Logic and the Art of Reasoning

Table Puzzle 1

There are five people sitting around a table. Their names are Alice, Bob,
Carol, Ted, and Zoe. Your job is to figure out where they're sitting.
You are given the following three hints ($\mathrm{H} 1-\mathrm{H} 3$):
H1) Zoe is three seats to Alice's left.
H2) Ted is three seats to Zoe's left.
H3) Ted is two seats to Carol's left.
Can you find an arrangement of people that satisfies these conditions?

Logic

 and the Art of Reasoning
Table Puzzle 1

Let's put Zoe at position (1). H1 (Zoe is three seats to Alice's left) would put Alice at position (3). H2 (Ted is three seats to Zoe's left) would put Ted at position (4). H3 (Ted is two seats Carol's left) would put Carol at position (2).

Since only one seat remains, Bob would be placed at position (5).

Logic and the Art of Reasoning

Table Puzzle 2

There are five people sitting around a table. Their names are Alice, Bob,
Carol, Ted, and Zoe. Your job is to figure out where they're sitting.
You are given the following three hints (H1-H3):
H1) Alice is four seats to Bob's left.
H2) Carol is four seats to Alice's left.
H3) Ted is four seat's to Carol's left.
Can you find an arrangement of people that satisfies these conditions?

Logic and the Art of Reasoning

Table Puzzle 2

Let's put Alice at position (1). H1 (Alice is four seats to Bob's left) would put Bob at position (2). H2 (Carol is four seats to Alice's left) would put Carol at position (5). H3 (Ted is four seats to Carol's left) would put Ted at position (4).

Since only one seat remains, Zoe would be placed at position (3).

Logic
 and the Art of Reasoning

Code Breakers 1

Below are groups of images followed by their translation to English. Your job is to determine what each image means. Each image corresponds to a single word. Note that the order of the images may not be the same as the order of the English words.

English Translation

Alice saw Carol

Alice heard Carol

Code Sequence

Bob heard Carol

Code Breakers 1

Sentences (1) and (2) have "Alice" and "Carol" in common, so \bigcirc must decode to "saw" and must decode to "heard".

English Translation

Alice saw Carol

Code Sequence

$\square \bigcirc$

\triangle
"Alice" is present in sentence (2) while "Bob" is present in sentence (3), so \square decodes to "Alice" and \bigcirc decodes to "Bob". Therefore, \triangle must decode to "Carol".

2
2 Coie Sequence
English Translation

Alice heard Carol

Code Sequence
English Translation
3

Bob heard Carol

$$
\square=\text { Alice } \bigcirc=\text { saw } \quad \widehat{W}=\text { Carol heard } \quad \bigcup=\text { Bob }
$$

Logic and the Art of Reasoning

Marble Game 1

Suppose you see six bags numbered 1-6. One bag has only red marbles, one bag has only blue marbles, one bag has only green marbles, one bag has both red and blue marbles, one bag has both green and red marbles, and one bag has both blue and green marbles.

Below are nine hints (H1-H9) for you to use and find out which bag contains which colored marbles. Assume that you've pulled:

H1) ...a blue marble from bag (6)
H2) ...a red marble from bag (4)
H3) ...a green marble from bag (5)
H4) ...a blue marble from bag (3)
H5) ...a red marble from bag (4)
H6) ...a green marble from bag (2)
H7) ...a green marble from bag (6)
H8) ...a red marble from bag (5)
H9) ...a red marble from bag (3)

Logic and the Art of Reasoning

Marble Game 1

From H 1 and H 7 , you know that bag (6) contains blue and green marbles.
From H 4 and H9, you know that bag (3) contains red and blue marbles.
From H3 and H8, you know that bag (5) contains green and red marbles.

Therefore, every other bag contains marbles of only one color.

Bag (4) contains only red marbles.
Bag (2) contains only green marbles.
Bag (1) contains only blue marbles.

Logic and the Art of Reasoning

Marble Game 2

Again, you see six bags numbered 1-6. As before, three bags contain only one color of marble, and the other three bags contain two colors of marbles.

