in a
more general approach, which makes it
applicable to any area of Big Data and not
just over graph databases. Due to this
generalization, in our algorithm instead of
looking for the same labels within vertices
in a graph, we use a similarity approach to
measure the similarity of matched points.
Indeed, the main difference in our work is
that every point in our pattern query has a
set of specified attributes that should be
matched with the same points in the
dataset through a similarity function.

7) Conclusion

In this paper, we presented the unveiling
objects in Big Data problem that discovers
high-level objects that are blurred in Big-
data sets. We propose an approach for
unveiling high-level objects in Big Data,
using two nested functions. The problem is
explored using an astronomy scenario,
where complex structures, such as
constellations are identified out of a
catalogue of astronomy objects.

The problem is modeled trough the
implementation of two functions: F-
element and F-shape. Their composition
implements the desired semantics,
according to the target application problem.
Given the Big Data nature of the problem,
the functions are implemented in a state of
the art parallel programing model, Map
Reduce, enabling robust and efficient
computation.

The results of this implementation for
different query and dataset sizes are
discussed. The first version of our
implementation that is presented in this
paper was a proof for the functionality of
out theory; obviously, there are possible
improvements to our functions that we will
scrutinize in the future works: 1) ordering
the buckets according their sizes; if we
check the spatial-distance conditions
between the join elements as soon as
possible, this will reduce the number of
computations by processing the joins
efficiently. 2) Early pruning of branches if
total-cost gets bigger than defined
threshold; in other words, we can define a
condition to calculate the current total cost
and if it got bigger than threshold, the
program breaks the rest of joins for that
combination. Our estimation is that by
applying the above ideas, we avoid from
many useless computations. In addition, by
utilizing buffer management techniques like
hash piping, we can avoid from huge I/O
operations in the phase of materializing the
intermediate results.

References

1. Aggarwal, Charu, 2013, Managing and Mining Sensor Data, Ed 1, Published by Springer,

New York, US.

2. Allen, S., Evrard, A., Mantz, A., 2011, Cosmological Parameters from Observations of

Galaxy Clusters, Annual Review of Astronomy and Astrophysics, Vol. 49, pp. 409-470.

3. Berndt, D., Clifford, J., 1994, Using Dynamic Time Warping to Find Patterns in Time

Series, KDD workshop.

4. Brown, Alistair R., et al., 2004, Interpretation of three-dimensional seismic data,

published by American Association of Petroleum Geologists, Tulsa, Oklahoma, US.

5. Ciarlini, A., Porto, F., Khatibi, A., Dias, J., 2015, Methods and apparatus for parallel

evaluation of pattern queries over large n-dimensional datasets to identify features of

interest, patented and approved by United States Patent and Trademark Office.

6. Dean, J., Ghemawat, S., 2004, MapReduce: Simplified Data Processing on Large Clusters,

6th Symposium on Operating System Design and Implementation, San Francisco, USA.

7. Deza, M., Deza, E., 2009, Encyclopedia of Distances, Published by Springer, New York,

US.

8. Elmasri, R., Navathe, Sh., Fundamentals of Database Systems, book published by

Pearson Education, chapter 5, 1989.

9. Freire, V., De Macedo, J., Porto, F., Akbarinia, R., 2014, NACluster: A Non- Supervised

Clustering Algorithm for Matching Multi Catalogues, IEEE e-Science Workshop, Guaruja,

SP, Brazil.

10. Hsiao, H., et al., Parallel execution of hash joins in parallel databases, parallel and

distributed systems, IEEE Transactions on, vol 8, issue 8, pp. 872-883.

11. Huttenlocher, D., Klanderman, G., Rucklidge, W, 1993, Comparing images using the

Hausdorff distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

15.

12. Khatibi, A., Porto, F., 2014, Unveiling objects in Big Data - using similarity approach,

poster in International workshop Many Faces of Distances, University of UNICAMP,

Campinas, Brazil.

13. Krause, E., 1987, Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Dover

Books on Mathematics.

14. Han, J., Haihong, E., Le, G., Du, L., 2011, Survey on NoSQL database, 6th International

Conference on Pervasive Computing and Applications (ICPCA).

15. Zou, L., Chen, L., Tamer Özsu, M., Zhao, D., 2009, Distance-Join: Pattern Match Query in

a Large Graph Database, VLDB 2009, pp. 886-897.

16. Zou, L., Chen, L., Tamer Özsu, M., Zhao, D., 2012, Answering pattern match queries in

large graph databases via graph embedding, VLDB Journal 2012, pp. 97–120.

