
1 Introduction

In this paper, we describe and analyze a new fast incremental algorithm for
tracking, over time, a solution to problem P0 (defined below), which offers a
natural generalization of correlated pairs to subsets of larger size.

Given a set of time series a1, . . . , am, it is often desirable to find the most
highly correlated pairs among them. If the data is properly normalized then
this problem is equivalent to finding pairs (i, j) so that

||ai − aj || < ε,

where ε is our threshold parameter (smaller ε require that ai, aj are more highly
correlated).

Let’s consider our time series as vectors forming the columns of matrix A;
then Ax = ai − aj where x = ei − ej and ei is the ith column of the identity
matrix. Hence finding highly correlated pairs may be considered as finding
certain x such that

||Ax|| < ε and ||x||0 = 2,

where ||x||0 denotes the number of nonzero coordinates of vector x.
Here, we will focus on the problem of finding vectors x so that

||Ax|| < ε and ||x||0 is small.

In particular, we will build on the work of David Donoho et al. [1, 2, 3] by using
problem P0(Ã, b): {

min ||x||0
s.t. Ãx = b.

Equality Ãx = b is essentially equivalent to Ax = 0 if we remove a column b
of A to arrive at Ã; then there is an easy correspondence between solutions to
Ax = 0 and Ãx = b. Problem P0 involves an exact equality Ãx = b, but we
would like to allow for some error tolerance ε in this identity. As will be seen
below, we will accomplish this tolerance using a dimension reduction idea which
we call the ε-space of a matrix.

This paper is organized as follows: first, in §2, we initially describe and
provide pseudocode for the algorithm. Next, in §3, we explore why the algorithm
works and discuss its time complexity. Finally, in §4, we present experimental
results.

2 The algorithm

Here we present an algorithm which tracks over time a sparse vector x so that
Ãx = b, where Ã is our sliding window of time series data, and b is a particular
target time series. For example, we may set b as a time-delayed stock price
for a particular symbol, and choose Ã as a set of other stock prices. Then any

1

solution to Ãx = b in effect is predicting the value of b using a small number of
symbols (time series) in Ã.

In the pseudocode, it will be easier to replace the matrix/column pair (Ã, b)
by the single matrix A, in which our target vector (formerly b) is simply the ith

column ai, for a particular i. If we write Ai for matrix A without column ai,
then we could state the objective of this algorithm as approximating, at each
step, the solution to P0(Ai, ai).

The algorithm assumes that there is an m × n sliding window A, which is
being updated to the new window Â (in general, we will use the hat accent X̂ to
denote the incrementally-updated version of variable X). We assume that α is
the new incoming data (as a row), and β is the old outgoing row. We summarize
this by writing (

A

α

)
=

(
β

Â

)
.

Our algorithm incrementally maintains matrices B and Q so that B = AT A
is n×n and the rows of k×n matrix Q are the k eigenvectors of B with the largest
eigenvalues. In the following pseudocode, the subroutine most sig eig(B̂,QT , k)
returns the k most significant eigenvectors of B̂ — since a converging iterative
method could be used to implement this subroutine, most sig eig also accepts
the input QT as a starting point for this convergence. We will see in the next
section why tracking this matrix Q allows us to essentially apply a constraint
of the form Aix ≈ ai.

Incrementally Approximate P0(Ai, ai)

// m× n matrix A is the old sliding window
// We have the input:
// α is the new row of data, β is the old row
// τ is the taper factor, τ ∈ (0, 1]
// n× n matrix B = AT A
// rows of k × n matrix Q are the k most significant eigenvectors of B

// Also, Q̂i denotes matrix Q̂ without its ith column q̂i

Let B̂ = τB + αT α− τmβT β

Compute Q̂T = most sig eig(B̂,QT , k)

Solve

{
min ||x||1
s.t. Q̂ix = q̂i

Keep (B̂, Q̂, x) for the next time step
Return x

We will see that the above algorithm is guaranteed to provide an upper
bound on both the sparsity of x as well as the accuracy of the approximation
Ax ≈ 0 (although this latter bound is data-dependent).

2

3 Analysis of the algorithm

In the following sections, we’ll see why this algorithm works and examine how
quickly and accurately it operates.

3.1 Idea of the ε-space

We are all familiar with the idea of the null space of a matrix (or linear operator
in general). The idea of this section is to extend this idea to a natural set of
vectors v for which

||Av||
||v||

< ε (1)

for some ε > 0 which we may specify.
One might be tempted to consider the set

S = {v : ||Av|| ≤ ε||v||}.

However, it is often the case that S is not a vector space. For example, if we let

A =
(
−1 3
−2 3

)
x =

(
−1
0

)
y =

(
1
1

)
,

then

||Ax||
||x||

=
√

5 < 3,
||Ay||
||y||

=
√

5/2 < 3, but
||A(x + y)||
||x + y||

= 3
√

2 > 3.