Below are eight hints (H1-H8) for you to use and find out which bag contains which colored marbles. Assume that you've pulled:

H1) ...a blue marble from bag (4)
H2) ...a red marble from bag (5)
H3) ...a blue marble from bag (5)
H4) ...a green marble from bag (2)
H5) ...a red marble from bag (6)
H6) ...a blue marble from bag (1)
H7) ...a green marble from bag (6)
H8) ...a green marble from bag (1)
 and the Art of Reasoning

Marble Game 2

From H 2 and H 3 , you know that bag (5) contains red and blue marbles.
From H5 and H7, you know that bag (6) contains green and red marbles.
From H6 and H8, you know that bag (1) contains blue and green marbles.

Therefore, every other bag contains marbles of only one color.

Bag (2) contains only green marbles (H4 reinforces this).
Bag (4) contains only blue marbles.
Bag (3) contains only red marbles.

Logic

 and the Art of Reasoning
Table Puzzle 3

There are five people sitting around a table. Their names are Alice, Bob,
Carol, Ted, and Zoe. Your job is to figure out where they're sitting.
You are given the following five hints (H1-H5)—however, one of the hints is false:

H1) Carol is three seats to Alice's left.
H2) Bob is two seats to Zoe's left.
H3) Bob is three seats to Alice's left.
H4) Ted is three seats to Carol's left.
H5) Alice is three seats to Ted's left.
After identifying the incorrect hint, can you find an arrangement of people that satisfies the conditions above?

Logic the Art of Reasoning

Table Puzzle 3

Logic and the Art of Reasoning

Table Puzzle 3

Now that you've identified the false hint (H1), proceed with the remaining correct hints ($\mathrm{H} 1-\mathrm{H} 5$). Again, place Alice at position (1). H3 (Bob is three seats to Alice's left) places Bob at position (4), and H2 (Bob is two seats to Zoe's left) places Zoe at position (2). H5 (Alice is three seats to Ted's left) places Ted at position (3), while H4 (Ted is three seats to Carol's left) places Carol at position (5).

Logic and the Art of Reasoning

Table Puzzle 4

There are six people sitting around a table. Their names are Alice, Bob, Carol, Sybil, Ted, and Zoe. Your job is to figure out where they're sitting.
You are given the following three hints ($\mathrm{H} 1-\mathrm{H} 3$):
H1) Sybil is two seats to Bob's left.
H2) Ted is three seats to Bob's left.
H3) Alice is five seats to Zoe's left.
Can you find an arrangement of people that satisfies these conditions?

anctur the ATt of reasoning

Table Puzzle 4

Let's put Sybil at position (1). H1 (Sybil is two seats to Bob's left) places Bob at position (5). H2 (Ted is three seats to Bob's left) places Ted at position (2).

The only hint left is H3 (Alice is five seats to Zoe's left). Because Alice is five seats to Zoe's left, Alice and Zoe must be sitting next to one another. Of the available seats, Alice must be at position (3) and Zoe must be at position (4). Since only one seat remains, Carol would be placed at position (6.

Logic and the Art of Reasoning

Table Puzzle 5

Logic and the Art of Reasoning

Marble Game 3

Again, you see six bags numbered 1-6. Some bags contain only one color of marble, and the other bags contain two colors of marbles. Below are twelve hints ($\mathrm{H} 1-\mathrm{H} 12$) for you to use and find out which bag contains which colored marbles. Assume that you've pulled:

H1) ...a blue marble from bag (4)
H2) ...a red marble from bag (6)
H3) ...a red marble from bag (1)
H4) ...a green marble from bag (1)
H5) ...a blue marble from bag (5)
H6) ...a blue marble from bag (4)
H7) ...a blue marble from bag (2)
H8) ...a green marble from bag (2)
H9) ...a green marble from bag (2)
H10) ...a blue marble from bag (4)
H11) ...a red marble from bag (5)
H12) ...a red marble from bag (6)

Logic

 and the Art of Reasoning
Marble Game 3

From H3 and H4, you know that bag (1) contains green and red marbles.
From H7 and H8, you know that bag (2) contains blue and green marbles.
From H5 and H11, you know that bag (5) contains red and blue marbles.
By H6, you know that bag (4) contains only blue marbles.
By H12, you know that bag (6) contains only red marbles.
By H12, you should also know that bag (3) contains only green marbles.

