
DRAFT—Do not distribute

Parakeet: GPU Acceleration of Dynamic Array Languages

Alex Rubinsteyn
alexr@cs.nyu.edu

New York University

Eric Hielscher
hielscher@cs.nyu.edu
New York University

Dennis Shasha
shasha@cs.nyu.edu
New York University

Abstract
Contemporary GPUs offer the potential for substantial performance
improvements on general purpose computation – from an average
2.5X speedup over CPUs on 14 standard “throughput computing”
benchmarks [16] to 80X on data parallel workloads [10]. How-
ever, the commonly used frameworks for general purpose GPU
(GPGPU) programming, OpenCL [20] and NVIDIA’s CUDA [21],
require highly specialized low level programming and performance
tuning knowledge to tap into this potential.

A desire to bring this performance potential to a wider audi-
ence has motivated a flurry of recent work on the GPU acceleration
of high level languages. There has been much recent work on en-
abling GPU acceleration of higher level languages to ease GPGPU
programming and to bring this performance potential to a wider au-
dience. However, these projects are typically (1) intimately tied to a
specific source language; (2) expose a constrained or non-idiomatic
programming model; and (3) suffer from long GPU compile times,
inhibiting rapid prototyping.

We present Parakeet, an intelligent runtime library and JIT com-
piler for array-oriented subsets of existing high level languages.
Parakeet was designed to ameliorate the three issues mentioned
above. Parakeet includes a language-agnostic front end for trans-
lating programs from source languages to Parakeet’s array-oriented
intermediate language. The heart of Parakeet is an IL interpreter,
which upon reaching an array operator can quickly synthesize and
execute a data parallel GPU program to implement that operator.
Parakeet is attached as a library to the source language’s interpreter,
allowing all of the source language’s standard features and tools to
be used.

We evaluate Parakeet on two standard benchmarks: Black-
Scholes option pricing, and K-Means clustering. We compare high
level array-oriented implementations to hand-written, tuned GPU
versions from the CUDA SDK [22] and the Rodinia GPU bench-
mark suite [10]. Despite having orders of magnitude shorter source
code, the high level versions perform very favorably when exe-
cuted by Parakeet, in some cases even faster than hand-written
CUDA code.

1. Introduction
The ubiquity and performance potential of modern GPUs has led
to much interest in enabling their use for the execution of general-
purpose programs. Unfortunately, the two widely used GPGPU

[Copyright notice will appear here once ’preprint’ option is removed.]

frameworks – OpenCL [20] and NVIDIA’s CUDA [21] – require
the programmer to have extensive knowledge of low level archi-
tectural details in order to fully harness this performance potential.
Hence, many recent projects attempt to lower the barrier of entry to
programming GPUs by allowing the use of high level languages [7–
9, 18, 26, 27].

GPUs are able to achieve impressive performance because they
have been highly specialized for data parallel workloads. Array
languages are thus well suited for high level GPU programming
due to their idiomatic preference for data parallel array operations
over explicit loops (“collection-oriented” [25] programming). We
observe that many of the above projects are structured around the
use of data parallel array operators such as map and reduce.

In this paper, we present Parakeet, an intelligent runtime for
executing high level array programs on GPUs. Parakeet is neither a
new programming language, nor is it tied to any specific language.
The Parakeet library is designed to accelerate the array oriented
constructs of existing dynamic languages. A key design goal is
to harness the elegance and parallelizability of functional array
operators while sacrificing as little programmer convenience as
possible. Specifically, Parakeet supports the use of array language
semantics such as scalar promotion as well as the restricted use of
mutable state.

We have implemented our first Parakeet front end for Q [5],
a descendant of APL that is widely used in financial computing.
Q is particularly amenable to GPU acceleration by Parakeet as its
use of array operators is very extensive – its idiomatic style makes
sparser use of loops than even Matlab [19] or Python’s NumPy
extensions [23]. We are also developing a front end for NumPy.

The main contributions of this paper are the following:

• A detailed analysis of the constraints imposed by graphics hard-
ware and their implications for the implementation of high level
languages.

• A demonstration that fully dynamic GPU compilation can be
realized with minimal overhead, and a discussion of the oppor-
tunities that opens up.

• An intermediate language that is both sufficiently expressive to
capture significant subsets of high level languages, while being
restricted to constructs which allow for compilation to efficient
GPU programs.

• A working system in which programmers can write complex
algorithms in existing high level languages that is automatically
parallelized into efficient GPU programs.

2. Overview
Parakeet is designed as an accelerator library for dynamic lan-
guages which possess either intrinsic array-oriented semantics or
expressive array libraries. Parakeet acts as an interpreter nested
within its source language’s execution context. The advantage of

ICFP 2011 1 2011/3/24

Source Language Untyped IL

Function
Call

Lambda Lifting
SSA Conversion

Typed IL
Specialization

CSE, Inlining
Simplification

ImpPTX

GPU Execution

CSE, Inlining
Simplification
Array Fusion

Interpreter

Kernel Synthesis
JIT

Parameter Selection
Kernel Invocation

Shape Inference
Garbage Collection

Data Movement
Code Cache

Figure 1. Overview of Parakeet

this arrangement is that this allows the programmer to continue us-
ing all of the source language’s normal tools and support libraries.

The program execution pipeline for our system (shown in Figure
1) begins in the standard interpreter of the source array language.
At program start time, a subset of the source language’s functions
(either annotated manually by the programmer or detected automat-
ically as parallelizable by Parakeet) are registered with Parakeet.
The body of a registered function is then translated into an untyped
intermediate representation using the Parakeet front end interface
and the source language’s introspection facilities.

When a call is made to a function which has been registered
with Parakeet, the untyped function is specialized by propagating
type information from the arguments to all values in the body. Type
specialization translates the function into a typed intermediate lan-
guage. Further standard optimizations are performed at this stage,
the most impactful of which is array operator fusion, wherein ar-
ray operators are combined according rewriting rules. This fusion
step can be extremely beneficial to the final GPU program’s per-
formance, since it can potentially drastically improve the computa-
tional density of GPU programs and eliminate many wasteful array
temporaries.

