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Abstract: 

 

Generating causal hypothesis is a key step in scientific research including in health sciences. The 

advent of massive omics and health observational data provides an opportunity for broad, 

expedient and inexpensive causal inference and to improve biomedical research efficiency and 

effectiveness. In this study, we introduce a top-down hypothesis generation concept and method 

named Causal Inference using Composition of Transactions” (CICT).  CICT uses novel emergent 

properties of relevance network and Markov Chain data with machine learning(ML) methods to 

infer causality. CICT uses the idea that the stochastic distribution of transitions to and from a 

causal clinical condition is different than from a random event, and such difference is detectable 

in four unique distribution zones around each event. We applied CICT to a large-scale healthcare 

administrative data to infer causal relationships between clinical conditions and showed that 

without designing formal studies, or use of contextual clinical variables, CICT can efficiently 

produce highly accurate causal hypotheses at scale. Medical domain knowledge and an extensive 

set of validation methods used to ensure validity and veracity of the analysis. We explain the details 

of verification steps, and the results of empirical epidemiological studies conducted to assess the 

performance of CICT. Expedient producing of valid causal insights have the potential to prevent 

redundancy and accelerate research in health sciences in an era that the rate of data production 

exceeds our analysis capabilities. 

 

 

 

One Sentence Summary: We introduce a novel concept and method for producing causal 

hypothesis in relevance networks and Markov Chain data and explain the details of the methods 

used to evaluate this causal inference method 

 

 

Keywords: 

causal inference; hypothesis generation; machine learning; relevance network; Markov Chain; 

network inference; artificial intelligence   
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Introduction 

 

Generating causal hypothesis is a key step in scientific studies including biomedical research. 

However, causal hypothesis and relationships can be challenging to find and verify, in part because 

we have continued to rely on the inference of experts, experimental design, and statistical inference 

for causal reasoning. Insufficient understanding of potential causal relations is a source of cost, 

redundancy and slow progression of scientific research. For example, in biology and healthcare, 

we often stay at the level of correlation between phenomena for a long time as sufficient reliable 

data from convincing trial studies are sparse. The emergence of massive observational data in 

biology and healthcare provides an unprecedented opportunity to causal inference. Nevertheless, 

little success has been achieved in generating causal hypotheses in biomedical and health sciences. 

 

Two common form of data in health sciences are undirected correlation or co-expression data 

known as relevance network (RN), and the one-step transition or Markov Chain network (MCN). 

Examples of MCN are patients transition between clinical conditions in population-level data or 

directed gene regulatory networks, and undirected gene expression data are RN network. The issue 

of producing causal hypothesis using RN or MCN is often faced in health sciences when trying to 

understand the interaction between different events and phenomena. Surprisingly few methods 

exist for direct causal inference in RN or MCN despite the popularity of these data forms (1, 2). 

 

In the context of MCN an RN, conventional methods have restricted applicability (3, 4) for 

generating a causal hypothesis. For example, Potential Outcomes Framework (5, 6) starts with a 

basic understanding of the observed system and requires both a primary hypothesis and an 

environment of limited measurable confounders to create an experimental design or quasi-

experimental design (7-9). By contrast, in RN and MCN a multitude of uncontrolled factors coexist 

and interact in all ways, including circular connections. A more recent and powerful concept of 

graphical structural models 3  and counterfactual analysis, spearheaded by Judea Pearl, also needs 

a comprehensive knowledge of the system’s interactions before mapping the influence structure, 

evaluating a causal claim or measuring the effect size. Granger causality (10, 11), a significant 

advancement in causality inference, and techniques of state space reconstruction (12-14), 

conditional mutual information (15, 16), recurrence plots (17, 18) and information entropy transfer 

(19) are applicable only when time series data of sufficient length exist (20). These methods have 

been successfully used in studying relationships of recurring physical phenomenon of limited 

dimensions. However, in the context of systems medicine, the data is high-dimensional with no or 

limited repetition. Inspired by the mathematical notion of the graphs, methods such as Random 

Walk and its offspring such as PageRank (21), Walktrap (22), and  MapEquation (23) were 

developed to understand the sub-segments or modules of a network and the direction of influence 

among them. However, these methods which work at the level of sub-segments rather than 

individual connections are not designed to infer causal relations.  

 

 

 

In this work, we introduce a novel method for generating causal hypothesis and for identifying 

underlying network in MCN and RN. We use a large scale observational healthcare data (figure 1 

A)  to build an MCN of patients transitions between various clinical conditions Then we apply our 

causal inference method to this network to generate various causal hypotheses. Next, we evaluate 
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the generated hypotheses, using the established medical knowledge of an extensive set of causal 

relationships, as the gold standard. Also, we conduct various validation and evaluation tests to 

ensure the soundness of machine learning methods. We furthered the analysis by using 

epidemiological etiological reasoning means to evaluate CICT suggested hypothesis 

independently. Moreover, we provide references to some novel findings of our method that are 

already presented to various scientific communities. Throughout this manuscript, any reference to 

a causal relationship or causal hypothesis carries the meaning that the first phenomenon is a 

probabilistic component cause, precipitator or precursor of the second phenomenon. 

