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Abstract

Huge DBMSs storing genomic information are being created and engineerized for doing large-
scale, comprehensive and in-depth analysis of human beings and their diseases. However, recent
regulations like the GDPR require that sensitive data are stored and elaborated thanks to privacy-by-
design methods and software.
We  designed  and  implemented  ER-index,  a  new  full-text  index  in  minute  space  which  was
optimized for compressing and encrypting collections of genomic sequences, and for performing on
them fast pattern-search queries. Our new index complements the E2FM-index, which was intro-
duced to compress and encrypt collections of nucleotide sequences without relying on a reference
sequence. When used on collections of highly similar sequences, the ER-index allows to obtain
compression ratios which are an order of magnitude smaller than those achieved with the E2FM
-index, but maintaining its very good search performance. Moreover, thanks to the ER-index multi-
user  and  multiple-keys  encryption  model,  a  single  index  can  store  the  sequences  related  to  a
population of individuals so that users may perform search operations only on the sequences to
which they were granted access. The ER-index C++ source code plus scripts and data to assess the
tool performance are available at: https://github.com/EncryptedIndexes/erindex.
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We  previously  designed  and  implemented  an  encrypted  full-text  index  in  minute  space   called  E2FM
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for  collections  of  genomic  sequences,  doi:  10.1093/bioinformatics/btx313),  optimized  for  compressing  and
encrypting nucleotide sequence collections, and for performing fast pattern-search queries on them.
In this work we have followed a complementary approach which assumes the knowledge of a reference sequence,
proposing an encrypted referential index for genomic databases, named ER-index. To build the index, our scheme
pre-processes the genomic sequence via Relative Lempel-Ziv factorisation and leverages Salsa20 to encrypt the
factorised  blocks.  In  order  to  enable  fast  pattern  search  over  the  reference  sequence,  we  designed  a  novel
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A new  encrypted referential index  for  genomic  databases,  named  ER-index,  which  can  store
collections of genomic sequences in less than 1/30 of their original space, and achieves very fast
pattern search times.

A multiple  keys  encryption  model  was built  in  ER-index,  so that  a  single index can  store the
sequences related to a population of individuals, and users may perform search operations only on
the sequences to which they were granted access.

A detaliled description of the data structures and algorithms composing ER-index, whose source
code is available at GitHub.

A comprehensive set of test to assess the performance w.r.t. the wavelet-tree FM-index, which show
that  ER-index  achieves  a  higher  compression  rate  than  the  reference  tool,  outperforming  it  in
pattern search in case of short sequences. 
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Abstract

Huge DBMSs storing genomic information are being created and engineerized
for doing large-scale, comprehensive and in-depth analysis of human beings and
their diseases. However, recent regulations like the GDPR require that sensi-
tive data are stored and elaborated thanks to privacy-by-design methods and
software.
We designed and implemented ER-index, a new full-text index in minute space
which was optimized for compressing and encrypting collections of genomic se-
quences, and for performing on them fast pattern-search queries. Our new
index complements the E2FM -index, which was introduced to compress and
encrypt collections of nucleotide sequences without relying on a reference se-
quence. When used on collections of highly similar sequences, the ER-index
allows to obtain compression ratios which are an order of magnitude smaller
than those achieved with the E2FM -index, but maintaining its very good search
performance. Moreover, thanks to the ER-index multi-user and multiple-keys
encryption model, a single index can store the sequences related to a population
of individuals so that users may perform search operations only on the sequences
to which they were granted access.
The ER-index C++ source code plus scripts and data to assess the tool perfor-
mance are available at: https://github.com/EncryptedIndexes/erindex.

1. Introduction

Predictive, preventive, precise and participatory medicine (P4 medicine, for
short) are new approaches underpinned by genome sequencing that will soon
be incorporated in our health systems. The advantages of these approaches
for human health and wellbeing can be very significant according to [19]: by
reshaping healthcare from reactive to proactive they indeed represent the main
answer to the progression of “silent” chronic diseases, which are the leading
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cause of death, disability and diminished quality of life in the developed world,
strongly impacting the economy of many countries.

However, such new approaches pose very big computational and security
challenges. Data management in genomics is considered a “four-headed beast”
due to the high computational costs concerning the lifecycle of a data set: ac-
quisition, storage, distribution and analysis. The total amount of sequenced
data doubles approximately every seven months, and [22] have calculated to
be about 1 zetta-bases acquisition per year and from 2 to 40 exa-bytes of data
storage per year the projected computational needs in 2025.
On the other hand, the storage of such huge amount of data raises concerns
about privacy and security. Human genome projects were initially open ac-
cess, since it was believed that there was no risk of identification of partici-
pants or donors, but this approach was overturned after [9] realized that data
from individuals could be distinguished in Genome Wide Association Studies
(GWAS) just using summary statistics. In this respect, the most effective tools
for protecting data without compromising their usability are given by modern
cryptography, which offers algorithms and protocols for accessing and managing
data in much more complex use case scenarios than the classical two-party and
“plaintext-or-ciphertext” settings. Nonetheless, the choice of the cryptographic
algorithms and protocols and their implementation have to be taken seriously,
otherwise the resulting system could be inefficient, and/or not adequately pro-
tected by advanced attacks (e.g. ciphertext-chosen attacks, side-channel attacks
as defined in [14]) or emerging computing platforms (e.g. quantum computers).

1.1. Related work

[15] introduced the E2FM -index, a full-text index in minute space which was
optimized for compressing and encrypting nucleotide sequence collections, and
for performing fast pattern-search queries on them, without the knowledge of a
reference sequence. The E2FM -index is particularly suitable for metagenomics
or de-novo discovery applications: it occupies about 1/20 of the storage required
by the input FASTA file, saving 95% of storage space, whereas the gap in pattern
search performance due to encryption has no practical significance, being of the
order of milliseconds in any case.

