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Markov chain Monte Carlo (MCMC) methods use
computer simulation of Markov chains in the param-
eter space. The Markov chains are defined in such a
way that the posterior distribution in the given statis-
tical inference problem is the asymptotic distribution.
This allows to use ergodic averages to approximate
the desired posterior expectations. Several standard
approaches to define such Markov chains exist, in-
cluding Gibbs sampling, Metropolis-Hastings and re-
versible jump. Using these algorithms it is possible
to implement posterior simulation in essentially any
problem which allow pointwise evaluation of the prior
distribution and likelihood function.

1 Introduction

In Bayesian statistics the posterior distribution
p(ψ| y) contains all relevant information on the un-
known parameters ψ given the observed data y. All
statistical inference can be deduced from the poste-
rior distribution by reporting appropriate summaries.
This typically takes the form of evaluating integrals

J =

∫

f(ψ) p(ψ| y) dψ (1)

of some function f(ψ) with respect to the posterior
distribution. For example, point estimates for un-
known parameters are given by the posterior means,
i.e., f(ψ) = ψ; prediction for future data ỹ is based
on the posterior predictive distribution p(ỹ| y) =
∫

p(ỹ|ψ, y) p(ψ| y) dψ, i.e., f(ψ) = p(ỹ|ψ, y), etc. The
problem is that these integrals are usually impossible
to evaluate analytically. And when the parameter is
multidimensional, even numerical methods may fail.

Over the last ten years a barrage of literature has
appeared concerned with the evaluation of such inte-
grals by methods collectively known as Markov chain
Monte Carlo (MCMC) simulation. The underlying
rationale of MCMC is to set up a Markov chain in ψ
with ergodic distribution p(ψ| y). Starting with some
initial state ψ(0) we simulateM transitions under this
Markov chain and record the simulated states ψ(j),
j = 1, . . . ,M . The ergodic sample average

Ĵ =
1

M

M
∑

j=1

f(ψ(j)) (2)

converges to the desired integral J (subject to some
technical conditions), i.e., Ĵ provides an approximiate
evaluation of The art of MCMC is to set up a suitable
Markov chain with the desired posterior as stationary
distribution and to judge when to stop simulation, i.e,
to diagnose when the chain has practically converged.

In many standard problems it turns out to be sur-
prisingly easy to define a Markov chain with the
desired stationary distribution. We will review the
most important approaches in this entry. The gen-
eral principle of Monte Carlo simulation, including
independent Monte Carlo simulation, is discussed in
Monte Carlo Methods and Bayesian Computation:
Overview.

2 The Gibbs Sampler

Example 1 (Gelfand et al. 1990): Consider a vari-
ance components model yij = θi + eij , i = 1, . . . ,K
and j = 1, . . . , J , for data yij from K groups with
J observations in each group. Assume independent
normal errors eij ∼ N(0, σ2

e) and a normal ran-
dom effects model θi ∼ N(µ, σ2

θ). We assume that
θ = (θ1, . . . , θk), (µ, σ2

θ), and σ2
e are a priori indepen-

dent with p(σ2
θ) = IG(a1, b1), p(µ|σ

2
θ) = N(µ0, σ

2
θ),

and p(σ2
e) = IG(a2, b2). Here we use N(m, s2) to

indicate a normal distribution with moments m, s,
and IG(a, b) to indicate an inverse gamma distribu-
tion with parameters a and b. Let y = (yij , i =
1, . . . ,K, j = 1, . . . , J) denote the data vector. It
can be shown that the conditional posterior distri-
butions p(σ2

θ |y, µ, θ, σ
2
e) and p(σ2

e |y, µ, θ, σ
2
θ) are in-

verse gamma distributions, and p(µ|y, θ, σ2
θ , σ

2
e), and

p(θ|y, µ, θ, σ2
θ , σ

2
e) are normal distributions.