 

Causal Inference using Composition of Transitions (CICT) 

CICT is a novel concept and method for top-down(24), in-silico inference(25) and evaluation of 

multiple causal hypotheses in RN and MCN. CICT is developed based on our original observation 

that the composition of the events happening before and after a causal event is different from a 

random event in natural systems of stochastic processes when presented as RN or MCN. For 

example, observing a population, the set of events that happened to patients, before and after 

rheumatoid arthritis, which is cause for multiple comorbidities, is different from the set of events 

before or after influenza, which as a mostly random event may affect any individual.  Such 

difference creates emergent patterns in four unique distribution zones that we define around each 

event. These emergent patterns can be revealed and learned through manual analysis or by 

supervised and unsupervised machine learning methods. Machine learning models, once trained 

on these patterns, can directly discriminate causal transitions from random transitions and predict 

the strength of unseen causal claims at the level of individual connections. Moreover, the features 

produced by CICT enables machine learning to predict the direction of causality in undirected 

relevance networks. 

To demonstrate CICT, we use a large-scale administrative healthcare dataset to build Markov 

Chain network of patients transitions from one clinical condition to another (Figure 1 A, B). For 

each patient, we consider each two consequent patient’s encounters as a transition of the patient 

between primary diagnosis of the first encounter to the primary diagnosis of the second encounter. 

By observing a population, and recording frequency of patients’ transitions between various 

clinical conditions, we can build an MCN between all observed clinical conditions. Next, on each 

edge between two nodes 𝑖: source and  𝑗: target we define two probabilities confidence (Conf) and 

contribution (Contrib) as follow: 

𝐶𝑜𝑛𝑓𝑖𝑗 =  𝑖𝑗⃗⃗ 𝑖⁄ = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑢𝑡𝑢𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑗 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑖 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑗 =  𝑖𝑗⃗⃗ 𝑗⁄ = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑖 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑗 

Hence, for each node 𝑖  and the set of nodes 𝑗, we can define two distribution zones for transition 

edges 𝑖𝑗⃗⃗  and two distribution zones for transition edges  𝑗𝑖⃗⃗  ⃗. Accordingly, for each node 𝑖 we create 

four unique zones of transition distributions as shown in Figure 1 D. The first zone is the 

distribution of all confidences of node 𝑖  to other nodes. Zone 2 is the contribution of node 𝑖 to 

other nodes. Zone 3 is confidences of other nodes into node 𝑖. And Zone 4 is the contribution of 

other nodes into node 𝑖. Next, we estimated the probability density function (PDF) for each zone 

of each event by creating a histogram of values in each zone (for example Confidence in Zone 1). 
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The histogram is achieved by first mapping the entire range of values into a series of incremental 

bins and then counting frequency of values in each bin. We named these four PDFs as 

“composition of transitions.”. 

We hypothesized that the set of events before and after a causal event is different from a random 

event. Moreover, such difference should be identifiable in the composition of transitions for 

events. Figure 1-E demonstrates a real example of such differences in the composition of 

transitions. Rheumatoid arthritis, a well-known cause of multiple comorbidities such as 

arthropathies, is painted as a red density, and syncope, a known effect of multiple clinical 

conditions is shown in yellow. Also, influenza is used as a proxy for a random event that may 

affect people with a broad range of previous conditions. This example shows that the median of 

causal density (red) is about two order of magnitude different than for the random density (blue) 

in all for PDF zones. We hypothesized that composition of transitions for a causal event should 

exhibit identifiable generalized patterns. We called these generalized patterns a ‘behavior’ and 

suggested that ML methods can learn the differences in ‘causal behavior’ versus effect or random 

behavior to discern the causal or random nature of events and their transitions. Accordingly, to 

capture these behaviors and produce features for ML methods, we extracted moments of four PDFs 

of each event. 

 

Next, we assumed that if a pair of events (e.g., 𝑖 and 𝑗) have a causal relationship, the specific 

interplay of the two events should be reflected in the strength of their back (𝑗𝑖⃗⃗ )  and forth (𝑖𝑗⃗⃗ ) 
connections with regard to the behavior of the four corresponding PDF areas (Figure 1 F). For 

example, if 𝑖 is the cause of 𝑗, the probability of a transition from 𝑖 to 𝑗 could be higher comparing 

to transitions to random events, after adjusting for prevalence. To train ML methods on the 

differences in behaviors of the cause, effect, and random events a set of features is required to 

represent that behaviour. Accordingly, we extracted moments of the distribution of confidences 

and contributions, in all the the four mentioned zones around each node. For example, we extracted 

mean, standard deviation, skewness, kurtosis, median absolute deviation(26-28) and L-

moments(29, 30) for confidences and contributions. Median absolute deviation and L-moments 

are measures of distribution that are more stable and less sensitive to outliers(29, 30) compared to 

standard measures, such as mean or standard deviation. We suggested that this information about 

the behavior of source and target of a specific transition can guide ML methods to predict whether 

that transition is a cause, effect or random. Figure 1.F shows the eight influencing distribution 

zones that we considered for each specific edge. We added the measures of distributions of these 

8 zones as features to each specific transition edge.  