However, the E2FM -index is not suitable to compress genomic sequences
of multiple individuals given a reference sequence. Moreover, the E2FM -index
encryption model does not allow the use of multiple encryption keys for multiple
sequences within the same index. Thus, a new index must be created for each
new set of sequences whose access must be separately authorized. In turn, this
can result in searching for patterns in several indexes, potentially slowing down
search performance.

The E2FM -index first processes data thanks to the Burrows-Wheeler trans-
form (BWT) and the Move-to-front (MTF) transform, after which it compresses
them with the RLE0 algorithm. The BWT approach does not seem so appro-
priate for referential compression as dictionary-based methods, thus we have
adopted another compression strategy in the ER-index, based on LZ77 algo-
rithm.
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Lempel-Ziv methods are lossless, dictionary-based compression algorithms
which replace repetitions in a string by using references of their previous occur-
rences. There are many variants, all derived from the two algorithms introduced
by [25, 26] and named LZ77 and LZ78, respectively.

Most of the self-indexes inspired to the Lempel-Ziv parsing use LZ78, because
the LZ78 factorization of a text has some interesting properties which allow to
design efficient pattern search algorithms like that of [21]. LZ78 is faster but
more complex than LZ77, since it constructs a dictionary which tends to grow
and fill up during compression. Actually this happens all the time for big inputs
like in our application scenario, and the common methods to overcome such issue
(see [20]) do not permit to gain the most advantage from the high similarity of
genomic sequences.

The first self-index based on LZ77 was presented by [10]: it offers good
compression ratio and search performance, but its internal data structures were
not designed to explicitly handle a collection of data items. This index also
does not exploit the fundamental requisite of our application domain, that is
the compression of genomic sequences relative to a reference sequence.

The first attempt to compress a collection of individual genomes with respect
to a reference sequence was made by [3]. That work, like those of [12] and [13],
aimed to build data structures suitable to efficiently compress the collection,
while allowing fast random access to parts of it. Pattern search still remained
an open question.

The problem of efficiently searching for patterns in a such index was ad-
dressed and resolved later by [23], but some of the data structures used therein
do not allow the encryption of sequences related to different individuals with
distinct keys.

1.2. Paper contribution and organization

In the present work we introduce ER-index (Encrypted Referential index),
the first encrypted self-index based on referential Lempel-Ziv compression and
designed so that it can be the core of a multi-user database engine.

When used on collections of highly similar sequences, the ER-index allows to
obtain compression ratios which are an order of magnitude smaller than those of
E2FM -index, but maintaining its optimal search performance. Moreover, the
ER-index multi-user encryption model permits to store genomic sequences of
different individuals with distinct encryption keys within the same index. This
allows the index users to perform search operations only on the sequences to
which they were granted access.

The paper is organized as follows. Section 2 gives an overview of the main
features of ER-index, alongside with the computational methods and data struc-
tures which make possible such features. Sections 3 and 4 give details on its
core algorithms, pointing out some important differences of our approach with
respect to current computing techniques for genomic databases. Section 5 il-
lustrates how to construct a file-system based genomic database using the ER-
index, and section 6 reports and discusses the results of the tests we have run
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in order to assess the performance of our tool versus a state-of-the-art index,
the wavelet tree FM-index by [7]. Finally, Section 7 sums up the main features
of the ER-index and sketches out future work.

2. System and Methods

The ER-index is an open-source C++ tool designed to handle an encrypted
genomic database. It is a full-text index consisting substantially in two major
components:

• a set of relative Lempel-Ziv factorizations, one for each sequence of the
collection;

• a set of auxiliary data structures to support encryption and search oper-
ations.

Both the factorizations and the auxiliary data structures are designed to permit
efficient pattern searching, while allowing users to search only on sequences in
the database to which they were granted access.

In order to apply encryption with a small overhead in searching and compres-
sion performance, each factorization is splitted in a series of fixed-length blocks
of factors, so that each of them contains the same number of factors. Each
block is then processed indipendently, so to produce a compact representation
whose size depends on the compressibility of the information addressed by its
factors. Finally, the variable size blocks previously obtained are independently
encrypted from each other using the Salsa20 cipher of [2]. Salsa20 was one of
the ciphers selected as part of the eSTREAM portfolio of stream ciphers (see
[1]), and has been designed for high performance in software implementations
on Intel platforms. It produces a keystream of 270 bytes from a 256-bit key and
a 64-bit arbitrary nonce which is changed for each new run with the same key.
It subsequently encrypts a sequence of b bytes plaintext by XOR-ing it with the
first b bytes of the stream, discarding the rest of the stream.

A main point in protecting long-term, sensitive information – as that pro-
vided by genomic databanks – is to provide encryption methods which can
outstand advanced attacks and next generation computing paradigms and plat-
forms. As of 2019 there are no known attacks on Salsa20, and the 15-round
reduced version of this cipher was proven 128-bit secure against differential
cryptanalysis by [16]. Moreover, according to [8], it is resistant against side
channel attacks and the new emerging quantum computing platforms.

2.1. Relative Lempel-Ziv factorization

Let S be a finite string of symbols over a finite alphabet A. Lempel-Ziv
methods consist in rules for parsing S into a sequence of factors, so to replace
repetitions in S by using references of their previous occurrences. Factors con-
tain indeed references to a dictionary of substrings in S. The difference between
the LZ77, LZ78 and the relative Lempel-Ziv factorization is that both the LZ77
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and LZ78 build their dictionary “on the fly”, putting in it substrings encoun-
tered in S before the current scanning position, whilst the relative Lempel-Ziv
factorization obtains its compression by comparing the text to an already exist-
ing dictionary.

In the context of our application domain, S is a genomic sequence of an in-
dividual belonging to a given species for which a reference sequence R is known.
As it is well known in Genomics S is very similar to R, presenting only a few
number of mutations, deletions and insertions, often in a percentage not greater
than 1%. Thus using R to construct the dictionary rather than S can allow a
better compression of S: indeed, a given portion of S is more similar to the cor-
responding portion of the reference sequence than to a previously seen substring
of S. This is the basic idea of the so-called Referential Genome Compression,
which can be implemented thanks to Relative Lempel-Ziv factorization.