Execution of the optimized typed IL is initiated by Parakeet’s
interpreter, which is then responsible for offloading certain opera-
tions onto the GPU. When the interpreter encounters an array oper-
ator it employs a simple cost-based heuristic (which includes things
such as data size and memory transfer costs) to decide whether to
execute that array operator on the GPU or CPU (for more details
see Section 7.1). Parakeet’s interpreter invests great effort into ana-
lyzing the both the program and information about the data to make
dynamic execution decisions. The inefficiency of these analyses are
mitigated by the tremendous computational density of the interme-
diate language’s array operators.

If an array operator’s computation is deemed a good candidate
for GPU execution, Parakeet flattens all nested array computations
within that operator into sequential loops. This payload is then
inlined into a GPU program skeleton that implements that operator.
For example, in the case of a map operation, Parakeet provides an
efficient GPU skeleton that implements the pattern of applying the
same function to each element of an array. The flattened payload
function argument to the map is inlined into this skeleton, and a
complete GPU program is synthesized and JIT compiled.

To execute the GPU program, Parakeet first copies any of its
inputs that aren’t already present on the graphics card to the GPU’s
memory, which Parakeet treats as a managed cache of data present
in the CPU’s RAM. However, unlike some systems similar to
Parakeet [8], we do not by default preallocate the entirety of the

GPU’s memory. Rather, Parakeet has a runtime flag that can enable
such preallocation for better performance in dedicated compute
server environments. This is because we expect a typical use case
to be in a desktop environment, where the GPU serves a double
function of graphics processing and array operator acceleration and
we don’t want steal all of the GPU’s resources.

The GPU program is then executed, with its output lazily
brought back to the CPU either when it is needed or when Para-
keet’s GPU garbage collector reclaims its space.

3. GPU Hardware
To set the stage and motivate the design choices of Parakeet, we
discuss here some important features of modern GPU hardware. A
GPU consists of an array of tens of multiprocessors. Within these
multiprocessors are various resources such as local memories and
instruction issue units that are shared among its simple cores. Since
the issue units are shared, the threads running on a single multipro-
cessor execute instructions in lockstep – hence the name Single
Instruction Multiple Thread (SIMT) for the execution model. The
typical pattern is to issue a short program to be executed in paral-
lel by thousands of lightweight threads that run on these hundreds
of simple cores, each operating on different subsets of some in-
put data. With all these cores, a typical graphics card has a peak
throughput of many hundreds of GFLOP/s – an order of magnitude
more than typical high end CPUs at a fraction of the cost.

SIMT differs from the more common Single Instruction Multi-
ple Data (SIMD) model in that branching instructions are allowed
whose branch conditions aren’t uniformly met among threads
within a single multiprocessor, allowing co-located threads to exe-
cute divergent code paths. This improves the ease of programming
a GPU, but divergent branching incurs a very expensive perfor-
mance penalty as each thread effectively execute no-ops along the
irrelevant code paths. This illustrates a common point in GPGPU
programming: the hardware allows for somewhat expressive pro-
gramming styles, but failure to match what the hardware actually
does well results in very inefficient execution.

Graphics cards have high peak memory bandwidth – well over
100GB/sec is common. However, in order to achieve this high
bandwidth (which is essential to achieving peak performance),
nearby threads must access memory in particular, regular patterns.
Random memory access can be over an order of magnitude slower
than linear stride access. To alleviate some of this performance bot-
tleneck, the GPU also provides several other memory spaces with
varying performance characteristics and preferred access patterns.
These memory spaces include some read-only cached space (called
texture and constant memory) and some programmer-managed

ICFP 2011 2 2011/3/24

multiprocessor-local fast memory called shared memory. Efficient
manual use of these memory spaces can be quite cumbersome, but
is also essential to good performance for most workloads.

3.1 Limitations Imposed by GPUs
GPUs are able to achieve their specialized high performance be-
cause they have been optimized for data parallel workloads. Data
parallelism is widely found in typical graphics applications that
perform simple operations on large amounts of pixel or triangle
data, and so is a natural choice for execution on graphics acceler-
ators. However, architectural optimization for data parallelism car-
ries with it various restrictions on the types of code and program-
ming models that naturally fit the GPU architecture:

• Flat, unboxed data representation. GPU hardware is opti-
mized to utilize memory in highly structured access patterns
(so-called “coalescing”). The use of boxed or indirectly ac-
cessed data leads to unstructured memory accesses and results
in severe performance degradation.

• No polymorphism. GPUs generally share instruction dispatch
units among many concurrently executing threads. When a
group of threads “diverge”, meaning that they take different
branches through a program, their execution must be serialized.
Thus it is important to eliminate as many sources of runtime
uncertainty as possible. In particular, type-tag dispatch com-
monly used to implement polymorphic operations would incur
unacceptable costs if translated naively to the GPU.

• No function pointers. Most GPUs (excluding the recently re-
leased NVIDIA Fermi architecture) do not support the use of
indirect jumps or function pointers. In fact, a common imple-
mentation strategy for GPU function calls is extensive inlining.
Even in the case where function pointers are theoretically sup-
ported, they require every possible function to be transferred to
the GPU and incur overhead due to potentially unpredictable
branching.

• No global communication. Synchronization in a GPU com-
putation is limited to local neighborhoods of threads. Various
schemes have been devised for achieving global synchroniza-
tion between all executing threads [12], but these schemes are
all either slow or unsafe. This implies that the use of shared mu-
table state is a large hindrance to effective utilization of GPU
resources.

• All data must be preallocated. The current generation of
GPUs lack any mechanism for dynamically allocating memory.
Any heap space required by a GPU computation (for output or
temporary values) must be allocated beforehand.

With these constraints in mind, we turn to efficient high level
abstractions chosen to fit them.

4. Array Language Programming with Q
Array programming languages, as mentioned in Section 1, include
native support for array creation and manipulation via bulk array
operators. These array operators, such as map, typically have natu-
ral data parallel implementations which plays well to the strengths
of GPUs. A key contribution of Parakeet is to provide a compiler
framework that capitalizes on this strength while respecting the
constraints necessary to maintain good performance.

While the Parakeet framework is built to be agnostic to the
source array language, we chose to implement its first front end
for Q, a high-level, sequential array programming language from
the APL family [5]. Q is dynamically typed and uses native array
types and a rich set of array operators and higher-order data parallel
function modifiers that map well onto the Parakeet array operators.

