A definition for an incremental mean can be written

$$
\mu_{i}=\mu_{i-1}+\frac{x_{i}-\mu_{i-1}}{i}, \quad i \in[1, n], \quad \mu_{0}=0 .
$$

Can you provide an elegant proof of the following definition for the incremental sum of the squared differences from the mean?

$$
\sum_{i=1}^{n}\left(x_{i}-\mu_{n}\right)^{2}=\sum_{i=1}^{n-1}\left(x_{i}-\mu_{n-1}\right)^{2}+\left(x_{n}-\mu_{n-1}\right)^{2} \frac{n-1}{n}
$$

This algorithm has superior numerical stability compared to the more traditional algorithms, see http://en.wikipedia.org/wiki/Correlation.

