Inferelator Pipeline

TODO: Clean up language

TODO: Add “putting it all together” section for how these algorithms are combined

TODO: Add “When to use” section

TODO: Latex equations

TODO: Finish up last section of tlCLR
TODO: Go over Inferelator’s ODEs and intuitions  

What it does:


The Inferelator Pipeline is a network inference algorithm that incorporates not only time series data, but steady state data as well.  In this case, the steady state data consists of both knock-out (where a single gene is removed) and wild-type (control) expression data.  The Inferelator Pipeline consists of three algorithms: Median Corrected Z-Scores (MCZ), Time-Lagged Context Likelihood of Relatedness (tlCLR), and Inferelator 1.0.  Each algorithm creates its own scored estimate of the network topology, and a heuristic is used to combine the scores to create a consensus model for the topology.

Median Corrected Z-Scores


Median Correct Z-Scores are used in the Inferelator Pipeline to estimate the topology of the network.  In this segment of the pipeline, wild-type (Xwt) and knock-out 
(Xko)steady state data are used. Wild-type data as an estimate of the population will generally be noisy, because the number of observations available in an experiment is typically much too small to obtain an accurate representation of an entire population.  In order to account for this, the median of the set of wild-type observations for each gene is taken and used as the wild-type value.


Once we have the median wild-type values, we can calculate a z-score for each pair (wild type vs. each mutant) for each knock-out experiment.  The motivation for calculating the z-scores is that we want a measure of the difference between the wild-type value for a gene and that gene in each knock-out experiment.  The farther away the wild-type expression of gene g1 is from the expression value of g1 with gene g2 knocked out, the more important g2 should be in controlling g1’s expression.
Formally, 
for each observation of gene i with gene j knocked out, calculate the z-score:


** z(x_i,x_j) = (x^ko_ij - x^wt_i) / sigma_i ** latex this
where sigma_i is the standard deviation of xi over all of the wild-type and knock-out observations.  Matrix Zmcz is an NxN matrix containing the z-scores:


Zmcz = ** latex this, N x N matrix of zmcz scores**

These z-scores can be used to reconstruct the regulatory network by treating each zmczi,j as a confidence measure of the regulatory interaction xj→xi.  We can also use these confidence measures to obtain a ranking of the most likely regulatory interactions for use later in the pipeline.


For MCZ to be most effective, you need wild-type expression data for each gene and expression data for each gene for every possible knock-out.  If only a subset of the genes are knocked out, then you will obtain these relationships only from the genes in that subset. Further, this approach may lead to false negatives. For example, if in the wild type condition that you try, gene g1 is down-regulated and g1 induces g2, the relationship between g1 and g2 will not be discovered through the g1 knockout. 
Time-Lagged Context Likelihood of Relatedness


The next segment of the pipeline, Time-Lagged Context Likelihood of Relatedness (tlCLR), is based on an algorithm by Faith, et al. called Context Likelihood or Relatedness (CLR).  This algorithm calculates a statistic called Mutual Information (MI), that is similar to a correlation statistic in that it grows as the relationship between signals becomes stronger, and shrinks as the relationship decreases.  However, it differs from correlation in that it does not assume a linear relationship between signals nor does it assume continuity.  Mutual information is calculated by subtracting the joint entropy of their signals (in this case the measurements of the two genes) from the sum of entropies (of each gene by itself).  Intuitively, the entropy of a measurement is how much information one learns from the measurement. So the entropy of your weight in the morning when calculated to the nearest 10 pounds is quite low because you can predict your weight from yesterday’s weight. Similarly, if two genes g1 and g2 rise and fall together, then if you know the value of gene g1, you have a good sense of the value of gene g2 and vice versa. That would say their mutual information is high. The “joint entropy” is the information you get from knowing the two measurements and the single entropy of each gene is the information from knowing the measurement of just that one gene in isolation.
** Equation 3 from DREAM4 paper, showing the equation for MI **

In the case of the Inferelator Pipeline, the two signals whose mutual information we are interested in are the expression of a transcription factor (TF) and its target.  We use MI as a measure of similarity between the expression levels of pairs of genes.  Gene pairs that have a higher MI value are more likely to have a regulatory interaction between them.