Q is also a fully-featured language, with a large library of built-
in functions, and is fast enough to support intraday trading in the
financial computing domain. Since the focus of this paper is the
Parakeet runtime and compiler, we omit many details of the Q
language. We present only the salient features for illustrating the
programming style and Q’s support for array operators.

4.1 K-Means Clustering Example

1 calc_centroid :{[X;a;i] avg X[where a = i]}
2 dist :{[x;y] s q r t sum (x-y) * (x-y)}
3 minidx :{[C;x] ds: dist[x] each C;
4 ds ? min ds }
5
6 kmeans :{[X;k;a]
7 C: calc_centroid[X;a] each t i l k;
8 converged: 0;
9 w h i l e [not converged;

10 lastAssignment: a;
11 a: minidx[C] each X;
12 C: calc_centroid[X;a] each t i l k;
13 converged: a l l lastAssignment = a];
14 C}

Figure 2. K-Means Clustering implemented in Q

We illustrate the relevant features of array programming in
Q with an example: an implementation of K-Means clustering, a
widely used unsupervised clustering algorithm. In Figure 2, we see
an implementation of K-Means in Q. Five functions are defined
using Q’s brace notation for surrounding function bodies and the
colon operator for assignment. For example, the calc centroid
function on line 1 takes three parameters X, a, and i (used as the
input data matrix, the current assignment vector, and the scalar
index of the centroid to calculate, respectively), and calculates that
cluster’s current centroid.

This function illustrates some of the array-oriented features of
Q. First, Q allows implicit mappings of functions element-wise
across vectors – for example, to test element-wise equality between
the assignment vector a and the scalar index i, we simply write a
= i. In addition, this showcases Q’s support for scalar promotion.
Semantically, Q implicitly promotes i to be a vector of the value of
i repeated a number of times equal to the length of a and computes
the element-wise equality of these two vectors.

We then generate the list of indices we want by applying the
built-in where operator to the result of this test, and index into the
data matrix X to get the list of data points in the centroid. The result
of this indexing is itself a 2-D matrix which contains the list of
data points belonging to the i-th cluster. Finally, the built-in avg
function – a reduction operator – gets applied to this 2-D list. Thus
we see that reductions and other built-in array operators can be
applied to arrays of any arity. Further array built-ins used in K-
Means include sum, min, and the find operator (denoted by ‘?’).

In this algorithm we also see a number of higher-order data-
parallel function modifier keywords, which in Q are called adverbs.
For example, the each keyword modifies a function by applying it
elementwise to its argument. In the calc centroids function, we
calculate each cluster’s new centroid by using each to apply the
calc centroid function to a list of integers from 0 to k-1.

In this example it is evident that array programming is both
expressive and compact. While the CUDA implementation of K-
Means in the Rodinia benchmark suite is hundreds of lines of code
long, our Q version is only 14.

ICFP 2011 3 2011/3/24

5. Typed Intermediate Language
Now we turn to the problem of compiling an array language pro-
gram into an efficient GPU program. At first glance, there seems
to be a significant mismatch between the highly dynamic expres-
siveness of an array language like Q and the limitations imposed
by GPU hardware discussed in Section 3.1. Indeed, the Parakeet
intermediate language must serve as a compromise between two
competing tensions. First, in order to translate array programs into
efficient GPU code it is necessary for the compiler to eliminate as
much abstraction as possible. On the other hand, we must be care-
ful not to make our program representation overly concrete with re-
gard to evaluation order (which would eliminate opportunities for
parallelism provided by the array operators).

In deference to the above-mentioned GPU hardware restrictions
we disallow from our intermediate language:

• Polymorphism of all kinds
• Recursion
• User-specified higher-order functions
• Compound data types other than arrays

These restrictions are not necessarily as severe as they initially
seem, since they can be partially concealed from the programmer
via extensive specialization and program transformations explained
later in this paper.

Typed First-Order IL
program p ::= d1 · · · dn
definition d ::= fi(x

m : τm)→ (yn : τn) = s

statement s ::= xm : τm = e

| if v then s else s

| while s, xcond do s

expression e ::= values(v)

| cast(v, τsrc, τdest)

| prim〈⊕〉(v)

| call〈f〉(v)

| map〈c〉(v)
| reduce〈ci,cr〉(vi, v)
| scan〈ci,cr,〉(vi, v)

value v ::= numeric constant
| x (data variable)

closure c ::= f × v
type τ ::= bool | int | float | vec τ

Figure 3. Typed First-Order Language

A specification of our intermediate language is shown in Figure
3. We take inspiration from [4] and allow functions to both accept
and return multiple values. This feature simplifies the specification
of certain optimizations and naturally models the simultaneous
creation of multiple values on the GPU. By convention we will
write τm to denote a sequence ofm simple types, vn for a sequence
of n values, etc. A single element is equivalent to a sequence of
length 1 and sequences may be concatenated via juxtaposition, such
that τ, τn = τm+1.

The array operators map, reduce, and scan form a carefully
confined higher-order subset of our otherwise first-order language
and thus we elevate them to primitive syntax. These operators are

important since they are the only constructs in our language that we
attempt to parallelize automatically through GPU code synthesis.
This isn’t to say these are the only constructs executed in parallel
on the GPU. The simple (first-order) array operators such as sort
can be executed in parallel on the GPU as well via a fixed parallel
standard library.

It is important to note that uncertainty with regard to function
values has been made completely explicit in this intermediate lan-
guage. Every higher-order operator carries known labels for its
function arguments. Any uncertainty in the original source must
be directly encoded as an enumeration over a finite set of possi-
ble function calls. Function labels are associated with a set of clo-
sure argument values, which are necessary in order to support par-
tial function application. This representation of function values re-
sembles defunctionalization combined with specialization of apply
functions [28].

In order for higher-order functions to be translated into the
Parakeet IL, it must be possible to specialize away all higher-order
arguments. There are situations where exhaustive specialization is
not possible (e.g. combinator libraries); in these cases, we revert
to the source language’s interpreter for execution. This highlights
an important point: since Parakeet augments (but does not replace)
the interpreter of the source language, we are free to disallow
problematic language constructs.

6. Translation, Specialization, and Optimization
In this section we describe the various program transformations we
perform before executing a user’s function. Some of these transfor-
mations (such as lambda lifting and specialization) are necessary in
order to bridge the abstraction gap between an expressive dynami-
cally typed language and the GPU hardware. We also demonstrate
several optimizations which, while beneficial in any compiler, are
particularly important when targeting a graphics processor. Seem-
ingly small residual inefficiencies in our intermediate form can later
manifest themselves as the creation of large arrays, needless mem-
ory transfers, or wasteful GPU computations.