Logic and the Art of Reasoning

Marble Game 4

You see ten bags numbered 1-10. Some bags contain only one color of marble, and the other bags contain two colors of marbles. Below are fifteen hints (H1-H17) for you to use and find out which bag contains which colored marbles. Assume that you've pulled:

H1) ...a blue marble from bag (4)
H2) ...a red marble from bag (6)
H3) ...a red marble from bag (1)
H4) ...an orange marble from bag
H5) ...a green marble from bag (5)
H6) ...an orange marble from bag (4)
H7) ...a red marble from bag (6)
H8) ...a blue marble from bag (7)
H9) ...a blue marble from bag (2)

H10) ...a red marble from bag (2)
H11) ...a blue marble from bag (4)
H12) ...an orange marble from bag
H13) ...an green marble from bag (9)
H14) ...a blue marble from bag (8)
H15) ...an green marble from bag (8)
H16) ...a green marble from bag (3)
H17) ...a red marble from bag (3)

Logic and the Art of Reasoning

Marble Game 4

Logic
 and the Art of Reasoning

Code Breakers 2

Below are groups of images followed by their translation to English．Your job is to determine what each image means．Each image corresponds to a single word．Note that the order of the images may not be the same as the order of the English words．

Code Sequence
1

Code Sequence

2「ロローロ

code Sequence

English Translation

big Alice saw small Bob

English Translation

big Carol heard big Bob

English Translation

small Carol saw small Bob

How would you decode $\triangle, ~,, \bigcirc, \square, \boxed{Z}$, and \square？

Logic and the Art of Reasoning

Code Breakers 2

"Alice" appears only in sentence (1), so $\hat{3}$ must decode to "Alice". "heard" appears only in sentence (2), so \square must decode to "heard" and \bigcirc must decode to "saw". "big" appears twice in sentence (2), so \square must decode to "big".

"small" appears twice in sentence (3) , so \triangle must decode to "small". "Bob" appears in all three sentences, so \bigcirc decodes to "Bob". Lastly, "Carol" appears in sentences (2) and (3), so ∇ must decode to "Carol".

$$
\Delta=\text { small } \quad \bigcup=\text { Bob } \quad \circlearrowleft=\text { saw } \quad \square=\text { big }
$$

$$
\hat{Z} \text { = Alice } \quad \nabla=\text { Carol } \quad \square=\text { heard }
$$

Logic
 and the Art of Reasoning

Code Breakers 3

Below are groups of images followed by their translation to English. Your job is to determine what each image means. Each image corresponds to a single word. Note that the order of the images may not be the same as the order of the English words.

English Translation

Carol heard Bob English Translation

Carol heard Alice

English Translation

Bob heard Alice

Logic and the Art of Reasoning

Code Breakers 3

By comparing sentences (1) and (2), you'll see that "Bob" is only in sentence (1) while "Alice" is only in sentence (2). Therefore, \square must decode to "Bob" and \bigcirc must decode to "Alice".

At this point, $\mathbf{\Delta}$ could decode as either "heard" or "Carol". However, since sentence (3) doesn't include "Carol", $\mathbf{\Delta}$ must decode to "heard". Therefore, is must decode to "Carol".

= Alice
A= Carol
\hat{H} = heard
$Q=B o b$

Logic and the Art of Reasoning

Surprise Party 1

Alice, Bob, Liz, Michael, Sybil, Ted, and Zoe are all on a camping trip. One morning, someone is told about a suprise party that will start at 9 PM. That night, the following campers show up at the surprise party: Carol, Liz, Michael, Ted, and Zoe.

Below are the meetings that occured over the course of the day:
Alice meets Sybil at 12:00 PM.
Bob meets Alice at 1:00 PM.
Carol meets Ted at 2:00 PM.
Zoe meets Liz at 3:00 PM.
Michael meets Zoe at 4:00 PM.
Liz meets Carol at 5:00 PM.
Sybil meets Bob at 6:00 PM.
Ted meets Michael at 7:00 PM.
Who found out about the party first? There might be more than one answer. The campers don't have cellphones or computers, so news can spread only through face-to-face meetings. When two campers meet, they will always tell the other about the party (if one of them already knows about it!). Use the chart below to keep track of camper meetings.

