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Abstract Many scientific applications entail solving the subgraph isomor-
phism problem, i.e. given an input pattern graph, find all the subgraphs of a
(usually much larger) target graph that are structurally equivalent to that in-
put. Because subgraph isomorphism is NP-complete, methods to solve it have
to use heuristics. This work evaluates subgraph isomorphism methods to as-
sess their computational behavior on a wide range of synthetic and real graphs.
Surprisingly, our experiments show that, among the leading algorithms, certain
heuristics based only on pattern graphs are the most efficient.

Keywords Subgraph isomorphism, Networks biology, Search strategy

1 Introduction

In the last decade, technological advances have led to the acquisition of new
biological and chemical data about genes, proteins, small molecules and regu-
latory elements, as well as their interactions within the cell.

International research projects that have accumulated genome-level data
include the 1000 Genomes 1, Encyclopedia of DNA Elements 2, and The Can-
cer Genome Atlas (TGCA) 3.
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Pairwise interactions between molecules are usually encoded by structures
called networks, mathematically known as directed graphs. Such networks con-
sist of nodes that represent molecules and edges that represent their interac-
tions. Examples of biological networks include protein-protein interaction net-
works [33,31], genetic regulatory networks [17,19,34,13], metabolic networks
[50,46,47] and disease correlation networks [25,22,26]. Moreover, protein and
RNA structures also have spatial representations whose contact information
can be encoded as graphs. For example, contact maps are networks that rep-
resent protein residues and the cut-off distances among them starting from a
three dimensional protein structure [49,24].
Many biomedical data repositories use networks as the underlying data struc-
ture [2,11,12,9,51] and several algorithms have been proposed to analyze bi-
ological networks [5,53,15,4,21]. For example, network analysis can entail (i)
finding network motifs [38,43], i.e. recurrent and statistically over-represented
sub-networks on small and large networks [44], (ii) detecting active parts of
molecules or regulatory circuits [45,42,32], (iii) finding ligands that bind to a
protein [29] and (iv) computing similarity between networks, molecules and
proteins [39,36,40,37].
All such forms of network analysis entail solving the subgraph isomorphism
problem, which consists of finding all the possible subgraphs of a reference
graph (called the target) that are structurally equivalent to another graph
(called the pattern)[7].

Since subgraph isomorphism is an NP-complete problem [41] and the size
of target networks generated by data-gathering projects is growing faster and
faster, we need heuristic strategies in order to achieve scalability for large net-
works [20,6]. These heuristics typically exploit properties of the pattern and
the target networks to constrain the search space and reduce the number of
subgraph isomorphism calls. The types and the order of constraints to apply
largely determine the performance of a subgraph isomorphism algorithm. Sev-
eral solutions have been proposed to solve the subgraph isomorphism problem
in polynomial time when dealing with graphs that have constraints in size or
topology (e.g. graphs of bounded tree-width [1] or graphs of bounded feed-
back vertex set number [27]). In [28], the authors presented a comparison of
general subgraph matching algorithms including VF2[14] and Ullmann[52] on
small e medium graphs having from 200 nodes to 5000 nodes. Currently, the
most scalable graph searching algorithms applicable in any kind of graphs are
VF3 [8,7,10], RI[8,7], and an extension of RI called RI-DS[8]. These methods
have been tested on graphs up to 10,000 vertices [10]. In the current work,
we have generalized these tests to a wider variety of graphs to discover gener-
ally good algorithmic techniques. We used 1,008 targets created according to
the Erdös-Rényi, Barabási, Forest Fire models. The experiments also change
graph properties such as number of nodes, edge density, and numbers of labels.
Altogether, we tested 150,000 different patterns. A set of topologies that are
observed in nature in protein-protein interaction (PPI) networks. Vertices of
such topologies represent proteins and edges report experimentally validated
interactions between proteins. PPI networks of several living species have been
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Symbol Definition Description
G (V,E) a generic graph

V {v1, v2, ..., v|V |} the ordered vertex set of a graph
E ⊆ V × V the set of edges of a graph
N(v) {u ∈ V : (v, u) ∈ E} the neighborhood of a vertex v

