# Building Reliable Genetic Devices Using Unreliable Ones

#### Elza Erkip<sup>1</sup>, Dennis Shasha<sup>2</sup>

<sup>1</sup> Polytechnic Institute of New York University <sup>2</sup> Courant Institute of Mathematical Sciences

September 18, 2013

### Synthetic Biology

- Designing protein circuits that will live inside cells
- An Application : Cancer Treatment
  - $\circ~$  Can be used to treat liver, bone, and skin cancers
  - $\circ~$  Engineer bacteria to seek out and invade cancer cells
  - $\circ~$  Need to prevent healthy cells from being killed
- State of art:
  - Standardization of parts: Biobricks
  - $\circ~$  Other applications: smarter drugs, biofactories, biofuel cells,  $\ldots$
  - Market for synthetic biology in 2013 expected as over \$2.4 billion (BCCC research, June 2009)
- Issues:
  - Relability
  - Regulations

## **Our Approach**

- Use information theory to create more reliable biocircuits.
- Cancer Application
  - Current cancer treatments (chemo, radiation) kill too many healthy cells (race to kill cancer before killing patient)
  - Reliable cancer-targeting by bacteria means that fewer healthy cells are killed
- Why information theory?
  - Biocircuits designed using electrical circuit analogy
  - $\circ~$  Building blocks: biological logic gates, clocks, FFs,  $\ldots$
  - $\circ~$  Information theoretic tools for reliable digital components

#### **Motivating Example**

• Genetic Switch:  $\mathcal{X} \longrightarrow \mathcal{Y}$ 







- Information theory: Use many unreliable switches to obtain a reliable one
- Extensible to larger circuits
- General goal: Compiler from logical circuit to realization with reliability guarantees.

4 of 5

#### **External Funding**

- NSF
  - $\circ~$  Communication and Information Foundations
    - Information theory, including emerging applications to biology
- NIH
  - $\circ~$  Smart and Connected Health