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Abstract Big data processing is 
expected to empower decision-making as 
more information becomes accessible to 
analytical tools. In this paper, we argue that 
the data deluge produced by the Big Data 
phenomenon blurs, amongst billions of 
dataset elements, high-level objects that 
can only be perceived once adequate 
composition models are in place. We argue 
that identifying such objects is relevant for 
various disciplines and we provide an 
example in astronomy. We present a 
mathematical and computational model for 
this problem and provide a first 
implementation using a parallel 
architecture.   

Keywords   Hidden Objects, Big Data, 
model, approximate sample query, patterns 
in Big Data. 

1) Introduction 

In recent years, Big Data has become a new 
ubiquitous buzzword. Though the hype has 
been excessive, the confluence of large data 
sources and machine learning can 
transform science, engineering, medicine, 
health care, finance, business, and 
ultimately society itself. The phenomenon is 
fostered by a conjunction of factors like 
reduced costs on persistent storage; 
ubiquitous access to Internet; deployment 
of high throughput instruments, and 
continuous sensor based monitoring.  

In this paper, we explore one aspect of Big 
Data that has been given little attention. It 
is based on the subtile observation that 
some important information may be 
blurred in huge datasets. In this context, 
objects of interest may emerge as a result 



of processing the big data files by means of 
some composition semantics. 

Such objects of interest may have been 
subject to lower level capturing 
mechanisms, as in the case of sensors, 
discretizing a phenomenon in space and 
time. Recovering the original objects from 
datasets, in which they appear in a 
transformed version, requires big data 
analyses. In order to exemplify this 
observation, consider the scenarios below: 

Example 1. Astronomy catalogues hold 
billions of sky objects from a region in sky. 
An astronomer may be interested in 
elements composing more complex 
structures, such as constellations or galaxy 
clusters (Allen, 2011).  In this context, a 
complex structure is veiled among billions 
of individual sky objects.  

Example 2. Environmental sensor data 
(Aggarwal, 2013) is another area with huge 
datasets of time-series measurements 
recording, such as: temperature, humidity, 
wind. We might be interested in patterns 
such as the frequency of storms in a region.  

Example 3. In seismic studies (Brown, 
2004), a huge seismic dataset holds billions 
of seismic traces, which, for each position in 
space, present a list of values corresponding 
to the amplitude of a seismic wave at 
various depths (i.e. seismic traces). A 
seismic interpreter tries to extract meaning 
out of huge seismic dataset by finding 
higher-level seismic objects such as: faults, 
salt domes, etc. Those features may be 
obtained from the seismic dataset through 
a smart combination of low-level seismic 
traces. Indeed, aggregation of seismic 
traces in a special manner can convey 
meaning to the user in terms of real seismic 
objects of interest. 

In the above examples, the objects of 
interest are components built from the 
elements held by the target dataset. They 
are independent objects (e.g. constellations 
in the astronomy example) that can be 
treated as atoms in a higher analysis. 

Thus, in this paper we first describe this 

particular aspect of big data. Next, we 

discuss possible efficient strategies to 

search for such elements in huge datasets. 

The rest of this paper is organized as 
follows. Section 2 presents the problem 
formulation. Next, section 3 presents a use 
case scenario in astronomy. Section 4 
discusses the proposed solution and section 
5 presents the implementation and 
experimented results. In section 6 we 
mention the related works. Finally, section 
7 concludes. 

 

2) Problem Formulation 

In this section, we formally introduce the 
problem of Unveiling objects in Big Data. 

 

2.1) Problem Description 

Unveiling objects in Big Data entails 
identifying objects in huge datasets 
composed of basic elements having some 
properties as individuals and then satisfy 
some kind of composition property.  

A Sample Query specifies the elements that 
shall compose higher-level objects, and a 
composition model.  

In Example 1, for instance, a constellation 
defines a sample query. The latter specifies 
the object characteristics that determine 
each of its components, and a 



compositional model specifies their spatial 
relationships. 

 

2.2) Problem Statement 

In this section, the problem is 
mathematically formulated. 

Definition 1. A Big Dataset D is defined as 
D= {e1,e2,…,en } in which each  ei, 1 <= i<= n 
is an element of a domain Dom. Moreover, 
for each element ei ∈D, ei= [atr1,atr2,…,atrm,], 
such that atrj, 1<= j <= m, is a value 
describing a characteristic of ei. 

