
1 MATHEMATICAL PROGRAM FORMALIZATION

The intuition of the formalization goes like this. We consider the action cost to handle an incident given some present
state of knowledge to be the cost of the action(s) given that knowledge. The probes (also known as measurements)
enhance our state of knowledge. We also consider increased costs of the incident as we delay action.

So given a set of measurements, the anticipated action cost is the weighted probability of the actions required based
on each knowledge state times the probability that the measurements will put us in that knowledge state. We add
to that action cost the cost of the measurements and the cost of the delay (which is usually positive) to handling the
incident due to the time it takes to perform the measurements.

So, intuitively the total cost given a setM of measurements is the expected action cost givenM and the action delay
cost associated with taking the action after waiting forM + the cost ofM + the cost of the extra delay, resulting from
the incident itself, due to waiting forM to happen.

A state of knowledge or location region or just region for short is a set of values of location variables. Here, location
is understood broadly to include locations and intensities, e.g. the location of the fire and the temperature; or the
location of the field and the intensity of water deprivation.

Let’s say our current state of knowledge is T . Let f (e) be a probability distribution over location variables in T and
P(r |e,M) be the probability that the measurements will compute to a region of location values r from some non-empty
set of measurementsM given that the incident is in location e . Thus, different location values e1 and e2 may generate
different and possibly overlapping regions. For example, a probe with detection range of 10 placed at location 50 will
identify a region of [40..60] with probability 1 if the location of the object is at 43, but will identify a region of not
[40..60] if the location of the object is 33. Similarly, more measurements may, through the intersection of confidence
intervals, give smaller region specifications than fewer measurements.

Actions are things we do, such as sending in firetrucks or administering certain medicines. Cost of actions depends
on the application: it could be money cost or it could be cost in lives or health outcomes. If we want to optimize several
criteria (e.g. health cost first and then money), we look at outcomes that have the same values for the highest priority
criterion and choose the one that does best for the next criterion. If actions conflict on the highest priority criterion (e.g.
prescribing drug A and drug B if the two together are known to be lethal), then the cost of that set of actions is infinite.

For a region r , MinCover(r ) is a minimal set of actions that covers r , i.e. that can take care of any value with region
r . Finally Cost(MinCover(r )) is the cost of those actions (See Figure 1). So this is the expected action cost from the
measurementsM given current state of knowledge (region) T , denoted actioncost(M,T ) is:∫

e ∈T
f (e)

∫
r ⊆T

P(r |e,M) × (Cost(MinCover(r )) + actiondelaycost(MinCover(r ), time(M))) (1)

Thus the total cost is

minM (actioncost(M,T ) + cost(M) + delaycost(M)) (2)

Let’s look at this intuitively. Suppose the measurements are very cheap, accurate, and fast to do and
Cost(MinCover(T )) is high. The reason may be that there are a few values in T that call for very expensive actions but
are unlikely to occur. (Sometimes, Cost(MinCover(T )) may be infinite if there are locations e1 and e2 within T that
call for conflicting actions).In such cases, it’s worthwhile to perform the measurements M because M may allow us
to use far cheaper actions and the delay cost will be low. Conversely, if the measurements are slow, inaccurate, and
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Fig. 1. Visual Interpretation of MinCover(r ) and Cost(MinCover(r )) given disjoint or (partially) covering actions and conflicts. Note
that the covering as well as the conflict relationship are region specific. It is possible for an action to cover another for region r but
not for region r ′. Similarly it is possible for two actions to conflict on region r but not r ′.

expensive or the likelihood that the actioncost will be reduced substantially is low, then we should setM to null and
pay Cost(MinCover(T )).

If no set of measurements eliminates conflicting actions, then the algorithm reports the probability of success of
each non-conflicting subset of actions.

Here are some concrete examples.
In a medical setting, we might have narrowed down our diagnosis to several possible diseases. If the different diseases

entail different actions , some of which may conflict, then we may want to consider various blood measurements, x-rays,
etc. Those would be the measurements. If the patient is very sick and treatment is critical, we may decide to go ahead
and act even in the absence of the measurements. On the other hand, if the patient is stable, we may decide it’s better
to take the measurements and then to embark on what we hope will be a minimal action. The higher the likelihood
that the measurements will give a good differential diagnosis, the more valuable are the measurements. Our actions
ultimately depend on the measurements. The diagnoses are shorthands that are useful for people and a rule-based
system may use them (again as shorthands) to determine treatment actions.

In a drought setting where we are deciding whether to irrigate some fields, irrigation alternatives are the actions.
Measurements include soil measurements, rain measurements and potentially weather forecasts. Deploying measure-
ments may mean deploying sensors to local fields in case there are many micro-climates (as in a mountainous region)
in which case the actions we take for different fields may be different. If we don’t deploy, measurements may be free,
but the consequences of the drought could become worse.