Definition 2.1. Relative Lempel-Ziv factorization Let S and R two finite
strings over the same finite alphabet A. The Relative Lempel-Ziv factorization
of S with respect to the reference R, denoted as LZ(S|R), is a sequence of n
factors

z0 · · · zn−1 .

Each factor zj (j = 0, . . . , n− 1) is a triple 〈pj , lj,mcj〉, where:

• pj is the position of the longest substring rj in R matching the current
substring sj in S

• lj is the length of rj ;

• mcj (a.k.a. mismatch character) is the last character in sj, so that sj =
rj ||mcj.

2.2. B+ trees

B Trees and their B+ variant ([24]) are dynamic balanced trees whose nodes
contain data values and their related search keys. They are often used for
databases and file system indexing due to the fast search operation they allow
to perform. The main difference between B and B+ trees is that the former
allows every node to contain data values, while in the latter these can be found
only in leaf nodes, with every other node containing only search keys.

Definition 2.2. B+ tree Let N be a positive integer. A B+ tree of order N
is a tree with the following properties:

• All leaf nodes are in the same level, i.e. the tree is balanced;

• Every non leaf node contains multiple search keys, stored in increasing
order, which act as separation values for its subtrees: the left sub-tree of
a key contains values lower than those of the father key, and the right
sub-tree contains the values greater than those of its father key;

• Every internal node contains at least N keys and at most 2N keys;
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• If the root node is not a leaf node, it has at least one key and at most 2N
keys.

B+ trees support efficient updates and exact match queries, which find the
values associated to a given key. They also permit to do efficiently an operation
known in literature as range query, which finds all the values related to keys in
the interval [l, r].

Tipically B Trees nodes are stored on secondary storage as fixed size disk
pages, whose size is a multiple of the hosting file system page size. In order to
increase the number of keys and pointers stored in each page, a compression
scheme can been applied which takes advantage of the fact that keys in a node
are very close each other. For the B+ trees implemented in the ER-index was
used the Invariable Coding method of [11], which for each node stores the first
key and the differences between any other key and the first one, using the
minimum number of bits required to express the difference of the last key from
the first key.

2.3. The ER-index

Let {S1, . . . , Sl} be a collection of sequences corresponding to l different
individuals. Let R and Rrev a reference sequence and its reverse. Let fi =
LZ(Si|R) be the relative LZ-factorization of sequence Si with respect to R.
Let BLi,1, . . . , BLi,bn(i) be the sequence of bs-length blocks factors gotten from
LZ(Si|R), where bn(i) denotes the obtained number of blocks and each block
contains exactly bs factors. Finally, let S20(plaintext, key, nonce) denote the
Salsa20 encryption of plaintext with a 256-bit secret key and a 64-bit nonce.

The ER-index stores each of the aforementioned blocks encrypted, using a
different secret key ki for each individual and the block number as nonce, so
that the encryption E(fi, ki) of factorization fi is given by:

E(fi, ki) = S20(BLi,1, ki, 1) · · ·S20(BLi,bn(i), ki, bn(i)).

In order to speed up search operations, we have designed the Encrypted
B+ tree (EB+ tree), an extended and encrypted variant of the B+ tree data
structure. Thanks to an EB+ tree each single factor of the encrypted collection
{E(fi, ki)} is associated to the right identifier i and encryption key ki.

Before performing encryption, we use Invariable Coding for both node search
keys and values, but in a different way than in [24]. Indeed, the authors of that
work applied compression to arrange more values into fixed-size node pages,
whereas we used it in order to obtain smaller variable length nodes, thus mini-
mizing the overall index size.

Definition 2.3. Encrypted Referential index An Encrypted Referential in-
dex (ER-index) for a collection of sequences {S1, . . . , Sl} with respect to a ref-
erence sequence R and a set of encryption keys {k1, . . . , kl} is a self-index con-
sisting of:
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• the encrypted relative Lempel-Ziv factorizations of sequences {S1, . . . , Sl}
with respect to R: {E(f1, k1), . . . , E(fl, kl)};

• a set of three EB+ trees whose search keys are respectively:

1. sai revj , a suffix array index corresponding to a Rrev suffix prefixing
the reverse of the jth factor referential part;

2. saij, a suffix array index corresponding to a R suffix prefixing the jth

factor referential part;

3. tpj, the position of the jth factor referential part in the reference
sequence R;

and whose values are the couples 〈i, v〉, where i identifies the sequence Si

and v is the Lempel-Ziv factor of the related genomic sequence, encrypted
with key ki.

3. Factorization algorithm

The factorization algorithm used to build the ER-index slightly differs from
that proposed by [12] and [23], as the ER-index uses a couple of FM-indexes to
represent the reference sequence R and its reverse Rrev. The jth factor is again
a triple 〈sai rev startj , lj,mcj〉 of numbers, but in the ER-index they have a
different meaning:

• sai rev startj is the Rrev suffix array index from which to start the back-
ward scan of Rrev in order to obtain the factor;

• lj is the length of the factor, comprehensive of the mismatch character;

• mcj is the mismatch character.

In order to speed-up pattern search, the algorithm retrieves also the three aux-
iliary data sai revj , saij and tpj stored as search keys in the corresponding
EB+ trees composing the ER-index (see Definition 2.3). The algorithm, whose
pseudo-code is given by Algorithm 1, uses four data structures related to the
reference sequence R:

• the FM-index FM of R;

• the FM-index FMrev of the sequence Rrev gotten by reversing R;

• a correspondence table R2F , which maps a suffix of Rrev to the R suffix
starting from the same character;

• the reverse correspondence table F2R, which maps a suffix of R to the
Rrev suffix starting from the same character.
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Given a sequence S, Algorithm 1 scans S from left to right and at each step it
tries to factorize the suffix Si by searching the maximum-length referential factor
starting from i. For this purpose it scans the BWT of Rrev through FMrev,
starting from S[i] and proceeding backward on Rrev until a mismatch is found.
This backward search gives as result the Rrev suffix array range containing the
suffixes prefixing the reverse of Sp; the algorithm choose the first among them,
as they are all equivalent for its purposes.

