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Abstract

One of the most important problems in bioinformatics and network anal-
ysis is to identify all the occurrences of a sub-graph contained within another
graph. When this sub-graph is statistically overrepresented within the net-
work, it is called motif. The problem of sub-graph matching finds application
in various fields such as the analysis of the interaction between proteins, the
design of new drugs and the correlation between molecular compounds. The
greatest difficulties in dealing with this problem are due to the fact that the
number of possible sub-graphs to search increases exponentially both as the
size of this sub-graph increases and as the size of the target network increases.
Different strategies have been developed for the problem of motif search, but
they can be a concrete help to research only if they are used through tools
implemented in a performing way. In this thesis, we will present a Cytoscape
App called Match&Motif that allows the user to upload both target and
query networks, draw queries and label them freely, search all the occur-
rences of the specified queries and finally validate the results according to
two models, the statistical model and the analytical model.
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Introduction

A complex system is a system composed of many interacting parts, such
that the collective behaviour of those parts together is more than the sum
of their individual behaviours. The collective behaviours are sometimes also
called “emergent” behaviours, and a complex system can thus be said to be
a system of interacting parts that displays emergent behaviour. The study
of complex systems involves the analysis of the way in which their elements
interact rather than only their individual roles.

The biology of complex systems regards the study of the complexity of
structure and function of biological organisms, emphasising the intricate in-
teractions and relational patterns that are essential for life. A complex system
can be described as a network. Networks are a fundamental tool for under-
standing and modelling complex systems in physics, biology, neuroscience,
engineering, and social sciences. Examples of biological and non-biological
networks include transcriptional or gene regulation networks, protein–protein
interaction networks (PPI network Figure 1), metabolic pathways, neural
networks, social networks and technological networks.

Networks can be represented as graphs, composed by a wide variety of
sub-graphs. Such sub-graphs may describe interactions between gene regu-
lators or complex enzymatic processes, is the case of biology, or relationship
among airlines and intriguing relationships involving people, in the case of
non-biological problems. Different networks tend to have different sets of
such frequent local structures, and each structure has a specific function in
the network.
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Figure 1: Example of PPI network generated with Cytoscape.

Network motifs can be defined as sub-graphs that arise unexpectedly
often in a network [40]. They are recognized as ‘the simple building blocks of
complex networks’. Network motif search is the problem of finding sub-graphs
of a network that occur more frequently than expected.

Discovering such motifs is important as it helps to understand the func-
tion of a network and also provides an alternative way to compare and anal-
yse two or more biological networks. In fact, if two networks have common
motifs, we can assume they perform some similar basic functions. Finding
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similarity also helps to find phylogenetic relationships between organisms. It
is interesting to know whether the functional behaviour of a motif can be
predicted from its structural topology as well as whether the abundance of
such motif necessarily implies biological significance. Some studies also inves-
tigated how network motifs might be shaped by evolution, in fact, when the
same network is placed under varying environmental conditions where each
condition demands different functional behaviour from the network, several
network motifs emerge. Other studies have argued that overabundance of a
network substructure might be a secondary result of some other phenomena.

The enumeration of motifs belonging to a network is a crucial point it is
not only computationally heavy but also it must be taken into account that
isomorphisms of the same topology must be counted only once because, in
most cases, they correspond to a similar function within the network. Deter-
mining if two graphs are topologically equivalent requires graph isomorphism
checking, which is a highly computation intensive problem with no known
polynomial-time solution, meaning that it is an NP-Complete problem [24].
A fundamental point is to determine when a sub-graph appears unusually of-
ten within the network, so when one can refer to a motif and when it is simple
sub-graph, it has no particular relevance. These problems are compounded
by the fact that the number of sub-graphs of a given size in a network is
exponential in both the network size and the sub-graph size and by the fact
that Real-life networks tend to be large and dense. Different approaches and
strategies have been developed that, depending on the use cases, find more
or less efficient and precise solutions to these questions.

We will consider NetMatch* [42], a Cytoscape app [36], that allows to
search all the occurrences of a query network within a target network and
to check its significance with respect to some randomization models, and
FlashMotif [31], which also allows to search for the occurrence of a query
network within a target network, but paying attention to the labelling of
the queries network and verifying the significance of the motif through an
analytical model. The aim of this thesis is to unify in a cytoscape app,
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which takes the name Match&Motif, the functionality of NetMatch* and
FlashMotif giving the user free choice on how to verify the significance of a
motif by choosing between analytical significativity or statistical significance,
and, in this last case, select also the randomization model that user considers
most appropriate.

In the first chapter of this thesis the main steps leading to the identifica-
tion of a motif with the relative strategies will be illustrated, in the second
chapter the two approaches for validation of the motif will be explored, in
the third chapter the functioning of the Cytoscape App Match&Motif will
be discussed with focus on the design of the query network, its labelling and
the visualization of results.
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Chapter 1

Preliminary definitions

In this first chapter some preliminary basic definitions will be presented con-
cerning the theory of graphs [5, 48] and complex networks [28].

Definition 1.1. (Graph). A graph is a pair G = (V,E) where V = {v0, v1, ...v|V |}
is the set of vertices (nodes) and E ⊆ V × V is the set of edges in G, that is
the set of connections between the vertices of G.

Definition 1.2. (Undirected Graph). A graph G = (V,E) is said to be
non-oriented if E is a set of unordered pairs of vertices. Given two vertices
vi, vj ∈ V an edge of an undirected graph is indicated by (vi, vj) and is said
incident to both vertices vi and vj.