Definition 2. A sample query Q = [E, F-
Element, F-shape], is composed of 
E={q1,q2,…qk} defining the elements that 
compose a shape of interest.  

Definition 3. A matching function F-
element= (𝐸, 𝑉) →  ℝ, computes the 
similarity between every pair of elements 
(qi, dj), such that qi ∈ 𝑄. 𝐸 (Q.E represents 
the elements of Q) and dj ∈ 𝑉 and V ⊆ D 
arrives at a final score. A typical F-element 
might perform any distance function 
calculation between a query and a set of 
elements and sum the distances. 

Definition 4. A function F-shape takes some 
global property of the query elements Q.E 
(such as their pairwise distances) and 
determines whether S satisfies that i.e. F-
shape (Q.E, V)→ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛. 

Problem statement: given a Big dataset D, 
with elements in a domain Dom, a sample 
query Q, a matching threshold th1 and a 
shape threshold th2, identify a set of tuples 
S={S1, S2,…,Sl} , such that Si ⊆ D, and |S| 
=|Q.E|, for all 1<= i <= l, and for each ek ∈ si, 
for all 1<= k <= l, such exists 𝐹 −
𝑒𝑙𝑒𝑚𝑒𝑛𝑡(ek, qk) ≤ th1 and F-shape(Q.E, Si) is 
true. 

2.3) Implementation Considerations 

Given the Big Data nature of the problem, 
partitioning the dataset into smaller units is 
a must. In this context, the implementation 
of the two above discussed functions can be 
mapped into the well-known parallel 
program paradigm MapReduce (Dean, 2004).  

The MapReduce paradigm has been 
designed to be implemented by a system 
running on a shared-nothing cluster 
architecture. 

A MapReduce program is composed of a 
Map () and a Reduce () procedure. The first 
applies its associated function on each 
element of a dataset, whereas the latter 
produces a final output by aggregating the 
results of the first Map function. In the 
context of the Unveiling objects problem, 
the Map function performs the behavior of 
the F-element function and the Reduce 
procedure implements the F-shape 
function, respectively. 

 

3) Use case – Unveiling Objects in 
Astronomy 

Astronomical surveys capture data from 
regions of the sky. By means of some 
capturing instrument, such as an optical 
telescope, sky objects are identified and 
registered in a large table of sky objects, 
named the sky catalog. 

Surveys make possible statistical studies of 
large number of objects and enable 
interesting or rare examples of phenomena 
to be found, which can then be studied in 
greater detail.  An astronomy catalogue is a 
dataset that contains a list of celestial 
objects and their characteristics, like 
position, flux, magnitude and color. Their 
spatial coordinates, assigned according to a 



celestial sphere coordinate system, are 
used as objects identification. An object 
positioning is given by is right-ascension (ra) 
and declination (dec) values. The former 
assumes values between 0 and 360 
degrees, whereas the latter measures its 
distance from equator between -90 and +90 
degrees. 

Thus, a sky catalogue can be modeled as a 
relation, as follows: 

Cat (ra,dec, flux, photo-z,u,g,r,i,z,…)          (1) 

The attributes u, g, r, i, z refer to the 
magnitude of light emitted by an object. 
Their values are measured in logarithmic 
units, through various wavebands, from 
ultraviolet to infrared. The photo-z attribute 
corresponds to an estimation of the 
redshift, a measure of the objects distance 
from earth. 

 

4) Proposed solution 

Thus, determining whether a set V satisfies 
the query Q consists of applying an element 
by element step F-element and then a 
global F-shape function as discussed in 
section 3. 

S= F-shape (F-element (Q.E, D))                   (2) 

F-element: looks at every element of the 
query independently in the dataset D and 
finds a set of matches for those elements 
with different distances with respect to Q.E, 
indicating their difference to the desired 
elements in the query. The metric applied 
to compute the distance between two 
elements can be varied by the nature of 
every application domain and the 
dimensionality of its dataset. A list of some 
frequently used distance metrics includes: 
Euclidean distance (Deza 2009), Dynamic 

Time Warping (Berndt, 1994), Hausdorff 
distance (Huttenlocher, 1993) and 
Manhattan distance (Krause, 1987). 