The further processing of the algorithm consists in retrieving the auxiliary
information related to the previously found factor. The getT extPosition and
backwardStep functions exactly match the canonical FM-index implementation,
so they are not reported as pseudo-codes.

Algorithm 1 Factorization algorithm

1: function Factorize(S,FMrev,FM ,R2F ,F2R)
2: j ← 0 ⊲ Current factor index
3: lmax ← 0; ⊲ Maximum factor length
4: len← length(S);
5: i← 0;
6: while i < len do

7: ⊲ Retrieve the next factor
8: nrc← S[i]; ⊲ Curr char, not remapped in the FM index
9: l← 1 ⊲ Curr length of the next factor ref part

10: if i < len− 1 AND isInRef(FMrev, nrc) then
11: lastNrc← nrc;
12: ⊲ Start a backward search on the rev ref index
13: c← remap(FMrev, nrc); ⊲ Remap curr char
14: sp← C(FMrev, c);
15: ep← C(FMrev, c+ 1)− 1;
16: backStepSuccess← true;
17: ⊲ Backward search stops when the ref part includes the last
18: ⊲ but one char of S OR the next char is not in the ref sequence
19: ⊲ OR the last backward step was not successful OR the
20: ⊲ next char is N and the last is not OR viceversa
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Algorithm 1 Factorization algorithm (continued)

21: while i+ l < len− 1 AND
isInRef(FMrev, nrc← S[i+ l]) AND
backStepSuccess AND
(lastNrc 6= N AND nrc 6= N OR
lastNrc = N AND nrc = N) do

22: c← remap(FMrev, nrc);
23: trySp← C(FMrev, c)+

Occ(FMrev, EOF shift(FMrev, sp− 1), c);
24: tryEp← C(FMrev, c)+

Occ(FMrev, EOF shift(FMrev, ep), c)− 1;
25: if trySp ≤ tryEp then

26: sp← trySp;
27: ep← tryEp;
28: l← l + 1;
29: backStepSuccess← true;
30: else

31: backStepSuccess← false;
32: end if

33: lastNrc← nrc;
34: end while

35: sai rev pref ← sp;
36: mc← S[i+ l]
37: ⊲ Find sai rev start, sai pref and tp, as follows:
38: ⊲ Find sai of R for sai rev pref of Rrev

39: sai = R2F (sai rev pref);
40: ⊲ Do l − 1 back steps on FM index to find sai pref
41: for i← 1 To l− 1 do

42: sai← backwardStep(FM, sai);
43: end for

44: sai pref ← sai;
45: ⊲ Find position tp of R for sai pref using
46: ⊲ FM index marked rows
47: tp = getT extPosition(FM, sai pref)
48: ⊲ Do one back step on FM index to find sai rev start
49: sai rev start← backwardStep(FM, sai pref);
50: ⊲ Store the retrieved factor in the factors array
51: factors[j]← 〈sai rev start, l,mc〉;
52: end if

53: i← i+ 1
54: end while

55: end function
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4. Pattern search algorithm

ER-index supports exact pattern matching through algorithm 2. Before
describing the algorithm details, it is appropriate to make some considerations.
A pattern search operation on a Lempel-Ziv factorization can retrieve two types
of occurrences:

• internal occurrences, which are completely contained in a factor’s referen-
tial part;

• external occurrences, also known in literature as overlapping occurrences,
which have at least a character outside of a factor’s referential part.

External occurrences can span two or more factors or end with a factor’s mis-
match character, and a solution to find them on LZ78 factorizations is proposed
in [18]. The search pattern is splitted in all possible ways and, for each split
point, the algorithm searches for the right side prefix and the reverse left side
prefix in two related trie data structures ([4]). This results in two sets, the
factors ending with the pattern’s left side and the factors starting with the pat-
tern’s right side, and the algorithm eventually joins these two sets in order to
obtain couples of consecutive factors. This approach can be applied also to
relative Lempel-Ziv factorizations, but in our case it would require two tries
for each individual, which is very expensive in term of disk space. Thus the
LocateExternalOccs function of Algorithm 2 follows a similar approach, but it
makes use of the following less expensive data structures:

• the FMrev and FM indexes of algorithm 1, in order to search for the
maximal prefix of the reversed left side in Rrev and for the maximal right
side prefix in R, respectively;

• a couple of EB+ trees to retrieve the factors ending with the maximal
prefix of the reversed left side and those starting with the maximal right
side suffix, respectively.

As for internal occurrences, the approach in [18] is based on the fact that
each LZ78 factor is the concatenation of a previous factor with an additional
character, which is not true for relative Lempel-Ziv factorizations.
Therefore function LocateInternalOccs of Algorithm 2 implements an original
approach which uses once again the FM index of the reference sequence R,
together with a third EB+ tree, named posT ree, whose search keys are the
starting positions of factors referential parts in R. This last EB+ tree allows to
retrieve the factors whose referential part starts in a given positions range of the
reference sequence. The LocateInternalOccs function also uses the auxiliary
information lmax, defined as the maximum length of all factors contained in the
ER-index, which is determined during the factorization process and is stored
into the index header.
Since an internal occurrence of the pattern is completely contained in the ref-
erence sequence, the first step implemented in LocateInternalOccs could have
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been to retrieve all the pattern’s occurrences in the reference sequence. How-
ever, we have first to check that an individual sequence factor containing the
reference sequence occurrence really exists, and then retrieve the occurrence
positions in the individual sequence previously found.