Definition 1.3. (Oriented graph). A graph G = (V,E) is called oriented if
E is a set of ordered pairs of vertices. Given two vertices vi, vj ∈ V an edge
of an directed graph is indicated by

−−−−→
(vi, vj) and is said incident from vi to

vj.

Definition 1.4. (Multigraph). A multigraph is a graph G = (V,E) con-
taining multiple edges (edges connecting the same pairs of nodes) and loops
(edges that connect nodes to themselves).

Definition 1.5. (Labelled graph). Given a graph G = (V,E), an alphabet ∑
of labels, a function α : V → ∑ a function that assigns a label to each node
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of G and β : V → ∑ a function that assigns a label to each edge of G, thus
G(V,E, α, β) is called labeled graph.

Definition 1.6. (Adjacency matrix). Adjacency matrix A(aij) of a graph
G = (V,E) is a matrix |V | × |V | i.e.

aij =
{

1 if (vi, vj) ∈ E
0 otherwise

The main diagonal of the adjacency matrix contains only values equal to zero.

Definition 1.7. (Distances matrix). A distances matrix D(dij) of a graph
G = (V,E) is a matrix |V |×|V | i.e. each element of it is equal to the distance
of the minimum path between the verticesvi, vj ∈ V . The main diagonal of
the distance matrix contains only values equal to zero.

Definition 1.8. (Sub-graph). A graph G′ = (V ′, E ′) is a sub-graph G =
(V,E) if V ′ ⊆ V and E ′ ⊆ E

Definition 1.9. (Set of neighbors of a node). Give a graph G′ = (V ′, E ′)
it is defined set of neighbors of a node v ∈ V the set N(G, v) = {v′ ∈ V :
(v, v′) ∈ E}. If the graph is oriented, the set of neighboring successors of a
node v ∈ V is defined as Nout(G, v) = {v′ ∈ V :

−−−→
(v, v′) ∈ E} and the set of

neighbors predecessors as Nin(G, v) = {v′ ∈ V :
−−−→
(v′, v) ∈ E}.

Definition 1.10. (Connected graph). A graph G = (V,E) is called connected
for each couple of distinct nodes (vi, vj) ∈ V if exists a path from vi to vj.
Otherwise the graph is said not connected.

Definition 1.11. (Complete graph). A graph G = (V,E) is called complete
for each couple of distinct nodes (vi, vj) ∈ V if exists an edge between vi and
vj.

Definition 1.12. (Isomorphism between graphs). Two graps G = (V,E)
and G′ = (V ′, E ′) are called isomor if there is a biunique correspondence
f : V → V ′ i.e. (u, v) ∈ E iff (f(u), f(v)) ∈ E. In other words it is possible
to label the vertices of G with vertices of G′, keeping the corresponding edges
of G and of G′.
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Definition 1.13. (Degree of a node). Given a graph G = (V,E), the degree
(or connectivity) kvi

of a node vi ∈ V is the number of incident edges and is
defined in terms of adjacency matrix A(aij) as:

kvi
=
∑
vj∈V

aij

If the graph is directed the indregree kinvi
and the outdegree koutvi

of a node
vi ∈ V respectively kinvi

= ∑
vj∈V aji and koutvi

= ∑
vj∈V aij. The total degree is

defined as kvi
= koutvi

+ koutvi
.

Definition 1.14. (Distribution of degree). Given a graph G = (V,E) we
diefined the distribution of degree P (k) the probability that a certain ran-
domly selected node has degree k. If the graph is direct, it is possible to de-
fine the probability distribution for the indegree and the outdegree, indicated
respectively with P (kin) and P (kout).

Definition 1.15. (Local clustering coefficient). Given a graph G = (V,E)
and its node vi ∈ V we define local clustering coefficient [47] cvi

of the node vi
the ratio between the number of edges |E| and the maximum possible number
of edges in Gi:

cvi
= 2|E|
kvi

(kvi
− 1)

Definition 1.16. (Clustering coefficient). Given a graph G = (V,E) we
define clustering coefficient C the average of clustering coefficient cvi

of every
node vi ∈ V .

C = 〈c〉 = 1
|V |

∑
vi∈V

cvi

Definition 1.17. (Assortativity coefficient). Given a graph G = (V,E) we
define assortativity coefficient [34] the quantity:

r = i

σ2
q

∑
jk

jk(evjvk
−Q(j)Q(k))

where σ2
q is the variance of the distribution Q(k), thus:

σ2
q =

∑
k

k2Q(k)−
[∑
k

kQ(k)
]2
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Chapter 2

Motif search strategies

Intuitively, to define whether the frequency of a particular observation has
relevance in a study, it is possible to define a frequency threshold. If this
frequency exceeds the threshold, it will be considered relevant for the purpose
of the study. However, choosing a threshold to evaluate observations means
having some a priori information about what is being analysed, otherwise,
it would be an arbitrary choice. Therefore, it is possible to define a null
hypothesis and a probability distribution of the observed phenomenon. The
probability of an outcome (i.e. the p-value) with respect to a reasonable
null hypothesis is a principal way to determine unusualness. In the motif
search, there is no prior knowledge about the motifs we are looking for or
the networks we are analysing, for this reason, the conventional approach to
determine if a sub-graph can be considered a motif is to follow these three
steps:

1. Starting from the target network, generate a large set of random net-
works that share with it many of the most important features of a
network. (roughly the same number of nodes and edges with similar
degrees distributions);

2. For each distinct topology find the number of its occurrences in each
of those networks;
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3. Check if a sub-graph can be considered a motif, estimating the p-value
by comparing the number of occurrences in the input network with the
numbers of occurrences in the random networks.