To help elucidate the different program transformations per-
formed by Parakeet, we will show the effect of each stage on a
distance function defined in Q, shown in Figure 4.

dist: {[x;y] s q r t sum (x-y) * (x-y)}

Figure 4. Distance Function in Q

6.1 Lambda Lifting and SSA Conversion
After a function call has been intercepted by the Parakeet runtime,
Parakeet performs a syntax-directed translation from a language-
specific abstract syntax tree (AST) into Parakeet’s IL. Since type
information is not yet available to specialize user functions, the
functions must be translated into an untyped form (by setting all
type assignments to ⊥). The translation into Parakeet’s IL main-
tains a closure environment and a name environment so that simul-
taneous lambda lifting and SSA conversion can be performed.

Since we would like to interpret our intermediate language we
use a gated SSA form based on the GSA sub-language of the
Program Dependence Web [24]. Classical SSA cannot be directly
executed since the φ-nodes lack deterministic semantics. Gated
SSA overcomes this limitation by using ”gates” which not only
merge data flow but also associate predicates with each data flow
branch. Aside from simplifying certain optimizations, these gates
also enable us to execute our code without converting out of SSA.
Figure 5 shows the dist function after it has been translated to
Untyped SSA.

ICFP 2011 4 2011/3/24

dist (x, y)→ (z) =
t1 = x− y
t2 = x− y
t3 = t1 ∗ t2
t4 =sum(t2)
z = sqrt(t4)

Figure 5. Untyped Distance Function in SSA form

6.2 Untyped Optimizations
Parakeet performs optimizations both before and after type special-
ization. We subject the untyped representation to inlining, common
subexpression elimination and simplification (which consists of si-
multaneous constant propagation and dead code elimination). This
step occurs once for each function, upon its first interception by
Parakeet. It is preferable to eliminate as much code as possible at
this early stage since an untyped function body serves as a tem-
plate for a potentially large number of future specializations. The
only optimizations we do not perform on the untyped representa-
tion are array fusion rewrites, since these rely on type annotations
to ensure correctness.

In our distance example, untyped optimizations will both re-
move a redundant subtraction and inline the definition of the sum
function, which expands to a reduce of addition.

dist (x, y)→ (z) =
t1 = x− y
t2 = t1 ∗ t1
t3 = reduce(+, 0, t2)
z = sqrt(t3)

Figure 6. Distance Function after untyped optimizations

6.3 Specialization
The purpose of specialization is to eliminate polymorphism, to
make manifest all implicit behavior (such as coercion and scalar
promotion), and to assign simple unboxed types to all data used
within a function body. Beyond the fact that the GPU requires its
programs to be statically typed, these goals are all essential for the
efficient execution of user code on the GPU. Thus, the specializer
generates a different specialized version of a function for each
distinct call string, with all of the function’s variables receiving the
appropriate types.

The signature of data is one of our built-in dynamic value types
such as float or vec vec int. The signature of functions is a closure
that includes a function tag and a list of data signatures. It is impor-
tant to note that specialization is thus not just on types, but also on
function tags and the types of their associated closure arguments.
This is equivalent to performing defunctionalization (Reynolds)
and then specializing exhaustively on the constant values of clo-
sure records. One caveat here is that non-constant closure values
are disallowed. This prevents us from having to implement them
as large switch statements on the GPU, which would be very in-
efficient due to branch divergence. Finally, only data is allowed to
cross the boundary from our system to the source language – spe-
cialized Parakeet functions remain enclosed in our runtime.

To continue the example, if the dist function is called with
arguments of type vec float the specializer will then generate the
code shown in Figure 7.

The actual intermediate language associates type annotations
with every binding, which we elide here for clarity. Note that the

dist (x : vec float, y : vec float)→ (z : float) =
t1 = map(−float, x, y)
t2 = map(∗float, x, y)
t3 = reduce(+float, 0, t2)
z = sqrt(t3)

Figure 7. Distance Function After Specialization

polymorphism inherent in math operations between dynamically
typed values has been removed through the use of statically typed
math operators, and implicit maps on vectors (such as the subtrac-
tion between x and y) have been expanded and made explicit.

6.4 Array Operator Fusion
In addition to standard compiler optimizations (such as constant
folding, function inlining, and common sub-expression elimina-
tion), we employ fusion rules [14] to combine array operators. Fu-
sion enables us to minimize kernel launches, boost the computa-
tional density of generated kernels, and avoid the generation of un-
necessary array temporaries.

We present the fusion rules used by Parakeet in simplified form,
such that array operators only consume and produce a single value.
Our rewrite engine actually generalizes these rules to accept func-
tions of arbitrary input and output arities.

Map Fusion
map(g,map(f, x)) map(g ◦ f, x)

Reduce-Map Fusion
reduce(gr, gi,map(f, x)) reduce(gr◦f, gi◦f, x)

These transformations are safe if the following conditions hold:

1. All the functions involved are referentially transparent.

2. Every output of the predecessor function (f) is used by the
successor (g).

3. The outputs of the predecessor are used only by the successor.

The last two conditions restrict our optimizer from rewriting any-
thing but linear chains of produced/consumed temporaries. A large
body of previous work [1] has demonstrated both the existence of
richer fusion rules and cost-directed strategies for applying those
rules in more general scenarios. Still, despite the simplicity of our
approach, we have observed that many wasteful temporaries in id-
iomatic array code are removed by using only the above rules.