These issues have been addressed thanks to the following consideration. Let
us suppose that the suffix array interval [sp, ep] is the result of a pattern search
on the reference sequence. The position tp of each interval’s element in the
reference sequence can be retrieved using the related reference index marked
rows. Given a factor, let also l be the length of its referential part, tpf its start-
ing position in the reference sequence, and m the pattern length. A reference
occurrence located in tp is also an individual sequence occurrence if and only if:

{

tpf ≤ tp

tpf ≥ tp+m− l
(1)

The first condition is to make sure that a factor’s referential part does not start
after the first character of the reference occurrence, while the second that the
factor’s referential part does not end before the end of the reference occurrence.
If both the above tpf range bounds were fixed values, the referential part factors
could be retrieved by performing a range query on posT ree. The lower bound
actually is not a fixed value, since it depends from the length l of the referential
part of the factor, but we can consider the maximum length of all factors lmax ≥
l. Because of (1), the wrong values returned by a range query based on tp+m−
lmax ≤ tpf can indeed be filtered out by keeping only those factors complying
to tpf ≥ tp+m− l.

Algorithm 2 Pattern search algorithm

1: function Locate(pat)
2: extoccs← LocateExternalOccs(pat);
3: intoccs← LocateInternalOccs(pat);
4: occs = extoccs

⋃

intoccs;
5: ⊲ Sort each individual occurrence by position
6: Sort(occs);
7: ⊲ Remove any duplicates
8: RemoveDuplicates(occs);
9: ⊲ Find each occurrence text position from its factor identifier

10: ⊲ factorId and its factor offset FactorOffset
11: FindTextPositions(occs);
12: return occs;
13: end function

11



Algorithm 2 Pattern search algorithm (continued)

14: function LocateExternalOccs(pat)
15: occs = []
16: pl ← len(pat);
17: for sp← 0 to pl− 1 do

18: splitPointCharacter← pat[sp];
19: if splitPoint > pl/2 then

20: ⊲ The left side part (lsp) is longer than the right side part (rsp),
21: ⊲ so the factors expected to end with the lsp are less than those
22: ⊲ expected to start with the rsp
23: ls← substr(pat, 0, splitPoint);
24: [lsFacts, lsls]← FindLeftSideFactors(ls);
25: ⊲ Scan lsFacts through the individual identifiers indId
26: for indId in lsFacts do

27: ⊲ Get the factorization f from an associative array fs
28: ⊲ with all the individual factorizations
29: f ← fs[indId];
30: for factInd in GetIndRetrFactors(lsFacts, indId) do
31: fact← f [factInd];
32: ⊲ Exclude that the left side crosses the starting point
33: ⊲ of the current factor,since an occurrence of this type
34: ⊲ will be found for a preceding split point
35: if fact.len− 1 ≥ len(ls) then
36: if fact.letter = splitPointCharacter then

37: occ.factInd← factInd;
38: occ.factOff ← fact.len− 1− len(ls);
39: occ.endingFactInd← factInd;
40: occ.endingFactOff ← fact.len− 1;
41: lsvl← lsls; ⊲ Left side verified length
42: rsvl ← 0; ⊲ Right side verified length
43: if PatRemPart(f, pat, sp, lsvl, rsvl, occ) then
44: AddOccurrence(occ);
45: end if

46: end if

47: end if

48: end for

49: end for

50: else

51: ⊲ The right side part (rsp) is not shorter than the left side
52: ⊲ part (lsp), so the factors expectedto start with the rsp
53: ⊲ are less than those expected to end with the lsp
54: rs← substr(pat, splitPoint+ 1, pl− splitPoint− 1);
55: [rsFacts, rslp]← FindRightSideFactors(rs);
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Algorithm 2 Pattern search algorithm (continued)

56: for indId in rsFacts do

57: ⊲ Get the factorization f from an associative array fs
58: ⊲ with all the individual factorizations
59: f ← fs[indId];
60: for factInd in GetIndRetrFactors(rsFacts, indId) do
61: fact← f [factInd];
62: if rslp < fact.len− 1 then

63: rsvl ← rslp; ⊲ Right side verified length
64: else

65: rsvl ← fact.len− 1;
66: end if

67: if factInd > 0 then

68: lsFact← f [factInd− 1];
69: if lsFact.letter = splitPointCharacter then

70: occ.factInd← factInd− 1;
71: occ.factOff ← lsFact.len− 1;
72: occ.endingFactInd← factInd;
73: occ.endingFactOff ← rsvl − 1;
74: lsvl← 0; ⊲ Left side verified length
75: if PatRemPart(f, pat, sp, lsvl, rsvl, occ) then
76: AddOccurrence(occ);
77: end if

78: end if

79: end if

80: end for

81: end for

82: end if

83: end for

84: return occs;
85: end function

86: function LocateInternalOccs(pat)
87: occs = []
88: ⊲ An internal occurrence occurs certainly in the ref seq
89: if searchPatInRefIndex(FM, pat, sp, ep) then
90: for i← sp to ep do

91: m← len(pat);
92: tp← getPositionInReference(FM, i);
93: ⊲ lmax is the length of the maximum factor in the index
94: facts←

getFactorsInRange(posT ree, tp+m− lmax, tp);
95: for each distinct indId in facts do

96: ⊲ Retrieve the factorization f from an associative array fs
97: ⊲ containing all the individual factorizations
98: f ← fs[indId];
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Algorithm 2 Pattern search algorithm (continued)

99: for factInd in GetIndRetrFactors(facts, indId) do
100: fact← f [factInd];
101: tpf ← fact.refPartPositionInReference;
102: l ← fact.len− 1; ⊲ factor refential part length
103: if tpf ≥ tp+m− l then
104: occ.factInd← factInd;
105: occ.factOff ← tp− tpf ;
106: occ.endingFactInd← factInd;
107: occ.endingFactOff ←

occ.factOff +m− 1;
108: lsvl← 0; ⊲ Left side verified length
109: AddOccurrence(occ);
110: end if