In other words, when ε = 3 we have x, y ∈ S but x + y 6∈ S.
In order to arrive at a vector space (which is of course closed under addition)

that satisfies equation (1) for nonzero v, we will need to select a particular subset
of S. The following choice seems natural:

Definition 1 For any ε > 0 and m × n matrix A, find the singular value
decomposition A = UΣV T for A; let σi denote the ith singular value along
the diagonal of Σ.

Then we define the ε-space Nε of A as the vector space spanned by those
columns of V corresponding to singular values σi ≤ ε.

Notice that, by definition, the null space is always a subset of the ε-space.

Property 2 If v ∈ Nε, the ε-space of A, then ||Av|| ≤ ε||v||.

Proof.
It suffices to see that

||Ax|| ≤ ε (2)

for all unit vectors x ∈ Nε, so this is what we will show.
First, we recall the details of the singular value decomposition for real ma-

trices: A = UΣV T . Here, U and V are real unitary matrices (so UT = U−1,

3

or, equivalently, the columns of U form an orthonormal basis). Matrix Σ is
diagonal, with entries σ1, . . . , σn from upper-left to lower-right, with σ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0.

If V is unitary, then ||V x|| = ||
∑

i vixi|| =
√∑

i x2
i = ||x||. Let w = V T x.

Notice that V −1 = V T is unitary iff V is unitary. Then clearly ||w|| = 1 because
||x|| = 1.

Also notice that, for x ∈ Nε and w such that x = V w, it must be case that
wi = 0 for any i with σi > ε; otherwise, x would not be a linear combination of
those vectors in V corresponding with σi ≤ ε, as stipulated by the definition of
the ε-space. In other words, wi 6= 0 =⇒ σi ≤ ε.

If w = V T x, then Ax = UΣw = U(
∑

i σiwiei) =
∑

i(σiwiui). Therefore,

||Ax|| =
√∑

i

σ2
i w2

i . (3)

We may now combine these observations to confirm equation (2) for an
arbitrary unit vector x ∈ Nε. We still have w = V T x. Then

||x|| = 1 =⇒ ||w|| = 1

and
(x ∈ Nε & wi 6= 0) =⇒ σi ≤ ε

together, along with (3), give us

||Ax|| =
√∑

i

σ2
i w2

i ≤ ε

√∑
i

w2
i = ε,

which completes the proof. 2

How does the idea of an ε−space apply to our algorithm? Let us begin by
defining the first k right singular vectors of a matrix A as the first k columns
of matrix V in the singular value decomposition A = UΣV T . Now notice that,
if A = UΣV T , then B = AT A = V Σ2V T . It follows that if the singular values
— the diagonal entries σ1, σ2, . . . of Σ — are distinct, then the eigenvectors of B
are exactly the right singular vectors of A. From this point on, we assume that
the singular values of A are distinct, so that the rows of matrix Q, originally
defined as the k most significant eigenvectors of A, are also the first k right
singular vectors of A.

Now let ε = σk+1 and define matrix Nε so that

V =
(

QT Nε

)
, (4)

where V are all the right singular vectors of A (recall that A = UΣV T), and
Q are the first k right singular vectors. Notice that x is in the ε-space of A,
by definition, iff x ∈ col(Nε). Equation (4) also reveals to us that col(QT) and

4

col(Nε) are complementary vector spaces in Rn. This gives us a nice character-
ization of those vectors x in the ε-space of A in terms of Q. We may summarize
this by writing

x ∈ col(Nε) ⇔ Qx = 0.

Since the algorithm returns a vector x with Qix = qi, we may write x̂ for
the augmented vector with x̂([n] − i) = x and x̂(i) = −1 to see that Qx̂ = 0,
and x̂ ∈ col(Nε).

Therefore our algorithm bounds the error of the approximation Aix ≈ ai by

||Aix− ai|| = ||Ax̂|| ≤ ε||x̂|| ≤ ε(1 + ||x||1),

where ε = σk+1. Since we have minimized the value ||x||1, we have also imposed
a degree of minimization on this bound as well.

3.2 Time complexity

In this section we will summarize those time complexity bounds which are avail-
able for our algorithms. These bounds do not appear to be optimal, primarily
due to the difficulty in anticipating how many iterations will be required by our
convergence techniques — finding eigenvectors or using the simplex method to
solve our linear programming problem.

We claim that a single iteration of our algorithm runs in time O(ckn2 +
LPtime). As above, k is the number of eigenvectors of B that we track, and n is
the number of time series in our data window A. We have also introduced the
variable c as the number of iterations needed to compute subroutine most sig eig,
and LPtime as the amount of time needed to solve our linear programming
problem.

It is clear that updating B → B̂ takes at most time O(n2). There are several
implementations of most sig eig available to use (see, e.g., [6] or [4]). If we use the
block power method, then each block power iteration involves a matrix multipli-
cation S = QB followed by an orthonormalization Q =orthonormalize rows(S);
together a single step will take time O(kn2). If there are c block power iterations,
then certainly this portion of the algorithm requires time O(ckn2).