In previous MI algorithms, such as CLR, the inferred gene interactions were undirected.  This presents a problem when inferring regulatory networks, as many of the interactions in the network are directed, that is, gene g1’s expression level affects gene g2’s expression level, but not vice versa.  To account for this, tlCLR uses temporal information to infer the direction of the interaction by defining what is called “dynamic-MI”.  We’ll now refer to our previous definition of MI as “static-MI”. Dynamic-MI is calculated for each time series dataset provided.


You can think of dynamic-MI as an extension to static-MI’s description above.  Say that, instead of just weighing one person each morning, we weighed ten people, and we measured them once each month for 6 months.  As above, we can calculate the static-MI between each pair of people at each month.  For example, if person 1 and person 2 tend to lose and gain weight together, we may infer some sort of relationship between them.  The problem is, is that this inference can be erroneous.  We don’t know if person 1 and person 2 just happened to both lose weight and gain weight at the same time steps, or perhaps they were actually on the same diet, so their weight should be fluctuating together.  The static-MI also doesn’t tell us, if there is an interaction, whether person 1 is influencing person 2’s weight, person 2 is influencing person 1’s weight, or if there is another force at play.  The tlCLR algorithm does not completely eliminate these problems, but dynamic-MI is a step taken to reduce it.

In order to calculate dynamic-MI, we need a measure of the change between observations at time points.  Luckily, the ODE used in the Inferelator 1.0 algorithm, described below, can be adapted to give us exactly this.  The Inferelator Pipeline algorithm assumes that the changes in expression over time for each gene can be approximated with the linear ODE:


** DREAM4 equation 4 **

In the above equation, αi is the degradation rate of gene x​i and β is a matrix that contains the dynamical parameters that are to be estimated.  Gene xj is the gene that we are examining as being a potential regulator of gene xi.  So the change over time of gene xi is estimated by the sum of the dynamical parameters times the expression value of each xj.  These dynamical parameters can be thought of as a weight representing the influence of gene xj on gene xi.  It should also be noted that β ends up being very sparse, that is, many of the entries are 0.

What we are most interested in for the calculation of dynamic-MI is the above equation rewritten using a finite difference approximation:


** Equation 5 from DREAM4 **

This equation allows us to break apart the explanatory variables (our expression values, which is denoted by x) from the response variables (the change of our expression value over time according to the above equation).  The new symbol, τi, is simply ( 1 / αi ).  We then take the left hand side of the above equation and use it to calculate the response variable yi at time tk for each gene xi.

** Equation 6 from DREAM4 **
We also can look farther than one time point into the future using the above equation.  We can do this using the m variable.  This is paired with the xj(tk) variable from the right hand side of the equation, which is our explanatory variable.  What this is saying is that the response yi at time tk+m of gene xi at time tk+m is calculated by the above equation.  We then pair that number with each xj at time tk.  Using this pairing, we calculate the mutual information between xj(tk) and yi(tk+m) using equation ###, above.

To illustrate this, we can expand upon our weighing scenario above.  So say that there are 100 people in a study, and some have interactions with each other.  These interactions can be that person 1 begins an exercise regiment for a couple months and then talks person 2 into joining him or her.  Or perhaps person 3 starts a diet on month 1, and then on month 2 tells persons 2 and 1 that they should go on it as well.  We don’t know what these interactions are, but we want to try to predict who is interacting with whom and if there is a direction to the interaction.  Each person in the study is weighed once per month for 12 months.  Now, using the static-MI, we can see that person 1 and person 2’s weights seem to rise and fall together. So these two may interact and they should be looked at more closely (which is done in the Inferelator 1.0 algorithm).  However, this would miss the case where person 1 goes on a diet, and then tells person 2 to go on that same diet the next month.  Their weights would be fluctuating together (accepting for the moment that diets would affect everyone the same way), but they would be offset by a time point.  Thus, their static-MI would be low. If we used dynamic-MI, we would find that the dynamic-MI between person 1 and person 2 is high when m = 1, that is, when we are looking one time point ahead.  This suggests that person 1 has some sort of influence on person 2, rather than the other way around.  An important note here is that unlike static-MI, this result is not symmetrical.  There would normally be a low dynamic-MI between person 2 and person 1 when m  = 1 because person 2’s current weight does not give much information about person 1’s weight at the next time point.

