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Problem Framing

 Often, we find that relativity simple problems in one dimension become extremely difficult in higher 

dimensional spaces. Richard Bellman called this the “curse of  dimensionality” which describes the problem 

caused by the exponential increase in volume associated with adding extra dimensions to a (mathematical) 

space.

 For example, given one-dimensional array (A) of  numbers- imagine we are given the computational task of  

finding the contiguous subarray with maximum sum. As in

array A consists of  the sequence of  values −2, 1, −3, 4, −1, 2, 1, −5, 4. 

Then the contiguous subarray with the largest sum is 

−2, 1, −3, 4, −1, 2, 1, −5, 4

which  sums to 6.

 In 1984, Jay Kadane of  Carnegie-Mellon developed a linear time solution to this one dimensional problem 

using a simple example of  dynamic programming.

 But, assume we increase the dimensionality, and ask the following: given a table  M, compute the maximum 

sum of  column F using boundaries of  A,B or A&B. For example 



Problem Framing

given a table  M, compute the maximum sum of  column F using boundaries of  A,B or A&B

Table M 

A B F 

1 2 -2 

2 2 1 

1 3 -3 

3 1 4 

5 2 -1 

3 3 2 

3 1 1 

1 2 -5 

4 3 4 

 



Problem Framing

Sample Boundary Condition (not optimal):

A >=2, A<=4, B<=2

Which Yields

And the result is the sum of  column F where there is an intersection of  the boundary conditions: this 

occurs at F[1;3;6] which is the sum of  (1;4;1) or 6.

A B F A>=2 A B F A<=4 A B F B<=2

1 2 -2 1 2 -2 X 1 2 -2 X

2 2 1 X 2 2 1 X 2 2 1 X

1 3 -3 1 3 -3 X 1 3 -3

3 1 4 X 3 1 4 X 3 1 4 X

5 2 -1 X 5 2 -1 5 2 -1 X

3 3 2 X 3 3 2 X 3 3 2

3 1 1 X 3 1 1 X 3 1 1 X

1 2 -5 1 2 -5 X 1 2 -5 X

4 3 4 X 4 3 4 X 4 3 4

A B F A>=2 A<=4 B<=2 Intersection

1 2 -2 X X

2 2 1 X X X X

1 3 -3 X

3 1 4 X X X X

5 2 -1 X X

3 3 2 X X

3 1 1 X X X X

1 2 -5 X X

4 3 4 X X



Problem Framing

 What makes this problem that much more difficult? Obviously the addition of  the columns raises the 

dimensionality, but the number of  distinct values for those columns raises it further. 

 Traditionally, we would say we have 2 dimensions (A and B) with 5 and 3 breakpoints respectively. In this 

example, were we to brute for the solution we would have 111 possible solutions. 

 If  we were to add another column, which had 5 breakpoints, the solutions could now include attributes A, B, 

A&B, B&C, A&C and A&B&C and each value set. The resulting solution space increases to 1791 possible 

solutions. Below is a table of  attributes (column) and values (assuming each attribute has the same number of  

values) and the size of  the search space. 
Values 
(Breakpoints)

Attributes 
(Dimensions) 2 4 6 8 10

1 3 10 21 36 55

2 9 100 441 1,296 3,025

3 27 1,000 9,261 46,656 166,375

4 81 10,000 194,481 1,679,616 9,150,625

5 243 100,000 4,084,101 60,466,176 503,284,375

6 729 1,000,000 85,766,121 2,176,782,336 27,680,640,625

7 2,187 10,000,000 1,801,088,541 78,364,164,096 1,522,435,234,375

8 6,561 100,000,000 37,822,859,361 2,821,109,907,456 83,733,937,890,625

9 19,683 1,000,000,000 794,280,046,581 101,559,956,668,416 4,605,366,583,984,370

10 59,049 10,000,000,000 16,679,880,978,201 3,656,158,440,062,980 253,295,162,119,141,000



Problem Framing

 A 4 value 9 dimensional problem (9 columns, each with 4 values) requires a search space of  1 billion. 

 On our system, using modern processors (multiple cores) we can perform these 1 billion queries in about 39 

seconds- or about 1 query per .04ms. The problem lends itself  well to parallelization (each query can run 

independent of  another) - and the number of  rows is not important (the problem’s running time is relegated 

to the search space- not the number of  rows). 

 However, even with these benefits, a 10 attribute, 10 value brute force calculation would require ~313.24 years 

to compute. 

 The search space can be compressed by “bucketing” values into ranges. For example if  the values are evenly 

distributed from 1-100, placing them in equal buckets in increments of  10 helps. Of  course, it helps to know 

the distribution of  the values to build the correct “buckets”. Statistics and heuristics coexist, even if  it’s an 

unhappy marriage.



Problem Framing

 Before we delve into the algorithm itself- it's important to ask: How well does this hypothetical problem 

relate to practical problems in trading signal development? 