2.1 Random graphs

There are various models for the generation of random networks, each of
which applies different strategies. It is essential that the generated random
graph is similar to the original graph in terms of global properties such as
average grade, average path length, degree distribution, and many other
relevant properties. The choice of the random model and the number of
random networks to be created is a delicate aspect, in fact, in most cases,
the biological networks are enormous and replicate them numerous times is
computationally heavy.

2.1.1 The switching method

The most common random graph generation technique used in motif finding
algorithms is the ‘Switching Method’ [32]. It repeatedly selects two random
edges, and exchanges the ends to form two new edges. The random network
has the same number of node and edge of the input network, and the in-
and out-degrees of the nodes are preserved. Has also been widely applied
in studying such features of biological networks as modularity and degree
correlation. Many studies [38] have shown that, for many networks, 100*E
times of switching appear to be adequate to achieve randomisation, where E
is the number of edges.

2.1.2 Erdos-Renyi (ER) model

Erdos-Renyi [43, 10], also called ER model, is a model able to generate
random graphs in which two nodes connect each other randomly and in-
dependently. In the variant of the model in which the graph is defined as

18



G(|V |, |E|), the algorithm randomly creates a network uniformly over all net-
works that have |V | nodes and |E| edges. In another variant of this model,
the generated graphs are denoted as G(|V |, p), with 0 < p < 1, where p is the
probability of connecting each pair of nodes. The properties of the graphs
generated according to this model vary considerably depending on the proba-
bility; therefore there is no certainty of having a uniformity of characteristics
in the randomly generated networks (Figure 2.1).

Figure 2.1: Network generated according to the Erdos-Reny model.

2.1.3 Watts-Strogatz model

The Watts-Strogatz [9] model generates networks that respect the small-
world property. They are characterised by a small average length of the paths
between the pairs of vertices and a high coefficient of clustering. Nodes are
not close to each other. Nodes that are not directly connected to each other
can be reached from any other node by a small number of hops or steps.
Initially a set of |V | is generated ring-shaped nodes in which each node is
connected with an edge to its neighbour, so an edge to its right and one to its
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left. The edges are randomly mixed with rewiring probability β. Low values
of β produce quasi-regular graphs, where nodes have approximately the same
degree, while high values of β produce networks which are very close to the
ER model (Figure 2.2).

Figure 2.2: Network generated according to the Watts-Strogatz model.

2.1.4 Barabasi-Albert model

The Barabasi-Albert model [2] creates graphs where the more connected a
node is, the more likely it creates new links. The generation of the random
network starts from a small number of nodes. At each subsequent step, a
node will be added and connected to the new network. The probability that
an edge connects the new node with an already existing node will be linearly
proportional to the current degree of this node (Figure 2.3).
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Figure 2.3: Network generated according to the Barabasi-Albert model.

2.1.5 Geometric model

The geometric model [27] is used especially to generate spatially oriented
networks and for networks in which the information contained by the nodes
influences the topologies of sub-graphs included in the network. In the ge-
ometric model, each node is represented as a point in a d-space. An edge
between two nodes exists if the distance between corresponding points is
within a threshold r (Figure 2.4).
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Figure 2.4: Network generated according to the Geometric model.

2.1.6 Forest-Fire model (FF)

In the Forest-Fire (FF) model [19] is used to describe continuously evolving
networks. These networks evolve in a super-linearly way increasing the num-
ber of edges with respect to the number of nodes. Also, the distance between
nodes shrinks as new nodes arrive. In other cases, it is possible that the aver-
age distance between the nodes decreases progressively, rather than growing
slowly as a function of the increase in the number of nodes. A new node v
attaches to the network by iteratively exploring existing edges starting from
one or more anchor nodes, called ambassadors, which are chosen randomly.
At each step of the exploration, v creates out-links with newly discovered
nodes with a forward probability p and in-links with a backward probability
r and continues exploration from those nodes.

2.1.7 Duplication model

The duplication model [12] is well suited to biological networks. In fact,
they are subject to a different evolution compared to other networks,and in
particular, their evolution model is characterised by process of duplication of
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nodes and the connections between them. The main aspect that duplicating
the nodes also duplicates the information they contain; it is considered a
dominant evolutionary force for the growth of a network. There are two
procedures for duplication. In the complete duplication of a network, a
node is selected from the original graph with a fixed probability p. At each
successive step, a new node vj is added, connected to all neighbours of node vi
but not to vj. In the process of complete duplication, the steps are the same,
but the node vj will be connected to the neighbours of vi with a probability
q. The lower is p, the more divergent is vj as a copy of vi (Figure 2.5).

Figure 2.5: Total and partial duplication process in a graph: a node is selected
with a probability p from the original graph (a); the process of total duplication
involves the addition of a new node vj connected to all neighbors of node vi (b),
instead the partial duplication process foresees that the vertex is connected to all
neighbors of vi with a probability q (c).

2.1.8 Chung-Lu model (EDD)

The Chung–Lu model [11], also known as Expected Degree Distribution
(EDD), model generates graphs in which node degrees follow a given dis-
tribution. It was initially introduced for non-labelled graphs. Each edge
is chosen independently with probability proportional to the product of the
expected degrees of its endpoints. Given an undirected graph G(V,E) with
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|V | = N , let be a random variable fD based on the degree distributions of
G. P (fD = d) is the probability that a node has degree d in G. Assigning
degrees to each node i in V ′ by sampling according to the fD distribution
and given fD, we can generate a new graph G = (V,E) with |V ′| = |V |. An
edge between two nodes i and j, with i 6= j, is generated with probability:

P (i, j|D(i), D(j)) = min(1, γ ×D(i)×D(j))

where γ = 1/[(N − 1) × E[fD]] and D(i) is the degree of node i within the
input graph. In Match&Motif an EDD model extension was used for labelled
graphs. In this extension the node degrees depend, at least partially, on
labels.

