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Abstract

The ability to perform accurate predictions about future
events is interesting in many areas, one of them being the
Tourism Industry. Usually, countries and cities invest a huge
amount of money for planning and preparation in order to
welcome the incoming tourists. By having an accurate predic-
tion of future visitations changes in the next days or months,
the benefits of this profitable industry could be maximized.
In most previous works, the forecasting is performed for a
whole country and not for fine-grained areas of a country or
for touristic places with unavailable visitation census. In this
work, we suggest that accessible data in social networks and
travel websites can be used to support the inference of visita-
tion changes in any touristic point in the world much quicker
and cheaper. To test our hypothesis we analyze visitation, cli-
mate and social media data in more than 80 National Parks
in U.S during the last 5 years. Furthermore, we train a simple
linear regression model and by computing the proportion of
social media along climate data versus official visitations, we
could predict with relatively high accuracy the actual visita-
tion count for each of these parks in the next months.

Key words: Social Media Data, tourists reviews, tourism
demand, climate data, unavailable visitation census, U.S na-
tional parks

Introduction
Decision makers of industries like transportation compa-
nies, accommodation facilities, hotels and traveling agen-
cies, all would like to have good estimates of the future
demand in the weeks, months, seasons and even years re-
garding the number of incoming tourists to their regions. In
such context, the development of models to predict future
visitation demand to specific places and regions can be of
great benefit. It is important to note that such predictions
are not trivial as many factors could interfere in the cyclic
and/or trending behavior of visitation counts. For example
factors like exchange rate (Webber 2001), epidemics, fuel
price, climate changes (Hengyun Li and Li 2016), local and
global financial crisis (Maditinos and Vassiliadis 2008) and
hit movies (Riley and Van Doren 1992) could cause drastic
deviations in tourism demand forecasts if we do not prop-
erly weight these elements. However, most of these factors
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are reflected quickly in social media (Asur and Huberman
2010), (Chunara, Andrews, and Brownstein 2012) due to the
huge amount of involved users and vast amount of daily pro-
duced content in these websites.

Nevertheless, one of the challenges in tourism prediction
is data gathering. Indeed, the official visitation for many
touristic points is not well-documented and easily available.
Moreover, conducting surveys at entrances of major attrac-
tions is expensive and provides only limited spatial and tem-
poral coverage. The situation is worse in the case of develop-
ing countries and even more complicated regarding remote
touristic sites. This is why in most prior related works (Wang
2004), (Cankurt and Subasi 2015), (Chang Jui Lin 2011), the
proposed prediction models for forecasting touristic activi-
ties are built and tested over a whole country and not for spe-
cific regions or attractions. Here, it is necessary to mention
that there are works in the area of attraction recommenda-
tion (Borras, Moreno, and Valls 2014) but their main focus
is the users/tourists and not the attractions. In other words,
this field of the research is focused on recommending to the
tourist the proper attractions based on the history of her pref-
erences, her social network and other personal factors while
in our problem the main focus is on the visitations to the
attractions themselves.

In this context, our main contribution in this work is eval-
uating the feasibility of exploiting accessible data in social
media networks alongside climate data in order to infer the
visitation percentage change in attractions. To this aim, first,
we choose sites with available monthly visitation census as
the ground-truth of our analysis. In this way, more than 80
National Parks in United States of America were chosen.
Then we use available reviews by tourists and their ratings
in a famous travel website besides monthly average temper-
ature in each site to correlate this information with visitation
counts in the corresponding attractions in the same period of
time. Next, we train a simple prediction model using a linear
regression approach; the model is trained for each attraction
separately using the last 5 years of social media and climate
data. Finally, by computing the proportion of social media
reviews along climate data average temperature versus offi-
cial visitation counts, we could predict with relatively high
accuracy the actual visitation count for each of these parks in
the next months. Such results are very important, mainly for
attractions with “difficult to gather” official visitation census



data.
The rest of this paper is as follows. We first present re-

lated work. Next, the datasets used in our analysis, the data
cleaning phase and the metrics we used in our study are dis-
cussed. Following we detail our experimental characteriza-
tion and exploit the results to forecast the touristic demands
using a simple linear regression model. Finally we conclude
the paper with glimpses in future work.

