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ABSTRACT

We introduce an audio texture synthesis algorithm based on
scattering moments. A scattering transform is computed by
iteratively decomposing a signal with complex wavelet filter
banks and computing their amplitude envelop. Scattering mo-
ments provide general representations of stationary processes
computed as expected values of scattering coefficients. They
are estimated with low variance estimators from single real-
izations. Audio signals having prescribed scattering moments
are synthesized with a gradient descent algorithms. Audio
synthesis examples show that scattering representation pro-
vide good synthesis of audio textures with much fewer coef-
ficients than the state of the art.

Index Terms— Audio synthesis, scattering moments,
wavelets, texture.

1. INTRODUCTION

The representation of a non-Gaussian stationary process re-
mains a fundamental issue of probability and statistics. Sig-
nal processing faces many such issues, in particular for audi-
tory and image textures, which can be modeled as realiza-
tions of highly non-Gaussian processes. A random vector
X ∈ R

N can be represented by a vector of generalized mo-
mentsΦX = {E(φn(X)}n which project the distribution of
X over multiple functionsφn(x) with x ∈ R

N . Random
signal synthesis can then be performed by sampling the max-
imum entropy distribution, which is a Boltzmann distribu-
tion whose generalized moments are specified byΦX . For
most signal processing applications, one needs to estimate
E(φn(X) from a single realization ofX , by replacing the ex-
pected value with a spatial or time average. We concentrate on
on audio texture synthesis, which is an important application.
The information loss of the representation can be checked by
evaluating the perceptual quality of synthesized signals.

Second order moments lose essential perceptual informa-
tion in audio and image signals because they provide no in-
formation on non-Gaussian behavior. High order moments
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are rarely used because their estimation from a single real-
ization has a variance which is too large. Representations
based on generalized moments have been proposed to repre-
sent and synthesize audio and image textures, often based on
histograms of non-linear transformations of the signal [1,2].
Simoncelli and McDermott have obtained particularly effi-
cient results from covariance measurements at the output of
multistage filter banks [3]. In the following we propose an
audio texture representation and a synthesis algorithm based
on scattering moments.

Scattering transforms have recently been introduced
[4, 5, 6, 7] to represent audio signals and images, while
providing state of the art results for texture discrimination,
and genre recognition in audio [6]. A scattering transform
iterates on complex wavelet transforms and modulus oper-
ators which compute their envelop. It has close relations
with psychophysical and physiological models [8, 9, 10].
For stationary processes, it estimates a vector of expected
values called scattering moments. This paper shows that
scattering moments provide a compact representation of sta-
tionary processes, which encodes important non-Gaussian
properties arising from multiscale amplitude and frequency
modulations. This is demonstrated through audio synthesis.

Section 2 reviews the properties of scattering moments
for auditory signals. An efficient audio synthesis algorithm
is described in Section 3. Section 4 gives synthesis resultson
natural audio textures. Computations can be reproduced with
a software available atwww.di.ens.fr/data/software/scatnet.

Notations: x̂(ω) =
∫
x(t) exp(−iωt)dt is the Fourier

transform ofx(t). We denoteE(X) the expected value of
a stationary processX(t) at anyt, andσ2(X) = E(|X |2) −
E(X)2.

2. SCATTERING MOMENTS

A scattering transform characterizes transient structures
through high order coefficients which capture modulation
properties. They are computed by iterating on filter banks of
complex wavelet filters.



2.1. Wavelet Filter Bank

A waveletψ(t) is a band-pass filter. We consider a complex
wavelet with a quadrature phase, whose Fourier transform sat-
isfies ψ̂(ω) ≈ 0 for ω < 0. We assume that the center fre-
quency ofψ̂ is 1 and that its bandwidth is of the order ofQ−1.
Wavelet filters centered at the frequenciesλ = 2j/Q are com-
puted by dilatingψ:

ψλ(t) = λψ(λ t) and henceψ̂λ(ω) = ψ̂(λ−1ω) . (1)

We denote byΛ the index set ofλ = 2j/Q over the signal
frequency support, and we impose that these filters fully cover
the positive frequencies

∀ω > 0 , 1− ǫ ≤
1

2

∑

λ∈Λ

|ψ̂λ(ω)|
2 ≤ 1 . (2)

for someǫ < 1. The wavelet transform of a random process
X(t) is

WX = {X ⋆ ψλ(t)}λ∈Λ .

One can derive from (2) that the variance satisfies

σ2(X)(1− ǫ) ≤
∑

λ∈Λ

E(|X ⋆ ψλ|
2) ≤ σ2(X) . (3)

2.2. Scattering Moments

Scattering moments provide a representation of stationary
processes, with expected values of a non-linear operator, cal-
culated by iterating over wavelet transforms and a modulus.
First order scattering coefficients are first order moments of
wavelet coefficient amplitudes:

∀la1 ∈ Λ , SX(λ) = E(|X ⋆ ψλ|) .