2.2 Motif occurences

The problem of counting the motifs is widely known and studied, which is
why various strategies have been developed to optimise research. Regardless
of which strategy is chosen, when the size of the sub-graph becomes > 10,
the problem becomes intractable in fact the number of possible sub-graphs,
considering that they can overlap between them, becomes enormous [35, 13,
1, 26]. Without the necessary precautions, to count all motifs occurrences
can be time-consuming and computationally heavy, like the whole process of
motif search. Recalling that a biological network can be made up of millions
of nodes, looking for all the different possible topologies of a motif is not a
trivial operation. For example, a motif with direct edges of size 5 (where 5 is
the number of nodes that compose it) has 9364 different distinct topologies.
For each topology, the millions of nodes of the target network must be checked
to make matching, and one must avoid counting isomorphs of the topology.
These operations must be repeated for all topologies. All this only for a
network, in fact, the procedure described above must be repeated n times
where n is the number of the random network that has been chosen for the
significance of the motifs. The amount of comparisons is impressive.
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2.2.1 Pattern growth tree

A reliable and efficient method to generate all possible sub-graphs starting
from another sub-graph is to extend it one step at a time by modifying one
of its nodes or edges and use the extended sub-graph to generate further
variants. This sequence of activities can be viewed as a tree, where each
node of the tree is one sub-graph, and its children are sub-graphs extended
from that node. In this way, all the children of that node are an extension of
that sub-graph. This strategy, called ‘Pattern growth tree’, can be used to
systematically generate all possible size-k graphs starting with a size-k tree.
It can also be used to systematically enumerate all occurrences of size-k
sub-graphs in the target network. Considering a node of the tree, thus a sub-
graph, if we suppose that its frequency falls below the frequency threshold, it
is possible to use this information to prune the sub-trees rooted at that node,
leading to increase computational efficiency. In fact, the biggest drawback
in generating all possible topologies is that the frequencies of sub-graph not
belonging to the target network could be calculated. Another advantage of
pattern growth tree is that, if we search for size-k sub-graphs in the network,
a pattern growth tree built for size-(k-1) sub-graphs can be reused. It may
lead to significant improvements in computational cost.

2.2.2 Sub-graph census

Sub-graph census, which is usually used with Pattern growth tree, is the
process of scanning the target network (node-by-node or edge-by-edge) and
enumerating all occurrences of all sub-graphs of a given size. The two main
strategies for the sub-graph census are the exhaustive census and the proba-
bilistic census. The first, intuitively, consists in counting all the occurrences
of a sub-graph. This approach is a time-consuming process, especially when
the network or the sub-graph to be enumerated is large. The second strategy,
called sampling strategy, consists of taking an adequate number of random
size and sub-graph samples from the original network. With a good amount
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of trials one can expect to get closely accurate yet quick results, but with
a non-zero probability that some potential motifs will be missed. Sampling
saves much computation, thus allowing us to discover larger motifs. Sample
sub-graphs can be generated and extended from an edge, ‘edge-sampling’,
or a node, ‘node-sampling’. For each sub-graph in the pattern growth tree,
an ‘edge-sampling’ strategy [33] an edge is randomly selected and extended
until a sub-graph of size-k is selected from that edge. This sub-graph will
be used for comparison. With this strategy, the sub-graphs that have more
edge will be counted more often, so the probability of selecting sub-graphs of
size-k is not uniform. The ‘node-sampling’ strategy [46, 45] is able to ensure
the uniform probability of picking any size-k sub-graphs. It assigns to each
level of its pattern growth tree a probability that the nodes (of the tree) at
that level will be further explored. Passing through the tree in a probabilistic
way, it is guaranteed that all the nodes that are the k-size sub-graph, will be
explored with equal probability. Also, an accurate node extension in the pat-
tern growth tree can ensure that a particular sub-graph will be encountered
exactly once, which avoids redundant computation.

2.2.3 Isomorphism checking

Two graphs are ‘isomorphic’ if there exists a one-to-one mapping between
their nodes such that each edge in one graph can be mapped to an edge in
the other graph [44]. Verifying the isomorphism of two graphs means verify-
ing they are topologically equivalent. This problem, known as isomorphism
checking or sub-graph matching, is an NP-Complete [24] problem, in fact,
does not exist an algorithmic solution able to solve it in polynomial times
[25]. Isomorphism can be solved by using ‘Canonical Labeling’ of its nodes
[22]. Practical algorithms such as the NAUTY [3] have been used in several
motifs finding tools for isomorphism testing.
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2.2.4 Mapping

The mapping strategy [20] can be used in the contraposition with the enu-
meration and estimating the frequency of all possible sub-graphs. It allows
finding the instances of a sub-graph taking as input a sub-graph of size-k
(query graph or candidate motive) and maps it onto the network in as many
different places as it can. Based on the degree of the nodes and the degree
of their neighbours, the mapping strategy classifies the nodes in the target
network and then controls the nodes in the input network that have simi-
lar characteristics to the query network [20, 21]. Mapping, when used with
symmetry breaking, resolves isomorphism without explicit checking [20].