 

To improve training of ML models, we engineered features by creating equivalencies with physical 

systems such as electric circuits and closed hydraulic systems. For example, assuming edges are 

connections in an electrical circuit we calculated resistance (
𝑎𝑏𝑠(𝑖 − 𝑗)

𝑖𝑗⃗⃗ ⁄ ), and taking the nodes 

and edges as a connected hydraulic system, we calculated output pressure (
(𝑖 − 𝑗) ∗  𝑖𝑗 ⃗⃗  ⃗

𝑖
⁄  ).  The 

feature engineering produced a total of 334 features for each transition edge on the network.  
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It is common knowledge that the right features are more important than the choice of model in the 

performance of machine learning (31). For example, the right features can help unsupervised 

methods to group similar data points into clusters that reflect real classes and improve the accuracy 

of prediction in supervised models. Here, our novel features enable both supervised and 

unsupervised models to discriminate causal relationships from random connections correctly and 

to predict possible causal relations in unlabeled connections.  

 

Data Source and Preprocessing 

To evaluate CICT through ML methods, we used a large-scale observational healthcare data to 

build an MCN of patients transitions. Deidentified observational all-payers claim data from 

Healthcare Utilization Project (HCUP) California State Inpatient Database (SID), and Emergency 

Department Database (ED)[25] from 2005 to 2011 was used for applying CICT and validating its 

results. HCUP is the result of a federal-state-industry partnership sponsored by the Agency for 

Healthcare Research and Quality, and each HCUP record represents a patient encounter [25]. The 

SID files contain all inpatient discharge records in community hospitals in the California state. The 

ED contains all encounters in the emergency department that do not result in a hospitalization. 

Both SID and ED include all patients covered by Medicare, Medicaid, private insurance, or 

uninsured and contains more than 97% (32, 33) of the patient population. The data include patients’ 

demographic data, primary diagnosis, comorbidities, procedures, total costs of hospitalization, 

length of stay and more. Moreover, data has a pseudo patient-identifier that allows connecting all 

hospital visits of each patient across ED and SID dataset. This data capture longitudinal hospital 

visits information of all patients in California from 2005 to 2011. 

 

We used International Classification of Diseases, Ninth Revision, Clinical Modification 

(ICD9CM) codes for the primary diagnosis and up to 24 comorbidities, to identify exposures or 

events. As our hypothesis generation method, uses transitions of patients between clinical 

conditions to build the MCN, we included patients with more than one observation. The final 

dataset contains 15,047,413 hospital admissions among 3,966,603 patients who had two or more 

hospitalizations during 2005 to 2011. We created MCN by taking each Diagnosis as a vertice on 

the network and mapping each patient transition to an edge between network vertices. For each 

pair of clinical events, we preserved frequency of observed clinical conditions as the node 

frequency and the frequency of transitions as the edge frequency. We used vertex and edge 

frequencies to calculate confidence and contribution parameters that we discussed in CICT 

method. The final MCN contained 10,192 clinical events as vertices and over 873,000 unique 

transitions edges between clinical events.  

 

Next, we created a set of ground truth to label some of the data in our MCN so machine learning 

methods can use the data and the features that we built using CICT. 

 

The Ground Truth 

We require the ground truth to evaluate the results of unsupervised methods and to train supervised 

methods. Here the ground truth is the well established medical knowledge about a sufficient set of 

causal and random relations between pairs of clinical conditions. To prepare this set we used 
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Semantic MEDLINE Database (SemMedDB) from Semantic Knowledge Representation (SKR) 

project (34) that contains 82.2 million predicates between biomedical concepts extracted from all 

MEDLINE citations. We used SemMedDB to label a set of 267 causal relations from that we found 

a match for in our transition data. Two clinician internists as subject matter experts independently 

verified the correctness of identified causal relations (supplement table 1).  In addition to causal 

relations, the predictive models require a set of random relations to learn the difference between 

causal and random relations. Accordingly, we chose a random sample of transitions from our 

transition graph; then, two subject matter experts manually tagged 267 relations as ‘irrelevant-may 

coincide’ denoting that a transition from the first clinical state to the second is most probably due 

to a random process and not a causal relation (Supplementary Table 2). Next, we labeled 

corresponding transitions on the graph as ‘random’ or ‘causal’ according to the ground truth.  

 

We used multiple empirical analysis to evaluate CICT results against a set of established medical 

causal relations as the ground truth. Use of ground truth is the gold standard in system inference 

literature. The health domain provides a suitable testbed due to the availability of large-scale 

datasets and the benefit of well-established domain knowledge. Moreover, we avoided using the 

contextual knowledge that is specific to health domain into CICT design (e.g., in building models) 

to keep the findings as generalizable and straightforward as possible and to ensure applicability in 

other scientific fields. Also, we defined a minimum length model to show that in the absence of 

time series data and contextual information (e.g., Age, gender and laboratory data), simple one-

step transitions frequencies, carry valuable information for causal inference.    