Logic and the Art of Reasoning

Surprise Party 1

Which camper found out about the party first? Let's start by charting the meetings:

		TIME							
		12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM
$\begin{aligned} & \text { d } \\ & \frac{0}{4} \\ & \sum_{\substack{c}}^{4} \end{aligned}$	Alice								
	Bob								
	Carol								
	Liz								
	Michael								
	Sybil								
	Ted								
	Zoe								

You'll remember that only Carol, Liz, Michael, Ted, and Zoe showed up at 9 PM, so only those campers could've known about the party.

If Carol was the first to know about the party, Zoe and Ted wouldn't have heard about it. Similarly, if Michael was the first to know, then Liz wouldn't have found out.

That leaves Liz and Zoe-both are possible, because neither of them encounters anyone else earlier than 3 PM. Michael learns through Zoe at 4 PM, Carol learns through Liz at 5 PM, and Ted learns through Michael at 7 PM.

Therefore, you can safely guess that either Liz or Zoe were the first to find out about the 9 PM party.

Logic and the Art of Reasoning

Surprise Party 2

Alice, Bob, Liz, Michael, Sybil, Ted, and Zoe are all on a camping trip. One morning, someone is told about a suprise party that will start at 9 PM. That night, the following campers show up at the surprise party: Bob, Carol, Michael, and Ted.

Below are the meetings that occured over the course of the day:
Michael meets Sybil at 12:00 PM.
Alice meets Liz at 1:00 PM.
Carol meets Bob at 2:00 PM.
Liz meets Carol at 3:00 PM. Sybil meets Alice at 4:00 PM.

Puzzle Modifier: The camper who found out about the party first is a boy.
Zoe meets Ted at 5:00 PM.
Ted meets Zoe at 6:00 PM.
Bob meets Michael at 7:00 PM.
Which camper found out about the party first? Remember, campers don't have cellphones or computers, so news can spread only through face-to-face meetings. When two campers meet, they will always tell the other about the party (if one of them already knows about it!). Use the chart below to keep track of camper meetings.

Logic and the Art of Reasoning

Surprise Party 2

Which boy found out about the party first? Let's start by charting the meetings:

		TIME							
		12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM
$\begin{aligned} & \infty \\ & \sum_{0}^{\infty} \\ & \sum_{0}^{4} \\ & \hline \end{aligned}$	Alice								
	Bob								
	Carol								
	Liz								
	Michael								
	Sybil								
	Ted								
	Zoe								

You'll remember that only Bob, Carol, Liz, and Michael showed up at 9 PM, so only those campers could've known about the party. But since you're looking for the first boy who heard about the party, only Bob and Michael are possibilities.

If Michael knew before 12 PM, then Sybil would know as well. Therefore, the first boy to be told must be Bob. Bob then tells Carol at 2 PM, Carol tells Liz at 3 PM, and Bob tells Michael at 7 PM.

Therefore, you can safely guess that Bob was the first boy to find out about the 9 PM party.

Logic and the Art of Reasoning

Surprise Party 3

Alice, Bob, Liz, Michael, Sybil, Ted, and Zoe are all on a camping trip. One morning, a boy is told about a suprise party that will start at 9 PM. That night, the following campers show up at the surprise party: Bob, Carol, Liz, and Michael.

Below are the meetings that occured over the course of the day:
Liz meets Alice at 12:00 PM. Bob meets Zoe at 1:00 PM. Michael meets Bob at 2:00 PM. Alice meets Liz at 3:00 PM. Ted meets Michael at 4:00 PM. Zoe meets Sybil at 5:00 PM. Sybil meets Carol at 6:00 PM. Carol meets Ted at 7:00 PM.

Puzzle Modifier: When Bob meets with another camper, he won't tell them about the party. However, the other campers will still tell Bob about the party when they meet up with him!

Who found out about the party first? Remember, campers don't have cellphones or computers, so news can spread only through face-to-face meetings. When two campers meet, they will always tell the other about the party (if one of them already knows about it!). Use the chart below to keep track of camper meetings.