The Q-factorQ1 adjusts the frequency resolution of these
wavelets. First order scattering moments provide no infor-
mation on the time-variation of the scalogram|X ⋆ψλ1

(t)|. It
averages all audio modulations and transient events, and thus
lose perceptually important information.

Second order scattering moments recover information on
audio-modulations and transients by computing the wavelet
coefficients of each|X ⋆ ψλ1

|, and their first order moment:

∀λ2 , SX(λ1, λ2) = E(||X ⋆ ψλ1
| ⋆ ψλ2

|) .

These multiscale variations of each envelop|X⋆ψj1 |, specify
the amplitude modulations ofX(t) [6]. The second family of
waveletsψj2 typically have aQ-factorQ2 = 1 to accurately
measure the sharp transitions of amplitude modulations. Scat-
tering coefficients have a negligible amplitude forλ2 > λ1
because|X ⋆ ψλ1

| is then a regular envelop whose frequency
support is belowλ2. Scattering coefficients are thus computed
only for λ2 < λ1.

Applying more wavelet transform envelops defines scat-
tering moments at any orderm ≥ 1:

SX(λ1, ..., λm) = E(| |X ⋆ ψλ1
| ⋆ ...| ⋆ ψλm

|) . (4)

By iterating on the inequality (3), one can verify [4] that the
Euclidean norm of scattering moments

‖SX‖2 =
∞∑

m=1

∑

(λ1,...,λm)∈Λm

|SX(λ1, ..., λm)|2. (5)

satisfies
‖SX‖2 ≤ σ2(X) .

Expected scattering coefficients are first moments of non-
linear functionsX and thus depend upon high order moments
of X [4]. But as opposed to high order moments, the scatter-
ing representation is computed with wavelet transforms and
modulus operators, which do not amplify the variability of
X . It results into low-variance estimators.

Scattering moments are estimated by replacing the expec-
tation with a time averaging over the signal support. Suppose
thatX(t) is defined for0 ≤ t < N . With periodic border
extensions, we compute empirical averages

ŜX(λ1, ..., λm) = N−1
N∑

t=1

| |X ⋆ψλ1
|⋆ ...|⋆ψλm

(t)| . (6)

For most audio textures, the energy of the scattering vec-
tor ‖SX‖2 is concentrated over first and second order mo-
ments [6]. We thus only computêSX(λ1) andŜX(λ1, λ2)
for 1 ≤ λ1 = 2j1/Q1 ≤ N and1 ≤ λ2 = 2j2/Q2 < λ1.
Scattering moments estimators have large variance at the low-
est frequencies because the wavelet coefficient amplitudesare
highly correlated in time. These higher variance estimators
are removed by keeping only the frequenciesλ1 andλ2 above
a fixed frequencyN0. We thus computeQ1 log2(N/N0) first
order scattering moments andQ1Q2(log2N/N0)

2/2 second
order scattering moments.

Scattering transforms have been extended along the fre-
quency variables to capture frequency variability and provide
transposition invariant representations [6]. Transpositions re-
fer to translations along a log frequency variable. For au-
dio synthesis, this frequency transformation will only be per-
formed on first order coefficients. We denoteγ = log2 λ1,
and define wavelets̄ψλ̄(γ) having an octave bandwidth of
Q = 1. The corresponding wavelet transform is thus com-
puted with convolutions along the log-frequency variableγ.

The scalogram is now considered as a function ofγ for
each fixed timet:

Ft(γ) = |X ⋆ ψ2γ (t)| .

Second order frequency scattering moments are the first order
moments of the wavelet coefficients ofFt(γ) computed along
γ:

SX(λ1, λ̄2) = E(|Ft ⋆ ψ̄λ̄2
(log2 λ1)|) ,



This expected value is estimated with a time averaging

ŜX(λ1, λ̄2) = N−1
N∑

t=1

|Ft ⋆ ψ̄λ̄2
(log2 λ1)| . (7)

If K = Q1 log2(N/N0) is the total number of first order scat-
tering moments, the number of second order frequency scat-
tering coefficients isαK, whereα is an oversampling con-
stant which is set to2 in our experiments.

3. SCATTERING SYNTHESIS

We present a gradient descent algorithm on the scattering do-
main to adjust scattering moments estimated from available
observations.

A maximum entropy distribution satisfying a set of mo-
ment conditions is a Gibbs distribution defined by the Boltz-
mann theorem. Sampling this distribution is possible with
the Metropolis-Hastings algorithms but it is computationally
very expansive in high dimension. This algorithm is often ap-
proximated with a gradient descent algorithm. It is initialized
with a Gaussian white noise realization, whose moments are
progressively adjusted by the gradient descent [11, 1, 3].