Related Work
There are plenty of works using Location Based Social Net-
works (LBSN) data such as Foursquare and Yelp to study
the mobility behavior of tourists and citizens (Li and Chen
2009), (Cho, Myers, and Leskovec 2011), (Hasan, Zhan, and
Ukkusuri 2013) and (Hossain et al. 2016). On the other hand,
there is only a few works analyzing the social media data
such as tourists’ reviews, ratings and check-ins to infer the
visitation density over time. Moreover, those that use this in-
formation to make an estimation of future touristic demands,
only do it in a coarse-grained fashion (e.g. country or city).
There is a few exceptions though. For instance, in (Spencer
A. Wood and Lacayo 2013), the authors use the locations
of photographs in Yahoo Flickr social media website to es-
timate visitation rates in some recreational sites around the
world; they use information from the profiles of the photog-
raphers to derive travelers’ origins in order to compare their
estimations to empirical data and conclude that the crowd-
sourced information can indeed serve as a reliable proxy for
empirical visitation rates.

In (Nicholas A. Fisichelli 2015), the authors analyze the
climate and visitation data for U.S. national parks using a
third-order polynomial temperature model and argue that it
explains 69% of the variation in historical visitation trends.
Albeit their interesting results, we show in this work that by
exploiting the social media data, a higher accuracy of 83%
can be achieved.

The work described in (Hengyun Li and Li 2016) links the
climate and seasonal tourism demand to study the effects of
home climate, destination climate, and climate differences
between destinations and hometown on touristic demands.
In their study, other features of a destination include access
to sea or lakes, availability of cultural and historical places,
price, hospitality, accommodations, ease of access and cui-
sine are also considered. Anyhow, statically, they show that
the features: home climate, destination climate, and climate
difference count for most of the Hong Kongers’ tourism
demand considering 19 major tourism cities in Mainland
China.

In this context, in here we provide a more thorough study
by analyzing the climate history of each attraction along
with social media data. To the best of our knowledge, we
are the first to perform such joint analysis. By mixing the
climate and social media data in order to predict touristic
demands we could produce better forecasting models espe-
cially for touristic places with no availability of visitation
census due to various reasons such as being costly surveys,
difficulty to access remote places to collect data and so on.

In (Cankurt and Subasi 2015), the authors use multilayer
perceptron (MLP) regression and support vector regression

(SVR) models in order to make multivariate tourism fore-
casting for Turkey. The authors use features such as: whole-
sale prices index, US Dollar selling, hotel bed capacity of
turkey, number of tourism agency in Turkey. Using robust
models like SVR and MLP let them gain a high accuracy
prediction results. However, they again work of the coarse-
level of country. And we show that simpler linear models,
which are easy to train and to interpret, can produce rela-
tively accurate predictions.

Data Analysis
In our study, we used various datasets collected from dif-
ferent sources in order to produce more robust results. In
this Section, we first present our dataset sources with some
details, and then we present the metrics we utilize in our
characterization and prediction experiments.

Dataset
The social media data in our experiments are collected from
the famous world-wide social network - Trip Advisor which
is the largest travel website for more than 11,000 reviews per
day and 315 million mobile application users1. We collected
the monthly number of reviews along average rating scores
of reviewers during the period of January 2011 till Septem-
ber 2016 2.

In addition, to improve our analyses, climate data includ-
ing the monthly minimum, maximum and average tempera-
ture aside with the monthly precipitation of all the 83 Na-
tional Parks in the period of January 2000 to November
2016, were collected from the U.S National Climate Data
Center 3.

Finally, we obtained the official visitation statistics from
the U.S National Park Service website. In their portal, the
monthly touristic demands for National Parks in U.S. is pro-
vided. We downloaded the monthly total number of visitors
in each national park in the period of January 1996 to Febru-
ary 2016 for 83 parks in U.S 4 to use as the ground truth
dataset for our study. In Table 1, the list of datasets is pre-
sented with details.