Logic and the Art of Reasoning

Surprise Party 3

Which camper found out about the party first? Let's start by charting the meetings:

		TIME							
		12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM
$\begin{aligned} & \infty \\ & \frac{0}{4} \\ & \sum_{0}^{4} \\ & \hline 0 \end{aligned}$	Alice								
	Bob								
	Carol								
	Liz								
	Michael								
	Sybil								
	Ted								
	Zoe								

You'll remember that only Bob, Carol, Michael, and Ted showed up at 9 PM, so only those campers could've known about the party. Since Bob won't tell others about the party, he couldn't have been the first to have found out (no one would've shown up to the party, since he wouldn't have told anyone about it!).

If Carol was told about the party in the morning, then neither Michael nor Bob would have any way of knowing. If Ted were the first person to be told, then Bob wouldn't have a way to find out about the party.

Logic and the Art of Reasoning

Gold Thieves 1

Alice, Bob, Carol, Sybil, Ted, and Zoe are suspects of a crime: two gold pieces have been stolen. The group is made up of thieves and non-thieves. There can be, at most, two thieves. Thieves may sometimes tell the truth, and sometimes lie. Non-thieves will always tell the truth. Your job is to identify the thief/thieves!

Following are the suspects' testimonies:

Alice says that Carol is honest. Zoe says that Carol is honest. Ted accuses Bob of being a thief.
Bob says that Zoe is honest.

Carol accuses Bob of being a thief.
Carol accuses Ted of being a thief.
Bob says that Carol is honest.
Alice says that Zoe is honest.

Use the graph below to chart the testimonies. Visualizing the data can help you to determine who may be the thief/thieves! Draw arrows between the names to see what type of claim a suspect has made about another suspect. It's encouraged that you use different types of lines (e.g., dotted, colored) to distinguish between claims of honesty and thievery.

Logic and the Art of Reasoning

Gold Thieves 1

Whenever there is an accusation, then at least one of the accusers or accused is a thief. Since Ted accuses Bob, Carol accuses Bob, and Carol accuses Ted, you know that one or two of these accusers/accused (Ted, Bob, Carol) must've stolen the gold.

Everyone else must be honest. Since Zoe says that Carol is honest, Carol must in fact be honest. Because Carol accuses Bob of being a thief, Bob must therefore be a thief. Because Carol accuses Ted of being a thief, Ted is also a thief.

Therefore, Bob and Ted must be the thieves.
(alice

Logic and the Art of Reasoning

Gold Thieves 2

Alice, Bob, Carol, Sybil, Ted, and Zoe are suspects of a crime: two gold pieces have been stolen. The group is made up of thieves and non-thieves. There can be, at most, two thieves. Thieves may sometimes tell the truth, and sometimes lie. Non-thieves will always tell the truth. Your job is to identify the thief/thieves!

Following are the suspects' testimonies:

Bob says that Zoe is honest.
Carol accuses Sybil of being a thief.
Bob says that Sybil is honest.
Bob says that Ted is honest.
Zoe says that Ted is honest.
Bob accuses Alice of being a thief.

Zoe accuses Carol of being a thief.
Sybil says that Ted is honest.
Alice accuses Zoe of being a thief.
Carol says that Zoe is honest.
Zoe says that Sybil is honest.

Use the graph below to chart the testimonies. Visualizing the data can help you to determine who may be the thief/thieves! Draw arrows between the names to see what type of claim a suspect has made about another suspect. It's encouraged that you use different types of lines (e.g., dotted, colored) to distinguish between claims of honesty and thievery.

Logic and the Art of Reasoning

Gold Thieves 2

Whenever there is an accusation, then at least one of the accusers or accused is a thief. Since Carol accuses Sybil, Bob accuses Alice, Zoe accuses Carol, and Alice accuses Zoe, you know that one or two of these accusers/accused (Carol, Sybil, Bob, Alice, Zoe) must've stolen the gold.

Zoe cannot be a thief, because at least three people would have to be thieves as well (Zoe, Carol or Sybil, and Bob or Alice).