Let Y (t) be the realization of an auditory texture ofN
samples. A vector of first order and second order scattering
moment estimatorŝSX is computed with (6). This vector
may also include second order frequency scattering moments
(7). To synthesize a new audio signalX such that̂SX = ŜY ,
we start with a realization of white Gaussian noiseX0. At
each iterationn, we want to minimize

E(X) =
1

2
‖ŜXn − ŜY ‖2. (8)

A gradient descent computes

Xn+1 = Xn − γ∇E(Xn) = Xn − γ∂ŜXT
n (ŜXn − ŜY ) ,

(9)
where∂ŜXn is the Jacobian of̂SX with respect toX , eval-
uated atXn, andγ is a gradient step, which is kept fixed at a
sufficiently small value for the sake of simplicity.

The minimization of (8) is a non-linear least squares prob-
lem. The Levenberg-Marquardt Algorithm (LMA) [12] sig-
nificantly accelerates the convergence. It replaces∂ŜXT

n in
(9) by the pseudoinverse

∂ŜX†
n = (∂ŜXT

n ∂ŜXn)
−1∂ŜXT

n ,

which requires computing a pseudoinverse on each iteration.
The LMA typically requires20 iterations to reach a relative
approximation error of10−2 and40 to reach10−4, tested on
the collection of auditory textures described in next section.

4. NUMERICAL EXPERIMENTS

The audio scattering synthesis algorithm is tested on a dataset
of natural sound textures of McDermott and Simoncelli, avail-

able at [13]. It is a collection of15 sound textures, of7 sec-
onds each, sampled at20 KHz, thus includingN ∼ 105 sam-
ples. Our synthesis results are available at [14].

McDermott and Simoncelli [3] have constructed an au-
dio representation based on physiological models of audition.
Similarly to a scattering transform, it uses two constant-Q
filter banks. The first set ofcochleafilters consists in30
complex bandpass filters. Their envelop is first compressed
with a contractive nonlinearity and then redecomposed with
a new filter bank. They extract a collection of1500 coef-
ficients, comprising marginal moments of each cochlea en-
velop and their corresponding modulation bands, as well as
pairwise cross-correlations across different cochlea andmod-
ulation bands. In [15], the authors used a similar model to
produce a texture representation with about800 coefficients.

Scattering audio synthesis is performed with much fewer
coefficients. WithQ1 = 4 andN0 = 22 there areQ1 log2N/N0 =
46 first order moments,Q1Q2(log2N/N0)

2/2 = 266 sec-
ond order moments and2 · 46 = 92 frequency scattering
moments The total representation thus has402 coefficients.
Figure 1 shows the scalogram of signals recovered from
first order moments only or first and second order moments.
Reconstructions from first order moments are essentially re-
alizations of Gaussian processes. They do not capture the
transient and impulsive structures of the textures, such asthe
hammer or the applause. When second order scattering mo-
ments are included, the reconstructed textures contain these
highly non-Gaussian phenomena, which produce highly re-
alistic synthesized sounds. Scattering moments have the
ability to capture processes with irregular spectra, such as
the jackhammer, as well as wideband phenomena such as fire
cracking or applause.

Figure 2 shows that frequency scattering moments cor-
relate and thus synchronize the amplitude variations across
frequency bands. This is necessary to accurately reproduce
transient structures in textures. The synthesis of wide-band
textures can be further improved by combining scattering mo-
ments computed with dyadic wavelets havingQ1 = 1. It adds
120 coefficients which further constraint the frequency inter-
ferences created by time varying modulations.

5. CONCLUSIONS

A texture audio synthesis is performed with a gradient descent
algorithm which progressively adjusts the scattering moments
of a signal. Good perceptual reconstructions are obtained
with fewer coefficients than state of the art algorithms.

First and second order scattering moments are thus effi-
cient texture descriptors; on the one hand, they are sufficiently
informative so that realizations with similar coefficientshave
good perceptual similarity. On the other hand, they are con-
sistent: realizations of the same process (hence perceptually
similar) have similar scattering representations, as opposed to
high order moments.
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Fig. 1. Each image the scalogram of an audio recording: time along the horizontal axis and log-frequency up to10KHz along
the vertical axis. Left column: original audio textures from [13]. Middle column: Reconstruction from 1st order time scattering
moments Right column: reconstruction from 1st and 2nd ordertime scattering moments. The sounds are produced (from to to
bottom) by jackhammer, applause, wind, helicopter, sparrows, train, rusting paper.
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Fig. 2. Impact of frequency scattering moments. Left column: original signals. Middle column: synthesis from first and second
order time scattering moments. Right column: synthesis obtained by adding frequency scattering moments. Observe how
without frequency scattering, the subbands tend to decorrelate, which prevents synthesizing impulsive phenomena. The sounds
are produced by a helicopter and rusting paper. More examples available atcims.nyu.edu/∼bruna.
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