2.2.5 Symmetry breaking

The symmetries of a graph are known as ‘automorphisms’. The group of
automorphisms are in the same ‘equivalence class’. One can specify a set of
symmetry breaking conditions [20] for each equivalence class. Checking if
these conditions hold between two graphs is easier than checking the isomor-
phism. Algorithms that use symmetry breaking while generating candidate
motifs can prevent many isomorphism computations, thus increasing effi-
ciency.

2.3 Validation

When the frequencies of all the size-k sub-graphs have been calculated for
both the target network and all random networks, different metrics and
thresholds can be chosen to determine if a subprogram is significantly fre-
quent, i.e. if it can be considered a motif. The two methods for calculating
significance will be explored in the next chapter.
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Chapter 3

Significance

There are two ways to calculate the significance of a motif: the statistical
method, which through sampling of random networks similar to the target
network verifies the significance of the motif, and the analytical model, which
through the Pólya-Aeppli distribution accurately calculates the mean and the
variance of a motif under any exchangeable random graph model.

3.1 Statistical significance

The most common way to determine when a sub-graph can be considered
a motif is to establish a threshold. If the sub-graph repeats a number of
times in the target network then it can be considered a motif, if instead, the
sub-graph has a frequency below the threshold then it can not be a motif.
Thus, the most intuitive metric is:

finput ≥ F

where F is the frequency thresholds and finput is the frequency of the sub-
graph in the target network. The ‘uniqueness threshold’ establishes that the
frequency of a candidate motif in the input network is at least above its
mean frequency in the set of randomly generated networks. Let a size-k sub-
graph gk occur f̄input times in the input network. Let f̄random be the mean of
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frequencies of gk in the random networks. Then, gk is ‘unique’ if

(finput − f̄random) > U × f̄random

where U is the uniqueness threshold. Several other metrics are used for the
significance of the motif [49].

Let a size-k motif gk occur f̄input times in the input network. Let f̄random
and σ2

random be the mean and variance of frequencies of gk in a sufficiently
large set of random networks, respectively. The z-score is defined as the dif-
ference of finput and f random, divided by the standard deviation σ2 random.
The z-score is calculated as,

z(gk) = finput − f̄random√
σ2
random

The P-value represents the equal or greater number of times in a random
network than in the given input network. If the associated P-value is less than
0.01 or z> 2.0, a sub-graph is statistically significant and can be considered
a motif.

Statistical significance can be measured in other ways. The z-score can
be replaced by ‘Abundance’, ∆ [39], that is defined as,

∆(gk) = finput − f̄random
finput + f̄random + ε

where, ε is a small positive number preventing the ratio from approaching in-
finity when the frequencies are small. The value of ∆ usually ranges between
-1 (under-represented) and 1 (overrepresented).

Another metric, the motif ‘significance profile’ (SP), is defined as a vector
of z-scores of a particular set of motifs, which is normalised to a length of
one [39]. Let n be the number of motifs in the set, and zi be the z-score of
the i-th motif. The motif SP of the i-th motif in the set is thus calculated as,

SPi = zi√∑n
j=1 z

2
j

SP of the entire network gives a histogram of the normalised z-scores of all
possible motifs [39].
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The ‘concentration’ of a candidate motif denotes how frequent it is in the
network compared to other sub-graphs of the same size [33, 46]. If there are
n sub-graphs of size k in the network, the concentration of the i-th size-k
sub-graph gk,i is defined as

C(gk,i) = fk,i∑n
j=1 fk,j

where fk,j denotes the frequency of gk,i in the network.

3.2 Analytical significance

The reliability of the p-value is strictly related to the number of random-
izations performed. To avoid such an expensive simulation, a key problem
is to identify a proper distribution fitting the number of observations in the
random reference model. Picard et al. [14] proposed a model to exactly
compute the mean and variance of the count of a given pattern under any
exchangeable random graph model. Exchangeability means that the proba-
bility of occurrence of topology does not depend on its position in the graph.
The random model used is Expected Degree Distribution (EDD), which gen-
erates random graphs whose node degrees have the same expectation as the
input network G. It is possible to extend the EDD model for non-labelled
graphs, to those labelled. Ignoring the node’s label, and considering only the
topology, information related to it could remain hidden.

According to equation

P (i, j|D(i), D(j)) = min(1, γ ×D(i)×D(j))

discussed in paragraph 2.1.8, used for generate random graphs under the
EDD model, we can introduce some variables for graphs in which node de-
grees depend on labels. Let fD|c be a random variable defined as the degree
distribution for nodes with label c in the input graph G . Let P (fD = x|c)
be the probability of sampling a node in G with a degree x given the label c.
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We define the occurence probability of the topology of a labelled motif mC

with k nodes, given a label assignment C, in the graph as:

µ(mC |C) = γm++/2
k∏

u=1
E[fDmu+|cu]

where fD|cu is the degree distribution for nodes with label cu in the input
network, m++ is twice the total number of edges in mC , mu+ is the number
of out-going edges from node u in mC and E[fmu+

D |cu] is the mu+-th moment
of the conditional distribution fD|cu.