Nout(v) {u ∈ V :
−−−→
(v, u) ∈ E} the outgoing neighborhood of a vertex v

Nin(v) {u ∈ V :
−−−→
(u, v) ∈ E} the incoming neighborhood of a vertex v

A {a1, a2, ..., ak} a set of labels
G (V,E, α, β) a labeled graph
α α : V 7→ A a function which maps vertices to their labels
β β : E 7→ A a function which maps edges to their labels
Gp (Vp, Ep, αp, βp) a labeled pattern graph
Gt (Vt, Et, αt, βt) a labeled target graph

vp {v1p, v2p, ..., v
|Vp|
p } a rearrangement of the ordering of the vertices in Vp

vp[i] {v1p, v2p, ..., vip} the first i element of vp

vt {v1t , v2t , ..., v
|Vt|
t } a rearrangement of the ordering of the vertices in Vt

(vip, v
n
t ) for vip ∈ vp, vnt ∈ vt a mapping of vip to vnt , called matching pair

Table 1 List of mathematical symbols used.

evaluated with real and synthetic labeling. We found that algorithms that use
only heuristics on patterns perform better than those using heuristics on target
graphs, especially on large graphs. Simpler can be better.

2 Methods

2.1 Basic notions and problem definition

In what follows we provide basic definitions of labeled graphs and subgraph
isomorphism. A labeled graph is defined as follows. The meaning of mathe-
matical symbols used through the paper are reported in Table 1.

Definition 1 (Labeled graph) A labeled graph G = (V,E, α, β) is a quadru-
ple, where V is a set of vertices. α : V → A assigns a single label to each vertex.
E ⊂ V × V is a set of directed edges between pairs of vertices and β : E → A
assigns a single label to each edge.

A graph is undirected if the existence of an edge from v to v′ implies the
existence of an edge from v′ to v (which collectively are represented by an
undirected arc between them), otherwise the graph is directed. If (u, v) ∈ E
we say that v is a neighbor of u. Given a vertex v ∈ V , we denote with N(v) the
set of neighbors (i.e. the neighborhood) of node v. The number of neighbors
of v, |N(v)|, is the degree of v. For directed graphs, we distinguish between
the in-neighborhood Nin(v) = {u ∈ V : (u, v) ∈ E} and the out-neighborhood
Nout(v) = {u ∈ V : (v, u) ∈ E}. |Nin(v)| and |Nout(v) are the in-degree and
the out-degree of v, respectively.

In an undirected graph, the neighborhood of a set of vertices U , denoted
N(U), is the set of vertices that are neighbors of at least one vertex in U .
Similar definitions hold for Nin(U) and Nout(U) in the directed case.
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The density of a graph is defined as |E|/|V |2, where |V | and |E| are the
cardinalities of the two sets. Dense graphs are those for which the density ap-
proaches the square of the number of vertices, otherwise, graphs are considered
sparse.

Given a target graph and a normally much smaller pattern graph, solving
the Subgraph Isomorphism problem (SubGI) informally means to find all sub-
graphs of the target that are topologically equal to the pattern. The Subgraph
Isomorphism problem can be defined formally as follows:

Definition 2 (Subgraph Isomorphism problem) Given a target graph Gt =
(Vt, Et, αt, βt) and a pattern graph Gp = (Vp, Ep, αp, βp), the Subgraph Iso-
morphism (SubGI) problem is to find all injective functions fi : Vp → Vi, with
Vi ⊆ Vt and |Vi| = |Vp| mapping each vertex of Vp to a unique vertex of Vi
and that satisfy the following conditions:

1. ∀v ∈ Vp, fi(v) ∈ Vt
2. ∀v ∈ Vp ⇒ αp(v) = αt(fi(v));
3. ∀u, v ∈ Vp : u 6= v ⇒ fi(u) 6= fi(v);
4. ∀(u, v) ∈ Ep ⇒ (fi(u), fi(v)) ∈ Et;
5. ∀(u, v) ∈ Ep ⇒ βp(u, v) = βt(fi(u), fi(v)).

Functions fi is an injective mapping because the target graph may have
edges that are not present in the pattern graph.

2.2 Heuristics for the SubGI problem

Subgraph isomorphism methods commonly uses State-space Search Tree ([8,
10]) and Constraint Programming techniques([35,52,48]).

State-space Search Tree paradigm. The State-space Search Tree (SST) paradigm,
for each pattern graph, creates a tree containing all possible mappings of the
pattern into the target graph.