 Almost directly. Consider a time series table T , in which each row represents a new market data update (called 

a tick). We run a back testing application which populates the column Return with the profit or loss resulting 

from taking a position at that exact time- given a set of  parameters (profit objective, stop limit and maximum 

holding time). For example

time Return

00:06.4 78

00:06.4 78

00:06.4 156

00:07.3 -312

00:07.4 -156

00:08.2 78

00:08.3 78

00:08.8 78

00:10.3 -156

00:13.0 -156

00:13.1 -312

00:13.6 -468

00:13.6 -468

00:13.7 312



Problem Framing

 We then add some attributes which explain the market at that moment, for example

 And we want to maximize the sum of  the returns using some boundary conditions on other variables. 

time market price Oil Price S&P Price USD/GBP Return

00:06.4 14 108 1403.4 0.58 78

00:06.4 13 116 1400.81 0.52 78

00:06.4 13 117 1408.86 0.51 156

00:07.3 13 106 1407.69 0.53 -312

00:07.4 15 111 1409.09 0.54 -156

00:08.2 12 114 1406.65 0.57 78

00:08.3 14 109 1402.31 0.55 78

00:08.8 13 107 1406.2 0.5 78

00:10.3 12 120 1409.18 0.57 -156

00:13.0 13 118 1408.52 0.6 -156

00:13.1 11 101 1408.84 0.52 -312

00:13.6 11 113 1403.47 0.54 -468

00:13.6 11 107 1410.93 0.59 -468

00:13.7 10 116 1409.81 0.53 312



Problem Framing

 Of  course, we will make this more complicated: 

we have many more attributes (1,000+) and 

values in the 10-50 range. 

 In practice, our search spaces are so large, they 

yield a number whose value has no practical 

relevance. 

 Compounding this initial space, is the concept 

of  parameters (profit objective, stop limit and 

time limit). The parameters directly affect the 

Returns column- meaning a trade in which the 

user risks 1$, attempts to make 1$ and holds the 

position for no more than 10 minutes has an 

entirely different Returns vector than the same 

trade which risks 2$, attempts to profit 3$ and 

holds for 30 minutes. In reality we work on 

"cubes", not tables- where each axis is a 

combination of  profit objective, stop limit and 

time limit.

A B C Returns

78
-156
312
156
78
78

-156
0

-156
-312
78
0

Parameter set 1

Parameter set 2

Parameter set 3



Genetic and Memetic 

Algorithms
 A memetic algorithm uses a population of  agents to seek optimal (or at least very good) solutions to a problem, 

using a given fitness function which ranks the goodness of  the solutions. The agents seek candidate solutions 

throughout the fitness landscape (search space), using knowledge about the problem to improve the solutions, and 

cooperating and competing among themselves. Cooperation means that cooperating agents give rise to new agents 

which share characteristics from them, while competition is achieved by selection pressure over the population of  

agents. Although this description sounds very much in the manner of  conventional genetic algorithms, memetic 

algorithms take a qualitatively different approach

 We run a memetic algorithm: which is to say we have multiple search methods (traditional Genetic Algorithm, Tabu 

style, Greedy, SA …) and multiple fitness goals. Each search method attempts to build a solution (or collection of  

solutions), and at the end of  each "generation" or iteration, it updates a master  table of  all solutions and their 

fitness thus far. 

 Although the algorithms utilize their own method, at the start of  each generation they integrate the results from 

their peers. For example, an elite style selection algorithm (which combines the best rules from the base) would be 

able to use those rules generated by a random selection search method. Further to the point, some search systems 

use different fitness methods entirely. For example, a hybrid genetic algorithm/greedy algorithm (greed1) might 

score a trading signal based upon the total return (high return). A second instance of  that algorithm (greed2) might 

score a trading signal based upon the variance of  the returns (lower risk). At the end of  each generation, every 

fitness score is computed- so greed1 will (and often does) select rules generated by greed2- even though they are 

optimizing towards different goals. Then end goal being to develop high return, low risk signals.



Genetic and Memetic 

Algorithms
 The basic search “framework” is highly adaptive. 

Define Search 
Methods for Given 

Goals

Define Fitness Goals

Structure Data

Bucketing, 
Filtering, 
Variable 
Selection

Maximize 
Return

Greedy GA Recessive GA

Minimize 
Variance of 

Returns

Greedy GA Recessive GA



Genetic and Memetic 

Algorithms
 The next trick is to efficiently allocate resources across the search methods.

 This “meta heuristic” allows for more sucessful search methods to get larger pools of  resources (population sizes).

 This also helps solve some of  the issues with GA’s, namely plateaus. 

 Lastly, this allows one to add search methods with minimal impact (unsucessful methods are eventually weeded out).

 Convergence is often faster intra method, but some methods directly compete and allow for better mixing.



Using GA’s to build multiple 

specific solutions
 This is the Fisherman’s Net version of  data mining

 We build a large collection of  specific rules, and match online data to those rules.

 Often the result is a black box, meaning the rule base is so complicated we can’t fully describe it

 This works well in certain problems:

 Micro market trading signal development

 Market data filtering (detecting illquidity)

 It also helps in factor analysis. One can look at the attributes used by the population and determine those attributes 

which are the most descriptive



Using GA’s to build general 

solutions
 This is the Fisherman’s Pole version of  data mining

 We use a GA to fit the data to a predefined formalism

 This is helpful in “big picture” models

 Risk Management and Betting Systems

 “Mark to Model” situations

 Longer term estimations of value

 An example is using the framework as an ODE solver., for example an S-System

 An enormous variety of nonlinear differential equations and functions have been recast exactly in the canonical form called 

an S-system, which was developed for systems modeling in computational biology (see. M. Savageau and E. Voit). An S-

system follows the form:

 Which becomes a problem of parameter optimization. The end result is a complex dynamical system which describes a 

given set of attributes (e.g. a portfolio of assets, a portfolio of signals, a collection of attributes ….)

 



Questions