 

Results of Causal Inference using Composition of Transitions (CICT) 

Often modeling and machine learning studies are focused on building new models and proving the 

validity of modeling presumptions. Here, we use standard, well-established ML models and show 

that the features that CICT suggests contain new information about causality that a standard model 

can use to predict the veracity of a causal claim. Thus we report the results of three experiments 

conducted using classification and clustering methods and evaluate the performance and results of 

these methods. Experiment I shows the high accuracy of CICT method in discriminating causal 

transitions from coexistence and random associations. Experiment II shows how much CICT can 

predict the causal direction in a bi-directional association. The third experiment ensures the 

elimination of possible subjective errors in the validation phase by applying the trained model on 

the set of previously unlabeled and randomly selected transitions and evaluating the results. In all 

experiments after optimizing and validating the predictive model, we estimated the discrimination 

power of the models using the area under the receivers operating characteristics curve (AUC of 

ROC) as a surrogate of the amount of causal knowledge that CICT learns. In line with this, we 

used the predicted probability of classification as the measure of causality referred as ‘strength’ in 

tables. Also, we describe the most important predictors of causality and provide interpretation for 

causal behavior. 
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Admissions 15,047,413 

Patients 3,966,603 

Total transitions included 11,534,448 

Unique transitions or 

Edges 
873,761 

Unique Clinical 

conditions 
10,119 

A B 

                     

 

   

 

 

D  

  

  

F  

 

Figure 1: (A) Descriptive statistics on the data.  (B) A set of transitions for four hypothetical patients. For example, the first 

patient is hospitalized with a principal diagnosis of condition X, and after a period is re-hospitalized with condition Y and so 

forth. If we start merging similar transitions, the result would be the transition graph shown in (C) Different types of transitions 

on a network. X is a common cause of Y and Z where Y is an early effect and Z is a late effect. X and W showed an association 

without an observable causal relation. Numbers represent hypothetical frequencies. (D) The 4 zones that carry different 

distributional information. It is important to note that the four areas are not overlapping and contain different information. Here 

i represents source and j represent destination. (E)  The log-scale density graph shows the different distributions in four 

distribution zones for a cause: Rheumatoid Arthritis(red), an effect: Syncope (yellow) and a random event: Pneumonia (blue). 

Dotted lines show medians of correspondent density. (F) The eight distribution zones carry information relevant to the nature 

of the transition between source and destination (black edge). Zones 1,3,5,7 capture distribution of the parameters derived from 

Confidence calculation. Zones 2,4,6,8 capture distribution of the parameters derived from Contribution calculation. 
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Experiments and results 

 

Evaluating CICT accuracy in discriminating random transitions from causal transitions in 

labeled data (Experiment I) 

We used the ground truth to create a set of 267 random transitions and a set of 267 causal relations. 

Then we split this 534 transition-set into a 75% training subset and 25% validation set. Next, we 

trained a random forest(RF) model with 10-fold cross-validation on the training subset to separate 

random relations from non-random relations. RF is a well-studied machine learning method that 

works well in nonlinear and complex problem domains by aggregating the collective result of 

multiple decision trees as its output. To ensure the stability of results we repeated training and 

validation 50 times. RF predictive model shows an average discrimination power of AUC= 0.916 

with Mean Square Error = 0.074 and R2 = 0.699 on outstanding validation sets. The model is well 

calibrated as evaluated by Hosmer-Lemeshow chi-square on ten deciles of risk (Chi-square = 

6.846, P-value = 0.553). (Figure 2 A, B, C). RF converges in 3 decision trees of depth five which 

means a limited number of decisions over composition parameters can separate causal and random 

transitions. An area under curve greater than 0.9 for a model is an excellent discrimination power. 

The top 10 relations predicted by the model are shown in Table 1.A.  All the top 10 relations are 

well-known casual associations.  

The right features produced by CICT helps unsupervised methods to group similar data points into 

clusters that reflect real classes. Figure 2 D shows two clusters, as identified by unsupervised 

Partitioning Around Medoids (PAM)(35) clustering. The denser cluster (cyan polygon) mostly 

embodies cause-effect transitions (blue triangles) where the more significant scattered cluster (pink 

polygon) mainly contains random transitions (red dots). Graph axes are the first and second 

dimensions of Principal Component Analysis(PCA). We used these coordinates to show data 

points along their maximum variability extension to achieve a more precise visualization. Adjusted 

Rand Index (36) shows 0.468 agreement between clustering results and real classes. 

 

Evaluating CICT accuracy in inferring direction of causality in bidirectional relations 

(Experiment II) 

We hypothesized that if the composition of transitions contains information about causality, it 

should be able to predict the real direction of causation in the bidirectional association between 

pairs of clinical conditions. For example, if our observations show frequent both way transition 

between flu and pneumonia we expect a causal inference method to specify which of the two 

conditions is the cause or precipitating factor for the other. We used logistic regression and RF to 

predict the direction of causation in a bidirectional association. Using the ground truth established 

in Experiment I, we selected a set of 225 causal transitions (e.g. flu  pneumonia) and 225 reverse 

of causal relations (e.g. pneumonia  flu) (Supplementary Table 3). We then used a 75% random 

sample of this data for training and used the 25% remaining to test the model. We used 10-fold 

cross-validation on the training set and measured model performance on the 25% outstanding 

validation set. We conducted training and validation  50 times to ensure model stability. RF 

surpassed logistic regression. Best results achieved with RF using 30 trees with depth 5 and show 

an average discrimination power of AUC= 0.772 with Mean Square Error = 0.193 and R2 = 0.215 

on the outstanding validation set. The model was well calibrated across ten deciles of risk (Hosmer-
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Lemeshow Chi_square = 5.195, P-value = 0.736). (Figure 2 E, F, G). Top 10 cause-effect predicted 

relationships in bi-directional transitions, shown in Table 1.B, are well known causal relations in 

medicine. An AUC = 0.772  is an acceptable discrimination power as a model with an AUC of 

more than 0.7 is a fair model with practical applications(37).  

