
AUTOMAGICAL:
GENETIC ALGORITHMS IN FINANCE

Jacob Loveless

Overview

 The importance of framing the problem

Maximum Sum Subarray example

Genetic Algorithms and Memetic Algorithms

 Using GA’s to build multiple specific models

 Using GA’s to build a general model

Problem Framing

 Often, we find that relativity simple problems in one dimension become extremely difficult in higher

dimensional spaces. Richard Bellman called this the “curse of dimensionality” which describes the problem

caused by the exponential increase in volume associated with adding extra dimensions to a (mathematical)

space.

 For example, given one-dimensional array (A) of numbers- imagine we are given the computational task of

finding the contiguous subarray with maximum sum. As in

array A consists of the sequence of values −2, 1, −3, 4, −1, 2, 1, −5, 4.

Then the contiguous subarray with the largest sum is

−2, 1, −3, 4, −1, 2, 1, −5, 4

which sums to 6.

 In 1984, Jay Kadane of Carnegie-Mellon developed a linear time solution to this one dimensional problem

using a simple example of dynamic programming.

 But, assume we increase the dimensionality, and ask the following: given a table M, compute the maximum

sum of column F using boundaries of A,B or A&B. For example

Problem Framing

given a table M, compute the maximum sum of column F using boundaries of A,B or A&B

Table M

A B F

1 2 -2

2 2 1

1 3 -3

3 1 4

5 2 -1

3 3 2

3 1 1

1 2 -5

4 3 4

Problem Framing

Sample Boundary Condition (not optimal):

A >=2, A<=4, B<=2

Which Yields

And the result is the sum of column F where there is an intersection of the boundary conditions: this

occurs at F[1;3;6] which is the sum of (1;4;1) or 6.

A B F A>=2 A B F A<=4 A B F B<=2

1 2 -2 1 2 -2 X 1 2 -2 X

2 2 1 X 2 2 1 X 2 2 1 X

1 3 -3 1 3 -3 X 1 3 -3

3 1 4 X 3 1 4 X 3 1 4 X

5 2 -1 X 5 2 -1 5 2 -1 X

3 3 2 X 3 3 2 X 3 3 2

3 1 1 X 3 1 1 X 3 1 1 X

1 2 -5 1 2 -5 X 1 2 -5 X

4 3 4 X 4 3 4 X 4 3 4

A B F A>=2 A<=4 B<=2 Intersection

1 2 -2 X X

2 2 1 X X X X

1 3 -3 X

3 1 4 X X X X

5 2 -1 X X

3 3 2 X X

3 1 1 X X X X

1 2 -5 X X

4 3 4 X X

Problem Framing

 What makes this problem that much more difficult? Obviously the addition of the columns raises the

dimensionality, but the number of distinct values for those columns raises it further.

 Traditionally, we would say we have 2 dimensions (A and B) with 5 and 3 breakpoints respectively. In this

example, were we to brute for the solution we would have 111 possible solutions.

 If we were to add another column, which had 5 breakpoints, the solutions could now include attributes A, B,

A&B, B&C, A&C and A&B&C and each value set. The resulting solution space increases to 1791 possible

solutions. Below is a table of attributes (column) and values (assuming each attribute has the same number of

values) and the size of the search space.
Values
(Breakpoints)

Attributes
(Dimensions) 2 4 6 8 10

1 3 10 21 36 55

2 9 100 441 1,296 3,025

3 27 1,000 9,261 46,656 166,375

4 81 10,000 194,481 1,679,616 9,150,625

5 243 100,000 4,084,101 60,466,176 503,284,375

6 729 1,000,000 85,766,121 2,176,782,336 27,680,640,625

7 2,187 10,000,000 1,801,088,541 78,364,164,096 1,522,435,234,375

8 6,561 100,000,000 37,822,859,361 2,821,109,907,456 83,733,937,890,625

9 19,683 1,000,000,000 794,280,046,581 101,559,956,668,416 4,605,366,583,984,370

10 59,049 10,000,000,000 16,679,880,978,201 3,656,158,440,062,980 253,295,162,119,141,000

Problem Framing

 A 4 value 9 dimensional problem (9 columns, each with 4 values) requires a search space of 1 billion.

 On our system, using modern processors (multiple cores) we can perform these 1 billion queries in about 39

seconds- or about 1 query per .04ms. The problem lends itself well to parallelization (each query can run

independent of another) - and the number of rows is not important (the problem’s running time is relegated

to the search space- not the number of rows).

 However, even with these benefits, a 10 attribute, 10 value brute force calculation would require ~313.24 years

to compute.

 The search space can be compressed by “bucketing” values into ranges. For example if the values are evenly

distributed from 1-100, placing them in equal buckets in increments of 10 helps. Of course, it helps to know

the distribution of the values to build the correct “buckets”. Statistics and heuristics coexist, even if it’s an

unhappy marriage.

Problem Framing

 Before we delve into the algorithm itself- it's important to ask: How well does this hypothetical problem

relate to practical problems in trading signal development?