In Figure 8, we see the resulting optimized and specialized dist
function. The two maps have been fused into the reduce operator,
with a new function f1 generated to perform the computation of all
three original higher-order operators.

f1(acc : float, x : float, y : float)→ (z : float) =
t1 = x− y
t2 = t1 ∗ t1
z = acc + t2

dist(x : vec float, y : vec float)→ (z : float) =
t3 = reduce(f1, 0.0, x, y)
z = sqrt(t3)

Figure 8. Distance Function After Fusion Optimization

ICFP 2011 5 2011/3/24

7. The Parakeet Runtime
Once a function has been type specialized and fully optimized, it
is handed off to the Parakeet runtime for intelligent execution. The
heart of the runtime is a heavy-weight interpreter whose primary
responsibility is to initiate GPU kernel synthesis and execution.
The interpreter uses program analyses and performance heuristics
in order to dynamically make decisions such as:

1. what portion of a user’s program ought to run on the GPU

2. which level of nested parallelism ought to expressed as a GPU
kernel

3. in which GPU memory space should a particular array reside

4. when should data be moved onto or off the GPU

7.1 Cost Model
When the Parakeet interpreter encounters an array operator, it uses
a simple cost model to decide what is the best place to execute the
operator. The cost model employs a recursive function that esti-
mates the relative cost of executing that operator on the CPU ver-
sus the GPU. This function is not meant to measure the precise
expected run time of the operator; rather, the goal is to make the
correct decision when the use of one or the other processor should
result in much higher performance. We use the clock frequency of
each processor to roughly estimate the cost of a single operation.
For each array operator, we multiply the estimated cost of a single
execution of the operator’s function argument by some fixed func-
tion of the input size. For a map operation, for example, we multi-
ply the estimated cost of performing the sequentialized version of
the mapped function by the number of input elements. In addition,
we estimated the time needed to transfer data to and from the GPU
as a function of data size and add this cost to the total if the data is
not already present in the respective processor’s memory.

In the case of nested array operators – e.g. a map whose payload
function is itself a reduce (as is present in the calc centroids
function in the K-Means benchmark, where the avg reduction is
mapped over each centroid index) – the interpreter needs to choose
which operator, if any, will form the parallelization point for a GPU
kernel while sequentializing all nested operators within that kernel.
The possible choices include:

1. Running the map as a GPU kernel, with an embedded sequen-
tial for loop that implements the reduce.

2. Running the map as a for loop in the Parakeet interpreter, with
each iteration of the loop calling a GPU kernel that implements
the reduce.

3. Running everything in the Parakeet interpreter as two nested
for loops.

In cases (1) and (3), the operator is executed entirely on a sin-
gle processor. In case (2), however, the map runs as a loop on the
CPU, generating each element of the resulting vector with a sepa-
rate GPU program invocation. In this case, the interpreter creates
an interpreter array object on the CPU whose elements are refer-
ences to the values generated on the GPU. The final linear CPU ar-
ray is only constructed lazily as needed or when the GPU garbage
collector needs the space. At that point, a linear CPU array is allo-
cated and filled in with the computed values. This is precisely what
happens in our implementation of K-Means clustering discussed in
Section 9.2.

7.2 Shape Inference
Accurate prediction of array shapes is necessary both for the allo-
cation of intermediate values on the GPU as well as for the above
cost model determining placement of computations. We employ

a simple abstract interpreter which propagates shape information
through a function using the obvious shape semantics for each op-
erator. For example, a reduce operation collapses the outermost
dimension of its argument whereas a map preserves a shape’s out-
ermost dimension.

7.3 Data Movement and Garbage Collection
Arrays are moved to the GPU whenever they are used as the argu-
ment to some GPU computation. The specific GPU memory space
into which an array is loaded depends on both the other data already
on the GPU and the individual characteristics of the computation in
which that array is being used. Tracking and collection of unused
memory is achieved by counting array references. Parakeet does not
immediately free an array whose reference count drops to zero but
rather maintains a cache of free data blocks which can be cheaply
reused. Such caching of free pointers can be advantageous when a
computation repeatedly allocate arrays of the same size.

7.4 Column-Major Transposition
Parakeet is able to leverage dynamic information in various ways
to optimize both the implementation and the execution of the GPU
programs it executes. One important such optimization is the use
of data transposition. On GPUs, poor memory access patterns can
result in orders of magnitude lower performance. In particular,
neighboring threads in an executing GPU kernel should access
adjacent memory words in order to get maximum performance.
Use of column major data layouts as a performance optimization
is well known in the CPU high performance computing world.
Parakeet’s data layout is row major by default. However, when a
map computation is performed over a two-dimensional structure,
a row major layout would result in the worst possible memory
access pattern for the GPU kernel as its threads would concurrently
access memory at some large stride. Thus in this case, Parakeet
specializes the function in question to create a transposed column-
major version of the data input. This column-major version is
strictly an intermediate within the Parakeet runtime. We have found
this optimization to be extremely beneficial to performance, and it
contributes immensely to the good performance Parakeet delivers
on the K-Means clustering benchmark discussed in Section 9.2.

7.5 Parallel Library
In addition to these skeletons, we provide a library of precompiled
parallel implementations of our simple (first-order) array operators.
Since these operators don’t require synthesis with embedded pay-
load functions, we needn’t dynamically generate them. We use the
Thrust library [13] for some of these operators such as sort, while
providing our own hand-tuned implementations of others such as
where.

8. GPU Back End
Several systems similar to Parakeet [7, 8] generate GPU programs
by emitting CUDA code which is then compiled by NVIDIA’s
CUDA nvcc toolchain. Parakeet on the other hand, targets PTX,
which is NVIDIA’s GPU pseudoassembly language. Parakeet’s
PTX code is dynamically compiled by the NVIDIA graphics driver
before being executed. Parakeet caches compiled binaries so that
when a particular array operator is run multiple times on the GPU
with similar arguments it needn’t incur the code generation and JIT
compilation costs more than once.

We prefer compiling PTX instead of CUDA since this enables
us to generate binaries more quickly, achieving a fully dynamic
compiler without any noticeable stalls. The NVIDIA CUDA com-
piler is a wrapper around the GCC C++ compiler, and CUDA sup-
ports all of C++ in the host code and a large subset (including

ICFP 2011 6 2011/3/24

C++ templates) in the GPU code. Thus, the compile times for even
simple kernels can be on the order of 5–10 seconds. There are, of
course, advantages to using the NVIDIA compiler. The main ones
are that we would be able to take advantage of all of the NVIDIA
and GCC compiler optimizations and that it would simplify our im-
plementation effort. However, the strict latency requirements meant
that we needed to emit PTX directly.

8.1 Imp
As mentioned above, we implement the higher-order array oper-
ators as skeletons of code with splice points where their payload
functions get inlined. Rather than implement these skeletons di-
rectly in CUDA or PTX, Parakeet includes a second intermediate
language that we call Imp (short for imperative) which we use for
this purpose. This means in addition that in order to inline a func-
tion into a higher-order Imp skeleton we must first translate the
function’s body from the higher level Parakeet IL into Imp.