Data Cleaning
For our experiments, we chose 124 National Parks in U.S.
with both, available Social Media data and monthly Official
Visitation census. In a further analysis, we discarded some
parks with very few reviews in the Social Media. The reason
for this cut is that low number of reviews for an attraction in
a long period of time indirectly shows the few contributions
of the community to the social media page of this park in
our specified travel website. Such contribution are key for
our study. As a result, we filtered out all parks with less than

1Based on TripAdvisor’s fact sheet available at
http : //www.tripadvisor.com/PressCenter − c4 −
FactSheet.html

2available at https : //www.tripadvisor.com/Attractions−
g191−Activities− c57− t67− UnitedStates.html

3available at https : //www.ncdc.noaa.gov/cag/time −
series/us/

4available at https : //irma.nps.gov/Stats/



Figure 1: Correlation results for Adams National park in Massachusetts, US. Meaning of the abbreviations on top of the Figure:
Sp= Spearman; Pe=Pearson; tavg= average temperature. All correlations are related to the official number of visits from the
ground truth.

Table 1: Datasets

Dataset provider granularity attributes Data Range

VIS U.S National Park Service monthly total number of visitors 1996-01 to 2016-08

CLM U.S National Climate Data Center monthly min,avg,max temperature,
avg precipitation 2000-01 to 2016-10

SOC Trip Advisor travel website monthly No. reviews, avg ratings 2011-01 to 2016-09

300 reviews in the last 5 years (an average of 60 per year).
After the data cleaning process, we remained with 83 Na-
tional Parks.

Correlation Coefficients

In the next section, we correlate the three collected datasets.
For correlation evaluation of time-series, there is a set of
metrics like Spearman (Bonett and Wright 2000), Pearson
(Gautheir 2001), Kendell (Yue, Pilon, and Cavadias 2002)
and DTW (DJ Berndt 1994). The most widely used type of
correlation coefficient is Pearson. It assumes that the two
variables being analyzed are measured on at least interval
scales, meaning they are measured on a range of increasing
values. The coefficient is calculated by taking the covari-
ance of the two variables and dividing it by the product of
their standard deviations. However, the Spearman correla-
tion is more robust than the Pearson coefficient in correlat-
ing time-series(Bonett and Wright 2000). Pearson measures
linear dependence whereas Spearman measures are invariant
by monotonous transforms of the variables.

In more details, if we have one dataset {x1, x2, ..., xn}
containing n values and another dataset {y1, y2, ..., yn} con-
taining n values then the formula for Pearson correlation is:

P =

n∑
i=1

(xi − x̄)(yi − ȳ)/

√√√√ n∑
i=1

(xi − x̄)2

√√√√ n∑
i=1

(yi − ȳ)2

(1)
where x̄ is the mean of xi and analogously for ȳ.
In order to calculate Spearman’s rank correlation, first we

should rank the observations in the two samples separately
from smallest to largest. Equal observations are assigned the
mean rank for their positions. Let ui be the rank of the i-th
observation in the first sample and vi be the rank of the i-
th observation in the second sample. Spearman correlation
coefficient is a measure of the correlation between ranks,
calculated by using the ranks in place of the actual observa-
tions in the formula for calculating Pearson correlation co-
efficient. Equation 2 presents the formula for Spearman; this
equation can be approximated as 3 which is not exact when
there are tied measurements but the approximation is good
when the number of ties is small in comparison to n.

S =
n
∑n

i=1(uivi)− (
∑n

i=1 ui)(
∑n

i=1 vi)√
[n

∑n
i=1 u

2
i − (

∑n
i=1 ui)2][n

∑n
i=1 v

2
i − (

∑n
i=1 vi)

2]
(2)

S = 1−
6
∑n

i=1(ui − vi)
2

n(n2 − 1)
(3)



Figure 2: Correlation results for Joshua Tree National park in California, US. Meaning of the abbreviations on top of the Figure:
Sp= Spearman; Pe=Pearson; tavg= average temperature. All correlations are related to the official number of visits from the
ground truth.