F-shape: constructs the possible 
combination of elements out of sets of 
matches according to some restrictions. 
These restrictions verify some relationships 
among the matched elements, such as 
ordering or distances. Similarly to the 
previous function, we can employ different 
distance metrics as well. The composition of 
possible shapes can be modeled as a 
hypergraph, in which the hyper nodes are 
sets of matches of each query element and 
hyper edges are the relationships between 
these sets (figure 1). There is an edge 
between two hyper nodes if their elements 
obey the same relationship between the 
corresponding elements in the query; 
furthermore, if the order of those 
corresponding elements is vital, the edge 
would be a directed edge. F-shape looks for 
paths in this directed hypergraph that pass 
through all hyper nodes. 

 

Figure 1. q: model elements are the low level objects 
in the sample query. V: hyper nodes are set of 
matches for every element of query. e: hyper edges 
are relations between the corresponding elements 
of query. 
 



4.1) Astronomy Implementation 

In this section, we elaborate on two 
functions F-element and F-shape 
customized to the astronomy application 
domain. The functions express the criteria 
for selecting elements of the dataset that 
match the sample query. The result is 
composed of elements of an astronomy 
dataset that describe high-level sky object 
similar to the sample query, representing a 
sky complex structure, such as a 
constellation, a solar system, etc. The 
description of the higher-level object of 
interest is indirect and is obtained through 
marking a set of low-level objects (i.e. 
elements) in the astronomy dataset. Once 
the sample query has been defined, it is 
used in the definition of the unveiling 
functions, F-element and F-shape.  

The sample query is, in this context, defined 
as:  

query (SkyObjects, PairWiseDistances)       
(3) 

where SkyObjects is a set of objects whose 
property values must approximately match 
with those of elements in the solution. The 
approximate matching semantics is 
implemented by the F-element function.   
Correspondently, the PairWiseDistances is 
an array of distances between each pair of 
elements in SkyObjects, which defines the 
F-Shape composition semantics. 

Thus, a n-tuple of Cat participates in a 
solution if its evaluation by the F-element 
function against any of the elements in 
SkyObjects returns a matching value above 
a threshold, and it has neighbours whose 
distances are close to the ones in 
PairWiseDistances.  

In the astronomy scenario discussed here, a 
predicate is defined on the value of the flux 
attribute of the Cat relation. Ounce the 
whole astronomy dataset has been 
evaluated, the F-element function places 
matched elements in buckets. Each bucket 
holds elements matching with a sample 
query element, in SkyObjects. Accordingly, 
the F-shape function constructs the possible 
combinations of elements out of buckets 
produced by F-element, using a nested-join 
algorithm (Elmasri, 1989). The join criterion 
considers the distances between matched 
elements in different buckets with respect 
to those specified in PairWiseDistances, to 
form shapes similar to the sky model. The 
distances between pair of sky objects is 
assessed by computing the Euclidean 
distance considering the position of objects 
as specified by the values of their 
coordinate in right-ascension (ra) and 
declination (dec). The pairwise comparison 
between the space correlation in the model 
and that produced by joining matched 
elements in buckets produce candidate 
solutions. 

In the following, we present the algorithms 
for F-element and F-shape for this scenario. 

Algorihtm F_Element  

Input: SkyObject [] SkyObjects, 
                Table Cat,  
                 real th_e 
Output: Bucket [ |SkyObjects| ] bucket 
 

1: Begin 
2: for e in Cat  do { 
3:       for q in  SkyObjects  do { 
4:              dist:= Match (e, q ) 
5:              if (dist ≤ th_e) then 
6:                      bucket[q]:= e; 
7:       } 
8: }       



9: End 

 
 

Algorithm F-Shape  

Input:  int SkyObjectsSize 
             Bucket [SkyObjectsSize] bucket,  
             Real[ ][] PairWiseDistances   

real th_s 
Output: Table Solutions 
 

1: Begin  
2: tree := build_nested-loop-tree 

            (buckets); 
 

/* build a deep-left tree having each 
set in bucket as a leaf */ 

 
3: tree.pushdown (PairWiseDistances); 

 
/* place each pair of distance as a 
condition on the corresponding 
buckets join node of the tree. The 
approximate match occurs when the 
distances between the joining 
elements are similar to the one from 
the PairWiseElements within a scale 
factor defined by the user. */ 

 
4: while ( s:= tree.moreRecords() ) { 
5:            if (s.th ≤ th_s) { 
6:                      Solutions.add (s); 
7:            } 
8: }   
9: End 

 
The details of this use case accompanying 
the experiments are given in the section 5. 