Narendra Karmarkar [5] provides a linear programing algorithm which runs
in time O(n3.5 log(n)), although in practice we expect even better performance
than this. In addition, we can expect better incremental speed if we use a warm-
start technique, in which the previous time step’s coefficient vector x is used as
a starting point to converge to the current time step’s new coefficient vector.
Thus we simply summarize this portion of the time complexity as O(LPtime),
and leave further evidence of incremental speedup to the experiments.

Thus far we have outlined pseudocode for our algorithm, demonstrated
bounds on the accuracy, and briefly analyzed the time complexity of both ver-
sions. We are now ready to empirically test these ideas on real data.

5

4 Experiments

In this section we will describe several experiments performed on stock price
data in order to test the speed, accuracy, and stability of our algorithm. Our
data consists of stock prices obtained from the NYSETAQ database via the
Wharton research data services (wrds.upenn.edu). We began with the prices of
all stock trades in the NYSETAQ database during the first 10 business days of
2003. We then isolated the 500 most frequently traded stocks. From these 500
stocks, we built synchronized time series with a resolution of about 25 seconds
per time step; this resolution was chosen to approximate the actual average time
between trades for these stocks.

In each of these experiments, a particular stock, say the ith, is time-shifted
by one time step. We then use our algorithms to find, at each step, a sparse
coefficient vector x so that Aix ≈ ai. Since column ai has been time-shifted
forward, our vector x can be thought of as predicting the next value of that
time series based on the current value of the other time series.

In our first experiment, we tracked one particular stock, chosen at random,
amongst all 500 time series. Our sliding window consisted of 5000 time steps.
We used the taper factor τ = 0.95.

Figure 1 supports the idea of a balance between error tolerance (larger k
give smaller ε) and sparsity (smaller k give sparser x). In the plot, we have used
the absolute value of the relative test error r — if a is the actual stock price
being predicted, and p is the predicted value, then

r =
(p− a)

a
.

Each point on the plot is the average of the absolute value |r| of several relative
test errors from a set of 25 consecutive iterations of our algorithm.

We remind the reader that low k corresponds with high sparsity, while higher
values of k give better training accuracy. In this figure, plotting the relative
test error of stock predictions against various values of k, we see that the worst
(highest) relative test errors are those for which k is either very high or very low.
This suggests that a good choice of k will exhibit a balance between extreme
sparsity and extreme training accuracy.

Figure 2 illustrates the average percentage change of nonzero coefficients in
the vector x between consecutive time steps. In particular, if xt is the vector
found by our algorithm at time t, then the percentage change p between time t
and t + 1 is given by

p−
#

(
supp(xt) ∆ sup(xt+1)

)
k

.

We remind the reader that, for sets A and B, the symmetric difference

A ∆ B = (A−B) ∪ (B −A)

is exactly the set of points on which A and B differ. Since the percentages in
this figure never exceed 35%, this figure supports the idea that our algorithms
give locally stable subset selection results.

6

Figure 1: Average relative test error for different k

Figure 2: Average percentage change of nonzero coefficients (of x) for different
k

7

Figure 3: Histogram of classification quality

Our next experiment observed the quality of stock price predictions as a
potential basis for a trading strategy. In this experiment, we set k = 100 and
used the first difference of the natural logarithm of stock prices as our time
series. This effectively encouraged our algorithm to try to predict the change in
stock value (as a ratio) rather than the price itself.

In figure 3, we see a histogram of points from a particular set of 300 predic-
tions. For each time step, we computed the value

v = sign(predicted change) · log(actual change, as a ratio).

Notice that positive v correspond to correct predictions while negative v to
incorrect; moreover, the magnitude of this quantity reflects the “degree of cor-
rectness” of this particular prediction. Thus a good predictor will achieve a
histogram which is highly skewed toward positive values. And, in figure 3, we
do indeed see a positive skew.

Finally, in figure 4, we see the running times for three versions of our al-
gorithm: a relatively naive nonincremental implementation, the stable version,
and the fast version. Clearly, the slowest of the three is the nonincremental
case. Furthermore, it appears (as much as we can tell from this limited data
set) that the asymptotic time complexity of both our very fast and our stable
versions is much better than that of the nonincremental version.

8

Figure 4: Time (in seconds) per iteration for different versions of our algorithm

9

References

[1] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic
decomposition by basis pursuit. SIAM Review, 43(1):129–159, 2001.

[2] David L. Donoho. For most large underdetermined systems of linear equa-
tions, the minimal l1-norm solution is also the sparsest. http://www-
stat.stanford.edu/˜ donoho/Reports/2004/l1l0EquivCorrected.pdf, 2004.

[3] David L. Donoho and Jared Tanner. Sparse nonnegative solutions of
underdetermined linear equations by linear programming. http://www-
stat.stanford.edu/˜ donoho/Reports/2005/NonNegative-R5.pdf, 2005.

[4] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 2nd Ed.
The Johns Hopkins University Press, 1989.

[5] N. Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the 16th annual ACM symposium on theory of computing,
pages 302–311. ACM press, 1984.

[6] Lloyd N. Trefethen and III David Bau. Numerical Linear Algebra. Society
for Industrial and Applied Mathematic (SIAM), 1997.

10