111: end for

112: end for

113: end for

114: end if

115: return occs;
116: end function

117: function PatRemPart(f, pat, splitPoint, lsvl, rsvl, occ)
118: ⊲ Check if the occurrence occ is really a whole pattern occurrence,
119: ⊲ updating it if required. It returns true for successful checks.
120: ⊲ This function tries to extend the verified part of the pattern, both
121: ⊲ on the left and the right side, by comparing the yet not verified
122: ⊲ pattern characters with the factors characters preceding and
123: ⊲ following the verified part. For performance the extension is
124: ⊲ made without extracting the full text of the involved factors,
125: ⊲ but scanning the text one character at a time thanks to the
126: ⊲ reverse reference index.
127: end function

128: function FindLeftSideFactors(ls)
129: ⊲ Return (lslsfact, lsls), where lslsfact is a list of factors
130: ⊲ ending with the left side longest suffix, and lsls is the left side
131: ⊲ longest suffix length.
132: ⊲ Find the longest left side suffix that occurs in the reference string
133: l ← findLeftSideLongestSuffix(ls);
134: lsls← substr(ls, ls.len− l, l);
135: if searchPatRevInRefIndex(FMrev, lsls, sp, ep) then
136: ⊲ Find factors whose suffixArrayPosition is in [sp,ep]
137: return [getFactorsInRange(reverseT ree, sp, ep), l];
138: else

139: return [[],0];
140: end if

141: end function
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Algorithm 2 Pattern search algorithm (continued)

142: function FindRightSideFactors(rs)
143: ⊲ Return (rslpfact, rslp), where rslpfact is a list of factors
144: ⊲ beginning with the right side longest prefix, and rslp is the
145: ⊲ right side longest prefix length
146: ⊲ Find the longest right side prefix occurring in the reference string
147: l ← findRightSideLongestPrefix(ls);
148: rslp← substr(rs, 0, l);
149: if searchPatInRefIndex(FM, rslp, sp, ep) then
150: ⊲ Find factors whose suffixArrayPosition is in [sp,ep]
151: return [getFactorsInRange(forwardT ree, sp, ep), l];
152: else

153: return [[],0];
154: end if

155: end function

156: function FindRightSideLongestPrefix(rs)
157: ⊲ Scan backward the reverse index, starting from the first char
158: ⊲ of the right side and going on until a mismatch is found.
159: ⊲ Return the right side longrst prefix rslp.
160: end function

161: function FindLeftSideLongestSuffix(ls)
162: ⊲ Scan backward the straight index, starting from the last char
163: ⊲ of the left side and going on until a mismatch is found.
164: ⊲ Return the left side longest suffix lsls.
165: end function

166: function searchPatInRefIndex(FM index, pat, sp, ep)
167: ⊲ Perform a canonical backward search on the given FM-index,
168: ⊲ returning the [sp,ep] suffix array range corresponding to
169: ⊲ pattern pat.
170: end function

171: function searchPatRevInRefIndex(FM index, pat, sp, ep)
172: ⊲ Perform a backward search on the given FM-index, starting from
173: ⊲ the first pattern char, then the second char, and so on.
174: ⊲ Return the [sp,ep] suffix array range corresponding to
175: ⊲ pattern pat.
176: end function

177: function GetIndRetrFactors(facts, indId)
178: ⊲ Returns the indexes of factors belonging to the individual indId,
179: ⊲ selecting them from the collection facts, which contains factors
180: ⊲ belonging to several individuals
181: end function
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5. Implementation

The ER-index is designed to be the building block of an encrypted database,
that stores genomic information about a possibly large set of individuals. Roughly
speaking, an Encrypted Referential database (ER-database for short) is a col-
lection of ER-indices whose access is managed through portfolios of secret keys
related to a population of individuals and a set of database users:

Definition 5.1. Encrypted Referential Database Let R = {Rj : j ∈ J ⊆
{1, . . . , 22, X, Y }} be a set of reference sequences for human chromosomes. Let
I = {I1, . . . , Il} denote a set of individuals and S = {Sij | (i, j) ∈ I × J} be a
set of genomic sequences, where Sij is the sequence of individual Ii related to
chromosome Rj. An Encrypted Referential Database (ER-database) for
I with reference R is a tuple

D = {I, R,K,U,ER, P}

where:

• K = {k1, . . . , kl} is a set of randomly-generated, symmetric encryption
keys so that ki ∈ K is uniquely and secretly associated to Ii for i = 1, . . . , l;

• U = {U1, . . . , Ur} is a set of database users, where each Ur is allowed to
access only to the sequences of a subset of the individuals in I;

• ER is a set of ER-indexes for the population I, each one relative to a
different sequence in R;

• P is a mapping from U to I that, for each user Ur ∈ U , indentifies the
individuals in I whose access is granted to Ur.

A simple implementation provides for an ER-database hosted by a file system
directory, named the database root. The database root contains the database
catalog catalog.xml, which lists all the individuals, users and reference sequences
composing the database. Moreover, in the database root there are the subdirec-
tories references and indexes containing the sets R and ER, respectively; and
the subdirectory security, which contains the key portfolios of the database
users in U . The key portfolio for a database user Ur ∈ U contains only the
Salsa20 keys related to the individuals in I whose genomic information Ur has
been granted access; it is handled with asymmetric encryption techniques, and
enciphered with the Ur’s public key so that only Ur can read its content by
using his/her private key.

6. Experimental results

In order to evaluate the ER-Index performance, a small ER-database con-
cerning 50 individuals and 10 users was implemented as described in the previous
section.
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Figure 1: A simple scenario of key portfolios where user U1 can access only genomes of
individuals I1 and I2, whilst user U2 has access to the genome of all the individuals in the
database.