 

5) Implementation 

We adopt the MapReduce model to 
introduce the two functions used for 

unveiling objects in big data. MapReduce is 
a parallel programming paradigm (see 
Section 2.4). Various software 
implementations exist, such as Apache 
Hadoop that materialize the paradigm into 
a system. Such systems allow developers to 
write programs that process massive 
amounts of unstructured data in parallel 
across a distributed cluster of processors or 
stand-alone computers. In the following, we 
describe our implementation in Hadoop. 
The description will consider the astronomy 
scenario presented in section 3: 

 

5.1) Hadoop Implementation 

This section presents a MapReduce solution 
to the Unveiling Objects in Big Data 
problem using a cluster environment: 1) 
Map function is invoked for each element of 
the dataset to check whether it matches 
with elements of the sample query. It 
checks all the matches for every record of 
dataset in one traversal of the big dataset 
and then partitions the results between 
reducers which then will run the Reduce 
function. In this fashion, we try to pass 
approximately the same amount of matches 
to every reducer. Here, is the Map 
algorithm:  

Algorithm Mapper 

Input: SkyObject [] SkyObjects,  
            real th_e 
Output: (key) Int PartitionID,  

 (value) Text MatchedElement 
 
     Map { 
     input: (key) Int ID,  

   (value) CatalogRecord  e  
     output: (key) Int PartitionID,  

      (value) Text MatchedElement 
1: Begin 



2: for q in  SkyObjects  do { 
3:        dist:= Match (e, q ) 
4:        if (dist ≤ th_e) then 
5:                   output (partition(e.dec), 

      q.qID, e,   dist) 
 

6: /* the partitioning function operates 
on the declination (dec) value of 
every sky object. It splits the sky 
plane into equal intervals according 
to the dec value (-90 to +90) of sky 
objects divided by the number of 
available slaves in the cluster*/ 

 
7: }     
8: End 
9: } 

 

2) Reduce function, firstly materializes the 
input matches by putting them into the 
separate buckets according their matched 
element; as a result, every bucket contains 
all the matches of corresponding element 
of the query stored into the disk; secondly, 
it produces the set of sky objects matching 
the model by joining the elements in the 
buckets using the nested-join operation 
(Elmasri, 1989); finally, it outputs the 
solutions which passed the join spatial 
constraints. For the sake of simplicity, in the 
current implementation, we didn’t consider 
possible solutions in the boundaries of 
partitions. Instead, we simply look for 
solutions with element from the same 
partition. Here, is the Reduce algorithm: 

Algorithm Reducer 

Input:  int SkyObjectsSize, 
             Bucket [SkyObjectsSize] bucket,  
             Real[ ][] PairWiseDistances   

real th_s 
Output: Text solutions 

        Reduce { 
        input: (key) int PartitionID,  

       (value) Iterator<Text> 
                    MatchedElements 

        output: Text solutions 
 

1: Begin 
2: while (MatchedElements.hasNext())  
3:           bucket[MatchedElements.qID] 

                        := MatchedElements; 
 

/* Here, in every reducer, we 
separate the received 
MatchedElements into their 
correspondent buckets.*/ 

 
4: tree := build_nested-loop-tree 

            (buckets); 
5: tree.pushdown (PairWiseDistances); 
6: while ( s:= tree.moreRecords() ) { 
7:            if (s.th ≤ th_s) { 

       solution.add (s); 
8:            } 
9: }   

10: End 
11: } 

 

5.2) Experimental Results 

In this section, we present our experimental 
results in the context of astronomy data. To 
run our tests over Map Reduce functions, 
we used a clustered framework with two 
types of slave machines. Here, in table 1 are 
the system configurations: 

 Programming Language: Java 
o IDE: NetBeans 8.0.2  
o JDK: 7 update 80 

 Operating System: Linux Ubuntu 
15.04 

 Map Reduce version 2.6.0 
 



Property Master Slaves 
Type 1 

Slaves 
Type 2 

CPU Intel Xeon 
E5 2420, 
2.2Ghz 

Intel Xeon 
E5 2620, 
2.00Ghz 

Intel Xeon 
E5 2420, 
2.2Ghz 

# Logical CPUs 16 2 6 

# Cores 16*6 2*2 6*6 

RAM 10 GB 8 GB 4 GB 

Disk 200 GB 200 GB 200 GB 

# virtual 
system of this 
type 

1 4 2 

Table 1: Hadoop master and slaves configurations 

In figure 2, we show the results comparing 
the execution time using different dataset 
1sizes over models of sizes 3, 5 and 7 
elements. Furthermore, we varied the 
catalogue size from 0.5 GB to 10 GB.  