The mean and the variance of motifs under exchangeable random graph
model can be calculated according to following equations. Let α = (i1, ..., ik)
be a k-tuple of ordered indexes representing a potential position of mC in G.
We introduce a random indicator of occurrence Yα(mC) which equals one if
the topology mC occurs at position α and 0 otherwise. We need to consider
a set of Non-Redundant Permutations (NRP) of mC , which we call R(mC),
because some permutation of the indexes produce the same motif. The total
count N(mC) of labelled motif mC is then:

N(mC) =
∑
α

∑
m′

C∈R(mC)
Y (m′C)

Under the exchangeability assumption, the distribution of Yα(mC) does not
depend on α and let us define:

µ(mC) = E[Yα(m′C)], ∀α, ∀m′c ∈ R(mC)

The expectation of N(mC) is:

E[N(mC)] =
(
N

k

)
× |R(mC)| × µ(mC)

where
(
N
k

)
is the number of all possible locations of mC in G. We compute

the variance of the number of occurrences of the labeled motif as:

V[N(mC)] = E[N2(mC)]− E[N(mC)]2
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It is, however, possible to adapt the model for the analytical significance
proposed by Picard et al. to any other random graph model, provided it is
an exchangeable random graph model and respects other properties that will
be mentioned soon.

Given N(mc), Picard et al. shown that the distribution of Pólya-Aeppli
(also known as the Geometric-Poisson distribution) approximates well the
distribution of N(mc) and is suitable to describe how the count of occur-
rences of the motif can vary. They also show that this is a good model for
the distribution of the counts of sub-graph topologies since the fit is more
accurate than a Gaussian model for the graphs of many applications.

The Pólya–Aeppli distribution supposes that objects (which are to be
counted) occur in clusters, the number of clusters follow a Poisson distribu-
tion, while the number of objects per cluster has a geometric distribution. It
holds when distinct topologies can share nodes and edges (i.e. clumps) [14].
Picard et al. show that when:

i) The number of clumps has a Poisson distribution with mean λ;

ii) The sizes of the clumps are independent of each other;

iii) The clumps have a Geometric distribution G(1− α);

the number of observed eventsX (topologies) has a Pólya–Aeppli distribution
P(λ, α). These results lead to an estimate of the count of occurrences of a
given topology. In this case, we have that X ∼ PA(λ, α) is a random variable
representing the number of observed events (i.e. motif occurrences in our
case):

P (X = x) =
{
e−λαx

∑
c=1···x

1
c!

(x−1

c−1

)
[λ(1−α)

α
]c if x > 0

e−λ if x = 0

The mean and the variance of PA(λ, α) are defined as λ
1−α and λ(1+α)

(1−α)2 .
By making use of the mean and variance obtained using the exchangeable
random graph model we can deduce the parameters of the distribution as
α = V[N(mC)]−E[N(mC)]

V[N(mC)]−E[N(mC)] and λ = (1− α)× E[N(mC)].
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Chapter 4

Match&Motif: a Cytoscape
App for statistical and
analytical motif search

This chapter presents a general overview of Match&Motif and its main fea-
tures. Match&Motif is a Cytoscape app, compatible with all versions of the
software starting from version 3.6. It is based on the plugin NetMatch* [15],
compatible with the versions 3.1 of Cytoscape, which inherits some of its
features, and FlashMotif [31] tool. Cytoscape [8] is open-source software for
the visualisation and analysis of molecular interaction networks, whose pe-
culiar characteristic is flexibility: in fact, Cytoscape allows researchers and
developers to adapt the application to its specific needs thanks to the ability
to implement external apps, developed in Java language, usable through an
App Store [23] online.

4.1 Functionalities

To start the app, it is necessary to select the corresponding item from the
"Apps menu". At startup, the app’s main panel will be loaded at the Cy-
toscape control panel (Figure 4.1).
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Figure 4.1: in the Cytoscape control panel, the main interface of Match&Motif is
loaded on the left.

The main interface of Match&Motif consists of a box with four tabs:

1. The first tab, called "Matching", allows specifying the query networks
and target networks and then it starts the search for matches (Figure
4.2 (a));

2. The second tab, called "Statistical Significance", allows to verify the
statistical significance of the query according to a specific randomisa-
tion model (Figure 4.2 (b));

3. The third tab, called "Analytic Significance", allows to verify the an-
alytical significance of the motif according to four different ways of
labelling it (Figure 4.2 (c));

4. The fourth tab, called "Motif library", allows a set of pre-defined queries
that can be passed to the search task (Figure 4.2 (d)).
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Figure 4.2: Four tabs of Match&Motif. Matching tab (a), Statistical Significance
tab (b), Analytic Significance tab (c) and Motif library tab (d).
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4.2 Load a query

From the main "Matching" panel it is possible to load the desired query and
target networks. By selecting the "Load New Network" button you can load
a network in various formats, including Simple Interaction Format (SIF) [8],
GML [17], XGMML [37], GraphML [7] and many others. The loading of a
network can also be done through the Cytoscape options. In any case, at the
end of the upload, the networks will be added to the "Target networks" field
both in the "Matching" field and in the "Analytical significance" panel.

4.3 Drawing a query

Match&Motif offers the possibility to create and edit new queries. To do
this, from the main panel, select the "Create New Query Network" button.
A new panel will be added to the main Cytoscape panel. Right-clicking on
the panel will open the standard Cytoscape menu that allows the user to
add, edit or remove elements of the graph, such as nodes (Figure 4.3) and
edges (Figure 4.4).

By selecting the "Motifs library" tab (Figure 4.2 (d)), the user can ac-
cess to a predefined set of quickly selectable queries that include some small
topologies that can be identified as motifs [41] in many real networks. The
motifs supported by Match&Motif are the three-chain, the feed-forward loop
[29], the bi-parallel, the bi-fan and the m-to-n-fan (Figure 4.5).
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Figure 4.3: Menu for adding a new node to the query graph.

Figure 4.4: Menu for adding a new edge to the query graph.
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Figure 4.5: Match&Motif default query: three-chain (a); bi-parallel (b); feed-
forward loop (c); bi-fan (d); m-to-n-fan (e).

