Computational Thought

October 19, 2009

Scribe: Leonid Lukyanov
-Lego tower problem

-How long does it take to build a tower 10,000 meters high?

-first you carry out the problem the same way as with the 1000 meter high problem but when you get to stacks of 64 meters high you leave some stack of 32 meters tall and then you stack the 32 meter high stacks on top of the 64 meter stacks. After this you get 96 meter stacks and from here you just stack half the pile on the top of the other and continue to do so until there is only one stack that is 10000 meters high. This takes 20 weeks.

-Informatics

-Information in computers is either stored in 64 bits(64 1’s and 0’s) or 32 bits

-In a 32bit operating system there are 2^32(roughly 4 billion) possible ways to store info

-any number whose high order bit is 0 represents a positive number

-any number whose high order bit is 1 represents a negative number

-1’s complement is when each bit of a selected binary number is replaced by its complement. For example the binary number 00000110 has a 1’s complement of 11111001.

-2’s complement is when first the 1’s complement of a number is found and then a 1 is added to the lowest order bit. For example the binary number 00000110 has a 2’s complement of 11111010.

-Chef analogy

- There lives a chef who only knows how to follow directions. Each morning he receives a piece of paper with instructions of what to cook and where to get the ingredients needed to cook a particular dish. If for example he has to prepare a soufflé, the piece of paper would say “go to drawer 3” in order to find the needed ingredients and recipe. If on the other hand he has to prepare a steak it will say “go to drawer 14.” When the chef gets to a particular drawer he finds the recipe, and on the recipe there is another set of commands stating something like “If seasoning is present add seasoning (in the case of cooking a steak), else find seasoning in the basement and add to steak.”
-Moral of the story is that a computer is doing something analogous to the chef
[image: image1.emf]

Chef = Processing Unit (Processor)

First piece of paper = Read Only Memory (ROM) (set of initial instructions built into the computer used to load the operating system.)
Dispatcher and multiple utilities = operating system + applications
Next recipe = next computer instructions

-instructions have an operation code (op code) that consist of 8 bits

-ex. of instructions: 00000001=add

00000010=subtract

00000011=negate

-With received instructions, a computer has to decode the instructions with the use of a decoder

[image: image2.emf]

 Send 8 bits

 256 lines with exactly only one line equal to 1

 (decoder)

-One of the most fundamental structures of a computer is the adder, whose purpose is to modify binary code by adding bits together (the lines under the adder represent different operations that are carried out, including subtraction, addition, negation, etc.; however many of the operations once carried out are not used in synthesizing the final bit code)

A(bit code)
B(bit code)

(Op-Code coming out of decoder)

adder

subtract A&B
negation of A

add A&B

C(bit code)

-Goting- use of ‘and’ and ‘or’ gate combos to make just one operation from the result. This is seen in the adder structure (also used in the circuits checking circuits problem done the week before).

-Python

-Pig Latin is when the first letter of a word is taken and moved to the end of the word. After this ‘ay’ is added to the end of the word. For example the word ‘car’ in Pig Latin would be ‘arcay’. However if the first letter is a vowel just ‘ay’ is added to the end of the word.

-such a program that translates a word into Pig Latin can be written in python

-Code:

 #!/usr/bin/env python

#

This program transates words into Pig Latin

phrase= raw_input("Enter a phrase: ")
phrase2=phrase.split(" ")

for x in phrase2:

 if x[0] in ["a","e","i","u","o"]:

 x=x+"ay"

 print x

 else:

 formerphrase=x[0:1]

 laterphrase=x[1:]

 newphrase=laterphrase+formerphrase+"ay"

 print newphrase

or�

and�

and