Because Zoe accuses Carol of being a thief and says that Sybil is honest, Zoe is telling the truth. Therefore, Carol must be a thief. Since Zoe is not a thief, Alice must be a thief.

Therefore, Carol and Alice must be the thieves.

Logic

 and the Art of Reasoning
Gold Thieves 3

Alice, Bob, Carol, Sybil, and Ted are suspects of a crime: two gold pieces have been stolen. The group is made up of thieves and non-thieves. There can be, at most, two thieves. Thieves may sometimes tell the truth, and sometimes lie. Non-thieves will always tell the truth. Your job is to identify the thief/thieves!

Following are the suspects' testimonies:

Alice says that Sybil is honest. Alice says that Carol is honest.
Sybil accuses Ted of being a thief. Ted accuses Carol of being a thief.
Carol says that Alice is honest.

Bob says that Sybil is honest.
Bob says that Ted is honest.
Carol says that Sybil is honest.
Ted says that Alice is honest.
Carol says that Bob is honest.

Use the graph below to chart the testimonies. Visualizing the data can help you to determine who may be the thief/thieves! Draw arrows between the names to see what type of claim a suspect has made about another suspect. It's encouraged that you use different types of lines (e.g., dotted, colored) to distinguish between claims of honesty and thievery.

Logic and the Art of Reasoning

Gold Thieves 3

Whenever there is an accusation, then at least one of the accusers or accused is a thief. Since Sybil accuses Ted and Ted accuses Carol, you know that one or two of these accusers/accused (Sybil, Ted, Carol) must've stolen the gold.

Bob and Alice are not accused of being thieves, but one of them could be a thief along with either Sybil, Ted, or Carol. However, Bob and Alice both claim that Sybil is honest, so Sybil must be honest.

Therefore, Ted is a thief. And since Bob says that Ted is honest, Bob must be a thief as well.

Logic
 and the Art of Reasoning

Code Breakers 4

Below are groups of images followed by their translation to English. Your job is to determine what each image means. Each image corresponds to a single word. Note that the order of the images may not be the same as the order of the English words.

English Translation

big Bob heard small Alice

English Translation

big Bob heard small Carol

English Translation
big Bob saw big Carol

English Translation

small Carol saw small Bob

How would you decode \square

Logic and the Art of Reasoning

Code Breakers 4

1
By comparing sentences (1) and (2), you'll see that "Alice" is only in sentence (1) while "Carol" is only in sentence (2). Therefore, \triangle must decode to "Alice" and $\hat{\xi}$ must decode to "Carol".
"big" appears twice in sentence (3), so ∇ must decode to "big". "saw" appears only in sentences (3) and (4), so \square must decode to "saw". Therefore, \bigcirc must decode to "Bob".
"small" appears twice in sentence (4), so \square must decode to "small". Therefore, the only remaining undecoded symbol, \bigcirc, must decode to "heard".
 English Translation
big Bob saw big Carol

English Translation
small Carol saw small Bob
$Q=$ Bob
$\bigcirc=$ heard $\square=$ small

Logic and the Art of Reasoning

Table Puzzle 6

There are eight people sitting around a table. Their names are Alice, Bob, Carol, Jack, Jill, Sybil, Ted, and Zoe. Your job is to figure out where they're sitting.

You are given the following five hints ($\mathrm{H} 1-\mathrm{H} 5$):
H1) Bob is two seats to Ted's left.
H2) Bob is four seats to Jill's left.
H3) Carol is two seats to Alice's left.
H4) Carol is five seats to Zoe's left.
H5) Jack is two seats to Sybil's left.
Can you find an arrangement of people that satisfies these conditions?

Logic
 and the Art of Reasoning

Table Puzzle 6

Let's put Bob at position (1). H1 (Bob is two seats to Ted's left) places Ted at position (7). H2 (Bob is four seats to Jill's left) places Jill at position (5). H3 (Carol is two seats to Alice's left) and H4 (Carol is five seats to Zoe's left) places Carol at position (8. Subsequently, Alice and Zoe would be seated at positions (6) and (3), respectively.

The only hint left is H5 (Jack is two seats to Sybil's left). Since only two seats remain, Sybil would be placed at position (2) and Jack would be placed at position (4).