A query can also be drawn by clicking on the "Draw" button, present
in the panel of analytical significance. A query will be added to the main
Cytoscape panel with a number of nodes equal to the size of the topology to
be searched (Figure 4.6). This dimension is defined in the "Motif size" field.
Then the user will be free to add the edges and create the topology (Figure
4.7). All the queries drawn can be selected in the "Motif" field if you want to
proceed with the analytical significance (Figure 4.8) or in the "Query" field
if you want to precode with the statistical significance.
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Figure 4.6: Query network drawn using the "Draw" button. The number of nodes
in the query is equal to the size set in the "Motif size" field.

Figure 4.7: Adding an edge to the query network drawn using the "Draw" button.
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Figure 4.8: List of queries network in the "Analytical significance" tab.

In this last case, in addition to the queries drawn, all the target networks
loaded at that moment in Cytoscape will be added to the field (Figure 4.9).

Figure 4.9: List of queries network in the "Matching" tab.
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4.4 Labelling a query

Match&Motif gives the possibility to label the motifs in four different ways.
It is possible to create injective topological labelled motif (Figure 4.10 (d))
through features already present in NetMatch*.

Figure 4.10: (a) Multi-Set Labeled motifs consider all connected structures con-
taining four blues and one red. (b) Topological Unlabeled motifs motifs considers
only the topology of the motif, regardless of labels. (c) Multiset Topological La-
beled motifs count a chosen topology consisting of four blues and one red regardless
of which of the five nodes have which labels. (d) An Injective Topological Labeled
Motif count a chosen topology labeled of a single red node in the center surrounded
by four blue nodes [31].

After adding the desired nodes and edges, selecting a node and clicking
again with the right mouse button, the menu that will appear the allows
user to set the options of the selected graph element. In this case, a sub-
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menu named "NetMatch*" will appear that will allow the user to modify the
labels of the selected node (Figure 4.11). By selecting the corresponding
option, the user may decide to set a label for the selected node (Figure 4.12).
Otherwise, the node will be considered unlabelled. By default, the nodes are
created as unlabelled. In fact, to define an unlabelled node, a special wildcard
attribute "?" is associated with it. Cytoscape interprets it as a character, but
Match&Motif in the phase of matching will interpret it as absence of label.
Any other character or string will instead be interpreted as a label.

Figure 4.11: Open the menu for labelling the node

The other three types of labelling motifs (Figure 4.10 (a)(b)(c)) are man-
aged in the panel of analytical significance. After selecting the target net-
work, in the ’Target network node attribute’ field all the possible attributes
present in that network will be displayed. Also selecting the attribute, in the
’Attribute values’ field, all the values of that attribute will be shown. Not
selecting any query, but defining only its size through the ’Motif size’ field, it
is possible to search for all the possible topologies of that size, labelled with
all the possible combinations of the values of the selected attribute.
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Figure 4.12: Labelling the node

Figure 4.13: From the "Motif" field, using the "Add" button, all the topologies to
search within the target network can be added to the "Selected motif" field. The
Network target can be selected from the "Target networks" field [31].
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Unlike the research carried out through the statistical significance panel,
in the analytical significance panel, it is possible to search for multiple queries
at the same time. By selecting only the queries, without selecting any labels,
only the specified topologies, labelled with all the possible values of the se-
lected attribute (Figure 4.10 (b)), will be searched within the target network
(Figure 4.13). In addition, by not selecting any network queries but select-
ing only n values for an attribute, with n ≤ query-size, the search will be
performed for all possible topologies with the specified labels (Figure 4.14).

Figure 4.14: Choosing an attribute from the "Target network node attribute" field,
all the values of the selected attribute will be shown in the "Attribute values" field.
Through the "Add" and "Remove" buttons you can create the set of values with
which to label the nodes, "Selected values" field. The "Selected motif" field is
empty, so the search will be performed for all possible topologies of the dimension
selected in the "Motif size" field.

In the case where n < query-size, (n - query-size) values will be labelled
with all possible values of the attribute (Figure 4.10 (a)). The order of the
labels is not important because it is not interesting that a specific node has
a specific label but rather than a set of nodes is labelled with the set of
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those values. In the case in which both the network query and the values
with which to label the nodes are specified (Figure 4.15), the search will be
performed only for the specified topologies and only for the selected attribute
set (Figure 4.10 (c)).

Figure 4.15: To search for a Multiset Topological Labeled Motif, the topologies to
search and a set of values of an attribute have been selected

Another added feature is the possibility to import topologies with the
related set of labels from a file. The format chosen is shown in the table
4.1. The first line represents the name of the query and will be preceded by
the character "#". The second line specifies whether the query is direct or
indirect. The third row represents the size of the query, which is the number
of nodes. The n following lines, where n is the dimension of the query, the
set of query labels. Finally, the lines in which there are two values, represent
the edges that connect the nodes and define the topology of the motif.
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#query1
undirected
3
?
?
?
0 2
1 2
#query2
undirected
3
?
?
?
0 1
0 2
1 2

Table 4.1: Example of two network queries loaded from files. Both are indirect and
composed of three nodes. The character "?" indicates that the set of values with
which the query is searched can assume any value of the selected attribute. The
pairs of numbers represent edges between the nodes and define the two topologies
of the input queries.