Figure 2 H shows two clusters, as identified by unsupervised Partitioning Around Medoids 

(PAM)(35) clustering method. The denser cluster (cyan polygon) mostly embodies cause-effect 

transitions (blue triangles) where the larger scattered cluster (pink polygon) mainly contains effect-

cause relationships (red dots). Graph axes are the 1st, and 2nd dimensions of PCA and axis label 

shows the variability of data explained by each dimension. Adjusted Rand Index shows(36) 0.437 

agreement between clustering results and the real classes reflecting the fact that even unsupervised 

algorithm can discriminate the direction of causality in association relationship considerably, using 

CICT features. 

 

Evaluating CICT accuracy in finding causal hypothesis in unlabeled data (Experiment III) 

To ensure that our results are not affected by design decisions in this experiment, we first 

empirically optimized training a predictive model using a set of 250 cause-effect relations as the 

positive class and a set of 90 effect-cause plus 840 random relations as the negative class. We then 

used all transitions with frequency > 20 among 873,761 total observed transitions, to create a 

random sample of size 1600. Next, we used a trained RF model to predict whether each of sampled 

transitions is a causal association or not. We used predicted value as model’s measure of causality. 

For transitions that occurred in both directions in the results (like A  B and B  A), we retained 

transitions with higher predictive value. Next, we removed any transition with a predicted 

probability less than a threshold 0.535 and returned 75 relations.  The choice of threshold made by 

applying Youden-Index(38) on prediction results of Experiment II to find the optimal cut-off 

point. This optimal threshold represents the best performance of discrimination when both effect-

cause and cause-effect transitions exist. Next, we asked two clinician experts to evaluate the output 

independently. CICT did not report any random transition. Among the transitions identified, after 

removing 13 unexplainable relations due to coding or label ambiguity (e.g., CHF  CHF 

nonspecific), 62 causal transitions remained. Of these, 52 (p=0.764) were cause-effect and 10 

(p=0.147) were effect  cause relations.  The top 10 predicted relations are shown in Table 1C. 

We conducted this experiment five times on different random sets of transitions with little variation 

on prediction accuracy. 
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Figure 2. Left Column: CICT shows high accuracy in discriminating random transitions from associations. (A) 

ROC curve. (B) Calibration plot. (C) Discrimination box plot (D) Two clusters as identified by Partitioning 

Around Medoids along with the real class of data points.  Right Column: CICT performs well in identifying 

direction of association:  (E) ROC curve. (F) Calibration plot. (G) Discrimination box plot  (H) Partitioning 

Around Medoids 
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A  Top 10 predicted relationships in experiment I.  
Strength Source clinical condition Target clinical condition 

0.996 Hyperparathyroidism Disorders of calcium metabolism 

0.996 Peritonitis NOS Abdominal pain 

0.996 Pressure ulcer Bacteremia 

0.996 End stage renal disease Anemia Not otherwise specified(NOS) 

0.996 Polycystic ovaries Overweight and obesity 

0.996 Human immunodeficiency virus [HIV] disease Bacteremia 

0.996 Shock without mention of trauma Transient alteration of awareness 

0.996 Alcoholic cirrhosis of liver Portal hypertension 

0.996 Infectious mononucleosis Splenomegaly 

0.996 Calculus of ureter Renal colic 
 

B  Top 10 Predicted relationships in experiment II  
Strength Source clinical condition Target clinical condition 

0.908 Systemic lupus erythematosus Renal failure NOS 

0.906 Hepatic encephalopathy Transient alteration of awareness 

0.887 Other pyelonephritis or pyonephrosis, not specified as acute or chronic Renal failure NOS 

0.858 Calculus of ureter Leukocytosis NOS 

0.845 Systemic lupus erythematosus Thrombocytopenia NOS 

0.815 Irritable bowel syndrome Chronic pain 

0.803 Meckel's diverticulum Unspecified intestinal obstruction 

0.798 Other specified disorders of circulatory system Edema 

0.777 Vesicoureteral reflux unspecified or without reflux nephropathy Urinary tract infection, site not specified 

0.769 Septicemia due to other gram-negative organisms Shock without mention of trauma 
 

C  Top 10 predicted relationships in experiment III 

Strength Source clinical condition Target clinical condition 

1.00 Unspecified hypertensive heart disease without heart failure CHF NOS 

1.00 Other and unspecified rheumatic heart diseases CHF NOS 

1.00 Other primary cardiomyopathies CHF NOS 

1.00 Overweight and obesity Localized adiposity 

1.00 Mitral valve disorder  CHF NOS 

1.00 Secondary malignant neoplasm of retroperitoneum and 

peritoneum 

Malignant neoplasm of ovary 

1.00 Infection and inflammatory reaction due to internal prosthetic 
device, implant, and graft 

Acquired deformities of hip 

1.00 Malignant essential hypertension Hypertension NOS 

1.00 Diabetes mellitus complicating pregnancy, childbirth, or the 

puerperium 

Abnormal glucose tolerance of mother, 

complicating pregnancy, childbirth, or the 
puerperium 

1.00 Unspecified intracranial hemorrhage Intracerebral hemorrhage 
 

 

Table 1:  In all tables, strength stands for predicted strength of causal hypothesis (A) Top 10 predicted association 

relationships in a mixture of random and causal transitions. For 9 out of 10, the causal direction is predicted correctly. 