Each path in the tree is a possible occurrence of the pattern in the target.
Therefore, all paths in the tree have height equal to |Vp|, and each node maps
a vertex of the pattern to a vertex in the target. Paths where all nodes meet
the subgraph isomorphism constraints represent the matchings. Constraints
are checked at each node in order to backtrack as soon as possible and to
avoid re-traversing failing branches.

The ordering of pattern nodes may be the same in all paths, in which case
the search strategy is said to follow a static variable ordering. Alternatively
the ordering can differ on different paths, in which case the strategy is said to
follow a dynamic variable ordering. Other aspects that vary in algorithms are
whether the search strategy takes into account properties only from the target
(target-dependent) [23], only from the pattern (pattern-dependent) [8], or both
[10]. Moreover, methods may prune branches by looking at the values of the
variables in the present computation (called State-driven variable ordering [8,
10]), or at the domains of all variables (domain-driven ordering[23]) passing the
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subgraph isomorphism constraints. Any possible combination of these choices
may significantly influence the performance of the algorithms.

In the Constraint Programming (CP) approach, the SubGI problem is mod-
eled as a CP problem with a given set of variables, a set of possible values and
a set of constraints which may involve multiple variables. The goal is to find
assignments of values to each variable such that the constraints are satisfied.
In the case of the SubGI problem, variables correspond to the pattern vertices
and values correspond to the target vertices. Label compatibility is modeled
by unary constraints, while binary constraints encode edge relationships. Each
variable is assigned to a set of possible values, called a domain. The (CP)
approach is based on the pre-computation of compatibility domains for each
pattern vertex, i.e. all vertices in the target that can be matched according to
the constraints with the pattern vertex.

This approach can outperform other methods for certain target graphs.
However, it suffers from two main disadvantages. (i) The domain reduction
between steps of the search process is computationally expensive in terms of
running time. (ii) Domains take up a lot of memory.

2.3 Algorithms for the SubGI problem

State-of-the-art algorithms that use an State-Space Search Tree (SST) ap-
proach are VF3 [10], RI and RI-DS [7,8]. RI-DS is a modified version of RI
taking advantages of pre-computed domains to reduce computational efforts
during the matching phase.

VF3 uses a dynamic strategy. The order of the vertices may differ in dif-
ferent breaches of the search tree. The ordering of vertices is determined by
taking into account the potential of vertices to reduce the search space based
on current target and pattern features. Vertices with high degree in the pattern
and target are chosen early. At each state, the algorithm applies a look-ahead
evaluation on the nodes down the current branch. To reduce running costs,
the algorithm computes, in a processing phase, feasibility sets for the pattern
vertices. Such sets allow the prediction of failing candidate matches.

RI uses a static variable sorting that does not depend on the properties
on the target graph (it is target-independent). The order of the vertices of
the pattern is chosen by looking only at the characteristics of the pattern. RI
orders vertices based on a scoring function: vertices having high degree and
that are highly connected to vertices already present in the partial ordering
are assigned higher scores. Higher scoring nodes must satisfy most constraints,
so reduce the search space more effectively.

Formally, let vp[i] = (v1p, v
2
p, ..., v

i
p) be a partial ordering of i pattern ver-

tices, with i ≤ |Vp|. Let v ∈ N(vp[i]) be a vertex candidate to be included in
the order. We define three sets for v:

1. N1(v): set of neighbors of v that are included in the partial ordering;
2. N2(v): set of neighbors of v that are not included in the partial ordering

but are neighbors of at least one vertex in the partial ordering;
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3. N3(v): set of neighbors of v that are not in the partial ordering and are
not even neighbors of vertices in the partial ordering;

The variable ordering strategy of RI consists in comparing the cardinality of
these three sets lexicographically. Namely, given two candidate pattern vertices
u and v, u is preferred to v iff: (i) |N1(u)| > |N1(v)|; or, in the case of a tie in (i),
|N2(u)| > |N2(v)|; or in the case of a tie in (i) and (ii), (iii) |N3(u)| > |N3(v)|.
If u and v are tied according to all three criteria, one of the two vertices is
chosen arbitrarily.

Matching proceeds by comparing the nodes of the pattern graph with nodes
of the target graph during the traversal of the SST tree. If the subgraph
isomorphism conditions fail to be satisfied at some point during the traversal,
then RI backtracks (by cutting the corresponding branch and reducing the
search space).