Imp is largely a syntactic sugar wrapper around PTX that sim-
plifies our job of implementing efficient GPU versions of these op-
erator skeletons by hiding some of the architectural details PTX
exposes. Imp differs from PTX in the following important respects:

1. Arrays are not associated with a particular GPU memory space
(global, texture, constant, etc..), allowing us to compile vari-
ants of an Imp kernel where inputs reside in different memory
spaces.

2. Space requirements of a function call (all outputs and local
arrays it must allocate) can be determined as a function of input
sizes. This is necessary as GPU computations have access only
to memory which is allocated before their launch and cannot
“dynamically” allocate more memory.

3. Local temporaries can be arrays in addition to scalars. This
generalizes CUDA’s use of “local” memory for spilled scalar
variables.

Imp kernels are “shapely” by construction, meaning they specify
their memory requirements as deterministic functions of input size.
This obviates the need for ad-hoc allocation logic (the bulk of most
CUDA host code in practice) or for auxiliary size inference on
higher level code. If a function can be translated to Imp then we
can always determine its memory requirements.

We perform staged synthesis of Imp kernels by parameterizing
them with payload functions. An Imp kernel can be seen as a
“skeleton” [11] for a particular implementation strategy of some
array operator. In reality, we don’t actually program directly in Imp.
Rather, we use Imp as an embedded DSL in the implementation of
Parakeet.

9. Evaluation
We evaluated Parakeet on two standard benchmark programs:
Black-Scholes option pricing, and K-Means Clustering. We com-
pare Parakeet against both hand-tuned CPU and GPU implemen-
tations. For Black-Scholes, the CPU implementation is taken from
the PARSEC [2] benchmark suite – which we used as the basis of
our Q implementation – and the GPU implementation is taken from
the CUDA SDK [22]. For K-Means Clustering, we wrote our own
Q version in 15 lines of code. Both the CPU and GPU benchmark
version come from the Rodinia benchmark suite [10].

Our experimental setup is as follows. We ran all of our bench-
marks on a machine running 64-bit Linux with an Intel Core i7
3.2GHz 960 4-core CPU, each core having 2 thread contexts for
a total of 8, and with 16GB of RAM. The theoretical peak scalar
throughput of this CPU is 25.6 GFLOP/s, and it has a theoretical
peak memory bandwidth of 32GB/s [16]. The GPU used in our

1M 2M 4M 8M
Number Of Options

0

200

400

600

800

1000

1200

1400

Ti
m

e
In

 M
ill

is
ec

on
ds

Black-Scholes Execution Time

CPU 1 thread
CPU 8 threads
CUDA
Parakeet

Figure 9. Black Scholes Total Times

system was an NVIDIA Tesla C1060. This card has 240 proces-
sor cores with clock speeds of 1.296 GHz and 4GB of memory,
with peak theoretical execution throughput of 933 GFLOP/s and
peak memory bandwidth of 102 GB/s. We ran all of our experi-
ments without the X windowing system running so that all of the
GPU’s resources were available to Parakeet – in our experience, X
can consume upwards of 650MB of GPU memory in a standard
desktop setup.

9.1 Black-Scholes
Black-Scholes option pricing [3] is a standard benchmark for data
parallel workloads, since it is embarrassingly parallel – the calcula-
tion of the price of a given option doesn’t impact that of any other,
and the benchmark consists of simply running thousands of inde-
pendent threads in parallel for computing the prices of thousands
of options.

We compare our system against the multithreaded OpenMP
CPU implementation from the PARSEC [2] benchmark suite with
both 1 and 8 threads and the CUDA version in the NVIDIA CUDA
SDK [22]. We modified the benchmarks to all accept the input data
from the PARSEC implementation as their input so as to have a
direct comparison of the computation alone. We also modified the
CUDA SDK version to calculate only one of the call or put price
per option, as that matches the behavior in PARSEC.

In Figure 9, we see the total run times of the various systems.
These times include the time it takes to transfer data to and from
the GPU in the GPU benchmarks. As expected, Black Scholes
performs very well on the GPU as compared with the CPU, since it
is a purely data parallel benchmark. We see that Parakeet performs
very similarly to the hand-written CUDA version, with overheads
decreasing as a percentage of the run time as the data sizes grow.
This is due to the fact that most of these overheads are fixed costs
related to dynamic compilation.

In Figure 10, we break down Parakeet’s performance as com-
pared with the hand-written CUDA version. The Parakeet run times
range from 24% to 2.4X slower than those of CUDA, with Parakeet
performing better as the data size increases. These results illustrate
an important aspect of GPU acceleration, viz. that the cost of trans-
ferring data to and from the GPU’s memory is rather expensive.
This large data transfer cost is, however, the same for Parakeet and
CUDA. The GPU programs that Parakeet generates are slightly less
efficient than those of the CUDA version, with approximately 50%

ICFP 2011 7 2011/3/24

1M 2M 4M 8M
Number Of Options

0

10

20

30

40

50

60

70

80

90

Ti
m

e
In

 M
ill

is
ec

on
ds

CUDA

CUDA

CUDA

CUDA

Parakeet

Parakeet

Parakeet

Parakeet

GPU Black-Scholes Execution Time

Data Transfer Time
Execution Time
Interpreter
Initialization
PTX Compilation

Figure 10. Black Scholes GPU Execution Times

higher run time on average. However, the data transfer costs over-
whelm the GPU execution times for Black Scholes, so this over-
head isn’t very important. There are three other sources of overhead
for Black Scholes that Parakeet introduces:

1. Initialization costs related to registering the Black Scholes func-
tion with the Parakeet runtime.

2. Time spent in the Parakeet IL interpreter.

3. The cost of running the JIT compiler on the generated PTX.

The PTX compilation time is rather significant for this bench-
mark – ranging from 33% of the total runtime for the 1 million
option case to roughly 10% in the 8 million option case. This cost
can’t be helped, but it is important to note that it as well as the
initialization costs are only paid once per function since Parakeet
caches the compiled version of the function. Thus, in the case of
workloads where a single function is repeatedly called, this costs
will be insignificant.