Using such database, a comprehensive set of tests was performed on different
computing platforms to measure the compression ratios (i.e.; the ratio of the
output data size to the input data size as defined by [20]), and the times required
to build the index and search for patterns. The results were also compared
with a “state of the art” software built thanks to the Sdsl C++ library by [5],
available at http://github.com/simongog/sdsl. This library provides some
succint data structures for implementing self-indexes like the Compressed Suffix
Arrays (CSA) by [6] and the wavelet tree FM-indexes by [7], and we extended
this last kind of implementation so to manage collections of items and report
sequence-relative locations.

The tests were performed on three computing platforms having different
resources as follows, in order to assess the performance of our tool and assess
its effectiveness with respect to the reference tool for different CPUs, memory
sizes and operating environments:

• ser, a small-size server with an Intel(R) Xeon(R) CPU E5-2697 v2 at
2.7GHz 24 cores processor and 180GB of DDR3 1333 MHz memory, run-
ning the CentOS 7 operating system;

• lap, a laptop with an AMD A10-9600P at 2.4GHz 6 cores processor and
12GB of DDR4 1866 MHz memory, running an Ubuntu on Windows appli-
cation on the Windows 10 operating system with the Microsoft-Windows-
Subsystem-Linux turned on;

• clu, a node of a computing cluster with 2 Intel Xeon CPU E5-2670 at
2.6GHz 10 cores processor and 196GB of DDR3 1600 MHz memory, run-
ning the CentOS 6 operating system.
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6.1. Experimental setup

The individual sequences chosen to assess the prototype performance are
those related to human chromosomes 11 and 20, for a population of 50 individ-
uals. Chromosome 11 (135,086,622 base pairs) and 20 (64,444,167 base pairs)
were chosen as representatives of big and small human chromosomes, respec-
tively. The sequences were of two types:

• Diploid consensus sequences obtained from the 1000 Genomes Project
(www.internationalgenome.org/home). These sequences were built by
starting from the respective BAM files and using the samtools mpileup

(www.htslib.org) command along with the bcftools and vcfutils util-
ities.

• Pseudo-random sequences obtained by applying single mutations, inser-
tions and deletions to the corresponding chromosome reference sequence
in the human genome bank HS37D5, a variant of the GRCh37 human
genome assembly used by the 1000 Genomes Project. For this purpose
[15] built a tool which selects, with uniform distribution, mutations, in-
sertions and deletions according to the percentages observed on average
by [17] among different individuals of the human species.

Although artificially generated, the second kind of sequences is more appropriate
than consensus sequences to evaluate real performances, since they are free from
spurious symbols caused by sequencing machines errors or inaccuracy.
For each one of the two above types we considered full length sequences and
1MB sequences, obtained by selecting one million basis of those chromosomes.
Thus we performed our tests on a total of eight kinds of genomic collection
sequences, with consensus collections denoted as 11 1MB, 11 FULL, 20 1MB,
20 FULL, and their artificially generated counterparts identified by the suffix
R. Some tests include also 5MB sequences, obtained by selecting five million
basis from chromosomes 11 and 20.

The encryption set-up consisted in the generation of fifty 256-bit simmetric
keys through the openssl rand command, plus ten RSA key couples using the
openssl genrsa and openssl rsa commands. The key portfolio for each of the
database users was generated by choosing a subset from the pool of simmetric
keys and ciphering it with the user’s public key.

6.2. Construction times

Tables 1 and 2 show times required to construct the ER-index on the three
considered computing platforms; moreover, the first table reports a comparison
with the reference tool on ser. Similar results were obtained on the other two
platforms, showing that times required to build the ER-index – except than for
some very short (1MB) sequences – are significantly lower than those for the
Sdsl wavelet-tree FM-index , despite the fact that only the ER-index implements
data encryption.

This noticeable perfomance has been obtained through our parallel factor-
ization algorithm, which exploits the multi-core, hyper-threading architecture of
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20 1MB 20 5MB 20 FULL 11 1MB 11 5MB 11 FULL

ER 11.38 33.74 455.7 23.18 42.79 1005
Sdsl 20.08 132.1 2061 19.33 154.9 5693

Table 1: Times (sec) required to build the ER-index (ER) and the Wavelet-tree FM-index
(sdsl) on the ser platform.

modern processors (see Section 3). As it can be easily inferred by a comparison
of the obtained values, the speed-up increases with the number of cores, so it
could be greater on higher-end machines with more processor cores.

20 1MB 20 1MB R 20 FULL R 11 1MB 11 1MB R 11 FULL R

lap 50.09 47.64 208775 63.64 69.32 5409862.50
clu 9.91 9.81 256.25 19.78 16.24 528.54

Table 2: Times (sec) required to build the ER-index on the lap and clu platforms.

Note that the full collections have notable sizes (about 2.97 and 6.4 GiB
for the 20 FULL and 11 FULL sets, respectively), and this resulted in long
computing times (about 0.58 and 1.5 hours) on the lap platform. However,
we believe these last results are not very indicative since probably due to an
improper memory management by the virtual machine.

6.3. Compression ratios

Figure 2 reports the compression ratios of the ER-index versus the wavelet-
tree FM-index on the ser computing platform for the collections obtained from
the 1000 Genomes Project. Obviously, similar results were obtained on the lap
and clu platforms, showing that the ER-index got compression ratios about
four times smaller than the reference tool.

The compression ratios values on pseudo-random sequences were about half
than those for the previous sequences: since the sequences created from an al-
gorithm lack of spurious symbols, it is possible to find longer matches between
the analyzed sequence and the reference one, and achieve a better compression
performance. Overall (see Table 3) this is very good for the ER-index, result-
ing in at least 97% savings in space. For example, the 6.4 GiB of collection
11 FULL R resulted in an index smaller than 192 MiB.