In our experimental results, we report on both Spearman
and Pearson correlation values.

Experimental Characterization
This section includes the results of our experimental charac-
terization that contrasts the touristic demands versus social
media and climate data. After normalizing the official visi-
tation census data, average temperature data and the social
media reviews and ratings by the maximum value of each
time-series, we correlated the correspondent monthly data
values using both Pearson and Spearman correlation coeffi-
cients in the period of January 2011 till September 2016.

Our results show that over 83% of the parks show a mod-
erate to high correlation of more than 50% between the
monthly total number of reviews and the monthly total num-
ber of visitors for each National Park. In the following,
we categorize the correlation results into three categories:
(A) the parks with high correlation within their so-
cial media and official visitation data (more than 65%);
(B) those parks with moderate correlation within the
social media reviews and the number of visits (be-
tween 50% till 65%) ; (C) parks with low cor-
relation (less than 50%) within their social media
and official visitations but moderate correlation within
the climate data and the official visits (over 50%);
and (D) Parks with low correlation (less than 50%) within
their social media, climate and official visitation data.

Overall, 54 of the 83 considered parks (65%) were classi-
fied in category A, 19 in category B, 6 in category C and only
4 in category D. This shows the high potential of using both
types of data - social media and climate - simultaneously in
prediction tasks.

To illustrate these results, Figures 1 and 2 present the
correlation graphs of the National parks Adams in Mas-
sachusetts and Joshua Tree in California in United States of
America. As it can be seen in the (high) correlation values

above the figures, correlation category of these parks belong
to the category (A). This is graphically illustrated by the sim-
ilarity patterns in the three temporal series.

Figure 3, shows the correlation results for the Big Cypress
National park in southern Florida, U.S. with a correlation
category (B).

As mentioned, in a few parks (4), correlation of social
media and touristic demand census was not high. Figure 4 –
Cabrilio National Monument in California, U.S. – illustrates
of cases in category (D).

In order to better understand the reasons for this phe-
nomenon, i.e, the low correlation between the number of
reviews versus the number of visits in a few parks, we de-
cided to analyze their average monthly temperature. To do
so, we plotted the average monthly minimum, average and
maximum temperature of all parks alongside the value of
the correlation between the social media and official data.
In Figure 5, temperature effects on correlation of social me-
dia and official data is presented using a scatter plot. In the
fourth column and the fourth row, the range of x and y val-
ues is between (0,1) which represents the correlation value
while in the rest of rows and columns, x and y values shows
the temperature in Celsius degree.

As it can be inferred from this figure, the social media is
more representative of the real visitations when the average
temperature of the park is moderate. In other words, for the
parks with a high temperature climate (whether min, avg or
max temperature), the correlation value decreases. The blue
circles in Figure 5 shows this behavior in the scatter plot. It
could be seen in this figure that there is a linear correlation
between the min, max and average monthly temperature in
all these parks so we could use any of these temperature-
based variables in our correlation analysis.

We turn our attention now to the predictive capability of
the features and some seasonal aspects we are analyzing.
Figure 6 represents the potential effectiveness of predicting



Figure 3: Correlation results for Big Cypress National park in southern Florida, US. Meaning of the abbreviations on top of the
Figure: Sp= Spearman; Pe=Pearson; tavg= average temperature. All correlations are related to the official number of visits
from the ground truth.

Figure 4: Correlation results for Cabrilio National Monument in California, US. Meaning of the abbreviations on top of the
Figure: Sp= Spearman; Pe=Pearson; tavg= average temperature. All correlations are related to the official number of visits
from the ground truth.

touristic demands in different seasons of the year. It can be
seen that in some seasons, the monthly number of reviews
in social media is more representative of the total number of
visits. For example in some parks we have a higher correla-
tion value in summer or winter.

In Figure 7, we plot the visitation forecasting potential,
based on the calculated correlations, of the different features.
Note that for each feature, the values are sorted in an ascend-
ing order to provide a better view of their performance in
comparison with the other features.