9.2 K-Means Clustering
We also tested Parakeet on K-Means clustering, a standard unsu-
pervised learning algorithm. K-Means is interesting as it is a fairly
dense and complicated algorithm with loops and nested array op-
erators. Thus it serves to illustrate that Parakeet is a usable system
for implementing real world programs. K-Means has a number of
parameters that can greatly affect run times and algorithmic charac-
teristics. These include: the number of data points being clustered;
the number of clusters K; and the number of features (i.e. the di-
mensionality of the data points).

In Figure 11, we see the total run times of K-Means for the CPU
and GPU versions with K = 3 clusters and 30 features.

K-Means clustering illustrates a key aspect of our approach: the
ability to exploit dynamic information to tailor code generation and
execution. In the calc centroids function, we have a map oper-
ator applied to a nested function that in turns contains array op-
erators. Our interpreter is able to make the most efficient choice
regarding where to execute things: the outer map, since it’s applied
to a small array of integers and involves little computation of its
own, gets executed on the CPU as a loop. The inner function, which
since it has dense computation applied to large inputs, gets synthe-
sized into a kernel that is repeatedly launched. This type of dynamic
decision based on data size would not be possible in a static envi-

32K 64K 128K 256K
Number Of Data Points

0

500

1000

1500

2000

Ti
m

e
In

 M
ill

is
ec

on
ds

K-Means Execution Time with K = 3

CPU 1 thread
CPU 8 threads
CUDA
Parakeet

Figure 11. K-Means Total Times with 30 Features, K = 3

32K 64K 128K 256K
Number Of Data Points

0

2000

4000

6000

8000

10000

12000

14000
Ti

m
e

In
 M

ill
is

ec
on

ds
K-Means Execution Time with K = 30

CPU 1 thread
CPU 8 threads
CUDA
Parakeet

Figure 12. K-Means Total Times with 30 Features, K = 30

ronment. In addition, Parakeet uses transposition to column-major
order (see Section 7.4) in order to greatly improve the performance
of this benchmark – this optimization results in aporoximately a
12.5X speedup for the algorithm as whole. The function to com-
pute the distances between the data points and the centroids is im-
plemented as a map kernel over each data point. Within this kernel,
each thread is responsible for finding the minimum distance from
its data point to a centroid. Thus it maps over a 2D structure, and the
column-major transposition can be applied. Further, as this trans-
position of the data elements occurs only once with the same trans-
posed version being reused for each loop iteration, the overhead of
performing it is very low.

10. Related Work
The use of graphics hardware for non-graphical computation has a
long history [17], though convenient frameworks for general pur-
pose GPU programming have only recently emerged. The first
prominent GPU backend for a general purpose language was

ICFP 2011 8 2011/3/24

32K 64K 128K 256K
Number Of Data Points

0

100

200

300

400

500

600

700

800

Ti
m

e
In

 M
ill

is
ec

on
ds

CUDA

CUDA

CUDA

CUDA

Parakeet
Parakeet

Parakeet

Parakeet

GPU K-Means Execution Time, K = 3

Data Transfer Time
GPU Execution
CPU Execution
PTX Compilation

Figure 13. K-Means GPU Times with 30 Features, K = 3

“Brook for GPUs” [6]. The Brook language extended C with “ker-
nels” and “streams”, exposing a programming model similar to
what is now found in CUDA and OpenCL.

Microsoft’s Accelerator [27] was the first project to use high
level (collection-oriented) language constructs as a basis for GPU
execution. Accelerator is a declarative GPU language embedded
in C# which creates a directed acyclic graph of LINQ operations –
such as filtering, grouping, and joining – and compiles them to (pre-
CUDA) shader programs. Accelerator’s programming model does
not support function abstractions (only expression trees) and its
only underlying parallelism construct is limited to the production
of map-like kernels.

Three more recent projects all translate domain specific embed-
ded array languages to CUDA backends:

• Nikola [18] is a first-order array-oriented language embedded
within Haskell. Nikola provides a convenient syntax for ex-
pressing single-kernel computations, but requires the program-
mer to manually coordinate computations which require multi-
ple kernel launches. Nikola also does not support partially ap-
plied functions and its parallelization scheme, which first seri-
alizes array operators into loops and then parallelizes loop iter-
ations, seems ill-suited for complex array operations.

• Accelerate [9] is also an embedded array language within
Haskell. Unlike Nikola, Accelerate does allow the expression
of computations which span multiple kernel launches. Accel-
erate also has a much richer set of array operators (including
the higher-order trio map, reduce, scan). Accelerate, however,
does not seem to support closures or the nesting of array oper-
ators. Accelerate’s backend is similar to ours in that they use a
simple interpreter whose job is to initiate skeleton-based kernel
compilation, transfer data to and from the GPU, and to perform
simple CPU-side computations.

• Copperhead [7] parallelizes a statically typed purely functional
array subset of Python through the dynamic compilation/ex-
ecution of CUDA kernels. Copperhead supports nested array
computations, and even has a sophisticated notion of where
these computations can be scheduled. In addition to sequen-
tializing nested array operators within CUDA kernels (as done
in Parakeet), Copperhead can also share the work of a nested
computation between all the threads in CUDA block. Unfor-

tunately, Copperhead does not utilize any dynamic information
(such as size) when making these scheduling decisions and thus
must rely on user annotations. Copperhead’s compiler generates
kernels through parameterization of operator-specific C++ tem-
plate classes. By using C++ as their backend target, Copperhead
has been able to easily integrate the Thrust [13] GPGPU library
and to offload the bulk of their code optimizations onto a C++
compiler. Runtime generation of templated C++ can, however,
be a double-edged sword. Copperhead experiences the longest
compile times of any project mentioned here (orders of magni-
tude longer than the compiler overhead of Parakeet).

Unlike the three approaches mentioned above, Parakeet does not
require its source language to be purely functional nor statically
typed. Being able to program in a dynamically typed language
seems particularly important for array computations, since static
type systems are generally unable to support the syntactic conve-
niences which make array programming appealing in the first place.

11. Conclusion
Parakeet allows the programmer to write in a high level sequential
array language while taking advantage of the acceleration potential
of using GPUs as coprocessors. Parakeet automatically synthesizes
and executes very efficient GPU programs from the high level code
while transparently moving data back and forth to the GPU’s mem-
ory and performing GPU memory garbage collection. Parakeet in-
cludes a series of optimizations to generate more efficient GPU pro-
grams, including array operator fusion, data transposition, and the
use of texture memory on the GPU. Parakeet is a usable system in
which complex programs can be written and executed efficiently.
On two benchmark programs, Parakeet delivers performance very
competitive with even hand-tuned GPU implementations without
impacting the interactivity of the source language interpreter envi-
ronment.

