GENIE3 (GEne Network Inference with Ensemble of trees)

Notes for Dennis:

· I’m not sure what to call the nodes in the tree that differentiate the decisions (what I want to call nodes) from the remaining dataset (what kind of look like nodes when I draw the tree).  Any ideas as to what language I should use? How about “decision points”?
· Tables only appear blue because of track changes.  They should have no fill. 

GENIE3 is an algorithm that uses an ensemble of regression trees to infer networks from multifactorial data.  Multifactorial data is created by perturbing some or all of the genes in a dataset (e.g. by providing a nutrient) and then taking a measurement after the organism has reached steady state. GENIE3 was the best performer in the DREAM4 In Silico Multifactorial Challenge.
When to use it:


GENIE3 is the preferred method for multifactorial data, though it can also be used with any other kind of steady-state data.

What it does:


The GENIE3 algorithm operates on expression data where each gene’s expression has been normalized to unit variance. The algorithms works in three steps: First it creates an ensemble of regression trees for each gene in the network. Next it ranks the possible regulators from each regression tree.  Finally, it ranks the inferred edges overall.

Step 1: Regression Trees


GENIE3 creates a regression tree for each gene \[g] in the dataset. Regression trees recursively split the dataset, which starts off as the expression values of every gene in every experiment. The nodes of the regression tree will split the dataset based on values of genes other than \[g]. To avoid ambiguity with the term node in the final result, we will call the regression tree nodes “decision points”.  Each decision point splits the dataset into two sub-datasets such that the sub-datasets minimize the variance in the output variable’s expression values.  The split is based on a single gene \[x] other than \[g] and a threshold value for \[x].  We then look at \[x]’s expression value in each experiment: if the expression value of \[x] in the experiment is above the threshold, the experiment goes into one group.  If the expression value is below the threshold, the expression goes into the other group.  Exactly how to choose the split is discussed later.  This process is continued recursively on the sub-datasets until no more splits can be made.


As an example, consider the following table:

	
	Genes

	Experiments
	
	G1
	G2
	G3
	Output Variable

	
	E1
	0.4
	0.8
	0.4
	0.5

	
	E2
	0.3
	0.2
	0.3
	0.9

	
	E3
	0.5
	0.3
	0.7
	0.8



We want to split the experiments into two groups that minimize the variance of the output variable’s expression values.  We can see that the ideal split is to have experiment E1 alone in a group, and E2 and E3 in the other group.  To do this, we only have one candidate: G2.  Since G2’s value in E1 can be cleanly split from its value in E2 and E3, we can select 0.5 as a threshold (as it is between G2’s E1 and E3 values).  Any values above 0.5 go to group 1, and any values less than or equal to 0.5 go to group 2.
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Figure XXX Caption: The tree after the first split.  The top circle represents the entire dataset.  The rectangle represents the decision node, containing the criteria of the split.  The child circles contain their respective experiments after the split.
	
	Genes

	
	
	G1
	G2
	G3
	Output Variable

	Group 1
	E1
	0.4
	0.8
	0.4
	0.5

	Group 2
	E2
	0.3
	0.2
	0.3
	0.9

	
	E3
	0.5
	0.3
	0.7
	0.8



When G2’s expression value is above 0.5, the output variable has low expression values.  When G2’s value is below 0.5, the output variable has high expression values.  Thus, we have identified a potentially casual edge (that G2 has a repressive effect on the output variable).

Step 2: Selecting the split using Random Forests


In order to find the split that minimizes the variance of the subsets of the output variable, Random Forests \cite{Breiman:2001wf} are used.  Random Forests use bootstrapping and random feature selection to reduce variance across the dataset by averaging predictions.  For each tree in a Random Forest, a bootstrap training set of about 2/3 the size of the original dataset is created by random sampling of the set of experiments with replacement.  The tree is then built by taking \[K] random splits for each decision node.  From the Random Forest literature, \[K] is usually defined as \[K=\sqrt{p-1}] or \[K={p-1}] where \[p] is the number of potential regulators (e.g. transcription factors) if known. The decision split is the randomly chosen split that most reduces the variance of the output varaible’s expression values.


An importance score is then calculated for each decision point in the tree:

\begin{equation}


I(N) = #SVar(S) - #S_tVar(S_t) - #S_fVar(S_f)

\end{equation}

where \[N] is the current decision point being evaluated, \[S] is the subset of experiments that are below decision point \[N] in the tree, \[S_t] and \[S_f] are the subsets of experiments on the true and false branches of decision point \[N], respectively, \[Var(.)] is the variance of the output variable in a subset, and \[#] denotes the number of experiments in its associated subset. This importance score is a measure of how much variance is explained by splitting the dataset on the decision point’s gene and threshold.  Intuitively, it can be read as “how much is the variance of the dataset at decision point N reduced by subtracting out the variance of each of the subsets, weighted by the number of experiments in each set?”  If the score is high, than that means that the variance is substantially reduced and this gene might regulate the output variable (as in the example shown above from step 1).  If the score is low, then the split did not reduce much variance, and this gene probably does not regulate the output variable. 

Step 3: Ranking possible regulators from each tree


Once a tree for a gene \[g] is created, we can rank the influence of every other gene on \[g].  A score for a potential regulator gene \[g’] is calculated by summing all of the importance scores from the nodes where \[g’] was selected for splitting.  Genes that are never selected for splitting are given scores of 0.  We can then rank the scores to determine which genes \[g’] were most important for regulating gene \[g].
Step 4: Ranking the inferred edges


In \cite{HuynhThu:2010uh}, 1000 Random Forests are created.  Importance scores are generated for each tree in each forest, giving a list of potential regulators for each tree.  The trees belonging to each gene are then grouped together, and the importance scores for potential regulators are then averaged together.  These averaged scores can then be used to rank potential regulators for each gene. [Jesse: I don’t think you can show an example in this case because you would need too much data, but maybe you can refer to a small data set and show how to run this on that data set.]
Parameters: 
	Parameter Name
	What it does
	Default value

	\[K]
	Number of splits to test per node
	\cite{HuynhThu:2010uh} uses \[\sqrt{p-1}] where \[p] is the number of transcription factors (if known), otherwise \[N-1].


Junk text (can be dropped)
A regression tree  recursively performs a binary split of the dataset. The goal of each binary split is to minimize \[g]’s variance in each of the resulting subsets.  The cost function for this regression is the standard sum of squares error:

\begin{equation}


SSE^j = \sum^N_{k=1} (x^j_k - f_j(X_k^{-j}))^2

\end{equation}

where \[k] is the current experiment, \[j] is the gene whose tree is being built, \[x^j_k] is gene \[j]’s expression value in experiment \[k], and \[X_k^{-j}] are expression values for experiment \[k], with gene \[j]’s value removed. [Jesse: you need to give an example with simple artificial data]


[Jesse: this paragraph is very mysterious to me. You give no criterion to tell the reader which properties f_j should have. Let’s discuss after lunch on Thursday (tomorrow)] A regression tree finds the function \[f_j] by performing a series of binary splits on the dataset \[X^{-j}].  Each split is chosen such that the variance of the corresponding subsets in the output variable \[x^j] is mrinimized. No assumptions are made about the linearity or nonlinearity of the function \[f_j]. At each split, the decision tree asks the question “is the expression value for this gene above a threshold?” where the experiments that contain the gene above a given threshold go to one side of the decision tree, and the experiments that contain the gene below the threshold go to the other side.  The threshold is determined at runtime.  This process is then repeated for each of the subsets, recursing down the tree until we reach leaf nodes of single experiments.

