Sweeping Incremental Algorithm for Matrix Profile (SIAMP)

Reza Akbarinia

Problem Definition

- Let
- A and B : times series of size n
- m: size of sequences
- $A_{m}[i]$ or $B_{m}[i]$: sequence of size m starting at position i in A (or B)
- $D_{i, j}$: Square of Euclidean distance between $A_{m}[i]$ and $B_{m}[j]$

Goal:

- Compute $J_{A B}$: such that $J_{A B}[i]$ returns the position of the nearest sequence of B to $A_{m}[i]$

Sweeping Incremental Algorithm for Matrix Profile (SIAMP)

- Main idea: compute the sequence distances incrementally
- Each distance: in $O(1)$ instead of $O(m)$
- Thus, an amortized complexity of $O(n)$ to find the nearest sequence of $A_{m}[i]$
- For this, we sweep the two time series in n-m steps
- In each step, the distances are incrementally computed, and minimum distances updated
- In step k, we compute the distance of $A_{m}[i]$ and $B_{m}[i+k]$
- i.e., sequences of A and B that have a difference of k in their initial positions

Algorithm

- For $\mathrm{i}=0$ to $\mathrm{n}-1$ Min_D[i] := ∞ //initialize minimum distances
- For k=0 to n-m //sweep A and B in n-m steps
- Compute $D_{0, k}$ using Euclidean function
- For $\mathrm{i}=1$ to n - k - 1
- Incrementally compute $D_{i, i+k}$ using $D_{i-1, i+k-1} / / O(1)$
- If $\left(\right.$ Min_D $\left.[i]>D_{i, i+k}\right)$ then
- Min_D[i] := $\mathrm{D}_{\mathrm{i}, \mathrm{i}+\mathrm{k}}$
$-\mathrm{J}_{\mathrm{AB}}[\mathrm{i}]:=\mathrm{i}+\mathrm{K}$

Incremental Distance computation

- $D_{i, j}$: Square of Euclidean distance between $A_{m}[i]$ and $B_{m}[j]$
- $A_{m}[i]:<a_{i}, \ldots, a_{i+m}>$
- $\mathrm{B}_{\mathrm{m}}[\mathrm{j}]:<\mathrm{b}_{\mathrm{j}}, \ldots, \mathrm{b}_{\mathrm{j}+\mathrm{m}}>$
- $D_{i, j}=\sum\left(a_{i}-b_{j}\right)^{2} \quad$ for $1 \leq i \leq m$
- $D_{i-1, j-1}=\sum\left(a_{i-1}-b_{j-1}\right)^{2}$ for $1 \leq i \leq m$

Thus, we have

- $D_{i, j}=D_{i-1, j-1}-\left(a_{i-1}-b_{j-1}\right)^{2}+\left(a_{i+m}-b_{j+m}\right)^{2}$

Analysis of SIAMP

- An exact algorithm for computing the matrix profile
- Time complexity: O(n²)
- Space complexity: O(n)
- Simpler and faster than Keogh et al. algorithm whose complexity is $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
- No need to Fourier transformations
- No need to compute the mean and standard deviation of each sequence
- No need to