4.5 Visualization of results and significance

It is possible to start the search for motif both from the panel of statistical
significance, and from that of analytical significativity. The preliminary op-
erations to search, how to select the target network and establishes whether
you are looking for a direct or indirect motif, are identical for both panels.
Choosing whether the searched motifs should be labelled or not is an obliga-
tory choice for the panel of analytical significance, in fact, the search is done
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only for labelled motifs, while in the panel of statistical significance the choice
is free. Drawing and labelling queries, as discussed above, depends on the
significance and leaves the user wide choice. In the statistical significance
panel, moreover, it is possible to choose the search algorithm between RI
and RI-DS [6] (Figure 4.1), while for the analytical significance the chosen is
implicit because the algorithm used for the matching is one, RI [6].

The main functional difference between the matching present in the two
panels, in addition to the validation of the motifs, is that for the statistical
significance a matching of the occurrences of the query network is made in the
target network, then the occurrences are visualized in a result panel and then,
choosing a randomization model, significance will be verified.The analytical
significance is more immediate because the randomisation model (EDD) is
implemented within the research task, so at the end of the matching a panel
of results will be displayed with the motifs, the related occurrences and the
p-value.

4.5.1 Results panel of statistical significance

The user can start the match search by clicking on the "Match" button so that
the search task will be started. At the end of the search task, the results will
be shown in the right side panel of Cytoscape ("Results Panel"). For each
detected occurrence, its topology and the list of nodes and edges involved
will be graphically shown (Figure 4.16). The user can select any match from
the results panel. That occurrence will be highlighted in the target network
(Figure 4.17). If the user selects the "Create a child network" option, when
the match is selected, a new network with the topology of the selected match
will be created and displayed.
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Figure 4.16: Display of results.

Figure 4.17: Highlight of a single match.

Selecting the "Significance" tab will display a tab containing the param-
eters for the evaluation of the statistical significance of a motif. The tab
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consists of three subpanels:

1. The upper subpanel called "Options" allows you to select the number of
random graphs to be generated to perform statistical tests (from 0 to
100). Furthermore, it is possible to indicate the seed for the generation
of pseudo-random numbers optionally;

2. The central subpanel called "Metrics" allows the user to calculate some
metrics relative to the target graph and the generated random graphs,
for each randomisation model;

3. The lower sub-panel named "Models" allows to select the desired ran-
domisation model and to set the main settings, as well as to start the
statistical test by clicking on the "Start" button.

The calculation of the metrics includes as output the average degree, the
clustering coefficient and the coefficient of assortment: the output is shown
in dialogue and can be saved in CSV format optionally(Figure 4.18).

Figure 4.18: For the target network and for each network obtained through the 7
randomization models, the results are shown for average grade, clustering coeffi-
cient and assortativity coefficient.
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Seven randomisation models are provided, and for each model, it is pos-
sible to set some options manually. For each model, parameters that are not
set directly by the user, are estimated based on the number of nodes and
edges of the selected target network. Initially, the computation is performed
by generating a network with |V | nodes having the same labels as the target
network and without edges. Subsequently, edges are added in order to con-
nect the various nodes until a new network, having |V | nodes and |E| edges,
is obtained. By clicking on the "Start button", the statistical significance test
can be started, the result will be shown in a dialogue message (Figure 4.19).

Figure 4.19: The number of occurrences in the real network, the average num-
ber of occurrences in the generated random networks, the standard deviation of
occurrences in the generated random networks, the e-value and the Z-score are
respectively shown.

4.5.2 Results panel of analytical significance

By clicking on the "Analytic match" the user will launch the match search
task. At the end of the search task, the results will be shown in a right side
panel of Cytoscape ("Results Panel"). In each row of the table will be re-
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ported: the topology of the motif, the set of labels with which that topology
is labelled, the occurrences of the motif and in the last three columns respec-
tively the analytically calculated mean, variance and p-value (Figure 4.20).
At the bottom of the panel, there is a "p-value selection" slider that allows
the user to select only the rows below a certain p-value. After clicking on the
’Search’ button, the lines corresponding to the search will be displayed in an-
other panel. With a double-click on a line, a new panel called "Occurrences"
will be displayed in which all the occurrences of that motif will be reported.
For each occurrence it is reported: the topology, the set of labels, the names
of the nodes and the SUID, that is a unique identifier assigned by Cytoscape
during the creation of the network. The user can select any match from the
"Occurrences" panel that will be highlighted in the target network (Figure
4.21). Finally, the results of each result panel can be saved to a .txt file.

Figure 4.20: Result panel of the analytical significance. At the bottom of the panel
the filter for the p-value and the save button is visible.
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Figure 4.21: Display in another panel all the occurrences of a specific topology
labeled with a specific set of values.
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Chapter 5

Conclusion

In this thesis was presented Match&Motif, a Cytoscape app that allows to
interrogate large biological networks in a performing way and to evaluate the
statistical significance of the results obtained with respect to seven different
randomisation models and the analytical significance obtained with respect
to the EDD randomisation model. Match&Motif, based on two tools for the
motif search detection (NetMatch* and FlashMotif), presents a graphical in-
terface that is functional to the user’s needs, which allows a quick and easy
design of the network query. The user also has the ability to label the query
network in four different ways, settable according to the research needs. Sev-
eral tools and applications integrated into Cytoscape have been implemented
that support the motif search and the evaluation of their significance such as
CytoKavosk [30], GraMoFoNe [4] and Network Randomizer [16]. At the mo-
ment, however, no other app provides this freedom in the labelling of motifs
and solves the problem of sub-graph matching in an efficient and performing
way. Further developments could involve improving graphical interfaces, al-
lowing node labelling only from query design, thus streamlining the selectable
options from the panels and making the app more user-friendly. Finally, pos-
sible updates could concern the addition of other randomisation models for
analytical significance.
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