During the search phase of RI, a matching pair (vip, v
n
t ) may be tested more

than once, if it belongs to several matchings. RI checks the label compatibility
each time the pair (vip, v

n
t ) is taken into account. Because this check operation

is relatively costly, the algorithm may suffer in terms of performance.
By contrast, RI-DS verifies the label compatibility just once and stores the

result in a compatibility domain map C. In RI-DS, vnt ∈ C[i] if αp(vip) = αt(v
n
t )

and |N(vip)| ≤ |N(vnt )|. In addition, before starting the searching process,
RI-DS applies an Arch Consistency (AC) reduction procedure. AC reduction
ensures that if two pattern vertices are connected, then each target vertex be-
longing to the compatibility domain of one of the two pattern vertices should
be connected with at least one vertex belonging to the compatibility domain of
the other pattern vertex. Formally, if two pattern vertices, vip and vjp, are con-
nected by an edge then vnt ∈ C[i] ⇐⇒ ∃vmt ∈ C[j] : (vnt , v

m
t ) ∈ Et, and vice

versa. AC reduction is applied sequentially to the domains of pattern vertices.
The procedure discards target vertices that do not verify this constraint. The
AC reduction is performed until no further changes are applied to domains.

3 Results

RI, RI-DS and VF3 have been implemented in C++. We used the source codes
of the algorithms kindly provided by the authors. Each graph is stored in a
text file in the form required by each algorithm which list the nodes and edges
with their corresponding labels. The target graphs were generated in the RI
format and converted with a script to obtain the dataset in VF3 format.

We have created a synthetic dataset having 1,008 target graphs to measure
the performance of RI, RI-DS and VF3 in different contexts. The dataset
holds target graphs of different sizes (from 200 to 20,000 number of target
vertices) and density (from sparse to very dense) with few and many labels,
according to the stochastic (Erdös-Rényi) and scale-free (Barabási and Forest-
Fire) models [16,3,30]. Erdös-Rényi graphs were produced by using the python
library networkx, while Barabási and Forest-Fire graph models were produced
by using the igraph library.
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species vertices edges avg. degree
Bos taurus 8,474 84,468 9.97
Caenorhabditis elegans 6,173 52,368 8.48
Danio rerio 5,720 51,464 9.00
Drosophila melanogaster 8,624 78,932 9.15
Homo sapiens 12,575 173,780 13.82
Mus musculus 9,781 104,322 10.67
Rattus norvegicus 8,763 79,864 9.11
Saccaromyces cerevisiae 6,136 332,458 54.18
Takifugu rubipres 5,872 54,154 9.22
Xenopus tropicalis 6,153 59,538 9.68

Table 2 Number of vertices, number of edges and average degree of the 10 evaluated PPI
networks.

Beside the synthetic benchmark, we also investigated the performances of
the algorithms on real biological graphs[6]. The networks represent systems
of physical interactions (expressed as edges) between proteins (represented by
vertices) that have been established for a given living species. Table 2 reports
for each species the number of vertices and edges of its protein-protein in-
teractions (PPI). Proteins are often unique to a given species, however they
may share functional behaviors that depend on the specific type of analysis
researchers want to perform. Those behaviors serve as labels. For our exper-
iments, vertices of PPI have been randomly labeled, by means of a uniform
distribution, as it has been done in previously studies [7,8].

To obtain the patterns given all a target graph, a random walk-based al-
gorithm traverses portions of that target graph to obtain substructures of
different size and density that will constitute the patterns. The extraction al-
gorithm starts from a vertex of the target graph and randomly selects one of
its neighbors, proceeding recursively to the required number of vertices. Sub-
sequently, edges not yet selected among the vertices of the obtained graph are
added to the graph to reach some desired density.

The machine used for the test was an Intel Core i7-7700 3.60GHz 8-core
CPU, 15 GB of RAM and Linux Ubuntu 17.04 64bit OS. The experiments
were performed sequentially, setting a 3 minutes timeout for each run.

Code and datasets are available at https://github.com/GiugnoLab/RI-synthds.

Comparisons on the Erdös-Rényi dataset.