(B) Top 10 predicted the direction of causality in bi-directional association transitions (C) Top 10 predicted cause-

effect relationship in a random unlabeled set of transitions.  NOS stands for “Not Otherwise Specified.” 
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Evaluating CICT results with time to event analysis 

In health sciences, the two important assessment for evaluating risk and causal hypothesis using 

observational data is measuring the effect size and establishing the time arrow between potential 

cause and its possible effect. Here we use three carefully designed conventional analyses to 

evaluate one of the CICT suggested novel causal hypothesis. We investigated controversial 

relationship between allergic asthma (ICD9CM: 493.0) and emphysema(ICD9CM: 492) and 

malignancies using CICT. CICT predicts that emphysema could cause lung cancer, a fact that has 

been established with multiple studies (39) (40). Additionally, CICT predicts that asthma could 

cause  ‘benign neoplasm of the pituitary gland and craniopharyngeal duct’ (ICD9CM: 227.3, 

N=6232, male =39.2%, age~=54.5). We evaluated this new hypothesis using epidemiological 

methods of causal inference in observational data. Accordingly, we used our data to define a 

population study of 9,398,589 patients 18 years and older and considered patients exposed to 

allergic asthma as the case group. To minimize the effects of confounding and obtaining an 

unbiased estimate of odds ratios, we matched the control group with the exposed patients using 

coarsened exact matching (CEM)(41, 42). The imbalance of case and control group dropped 

significantly judging by multivariate L1 metric (43) from 0.31 to 0.09. The association between 

asthma and cancers was estimated using the Cochran- Mantel-Haenszel (CMH) (44, 45)  common 

odds ratio (CMH OR: 2.43, CI: 1.9-3.11) over the whole cohort. Odds ratio analysis suggest a 

strong association between the presence of the two conditions. To establish the direction of time 

and to measure the add risk, we created a cohort of all patients who developed the specific 

neoplasm and compared the group differences between cases exposed to allergic asthma and those 

who were not exposed. The direction of time arrow was evaluated using Non-parametric maximum 

likelihood estimator (NPLME) and parametric multivariate Cox proportional hazards (CPH) 

models. NPMLE chart shown in Figure 3 shows that the exposed group develop benign neoplasm 

of pituitary glands some seven years earlier than the unexposed group judging by 50% disease free 

on the curve of the survival function. The multivariate CPH model, adjusted for smoking, gender, 

and age also confirms that exposure to allergic asthma increases the risk of ‘benign neoplasm of 

the pituitary gland and craniopharyngeal duct’ with a hazard ratio equal to 1.71 (p <0.01).  

In summary, the evaluation of the effect size and direction of influence confirms CICT results. In 

addition to extensive evaluation of the machine learning methods using a set of ground truth 

through three set of independent evaluations we used standard epidemiological reasoning methods 

to evaluate results of CICT (46-48). 
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Figure 3. Nonparametric maximum likelihood estimation (NPMLE) function confirms CICT hypothesis and shows 

that patients with allergic asthma develop benign neoplasms of pituitary gland and craniopharyngeal duct years 

before those without exposure to allergic asthma.  

 

Synthetic predictors of causal relations 

Here, we evaluate model variables to understand which of the over 300 computed features are 

important predictors able to discriminate a causal relation from a random one. We used the model 

in Experiment I and calculated relative importance (RI)(49) of variables on random forests to rank 

predictors. Then we kept the top 8 predictors of the model with relative importance between 1.0 

and 0.043 (figure 3 A). Figure 3 B represents histogram and density graphs of the top predictors 

in log scale and shows that the distributions of predictors for causal and random transitions are the 

result of two different generative processes. We evaluated the significance of differences by non-

parametric two-sample Kolmogorov-Smirnov test (p-value for top 6 predictors tends to zero, for 

intvl_median p < 0.001 ).  

The most important predictor was MADN_CNFSO (Fig 4), which measures the median absolute 

deviation of normalized confidences of outputs from the source.  The median of the distribution 

of MADN_CNFSO for the source of causal edges (dashed red line) is three orders of magnitude 

larger than that of random edges (dashed blue line). In simple terms, this suggests that after 

adjusting for target probabilities, the probability of a target conditioned on the source is higher for 

causal relations, which is intuitive. The interesting observation is that without adjusting confidence 

= P(target | source) for the frequency of a target, a pure conditional probability is insignificant 
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among the predictors with relative importance (RI) <0.001 and cannot differentiate signal from 

noise.  This observation characterizes the emitting behavior of the source in a causal relation. 

The second predictor is M_CNTSO, which measures the median of contributions of the target to 

other nodes. We defined contribution as the probability of being previously in a specific primary 

state once we are in a second state. For example, knowing that a patient has pneumonia, what is 

the probability that he had influenza beforehand? Judging the distribution of M_CNTSO by their 

medians (vertical dashed red and blue lines), it is one order of magnitude lower for targets of causal 

transitions comparing to random transitions. This difference means that effects (targets of a causal 

transition) usually have a lower rate of contribution to a broader range of others comparing to 

targets of random transitions. A plausible interpretation is that effects do not contribute 

significantly to specific others, so transitions from them to other events tend to be random. This 

observation characterizes the influence of the effects of causal transitions, on their following 

transitions. 