Considering the features ’Reviews Spring’, ’Re-
views Summer’, ’Reviews Autumn’, ’Reviews Winter’,
’all Reviews’, ’avg temperature’ and ’Precipitation’, the
avg temperature is the feature that produces the best corre-
lation with the official visits. However, by itself , it cannot

be considered a good estimator as there are many cases in
which the correlation value of average temperature is very
low. In other words, when this feature is well correlated, the
value is very low. The problem is that we do not know for
which parks this could happen. On the other hand, we can
see from the Figure and previous analysis that the feature
‘social media reviews’ is more stable and reliable. The
reason is that when this feature is not well correlated with
the official visitation, it still represents more than 30% of
the behavior of the touristic demand over the time. And
when the value is high, it is still very close to the best
representative feature in the same park.



Figure 5: Temperature effect on correlation of social media and official data

Figure 6: Predicting visitation in different seasons of the year

Prediction
For time-series forecasting, we should first check the main
trend of the time-series; whether it is decreasing, increasing

or constant over time. Then, we should figure out the cyclic
behavior of the time-series or, in other words, its seasonal-



Figure 7: Visitation forecasting quality by different factors

ity. Next, in order to join these two components and summa-
rize the original time-series, a random (residual) component
should be summed up with the former two components. This
is the component which causes the prediction of time-series
to always be uncertain and the necessity of having a con-
fidence interval. The random component is a kind of noise
which should be taken apart from the main trend and season-
ality of the time-series at the time of forecasting. There are
many stochastic, adaptive and regression models to use on
time-series forecasting such as Support Vector Regression
(SVR) and artificial neural network (Cankurt and Subasi
2015), autoregressive integrated moving average (ARIMA)
and seasonal ARIMA (SARIMA) (Wei 1994), Holt-Winters
(Kalekar 2004) and Hidden Markov Models(HMM) (Wes-
ley Mathew 2012). Nevertheless, in this work we start with
a simple prediction model, i.e. a linear regression approach
(Montgomery, Peck, and Vining 2015) to show the potential
of using social media data along with climate data to fore-
cast the touristic demand in the following months. In our
view, this simple solution will better emphasize the predic-
tive capability of the features, as the model is simpler and
more explainable, besides being faster to train. Moreover, re-
cent work has showed that correlations are high, linear mod-
els have been shown to be quite effective in other popular-
ity prediction tasks (Vasconcelos, Almeida, and Gonçalves
2015), (Pinto, Almeida, and Gonçalves 2013), (Szabo and
Huberman 2010). Anyway, we leave the use of more com-
plex prediction models for future work.

.

For prediction accuracy measurement, we use relative er-
ror; assuming that the true value of a quantity be x and the
measured value x0. Then the relative error is defined by
equation 4. In this equation, ∆x is the absolute error while
the percentage error is relative error multiplied by 100.

relative error =
∆x

x
=

x0 − x

x
(4)

To obtain the prediction results in the dataset of National
Parks, we trained a linear regression model with the last 5
years of the social media, climate and official visitation data
for each park, during the period of January 2011 till January
2016. Then we used each model to forecast the number of
visits in the next 1, 3 and 6 months in the period of January
to August 2016 using the monthly quantity of reviews and
average temperature in the same period (January to August)
but from the previous year (2015); Equation 5 presents the
linear regression formula where C1 and C2 are linear regres-
sion coefficients have been trained separately for each park.
In Table 2 we report the learned coefficients. Next we com-
pared the result with the available official visitation to cal-
culate the relative error of each model. Figure 8 shows the
relative error in a Cumulative distribution function (CDF)
plot (Anderson and Darling 1954).

V isitation Count = (C1 ∗No Reviews)+

(C2 ∗Average Temperature)
(5)

Our experiments show that the results are actually very
good. For one fourth of the parks, the percentage error is
quite small (below 10%). In fact, for the majority of the sites
(60%), the relative error is under 30%, which is quite rea-
sonable. And for jsut a small percentage of the sites (10%),
the error can be quite large (above 100%) which is mostly
the parks with low correlation between their social, climate
and official data,. i.e., categories C and D.