 Almost directly. Consider a time series table T , in which each row represents a new market data update (called

a tick). We run a back testing application which populates the column Return with the profit or loss resulting

from taking a position at that exact time- given a set of parameters (profit objective, stop limit and maximum

holding time). For example

time Return

00:06.4 78

00:06.4 78

00:06.4 156

00:07.3 -312

00:07.4 -156

00:08.2 78

00:08.3 78

00:08.8 78

00:10.3 -156

00:13.0 -156

00:13.1 -312

00:13.6 -468

00:13.6 -468

00:13.7 312

Problem Framing

 We then add some attributes which explain the market at that moment, for example

 And we want to maximize the sum of the returns using some boundary conditions on other variables.

time market price Oil Price S&P Price USD/GBP Return

00:06.4 14 108 1403.4 0.58 78

00:06.4 13 116 1400.81 0.52 78

00:06.4 13 117 1408.86 0.51 156

00:07.3 13 106 1407.69 0.53 -312

00:07.4 15 111 1409.09 0.54 -156

00:08.2 12 114 1406.65 0.57 78

00:08.3 14 109 1402.31 0.55 78

00:08.8 13 107 1406.2 0.5 78

00:10.3 12 120 1409.18 0.57 -156

00:13.0 13 118 1408.52 0.6 -156

00:13.1 11 101 1408.84 0.52 -312

00:13.6 11 113 1403.47 0.54 -468

00:13.6 11 107 1410.93 0.59 -468

00:13.7 10 116 1409.81 0.53 312

Problem Framing

 Of course, we will make this more complicated:

we have many more attributes (1,000+) and

values in the 10-50 range.

 In practice, our search spaces are so large, they

yield a number whose value has no practical

relevance.

 Compounding this initial space, is the concept

of parameters (profit objective, stop limit and

time limit). The parameters directly affect the

Returns column- meaning a trade in which the

user risks 1$, attempts to make 1$ and holds the

position for no more than 10 minutes has an

entirely different Returns vector than the same

trade which risks 2$, attempts to profit 3$ and

holds for 30 minutes. In reality we work on

"cubes", not tables- where each axis is a

combination of profit objective, stop limit and

time limit.

A B C Returns

78
-156
312
156
78
78

-156
0

-156
-312
78
0

Parameter set 1

Parameter set 2

Parameter set 3

Genetic and Memetic

Algorithms
 A memetic algorithm uses a population of agents to seek optimal (or at least very good) solutions to a problem,

using a given fitness function which ranks the goodness of the solutions. The agents seek candidate solutions

throughout the fitness landscape (search space), using knowledge about the problem to improve the solutions, and

cooperating and competing among themselves. Cooperation means that cooperating agents give rise to new agents

which share characteristics from them, while competition is achieved by selection pressure over the population of

agents. Although this description sounds very much in the manner of conventional genetic algorithms, memetic

algorithms take a qualitatively different approach

 We run a memetic algorithm: which is to say we have multiple search methods (traditional Genetic Algorithm, Tabu

style, Greedy, SA …) and multiple fitness goals. Each search method attempts to build a solution (or collection of

solutions), and at the end of each "generation" or iteration, it updates a master table of all solutions and their

fitness thus far.

 Although the algorithms utilize their own method, at the start of each generation they integrate the results from

their peers. For example, an elite style selection algorithm (which combines the best rules from the base) would be

able to use those rules generated by a random selection search method. Further to the point, some search systems

use different fitness methods entirely. For example, a hybrid genetic algorithm/greedy algorithm (greed1) might

score a trading signal based upon the total return (high return). A second instance of that algorithm (greed2) might

score a trading signal based upon the variance of the returns (lower risk). At the end of each generation, every

fitness score is computed- so greed1 will (and often does) select rules generated by greed2- even though they are

optimizing towards different goals. Then end goal being to develop high return, low risk signals.

Genetic and Memetic

Algorithms
 The basic search “framework” is highly adaptive.

Define Search
Methods for Given

Goals

Define Fitness Goals

Structure Data

Bucketing,
Filtering,
Variable
Selection

Maximize
Return

Greedy GA Recessive GA

Minimize
Variance of

Returns

Greedy GA Recessive GA

Genetic and Memetic

Algorithms
 The next trick is to efficiently allocate resources across the search methods.

 This “meta heuristic” allows for more sucessful search methods to get larger pools of resources (population sizes).

 This also helps solve some of the issues with GA’s, namely plateaus.

 Lastly, this allows one to add search methods with minimal impact (unsucessful methods are eventually weeded out).

 Convergence is often faster intra method, but some methods directly compete and allow for better mixing.

Using GA’s to build multiple

specific solutions
 This is the Fisherman’s Net version of data mining

 We build a large collection of specific rules, and match online data to those rules.

 Often the result is a black box, meaning the rule base is so complicated we can’t fully describe it

 This works well in certain problems:

 Micro market trading signal development

 Market data filtering (detecting illquidity)

 It also helps in factor analysis. One can look at the attributes used by the population and determine those attributes

which are the most descriptive

Using GA’s to build general

solutions
 This is the Fisherman’s Pole version of data mining

 We use a GA to fit the data to a predefined formalism

 This is helpful in “big picture” models

 Risk Management and Betting Systems

 “Mark to Model” situations

 Longer term estimations of value

 An example is using the framework as an ODE solver., for example an S-System

 An enormous variety of nonlinear differential equations and functions have been recast exactly in the canonical form called

an S-system, which was developed for systems modeling in computational biology (see. M. Savageau and E. Voit). An S-

system follows the form:

 Which becomes a problem of parameter optimization. The end result is a complex dynamical system which describes a

given set of attributes (e.g. a portfolio of assets, a portfolio of signals, a collection of attributes ….)

Questions