G(n, p) is a random graph with N vertices where each pair of vertices v1
and v2 is connected with probability p, independently of any other pair. The
expected number of edges is E = pN(N − 1). The Erdös-Rényi dataset holds
464 targets graphs having 100, 200, 500, 1,000, 2,000, 5,000, 10,0000, 20,0000
vertices with labels ranging from 0.1% to 30% depending on the number of
vertices and with probability p: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.3, 0.4. Given these targets, up to 240 patterns are extracted for each target
with different number of vertices (4, 8, 16, 24, 32, 64, 128, 256) and with
three levels of pattern densities: sparse (0.1), medium dense (0.5), and dense
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(≈1). Figure 1 compares the execution times of RI, RI-DS and VF3 on the
Erdös-Rényi dataset.

In the Figure 1(a) the execution times are clustered according to the num-
ber of target vertices. Almost all RI and RI-DS execution times are better
than those of VF3 though a few outliers are close. The other three plots dis-
play the performance on target graphs having 10,000 vertices. As the number
of vertices and density parameter p increases, all algorithms take more time.
However, RI and RI-DS show less dependence on size and density of the target
graph. For example, for the maximum density value, VF3 triples its execution
time while RI and RS-DS are less affected. Figure 1(c) shows the execution
time of the three algorithms when the percentage of target labels changes.
The running time varies little for RI and RI-DS and has a lower average time
compared to VF3.

RI generally outperforms RI-DS in terms of average running time, however,
the tail of outliers reported for RI-DS tends to be closer to the average time.
A clear evidence of this behavior is shown in Figure 1(b) for grade of target
density equal to 0.2. The average running time of RI-DS is higher than the RI
performance, but the RI’s outliers may require substantially more time to be
solved w.r.t. the RI-DS’s outliers. Figure 5 (a) reports the number of instances
any approach has been registered as the faster solution. Results are grouped
by number of target vertices and reported as percentage of the total amount
of instances tested for a given group. RI and RI-DS have compatible running
times in many tests, thus we grouped such instances with the label RI/RI-DS.
The chart shows that on small target graph RI and RI-DS have comparable
running times, instead, on increasing the number of target vertices, RI in-
creases its performance. For this graph model, the additional computational
effort to pre-compute and filter domains may be on average not advantageous
for the RI-DS approach. However, the additional technique helps RI-DS to be
more stable than the simpler RI version.

Comparisons on the Barabási dataset.

Biological networks (transcription factor, protein-protein interaction etc)
can have a fractal-like topology, where some vertices, called hubs, have unusu-
ally high degree compared to the other vertices of the network. For example,
in a metabolic network, there are organic compounds like ATP or ADP, that
provides energy to drive many processes, constituting the hubs.

A model that has an observed stationary scale-free distribution using a
preferential attachment mechanism like Barabási best reproduces these fea-
tures. Such a network is constructed as follows. The network begins with m0

vertices. New nodes are added to the network one at a time with m(≤ m0)
connection to the vertices already in the network. The probability pi that an
edge of the new vertex connects to vertex i of the network depends monoton-
ically on the degree ki of i pi = ki∑

j
kj

; the sum is made over all pre-existing

nodes j. After t time steps, the generated network has N = t + m0 vertices
and m0 +mt edges.
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RI VF3RI-DS

(b)

(a)

(c)

Fig. 1 Comparison of RI (red), RI-DS (green) and VF3 (blue) on the Erdös-Rényi dataset.
Execution time is expressed in seconds. (a) Scalability of the algorithms depending on the
size of the target graph, the x-axis reports the number of vertices of the graph. (b) Scala-
bility of the algorithms as a function of the density of the target graph having 10k vertices.
Here, the x-axis the probability p of the Erdös-Rényi models. (c) Performance of the three
algorithms on the number of labels in the target graphs having 10,000 vertices. The hori-
zontal axis is the ratio of number of distinct labels compared to number of nodes expressed
as a percentage. Conclusion: RI or RI-DS take less time than VF3.

The Barabási dataset contains 384 target graphs and 28,800 pattern graphs.
Target graphs have 200, 500, 1,000, 5,000, 10,000, 20,000 vertices, different
number of outgoing edges (1, 2, 3, 6) and different numbers of labels with
respect to the number of vertices (0.1%, 1%, 10%). Pattern vertices have dif-
ferent numbers of vertices (4, 8, 24, 32, 64) and different density (0.1, 0.5, ≈1).
Times are grouped as in the Figure 1. Performances on this dataset are better
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than on Erdös-Rényi. Figure 2 shows running times based on a log scale. RI
and RI-DS are again faster than VF3 and less dependent on target feature
variability.