In future work, we hope to support both more front ends and
more back ends. At the moment, we are nearing completion of a
front end for Python’s NumPy, and we plan to build a front end
for Matlab as well. Further, we envision building a back end for
multicore CPUs, likely targeting LLVM [15], which will allow us
to simultaneously take advantage of the particular strengths of both
types of processors.

In addition, we plan to increase efficiency by iteratively tuning
components of hierarchical algorithms, splitting data inputs to take
advantage of more of the texturing hardware, and doing more to
overlap computation with data transfers.

References
[1] ALDINUCCI, M., GORLATCH, S., LENGAUER, C., AND PELAGATTI,

S. Towards parallel programming by transformation: the FAN skele-
ton framework. Parallel Algorithms Appl. 16, 2-3 (2001), 87–121.

[2] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The PARSEC
benchmark suite: Characterization and architectural implications. In
PACT ’08: Proceedings of the 17th International Conference on Pro-
cessors, Architectures, and Compilation Techniques (October 2008).

[3] BLACK, F., AND SCHOLES, M. The pricing of options and corporate
liabilities. The Journal of Political Economy 81, 3 (1973), 637–654.

[4] BOLINGBROKE, M. C., AND JONES, S. L. P. Types are calling con-
ventions. In Proceedings of the 2009 Haskell Workshop (September
2009).

[5] BORROR, J. A. Q For Mortals: A Tutorial In Q Programming.
CreateSpace, 2008.

[6] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. Brook for GPUs: stream
computing on graphics hardware. In ACM SIGGRAPH 2004 Papers
(New York, NY, USA, 2004), ACM, pp. 777–786.

ICFP 2011 9 2011/3/24

[7] CATANZARO, B., GARLAND, M., AND KEUTZER, K. Copperhead:
Compiling an embedded data parallel language. In Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel
Programming (2011), pp. 47–56.

[8] CHAFI, H., SUJEETH, A. K., BROWN, K. J., LEE, H., ATREYA,
A. R., AND OLUKOTUN, K. A domain-specific approach to het-
erogeneous parallelism. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming (New York, NY,
USA, 2011), ACM, pp. 35–46.

[9] CHAKRAVARTY, M. M., KELLER, G., LEE, S., MCDONNEL, T. L.,
AND GROVER, V. Accelerating haskell array codes with multicore
gpus. In Proceedings of the Sixth Workshop on Declarative Aspects of
Multicore Programming (2011), pp. 3–14.

[10] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J., LEE,
S.-H., AND SKADRON, K. Rodinia: A benchmark suite for heteroge-
neous computing. In Proceedings of the IEEE International Sympo-
sium on Workload Characterization (IISWC) (October 2009), pp. 44–
54.

[11] COLE, M. Bringing skeletons out of the closet: A pragmatic manifesto
for skeletal parallel programming. Parallel Computing 30, 3 (2004),
389–406.

[12] FENG, W.-C., AND XIAO, S. To GPU Synchronize or Not GPU
Synchronize? In IEEE International Symposium on Circuits and
Systems (ISCAS) (Paris, France, May 2010).

[13] HOBEROCK, J., AND BELL, N. Thrust: A parallel template library,
2010. Version 1.3.0.

[14] JONES, S. P., TOLMACH, A., AND HOARE, T. Playing by the
rules: rewriting as a practical optimisation technique in GHC. In
Proceedings of the 2004 Haskell Workshop (2001).

[15] LATTNER, C. LLVM: An infrastructure for multi-stage opti-
mization. Master’s thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[16] LEE, V. W., KIM, C., CHHUGANI, J., DEISHER, M., KIM, D.,
NGUYEN, A. D., SATISH, N., SMELYANSKIY, M., CHENNUPATY,
S., HAMMARLUND, P., SINGHAL, R., AND DUBEY, P. Debunking
the 100x GPU vs. CPU myth: An evaluation of throughput computing
on CPU and GPU. In Proceedings of the 37th annual International
Symposium on Computer Architecture (2010), pp. 451–460.

[17] LENGYEL, J., REICHER, M., DONALD, B. R., AND GREENBERG,
D. P. Real-time robot motion planning using rasterizing computer
graphics hardware. In In Proc. SIGGRAPH (1990), pp. 327–335.

[18] MAINLAND, G., AND MORRISETT, G. Nikola: Embedding compiled
GPU functions in haskell. In Proceedings of the 2010 Haskell Work-
shop (September 2010).

[19] MOLER, C. B. MATLAB — an interactive matrix laboratory. Tech-
nical Report 369, University of New Mexico. Dept. of Computer Sci-
ence, 1980.

[20] MUNSHI, A. The OpenCL specification version 1.1, September 2010.

[21] NVIDIA. CUDA ZONE. http://www.nvidia.com/cuda.

[22] NVIDIA. NVIDIA CUDA SDK 3.2.
http://www.nvidia.com/cuda.

[23] OLIPHANT, O. Python for scientific computing. Computing in Science
and Engineering 9 (2007), 10–20.

[24] OTTENSTEIN, K. J., BALLANCE, R. A., AND MACCABE, A. B. The
program dependence web: a representation supporting control-, data-,
and demand-driven interpretation of imperative languages. SIGPLAN
Not. 25 (June 1990), 257–271.

[25] SIPELSTEIN, J., AND BLELLOCH, G. E. Collection-Oriented lan-
guages. In Proceedings of the IEEE (1991), pp. 504–523.

[26] SVENSSON, J., SHEERAN, M., AND CLAESSEN, K. Obsidian: A do-
main specific embedded language for parallel programming of graph-
ics processors. In Implementation and Application of Functional Lan-
guages, 20th International Symposium, IFL 2008 (2008).

[27] TARDITI, D., PURI, S., AND OGLESBY, J. Accelerator: Using data
parallelism to program GPUs for general-purpose uses. In ASPLOS

’06: Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(November 2006).

[28] TOLMACH, A., AND OLIVA, D. P. From ml to ada: Strongly-typed
language interoperability via source translation. J. Funct. Program. 8
(July 1998), 367–412.

ICFP 2011 10 2011/3/24

