Hand Gesture Recognition in Mobile Devices: Enhancing the Music Experience

NYU Music and Audio Research Laboratory

Summary

•What: Efficient real-time hand gesture recognition for mobile devices.

How: Using the built-in front camera, applying a set of computer vision methods and heuristics.

Why: Control your mobile devices from the distance to, e.g. generate music, play video games.

Defect Areas

Thursday, October 10, 13

Audio Synthesizer controlled by the proposed technology.

Similar to a **Theremin**.

Implementation: iPad application compatible with iOS 6.0 and higher

► Each gesture can be associated to a user-defined sound file or action.

Gestures Recognition

- area.

Oriol Nieto Music and Audio Research Lab (MARL) oriol@nyu.edu

Dennis Shasha Department of Computer Science shasha@courant.nyu.edu

Detecting Hands and Gestures

Defect Points Acquisition

Apply a skin filter to a YCbCr image, apply a blur & high contrast non-linearity transforms and gray out.

Detect hands by finding the two largest areas of the detected color in the screen (given a minimum threshold θ).

Approximate the areas with polygons, and obtain the convex hull for each hand. The defect points will be the ones that define the triangle areas between the convex-hull and the approximated polygon (see Figure (f)).

•Goal: recognize **alphabet of gestures** defined in the bottom Figure.

• Compute the average euclidean distance D between the starting and ending points to the depth point for each defect $D_i = \frac{||P_s^i - P_d^i||_2 + ||P_e^i - P_d^i||_2}{2}$

To detect the separation between two stretched fingers (i.e. a possible finger web) we check whether D is greater than a certain threshold **n**: $\eta_j = \frac{\sqrt{H_j}}{}$

Finally, to consider this area as a finger web, we have to also check that the vertical dimensions of these points are greater than its depth point:

$$D_i > \eta_j \wedge y_{P_{d_j}^i} < y_{P_{s_j}^i} \wedge y_{P_{d_j}^i} < y_{P_{e}^i}$$

(a) No finger webs

(b) One finger web

(c) Two finger webs (d) Three finger webs

iPad App Prototype: AirSynth

(e) Four finger webs

and ange) (blue)

(b) Skin Filter

(d) Black & White

(f) Defect Areas (green) Convex-Hull and Points (blue and magenta)