 

Figure 2. Experimental results 

                                                           
1 All the datasets has been queried and downloaded 
from the Sloan Digital Sky Survey (SDSS) - 
http://skyserver.sdss.org/ 

One may observe an interesting duality as 
an effect of the F-element and F-shape 
functions with respect to the size of the 
model, i.e. the number of elements in the 
sample query. As the latter increases, the 
number of F-element invocation also 
increases, per dataset records, potentially 
increasing the number of matched records. 
Conversely, as the model size increases, it 
becomes more constrained, reducing the 
potential number of candidate solutions. 
This is indeed observed in Figure 3.  

 

Figure 3. The growth in the number of matches and 
solutions by increasing the model size from 3 to 7 in 
dataset size 500 MB. By increasing the number of 
elements in the model, the number of matches 
increases and conversely the number of solutions 
decreases. We observed the same behavior in other 
dataset sizes (2, 5, 10 GB) as well. 

6) Related works 

Some previous work has investigated 
pattern queries over graphs. In (Zou, 2009), 
to solve the pattern match query in graph 

48

91

148

280

47

72

156

287

40

76

147

245

0 100 200 300 400

0.5

2

5

10

execution time (second)

D
at

as
et

 s
iz

e 
(G

B
)

Exprimental results

Model_3 Model_5 Model_7

model
_3

model
_5

model
_7

No of
Matches

250,389 471,488 535,493

No of
Solutions

39321 6398 359

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0

100,000

200,000

300,000

400,000

500,000

600,000

No of Matches vs. No of Solutions



databases, the authors transform the 
vertices into points in a vector space via 
graph embedding techniques, converting a 
pattern match query into a distance-based 
multi-way join problem over the converted 
vector space and finally they process the 
multi-way join operation. In (Zou, 2012), the 
authors answer the pattern queries through 
graph embedding. They define the problem 
as finding the shortest path in a graph. 

Our work is based on their work but in a 
more general approach, which makes it 
applicable to any area of Big Data and not 
just over graph databases. Due to this 
generalization, in our algorithm instead of 
looking for the same labels within vertices 
in a graph, we use a similarity approach to 
measure the similarity of matched points. 
Indeed, the main difference in our work is 
that every point in our pattern query has a 
set of specified attributes that should be 
matched with the same points in the 
dataset through a similarity function. 

 

7) Conclusion 

In this paper, we presented the unveiling 
objects in Big Data problem that discovers 
high-level objects that are blurred in Big-
data sets. We propose an approach for 
unveiling high-level objects in Big Data, 
using two nested functions. The problem is 
explored using an astronomy scenario, 
where complex structures, such as 
constellations are identified out of a 
catalogue of astronomy objects.  

The problem is modeled trough the 
implementation of two functions: F-
element and F-shape. Their composition 
implements the desired semantics, 
according to the target application problem. 
Given the Big Data nature of the problem, 
the functions are implemented in a state of 
the art parallel programing model, Map 
Reduce, enabling robust and efficient 
computation. 

The results of this implementation for 
different query and dataset sizes are 
discussed. The first version of our 
implementation that is presented in this 
paper was a proof for the functionality of 
out theory; obviously, there are possible 
improvements to our functions that we will 
scrutinize in the future works: 1) ordering 
the buckets according their sizes; if we 
check the spatial-distance conditions 
between the join elements as soon as 
possible, this will reduce the number of 
computations by processing the joins 
efficiently. 2) Early pruning of branches if 
total-cost gets bigger than defined 
threshold; in other words, we can define a 
condition to calculate the current total cost 
and if it got bigger than threshold, the 
program breaks the rest of joins for that 
combination. Our estimation is that by 
applying the above ideas, we avoid from 
many useless computations. In addition, by 
utilizing buffer management techniques like 
hash piping, we can avoid from huge I/O 
operations in the phase of materializing the 
intermediate results. 
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