To estimate posterior moments of the type (1) we
define a Markov chain in ψ = (µ, θ, σ2

e , σ
2
θ). Denote

with ψ(t) = (µ(t), θ(t), σ
2(t)
e , σ

2(t)
θ ). the state vector of

the Markov chain after t transitions. Given the na-
ture of a Markov chain, all we need to define is the
transition probability, i.e., given a current value for
ψ(t), we need to generate a new value ψ(t+1). We do
so by sampling from the complete conditional poste-
rior distributions for µ, σ2

e , σ
2
θ and θ

1. µ(t+1) ∼ p(µ|y, θ(t), σ
2(t)
e , σ

2(t)
θ ),

2. θ(t+1) ∼ p(θ|y, µ(t+1), σ
2(t)
e , σ

2(t)
θ ),

3. σ
2(t+1)
e ∼ p(σ2

e |y, µ
(t+1), θ(t+1), σ

2(t)
θ ),

4. σ
2(t+1)
θ ∼ p(σ2

θ |y, µ
(t+1), θ(t+1), σ

2(t+1)
e ).

Steps 1 through 4 define a Markov chain ψ(t) which
converges to p(µ, θ, σ2

e , σ
2
θ | y), as desired. Ergodic av-

erages of the type Ĵ = 1/M
∑

f(ψ(t)) provide nu-
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merical evaluations of any desired posterior integral
J .

The described Markov chain Monte Carlo simula-
tion is a special case of a Gibbs sampler. In gen-
eral, let ψ = (ψ1, . . . , ψp) denote the parameter vec-
tor. The Gibbs sampler proceeds by iteratively, for
j = 1, . . . , p, generating from the conditional poste-
rior distributions

ψ
(t+1)
j ∼

p(ψj |ψ
(t+1)
1 , . . . , ψ

(t+1)
j−1 , ψ

(t)
j+1, . . . , ψ

(t)
p , y). (3)

If practicable it is advisable to generate from higher
dimensional conditionals. Compare the discussion
in Monte Carlo Methods and Bayesian Computation:
Overview, Section 2.2.
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Figure 1: Gibbs sampler. The grey shades show a
bivariate posterior distribution p(ψ1, ψ2| y). The con-
nected points show the parameter values ψ(t) gener-
ated in M = 40 transitions of the MCMC simula-
tion. The transition probabilities in the Gibbs sam-
pler are the full conditional posterior distributions
(3), leading to the piecewise horizontal and verti-
cal trajectories seen in the figure. Each horizontal
line segment corresponds to generating a new value

ψ
(t+1)
1 ∼ p(ψ1| y, ψ

(t)
2 ). Each vertical line segment

corresponds to generating ψ
(t+1)
2 ∼ p(ψ2| y, ψ

(t+1)
1 ).

Figure 1 illustrates the Gibbs sampling algo-
rithm. The figure shows simulated parameter val-
ues for a hypothetical bivariate posterior distribution
p(ψ1, ψ2| y).

The seminal paper by Gelfand and Smith (1990)
and the companion paper by Gelfand et al. (1990)
popularized the Gibbs sampler for posterior simula-
tion in a wide class of important problems. Many

earlier papers used essentially the same method in
specific problems. For example, a special case of
the Gibbs sampler occurs in problems with missing
data. In many problems, the actually observed data
y can be augmented by missing data z in such a way
that simulation from p(ψ|y, z) and p(z|ψ, y) can be
implemented in computationally efficient ways, even
when simulation from the original posterior distri-
bution p(ψ| y) is difficult. Tanner and Wong (1987)
propose what is essentially a Gibbs sampler for the
augmented posterior distribution p(ψ, z| y). Geman
and Geman (1984) proposed the Gibbs sampler for
posterior simulation in a spatial model with a Markov
random field prior.