We want to calculate the static and dynamic-MI for each yi(tk+m) for some m for each gene.  That is, we want to look only at the m time points following the current time point.  So, for each pair xj(tk) and yi(tk+m), we want to calculate the static and dynamic-MI.  On the DREAM4 data, Greenfield, et al. (2010) found that m > 2 did not yield any new information.  That means that the expression value at the current time did not carry much information about the time point three or more time-steps ahead.  It’s like a 15 day ahead weather forecast.

This method also calculates static and dynamic-MI from steady-state data.  In steady-state data, the derivative in ###, ** derivative from ODE formulation here ** is equal to 0.  When the derivative is equal to 0, the response variable yk(l)’s value is just set to xi(l).  We can then pair this with each corresponding explanatory variable xj(l) and calculate the static and dynamic-MI for each of these pairs. YOU SHOULD EXPLAIN HOW DYNAMIC-MI WOULD BE DONE WHEN THERE IS ONLY ONE TIME POINT.

So now we have two large matrices, one that contains the dynamic-MI values, Mdyn, and one that contains the static-MI values, Mstat.  We want to use these matrices to create confidence scores so we can rank the likelihood of each interaction, as we did in MCZ.  To do that, we need to make a “background correction” by turning our M matrices into Z-scores.  To do that, we have to calculate two different Z-scores, ones for the interactions between entries in Mdyn, and one for the interactions between Mstat and Mdyn.


** Add explanations of equations 11 and 12 in DREAM4 paper **
You need to give the intuition at least, especially because this is very closely related to what Piotr does, so you will be going full circle. Actually, you seem to do that when you discuss Lars.

Once dynamic-MI and static-MI are calculated for each gene pair, a background correction is made.  First, a Z-score for the regulation between between xi and xj is calculated using the dynamic-MI:

** Equation 11 from DREAM4 paper, dynamic-MI z-score calculation **

We then calculate the Z-score for the regulation between xj and xi using both the static-MI and dynamic-MI:

** Equation 12 from DREAM4 paper, static/dynamic-MI z-score calculation **

These values are combined into a final Z-score:

** z^tlCLR_i,j = sqrt(z^2_1 + z^2_2) **

This combined Z-score matrix, like the Z-score matrix from MCZ, can be used to calculate a network topology with ranked edges.  We’ll be able to use these ranked edges in the Inferelator inference algorithm and in the pipeline post-processing.

Inferelator
The Inferelator algorithm is the workhorse of the Inferelator Pipeline.  It is an ODE based inference algorithm that learns a sparse dynamical model for each gene as a function of a list of P potential regulators, where P is a parameter that the maximum amount of potential regulators Inferelator should consider.  This list of potential regulators for each gene is generally obtained from the Z-score matrix of MCZ or tlCLR.  However, any method that generates a ranking of regulators per gene may be used.  Inferelator then takes the top P most likely regulators from the list, and builds a sparse dynamical model for that gene.  It should be noted that if there are not enough regulators in the list to satisfy P, Inferelator will use as many as possible.

Inferelator uses Least Angle Regression (LARS) to implement an l1 constraint on the matrix of dynamical parameters, B.  This is done to enforce sparsity in B.  For more information on LARS, please read section XX.

TODO: Add a bit more information about the intuition behind the Inferelator 1.0 step

Putting it all together


TODO:

· Pipelines

· Heuristic for combining MCZ, tlCLR, and Inf Z-scores

�I figured that I would need to explain all of the terminology in some forward section, however, I think that it would be good to refresh the reader.  I’ve added this to the intro paragraph above


�Yeah, I think I read part of their paper incorrectly.  You’re right, full data is not required, MCZ just loses power if you don’t have them.