Conclusion
In this paper, we analyzed use of Social Media data as a
way for tourism demand forecasting for places and attrac-



Figure 8: prediction relative error - Cumulative distribution
function

tions with unavailable official visitation census. We took ad-
vantage of correlating various datasets gathered from differ-
ent sources due to evaluating our hypothesis of forecasting
tourism demands using the Social Media reviews and rat-
ings along with climate data. A dataset of official visitation
in more than 80 National Parks in U.S. has been used as the
ground truth basis for our analysis.

In the future works, we aim to improve the accuracy of
the prediction results using more robust prediction models
like SVM and ANN, in addition to clustering the attractions
based on their locations, climate and the intervals of their
monthly average number of visitation. In addition, we would
like to study Location-based Social Networks as another
way to collect the information of check-ins of the tourists
in different attractions.
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ing early view patterns to predict the popularity of youtube
videos. In Proceedings of the sixth ACM international con-
ference on Web search and data mining, 365–374. ACM.
Riley, R. W., and Van Doren, C. S. 1992. Movies as tourism
promotion: A pull factor in a push location. Tourism man-
agement 13(3):267–274.



Spencer A. Wood, Anne D. Guerry, J. M. S., and Lacayo, M.
2013. Using social media to quantify nature-based tourism
and recreation. Scientific Report 3.
Szabo, G., and Huberman, B. A. 2010. Predicting the
popularity of online content. Communications of the ACM
53(8):80–88.
Vasconcelos, M.; Almeida, J. M.; and Gonçalves, M. A.
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Crater Lake 0.26179579 1.00422405 Natural Bridges 0.34613147 0.58719186
Craters of the Moon 0.40812067 0.95581679 Ocmulgee 0.13853699 0.57454598
Cumberland Gap 0.12883619 0.85733041 Padre Island 0.66758626 0.76485867
Cumberland Island 0.35278411 0.21325232 Petroglyph 0.21075052 0.46272063
Cuyahoga Valley 0.06215396 0.8911931 Pictured Rocks 0.68378877 0.34962079
Denali 0.89282823 0.62369615 Pinnacles -0.07526282 -0.17425336
Devils Postpile 0.8269298 0.73888461 Redwood 0.35034759 0.93102505
Devils Tower 0.44739327 0.86638349 San Antonio Missions 0.50098498 0.07445492
Dinosaur 0.04909874 1.17514854 San Francisco Maritime 0.01187019 1.0627824
Dry Tortugas 0.51548118 -0.21612369 Shiloh -0.19419537 0.53664466
Everglades 0.29402736 -1.01963941 Sleeping Bear Dunes 0.93742206 0.22356636
Ford’s Theatre 0.54452506 0.08389264 Statue of Liberty 0.5698896 0.79048766
Fort Davis 0.37197309 0.22935437 Stones River 0.10254982 0.68966152
Fort Matanzas 0.37889505 0.6953018 Sunset Crater Volcano 0.10078884 1.02448171
Fort McHenry 0.04109759 0.94529083 Theodore Roosevelt NP 0.35434726 0.68654889
Fort Pulaski 0.21922235 0.6221173 Valley Forge 0.16304726 0.68205947
Fort Smith 0.06697106 0.52004599 Vanderbilt Mansion 0.2625722 0.93153881
Fort Sumter 0.41360108 0.85800944 Vicksburg 0.20335343 0.74454298
Gettysburg -0.07082087 1.18073001 Walnut Canyon 0.02534873 0.53758153
Glen Canyon 0.19205586 1.29033358 Washington Monument 0.93855068 0.33214409
Grand Teton 0.33968658 0.79983548 White Sands 0.34149341 0.47117086
Haleakala 0.23038558 -0.35894535 Wolf Trap 0.57417184 0.91170958
Harpers Ferry 0.14044576 1.08966384 Wright Brothers 0.09928977 1.52863421
Hawaii Volcanoes 0.23357509 -0.82910556 Wupatki 0.11606265 1.3231079
Hot Springs -0.02703018 0.88043339