In a fire setting, measurements are determinations of the size and heat of a fire, the types of flammable matter near
the fire, and the number of people at risk. Actions are to send firefighters to the scene. Waiting could make the fire
worse or could allow the fire to die out on its own. Also, if we decide to wait for measurements and the fire does get
worse, then the action cost associated with sending the firefighters also increases.

In the submarine hunting setting, measurements are the probes sent to detect the position of the submarine and
actions are red alert or yellow alert.

1.1 NP-Completeness of the Problem: motivating heuristic solutions

Finding the minimum set of measurements is an NP-complete problem as can be seen by the following simple argument:
Suppose that there is a set of regions S and each can be handled by a single expensive action. There is also a set of
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measurementsM each of which excludes one or more regions. What is the minimum subset of measurementsM that
would eliminate all regions? This is a hitting set problem.

A completely analogous argument shows that finding the set of actions having minimum cost to cover a region r is
also NP-complete: There is a set of regions S that we need to take care of. Each action covers some subset of S . Let’s say
all the actions cost the same. Then it’s a hitting set problem to decide on the smallest set of actions that cover all of S .

For this reason, we use heuristic techniques like genetic algorithms both to find actioncost(M,T ) and to minimizeM .
However, there are ways to eliminate certain measurements from consideration. We start with simple ones.

A measurement is useless if it doesn’t affect any of the variables that determine actions (e.g. measuring a flood level
during a fire). Those can be discarded immediately.

A measurement m with respect to a variable x and region Q is characterized by a function conf (m,x ,v) for all
values v lying in Q defined as follows: if the actual value of x is v , then the confidence interval conf (m,x ,v) includes v .
Measurementm is more accurate thanm′ with respect to Q with respect to x means that for all values v lying in Q ,
conf (m,x ,v) is contained in conf (m′,x ,v).

A measurementm universally dominatesmeasurementm′ ifm is no more expensive thanm′ for any location variable,
m is at least as accurate asm′ and for at least one location variablem is more accurate. In such a case, we can discard
m′. However, we can also discardm′ even ifm conditionally dominatesm′ with respect to some region Q which would
mean thatm is no more expensive thanm′ for any location variable whose value lies within Q ,m is at least as accurate
asm′ and for at least one location variable whose value lies within Q ,m is more accurate. For example, if dogs are
better at sniffing out drugs than people and cost less, then use dogs for that purpose.

In some situations we can decompose the problem using dynamic programming. For example, if each measurement
pertains to a different variable, then we can treat the measurements of each variable separately. We need to think of
other mechanisms like this.

1.2 Confidence Arithmetic

Adding/Subtracting and Multiplying uncertain values is based on the website
http://web.uvic.ca/ jalexndr/192UncertRules.pdf

Fusion functions
Fusing x +/- d1 and y +/- d2 is the same as fusing [x-d1 .. x+d1] and [y-d2 .. y+d2]. Fusing that gives us [max(x-d1,

y-d2) .. min(x+d1, y+d2)]. If this result is improper (i.e. if max(x-d1, y-d2) > min(x+d1, y+d2), then the confidence
interval is empty (we know nothing).

Sometimes, we need disjoint intervals. For example if the probe at 65+epsilon does not detect the submarine then the
submarine is at [0..45] or (85+epsilon .. 100] if the entire interval is 100 kilometers long.

So we need to intersect disjoint intervals and to handle negative intervals. To intersect a disjoint interval with a single
interval, intersect each arm separately and maintain the disjunction. So, intersecting [a..b] or [c..d] with [e..f] yields
intersect([a..b], [e..f]) or intersect([c..d], [e..f]). To intersect two disjoint intervals, there will be potentially four arms. So,
to intersect [a..b] or [c..d] with [e..f] or [g..h], we get intersect([a..b], [e..f]) or intersect([a..b], [g..h]) or intersect([c..d],
[e..f]) or intersect([c..d], [g..h]).

We also need to intersect intervals with negations of intervals. intersect([a..b], not [c..d]) = [a..b] if d < a or b < c.
Otherwise (a <= d) and (b >= c), [a..c) or (d..b]

So applying this to our warm-up puzzle, intersect([40..60],not (45..85]) = [40..45] or [85..60] = [40..45], since [85..60]
has no information
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There can also be a degradation function that is a function of time. So if the confidence interval is [x-d1 .. x+d1] when
a measurement is made, the degradation function may widen out the confidence interval based on [x-d1-degrade(deltat,
x, d1) .. x + d1 + degrade(deltat, x, d1)], where deltat is the time since the measurement.

degrade(deltat, x, d1) might be something like f*deltat where f is some factor that says how much the uncertainty
increases per second. And should be strictly positive. The degradation function is a function of the variable being
measured.
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