The third predictor MADN_CNFS, which measures the median absolute deviation of the 

normalized contribution of nodes into the target, is significantly higher for causal transitions. This 

higher contribution means that after adjusting for the source prevalence, on average the influence 

of inputs into an effect (the target of causal transitions) is higher than in random transitions. This 

observation characterizes the receiving behavior of the effect in a causal relation. 

The fourth predictor is LM_CNFOS, is the L-mean of confidences of transitions from target to 

other nodes. The median of the distribution of LM_CNFOS is lower for random relations than for 

causal relations. This lower median, suggests that a ‘random target’ on average transits to more 

conditions at lower rates compared to an ‘effect target’, which transmits to a lower number of 

conditions each with higher confidence. The width of distribution demonstrates that ‘effect nodes’ 

show a wide range of transition behaviors. One interpretation is that some of the effects act as 

sinks or modulators that put patients on common subsequent care pathways. This observation 

characterizes the emitting behavior of the effects of causal transitions. 

Interestingly, we can see that causal transitions have a more extensive range of time intervals 

compared to random transitions judging based on intvl_median which is the distribution of 

medians of time intervals for each transition edge. The distribution shows that causal transition 

may happen as soon as one day or as late as 1700 days with a median of 67.5 days. However, 

random transitions are occurring mostly after ten days with a median of approximately 150 days. 

The graph of intvl_median shows that the median of intervals for causal transitions is higher than 

the median of intervals of random transitions. 

Another interesting finding is that 6 of the eight most significant predictors are related to node 

receiving-emitting compositions and just two low-rank predictors ‘SZ_CNFCNT’,(RI = 0.18) and 

intvl_median(RI= 0.08) are features of the specific edge. A plausible intuitive interpretation could 

be that some phenomena are by their very nature causal events and some are effects regardless of 

any other circumstances. Also, it is noteworthy that none of the features that we created to measure 

the asymmetry of bidirectional transitions showed up as significant predictors of causality.  
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Accordingly, the most crucial factor in determining whether a specific transition is causal or 

random is the nature of source and target of the transitions.  

Evidently, a supervised method can gain a considerable amount of knowledge about the causal 

nature of each phenomenon from the composition of its previous (input or receiving ) and 

subsequent (output or emitting) events. Also, it is the nature of source and target that mostly 

specifies the type of transition between them. We can conclude that to understand whether a 

specific transition is causal or random depends on a higher order or meta-structure of inputs and 

outputs to source and target. These results suggest three noteworthy findings: (1) standard Markov 

chains contain implicit hidden structure that is richer in information than was previously known; 

(2)  the fact that some of the essential predictors are rates of emissions of other nodes into source 

of an edge (e.g., MADN_CNFSO), or influences of target into other nodes(e.g., M_CNTSO); 

suggests that a higher level or meta-structure exist in  Markov chain data. This finding, which is 

also reported in another recent study on Markov Chain data, deserves further evaluation as it 

continues to exist despite the fundamental rule of formation of Markov Chains as a memoryless 

stochastic process; and (3) analysis of the composition of input and outputs can produce true causal 

hypotheses at  scale, using real life, uncontrolled and noisy data. 

 

CICT Time and space complexity 

CICT has a space-time complexity follows the space-time complexity of the specific unsupervised 

or supervised method used for machine learning. For example for random forests, it is O(e* loge) 

for training on a subset of edges ‘e’ which is usually a small subset of the whole edge sets and 

O(E) for prediction over the set of all edges E.  
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 Variable 

scaled 

importance 
Description 

1 MADN_CNFSO 1.000 Median absolute deviation of normalized confidences emitted from target 

2 M_CNTSO 0.977 Median of contributions of source into other nodes 

3 MADN_CNFS 0.402 Median absolute deviation of normalized confidence of other nodes into source 

4 LM_CNFOS 0.367 L-Mean of confidences emitted from source to other nodes 

5 SDP_ST 0.272 Standard deviation of power of all inputs into the target of a transition 

6 SZ_CNFCNT 0.184 Sum of Z-score of confidence and contribution of edge 

8 K_CNTOS 0.090 Kurtosis of others contribution into the source of a transition 

9 intvl_median 0.086 Median of time intervals of observed transitions between source and target 
 

 

B) 
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Discussion 

 

In the literature for causal inference, it is traditionally thought that short-term data cannot provide 

enough information to infer a causal relation(50) and that almost all data-driven causality inference 

methods need time-series data of sufficient length (usually more than 25 points).  

 

Here, We introduced causal inference using composition of transitions (CICT) as a novel and 

general analytic method for efficiently producing accurate causal hypotheses and for top-down 

network inference in Markov chain networks. We show that causal and random events, are results 

of different generative processes and we use the discriminating characteristics of them for 

phenotyping causal and random associations. MC network is frequent in many real-world 

scenarios in different disciplines where only short-term one-step transition data exist. These 

complex scenarios frequently happen, such as in econometrics or high throughput biological 

data(51), as well as in physics, web page ranking, molecular and higher order phenotypes, and 

epidemiology(23). Network inference in MC data is considered as a hard and computationally 

expensive problem due to the exponential increase of candidate networks given the number of 

nodes. In such scenarios, CICT can reveal the underlying system or dependency structure 

efficiently and make further analysis tractable. 