3 The Metropolis-Hastings Al-

gorithm

The Gibbs sampler owes some of its success and
popularity to the fact that in many statistical mod-
els the complete conditional posterior distributions
p(ψj |ψi, i 6= j, y) take the form of some well-known
distributions, allowing efficient random variate gen-
eration. But there remain many important applica-
tions where this is not the case, requiring alterna-
tive MCMC schemes. Possibly the most generic such
scheme is the Metropolis scheme (Metropolis et al.,
1953). The general form of the algorithm is defined
in Monte Carlo Methods and Bayesian Computation:
Overview, Section 2.1. Consider generating from a
posterior distribution p(ψ| y). Denote with ψ the
current state of the Markov chain. One transition
is defined by the following steps:

1. Generate a proposal ψ̃ from some proposal gen-
erating distribution q(ψ̃|ψ). The choice of the
proposal distribution q(·) is discussed below.

2. Compute

a(ψ, ψ̃) = min

{

1,
p(ψ̃| y)

p(ψ| y)
·
q(ψ|ψ̃)

q(ψ̃|ψ)

}

(4)

3. With probability a replace ψ with the proposal
ψ̃. Otherwise, leave ψ unchanged.

Figure 2 illustrates the algorithm. The figure shows
the proposals ψ̃ and the (accepted) states ψ(t) for
the first 40 iterations of a Metropolis chain simula-
tion for a hyptothetical bivariate posterior distribu-
tion. The choice of the proposal distribution q(ψ̃|ψ)
is essentially arbitrary, subject only to some technical
constraints. Using a symmetric proposal distribution
with q(ψ̃|ψ) = q(ψ|ψ̃), for example a normal cen-
tered at ψ, has the practical advantage that the ratio
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Figure 2: Metropolis sampler. The grey shades show
a posterior distribution p(ψ| y). The connected solid
points show the parameter values ψ(t) generated in
M = 40 transitions of a Metropolis chain with bi-
variate normal proposals ψ̃ ∼ N(ψ, 0.75 I), where I
denotes the 2×2 unit matrix. The empty circles show
generated proposals ψ̃ which were rejected using the
acceptance probabilities (4). Compare with Figure 1
which shows a Gibbs sampler with an equal number
of transitions.

of proposal distributions q(ψ|ψ̃)/q(ψ̃|ψ) cancels out
of the expression for a(·). Often Metropolis chain is
used to refer to this special case only. Another practi-
cally interesting variation is the use of an independent
probing distribution q(ψ̃), i.e., the proposal is inde-
pendent of the current state. Tierney (1994) refers
to such algorithms as independence chains. Hastings
(1970) proposes a larger class of similar algorithms
based on a more general expression for the accep-
tance probability. Chib and Greenberg (1995) give
a tutorial introduction to the Metrlopolis-Hastings
algorithm. See section 2.1. in Monte Carlo Methods
and Bayesian Computation: Overview for a more de-
tailed discussion. Section 2.2. in Monte Carlo Meth-
ods and Bayesian Computation: Overview explains
generalizations of the Metropolis-Hastings algorithm
to multiple-block updating.

4 Convergence

The use of integral estimates (2) requires the verifi-
cation of two conditions related to convergence.

First, the chain has to theoretically, i.e., for M →
∞, converge to the desired posterior distribution.
Second, even if convergence for M → ∞ is estab-

lished, we need a convergence diagnostic to decide
when we can terminate simulations in a practical im-
plementation.

Tierney (1994, Theorem 1) shows convergence (in
total variation norm) under three conditions: irre-
ducibility, aperiodicity and invariance.

The Markov chains which are used in MCMC
schemes generally use a continuous state space, i.e.,
ψ(t) is a real valued vector. For such continuous state
spaces the notion of irreducibility is formally defined
as π-irreducibility, with respect to some measure π on
the state space. For the purpose of the present discus-
sion we only consider π(ψ) = p(ψ| y), i.e., π denotes
the desired stationary distribution. A Markov chain
is π-irreducible if for any state ψ and any set B of
states with π(B) > 0 there exists an integer n ≥ 1
such that in n iterations the chain can with positive
probability make a transition from ψ to some state
in B.

