Sweeping Incremental Algorithm for Matrix Profile (SIAMP)

Reza Akbarinia

Problem Definition

Let

- A and B : times series of size n
- m: size of sequences
- A_m[i] or B_m[i]: sequence of size m starting at position i in A (or B)
- $D_{i,j}$: Square of Euclidean distance between $A_m[i]$ and $B_m[j]$

Goal:

- Compute J_{AB} : such that $J_{AB}[i]$ returns the position of the nearest sequence of B to $A_m[i]$

Sweeping Incremental Algorithm for Matrix Profile (SIAMP)

- Main idea: compute the sequence distances incrementally
 - Each distance: in O(1) instead of O(m)
 - Thus, an amortized complexity of O(n) to find the nearest sequence of $A_{\rm m}[i]$
- For this, we sweep the two time series in n-m steps
 - In each step, the distances are incrementally computed, and minimum distances updated
 - In step k, we compute the distance of $A_m[i]$ and $B_m[i+k]$
 - i.e., sequences of A and B that have a difference of k in their initial positions

Algorithm

- For i=0 to n-1 Min_D[i] := ∞ //initialize minimum distances
- For k=0 to n-m //sweep A and B in n-m steps
 - Compute $D_{0,k}$ using Euclidean function
 - For i=1 to n k 1
 - Incrementally compute $D_{i, i+k}$ using $D_{i-1, i+k-1}$ // O(1)
 - If $(Min_D[i] > D_{i, i+k})$ then
 - Min_D[i] := $D_{i, i+k}$
 - $J_{AB}[i] := i+k$

Incremental Distance computation

- $D_{i,j}$: Square of Euclidean distance between $A_m[i]$ and $B_m[j]$
- A_m[i] : <a_i, ..., a_{i+m}>
- B_m[j] : <b_j, ..., b_{j+m}>
- $D_{i,j} = \sum (a_i b_j)^2$ for $1 \le i \le m$
- $D_{i-1,j-1} = \sum (a_{i-1} b_{j-1})^2$ for $1 \le i \le m$

Thus, we have

•
$$D_{i,j} = D_{i-1,j-1} - (a_{i-1} - b_{j-1})^2 + (a_{i+m} - b_{j+m})^2$$

Analysis of SIAMP

- An exact algorithm for computing the matrix profile
- Time complexity: O(n²)
- Space complexity: O(n)
- Simpler and faster than Keogh et al. algorithm whose complexity is O(n² log n)
 - No need to Fourier transformations
 - No need to compute the mean and standard deviation of each sequence
 - No need to