 

 

Most of the causal inference methods are built around certain simplifying assumptions that are 

problematic for real-world data, especially in complex and interconnected domains. For example, 

the common modeling assumption that the data would follow a Gaussian or Poison distribution. 

Similarly, constraints on the internal structure of data such as the existence of time series data with 

sufficient length or consistent sequence of cause and effect. The third group, are suppositions about 

the underlying causal structure such as being acyclic or non-recursive as in Bayesian networks or 

separable cause and effect in Granger method. Being free from these three groups of constraints 

CICT can be applied in a range of contexts, for various objectives and in combination with existing 

causal inference methods.  Methods that make minimal assumptions about data structure and 

causal structure, such as CICT, can help to identify useful causal relations using real-world 

observational data in an expedient, non-resource intensive manner. 

 

The idea of using compositions of inputs/outputs in CICT introduces a rich set of features and 

reveals some previously unknown facets of causality. The distributional facets of causality 

continue to persist even when preconditioning, such as cohort definition,  filters the observations 

or the labeling of events changes, as long as the process is consistent and reflective of real 

phenomena. Another significant finding is that the asymmetry of the back, and forth transitions 

between two events are insignificant comparing to distributional features. The lower importance 

of transition asymmetry has implications for developing directed network inference models. Also, 

relying on distributional features makes CICT applicable to relevance network structures where a 

concept of time does not exist. In RN the identifiable zones around each event shrinks to two zones.  

Moreover, we suggest that CICT is resilient against adding or dropping parts of information as it 

extracts features from stable measures of distributions like median absolute deviation(26, 27) and 

L-moments(29, 52). Such quality keeps CICT robust in the presence of unmeasured factors and 

noise. CICT remains stable with a randomly selected sample of data to further reduce computation 

in massive datasets. The robustness, simplicity, generalizability and low time-space complexity of 
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CICT let it be used solely or in combination with other methods for the analysis of large and dense 

graph data across disciplines. 

 

From a healthcare research point of view, to the best of our knowledge, this study is the first to 

describe methods to drive broad causal hypothesis generation using administrative data which has 

previously been considered unfit for causal inference due to low clinical content and coding errors. 

Another significance of CICT is the departure from the conventional experimental or observational 

study design paradigm for identifying and measuring correlations and causal relations in 

healthcare. In their seminal paper “Causation and causal inference in epidemiology” K. J. Rothman 

et al. state, “Philosophers agree that causal propositions cannot be proved, and find flaws or 

practical limitations in all philosophies of causal inference. Hence, the role of logic, belief, and 

observation in evaluating causal propositions is not settled. Causal inference in epidemiology is 

better viewed as an exercise in the measurement of an effect rather than as a criterion-guided 

process for deciding whether an effect is present or not”(53). Despite their limitations, 

observational studies are often the only way to address many important causal questions(54). Thus, 

observational studies are a necessary part of our causal toolbox. Here we show how observational 

data provides the simple transition rates between clinical conditions and carry valuable information 

to reveal causal relations even without using contextual information such as age, gender, race or 

clinical factors. 

 

 

The possibility of identifying causal networks from their compositional behavior reveals new 

facets of causality and serves as an additional tool for system identification in readily available 

and low-cost Markov Chain data. The use of novel emergent properties of network data for causal 

inference expands our understanding of causality.  
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Figure Legend Databases. Healthcare Cost and Utilization Project 

 

Figure 1: General concepts and data used for CICT method 

(A) Descriptive statistics on the data.  (B) A set of transitions for four hypothetical patients. For 

example, the first patient is hospitalized with a principal diagnosis of condition X, and after a 

period is rehospitalized with condition Y and so forth. If we start merging similar transitions, the 

result would be the transition graph shown in (C) Different types of transitions on a network. X 

is a common cause of Y and Z where Y is an early effect and Z is a late effect. X and W showed 

an association without an observable causal relation. Numbers represent hypothetical 

frequencies. (D) 4 zones that carry different distributional information. It is important to note that 

the four areas are not overlapping and contain different information. Here i represents source and 

j represent destination. (E)  The log-scale density graph shows the different distributions in four 

distribution zones for a cause: Rheumatoid Arthritis(red), an effect: Syncope (yellow) and a 

random event: Pneumonia (blue). (F) The eight distribution zones that are identified above carry 

information relevant to the nature of the transition between source and destination. Zones 1,3,5,7 

capture distribution of the parameters that are derived from Confidence calculation. Zones 

2,4,6,8 capture distribution of the parameters that are derived from Contribution calculation. 

 

Figure 2: Evaluation results of Experiments using CICT 

Left Column: CICT shows high accuracy in discriminating random transitions from 

associations. (A) ROC curve. (B) Calibration plot. (C) Discrimination box plot (D) Two clusters 

as identified by Partitioning Around Medoids along with the real class of data points.  Right 

Column: CICT performs well in identifying direction of association: (E) ROC curve. (F) 

Calibration plot. (G) Discrimination box plot (H) Partitioning Around Medoids 

 

Figure 3: Top 8 important predictors of causal transitions 

  

 

 