Invariance refers to the property that if we start
with a state vector generated from the desired poste-
rior distribution, i.e., ψ(t) ∼ π, then a further tran-
sition in the Markov chain leaves the marginal sam-
pling distribution of ψ unchanged, i.e., ψ(t+1) ∼ π.

The Gibbs sampler and the Metropolis-Hastings
scheme define Markov chains which by construction
are invariant with respect to the desired posterior dis-
tribution. Irreducibility and aperiodicity need to be
verified, but are usually not a problem. However,
sometimes MCMC implementations suffer from prac-
tical violations of irreducibility. There might be some
subsets of the parameter space which are such that
once the Markov chain simulation enters this set it
is very unlikely to leave this subset again within any
reasonable number of iterations. Such situations oc-
cur, for example, in independence chains if the pro-
posal distribution q(ψ̃) has thinner tails than the de-
sired posterior π(ψ). The acceptance probabilties (4)
include the ratios π(ψ)/q(ψ). Assume the chain has
generated a parameter value ψ far out in the tail, with
very large ratio π(ψ)/q(ψ). The chain will then reject
any proposed move until a new proposal ψ̃ equally far
out in the tail is generated.

Practically more important than establishing the-
oretical convergence is to recognize practial conver-
gence, i.e., to judge when sufficiently many transi-
tions M have been simulated to obtain ergodic av-
erages Ĵ close to the desired posterior expectations
J . The simplest procedure is to plot the trajecto-
ries ψ(t) against iteration number t and judge con-
vergence if an informal visual inspection of the plot
does not reveal obvious trends. Figure 3 shows a
typical trajectory. Several more formal convergence
diagnostics have been proposed in the recent litera-
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Figure 3: Convergence. The figure plots the first 2000
steps for the Gibbs sampler shown in Figure 1. The

thin black curve plots ψ
(t)
1 against iteration t. The

thick grey curve plots Ĵt = 1/t
∑t

j=1 ψ
(t)
1 . After

about 500 iterations the estimated posterior mean has
practically converged. See the text for a discussion of
more formal convergence diagnostics.

ture. Gelman and Rubin (1992) propose to consider
several independent parallel runs of the MCMC sim-
ulation. Convergence is diagnosed if the differences
of Ĵ across the parallel runs are within a reasonable
range. Gelman and Rubin (1992) formalize this with
an ANOVA type statistic. Geweke (1992) proposes
to compare an ergodic average based on early simu-
lations (say the first 10% of the iterations) with an
ergodic average based on later iterations (say the last
50%). Under convergence the two ergodic averages
should be approximately equal. Using an approx-
imate sample standard deviation based on spectral
density estimates allows a formal test. Section 2.1.
in Monte Carlo Methods and Bayesian Computation:
Overview discusses an approach based on tracking
autocorrelation times.

These and other convergence diagnostics are dis-
cussed in Best et al. (1995) and implemented in the
public domain software BOA described there.

5 Limitations and

Further Reading

The Gibbs sampler and the Metropolis-Hastings
chain implicitely require a fixed dimension parame-
ter space, i.e., the dimension of ψ must not change
across different values. This excludes, for example,

a regression model with an unknown number of co-
variates. In other words, the Gibbs sampler or the
Metropolis-Hastings algorithm can not be used for
model selection. Extensions of the basic MCMC
schemes which allow model comparison and simula-
tion across models with different dimension parame-
ter spaces are discussed in Section 4 in Monte Carlo
Methods and Bayesian Computation: Overview.

Several recent monographs provide more complete
reviews of MCMC methods. Tanner (1996) provides
an introduction including related schemes such as im-
portance sampling. Assuming basic familiarlity with
the algorithms, Gilks et al. (1996) discuss Markov
chain Monte Carlo simulation in the context of im-
portant statistical models. Gamerman (1997) and
Robert and Casella (1999) review alternative algo-
rithms and related theory. Relevant references for
specific models are listed in Section 5 of Monte Carlo
Methods and Bayesian Computation: Overview.
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