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Linear Algebra
a brief glossary

An m×n matrix A has m rows and n columns. An n×1 matrix x consisting
of one column is a column vector, and writen x ∈ Rn. If ai is the ith column
of A, then we may write the product Ax as

Ax =
n∑

i=1

aixi,

where xi is the ith coordinate of x.
If B is an n× p matrix, and C = AB, then we may write ci, the ith column

of C as
ci = Abi,

where bi is the ith column of B.
The column-row expansion form for C = AB is

C =
n∑

i=1

aib
i,

where bi is the ith row of B. Note that each term aib
i here is an m× p matrix,

not to be confused with aibi, which is just a scalar (here ai is the ith row of A).
By col(A), called the column space of A, we indicate the vector space

spanned by the columns of matrix A. Specifically,

col(A) = {Ax : x ∈ Rn}.

Similarly, row(A) indicates the row space of A:

row(A) = {yA : y is a row vector in Rm}.

A row vector is a 1×m matrix (any matrix with only one row).
The null space of a matrix A, written null(A), is the vector space given by

null(A) = {x ∈ Rn : Ax = 0}.

The columns of A are linearly independent iff null(A) contains only the zero
vector.

The rank of a matrix A, written rank(A), is the dimension of col(A), defined
rigorously as the size of the largest set of linearly independent vectors in col(A).
It is a fact that

dim(col(A)) = dim(row(A))
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for all matrices A. A matrix has full rank when rank(A) = min(m,n) (this
makes sense since necessarily rank(A) ≤ min(m,n).

The corank of a matrix A is the dimension of null(A). It is a fact that, for
all m× n matrices A,

rank(A) + corank(A) = n.

For some matrix A, it is traditional to write aij to indicate the value in the
ith row and jth column. A matrix is diagonal iff (i 6= j =⇒ aij = 0); that
is, all entries not on the diagonal are zero. A matrix is upper-triangular iff
(i > j =⇒ aij = 0).

Given a matrix A, we say that B = AT is the transpose of A iff bij = aji.
We say that A is lower-triangular iff AT is upper-triangular.

The n × n identity matrix, usually denoted with the particular letter I,
has entry Iij in row i and column j given by

Iij =

{
1 if i = j

0 otherwise.

It is also traditional to write ei for the ith column of this matrix.
An m × n matrix A is invertible iff it is square (m = n) and there exists

another matrix, written A−1 such that AA−1 = A−1A = I. It is a fact that A
is invertible iff its columns are linearly independent iff rank(A) = n iff null(A) =
{0}.

The columns of a matrix Q are called orthonormal iff

qT
i qj =

{
1 if i = j

0 otherwise,

where qi is the ith column of Q. A real square matrix Q is unitary iff its
columns are orthonormal. It is a fact that a matrix is unitary iff QT = Q−1 iff
its rows are orthonormal.

Matrix U is in reduced row echelon form iff

• there is an increasing sequence P = {p1, . . . , pr} ⊂ [n] of column indices
so that column upi

= ei, the ith column of the identity matrix; and

• for i ≤ r, j < pi =⇒ uij = 0; and

• for all i > r, uij = 0,

where r = rank(U). The set of columns indexed by P are the pivot columns
in U . This form is what we reduce a matrix to by Guassian elimination. Notice
that any U in reduced row echelon form is also upper-triangular.

Reduced row echelon example An elementary row operation on a matrix
A is a simple operation such as

• switching two rows,
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• multiplying a row by a scalar, or

• replacing a row r by r + s, where s is another row in the matrix.

It is a fact that matrix B may be derived from matrix A by elementary row
operations iff there is an invertible matrix X such that B = XA. Thus we may
always algebraically represent a series of row operations by some matix X which
is to be left multiplied by A (that is, our result is given by XA).

As a quick example, consider

A =

1 2 1
2 4 4
3 6 5

 .

We can use the upper-left entry as a pivot in Guassian elimination to arrive at

B =

1 2 1
0 0 2
0 0 2

 .

This matrix is upper-triangular but not yet in row echelon form — although
the first column qualifies as a pivot column, the third does not, and there is
no assignment of pivot columns which would allow this matrix to meet the
conditions of being in reduced row echelon form. Intuitively, the problem is
that the third column “goes down by two” at a time, which is not allowed in
row echelon form.

So our next step will be to exercise another row operation in order to clean
up the third column:

C =

1 2 1
0 0 2
0 0 0

 .

Technically, this is still not in reduced row echelon form since the third column
is still not of the form ei, although we could easily solve a system of the form
Cx = b at this point.

Let’s eliminate the upper-right nonzero, and then divide the third column
by 2 in order to arrive at:

D =

1 2 0
0 0 1
0 0 0

 .

At last, we have reached reduced row echelon form. Indeed, let p1 = 1 and
p2 = 3 be our pivot columns. No column “goes down” by more than one row at
a time, and those columns which do (the pivot columns) are identity columns
(from an identity matrix).

Decompositions The QR decomposition of m× n matrix A is

A = QR,
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where Q is m×m and unitary, and R is upper triangular. Every matrix has a
QR decomposition.

The LU decomposition of m× n matrix A is

A = LU,

where L is invertible and U is in reduced row echelon form. As we have defined
it, every matrix has an LU decomposition. (Many authors prefer to require
that L is also lower-triangular, in which case this decomposition may not exist,
although it will when one allows a row permutation to take place. This is where
the term ‘psycholocially row echelon form’ comes from, meaning ‘up to a row
permutation.’ I plan to eliminate this term from the thesis so it will not be
necessary.)

The singular value decomposition (SVD) of m× n matrix A is

A = UΣV T ,

where U is m × m and unitary, V is n × n and unitary, and Σ is m × n and
diagonal. In addition, if σi indicates the ith value along the diagonal of Σ, we
require that σ1 ≥ σ2 ≥ . . . and that each σi be nonnegative. All real matrices
have a real singular value decomposition.

Norms Given two column vectors x and y, their inner product, sometimes
written as 〈x, y〉, or just x · y, is simply the matrix product

〈x, y〉 = xT y.

A norm is a function mapping Rn → R which is nonnegative, zero only when
input x is zero, scales linearly with the input, and obeys the triangle inequality.
In notation:

• ||x|| ≥ 0 and ||x|| = 0 iff x = 0;

• ||λx|| = |λ| · ||x|| for any scalar λ; and

• ||x + y|| ≤ ||x||+ ||y||.
The standard norm, which we denote simply by ||x|| is defined as

||x|| =

(∑
i

x2
i

)1/2

.

This may also be written as ||x||2 in cases where the context may suggest oth-
erwise.

The Cauchy-Schwarz inequality tells us that

〈x, y〉 ≤ ||x|| · ||y||

for any pair of vectors x, y.
Another norm we will use occasionally is given by

||x||1 =
∑

i

|xi|.
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