It can be worth to note here that the reported figures are mean values
obtained by building the index more times (we usually performed 18 index builds
for each collection, in order to filter out spurious computing time values due to
umpredictable overheads from other processes running on the same platform).
As a matter of facts, the multithreading approach causes the operations to be

20 1MB R 20 FULL R 11 1MB R 11 FULL R

0.026 0.028 0.026 0.030

Table 3: ER-index compression ratios on the collections of pseudo-random sequences.
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(a) Chromosome 20

(b) Chromosome 11

Figure 2: ER-index (ER) versus Wavelet-tree FM index (Sdsl) compression ratios for chro-
mosome 20 and chromosome 11 collections on the ser platform.
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executed in different order during the factorization, thus a different order in the
creation of the auxiliary data structures. But, since such data structures are
B+ trees, depending on the order of the insertion of the keys there might be
different splits in their nodes, resulting in small changes in the size of the index.

6.4. Pattern search performance

For each collection given in Section 6.1, the tests to evaluate pattern search
(a.k.a. locate operation) performance were run as follows:

• the index (ER-index or wavelet-tree FM-index) related to the given col-
lection was selected, and only its header was loaded in memory;

• for each pattern length pl ∈ {20, 50, 100, 200, 500}, 500 patterns were ran-
domly extracted from the sequences composing the collection, and all of
them were searched through the index;

• mean and median values of the 500 search times and search times per
occurrence got at the previous step were computed;

• the index was closed, and the next test was performed.

Figure 3 plots the search time values obtained on the ser platform for collections
20 FULL and 11 FULL, whereas Table 4 sums up the results obtained for the
other collections on the lap and clu platforms.
For full collections, pattern search times should be proportional to the number
of found occurrences, and thus they should decrease with pattern length, since
a bigger pl turns out in less chances to find a pattern. However, the obtained
results clearly show that for such collections search times are higher for pl = 20
than pl = 50 but they increase afterward. This is due to the algorithm used for
external occurrences (see Section 4), since the number of split points checked
increases with the pattern length. However, this behaviour could be noticeably
improved by parallelizing the several split points operations, which are naturally
independent from each others.

Another interesting observation which follows from the obtained results is
that median values are significantly smaller than mean values. This is because
of a 10-15% of outliers, due to some patterns hard to search, or to the fact
that some searches were performed right after the opening of an index, when
only a small amount of factorizations and EB+ blocks were loaded in memory.
Patterns may be hard to search since they have a much greater number of
occurrences than the other patterns of the same length, or because they span
on many short factors so that the left or right side related to some split points
are very short strings.

Overall these results show that locate operations are executed very fast
thanks to the ER-index: also on a small computing platform running a virtual
machine like lap they take less than half a second in the worst case (i.e.; looking
for 500-basis patterns in the 11 FULL R collection of 6.4 GiB). A comparison
with the wavelet-tree FM-index has shown that this last performs better on pat-
terns with pl ≥ 100, but slightly worse on short patterns. These differences are
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(a) Mean search times

(b) Median search times

Figure 3: ER-index mean and median pattern search times (ms) for collections 20 FULL and
11 FULL on the ser platform.
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however of the order of hundredths of a second, so they are ininfluential from a
practical point of view, except in application scenarios where a massive amount
of pattern searches is required. Since pattern search times are proportional to
the number of found occurrences, it is appropriate to look at the mean and
median values of the search time per occurrence, reported in Figure 4 for the
ser platform and the two collections 20 FULL and 11 FULL. These results
show that mean search times per occurrence grow with pattern length, starting
from a few milliseconds for pl = 20 to a maximum of 190.622 ms for pl = 500
on the 11 FULL collection. Note that the curves of the median values related
to the two collections perfectly overlap. This attests the scalability of the ER-
index: collections of increasing size can be managed without a significant loss
in performance.

pl 20 1MB 20 1MB R 20 FULL R 11 1MB 11 1MB R 11 FULL R

20 2.11 1.41 45.19 4.96 0.99 122.41
50 2.71 1.89 7.89 3.07 1.73 45.72
100 7.63 6.51 12.38 8.00 5.77 19.39
200 47.93 34.93 52.20 37.60 33.05 61.95
500 363.47 359.59 382.79 371.36 367.98 408.45

20 0.40 0.29 4.19 0.58 0.31 8.84
50 0.92 0.80 1.61 1.00 0.81 1.72
100 3.04 2.78 4.25 3.18 2.87 4.70
200 13.17 12.39 14.88 13.62 13.04 16.33
500 86.97 83.25 85.20 87.72 86.45 91.89

Table 4: ER-index search time mean values (ms) on platforms lap and clu.

7. Conclusion and future work

The ER-index is a new tool designed to be the core of secure genomic
databases: it exploits inter-sequence redundancy to get very low compression
ratios, and stores the sequences of different individuals so that they are en-
crypted on disk with different encryption keys within the same index. This new
index can store collections of genomic sequences in less than 1/30 of their orig-
inal space, outperforming state of the art tools like the wavelet tree FM-index,
and offering in addition the critical feature of a built-in, quantum-resistant en-
cryption. Moreover, the Sdsl library index has to be loaded entirely in RAM to
perform any searching operation, whereas the ER-index loads in RAM only the
blocks required to perform the required operation.

The data structures provided with the ER-index allow for a very good perfor-
mance in pattern search: our tests have shown that search times per occurrency
are less than two tenths of a second on an encrypted and compressed collection
of 6.4 GiB. As a matter of fact, the ER-index ouperforms the wavelet-tree FM-
index in searching for short length patterns, whilst it is slower in the order of
hundredths of a second for longer patterns. This is a remarkable result, consid-
ering that the wavelet-tree FM-index does not operate on encrypted sequences.
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(a) Mean search times

(b) Median search times

Figure 4: ER-index mean and median search times (ms) per occurrence for collections
20 FULL and 11 FULL on the ser platform.
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Morever, times for searching large patterns could be noticeably reduced thanks
to multi-threading techniques for the pattern search algorithm.

A multi-threading search strategy and an algorithm for inexact search oper-
ations are under investigation and will be implemented in a next release of the
ER-index.
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