For this dataset, the performance of RI-DS varies more than it does when
applied to the Erdös-Rényi dataset, but RI-DS’s performance outliers are still
faster than RI anomalies. For the Erdös-Rényi dataset the three algorithms
show an increasing time depending on the target dimension (see Figure 1 (a)).
By contrast, performances of RI-DS tends to improve with increasing size
and density of target graphs (see Figure 2, (a) and (b)). The improvement
allows RI-DS to outperform RI on large and/or dense target graphs. Running
time figures report averages that have been computed by filtering out SubGI
instances for which at least one of the three approaches reached the 3 minutes
timeout. By contrast, figures 5 and 6 are drawn by taking into account all the
instances for which at least one approach has finished the execution within the
timeout. Figure 5 (b) shows that, over the Barabási dataset, RI-DS is able to
finish the largest number of instances within the timeout.

Comparisons on the Forest-Fire dataset. The Forest-Fire model is used to
generate graphs such that vertices to be linked by an edge are chosen according
to a geometric distribution with mean p/(1−p). The parameter p is also called
The forward burning probability. A total of 160 target graph were generated
according to the Forest-Fire model by varying number of vertices, forward
burning probability and number of distinct labels. Number of vertices ranged
from 200, 500, 1,000, 5,000, 10,000 to 20,000. The forward burning probability
ranged from 0.1, 0.3, 0.5, 0.7 to 0.9. The number of distinct labels was set
to 0.1%, 1% and 10%. 12,000 patterns were extracted by varying the number
of vertices (4,8,24,32 and 64). Tests regarding the Forest-Fire dataset show
similar trends to those of the Erdös-Rényi model. The main difference between
the two benchmarks is given by the improved performance of RI-DS that is
on average comparable to, and often better than, the RI running times. This
result is also confirmed by Figure 5 (c), which shows that RI and RI-DS have
a comparable percentage of instances for which both algorithms are registered
as the fastest solution.

Comparisons on the Protein-Protein Interaction (PPI) dataset. The bench-
mark consists of a total of 10 species-specific PPIs downloaded from the
STRING resource [18] and stored as undirected network. PPIs were randomly
labeled with 32, 64, 128, 256, 512, 1024 and 2028 distinct number of labels.
Additionally, an unlabeled version (with number of labels equal to 1) has been
included in the benchmark. Patterns of different densities were extracted from
the PPIs for several dimensions (number of edges vary from 4, 8, 16, 32, 64,
128 to 256). Results are shown in Figure 4. In section (a) of the figure, results
are grouped by species and exhibit a clear dependence from such a grouping
that reflect the differing densities of such structures. In fact, the Saccharomyces
cerevisiae is the PPI with the highest density and it corresponds to the highest
average running time of the RI and RI-DS approaches. The two approaches
outperform VF3 independently of how results are grouped, however. The RI
approach is generally better than RI-DS. Figure 5 (d) groups results by num-
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RI VF3RI-DS

(a)

(b)

(c)

Fig. 2 This graph compares execution time (in seconds). on the scale-free Barabási-Albetr
dataset. Here colors represent algorithms: RI (red), RI-DS (green) and VF3 (blue). Figure
(a) shows how the algorithms scale with the size of the target graph, where the x-axis gives
the number of vertices of the target graph, and the y-axis represents the time on a log
scale. Figure (b) shows how the algorithms scale with the density of the target graph for
targets having 10,000 vertices. The x-axis represents the density using the parameter m of
the Barabási-Albert models. Figure (c) shows how the algorithms scale with the number
of labels of the target graph for targets having 10,000 vertices. The x-axis represents the
number of distinct labels in the target graph as a percentage of the number of vertices.
Conclusion: RI and RI-DS take the least time in all scenarios.
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RI VF3RI-DS

(a)

(b)

(c)

Fig. 3 Comparison of RI (red), RI-DS (green) and VF3 (blue) on the Forest-Fire dataset.
Execution time is expressed in seconds. (a) Scalability of the algorithms depending on the
size of the target graph, the x-axis reports the number of vertices of the graph. (b) Scalability
of the algorithms as a function of the density of the target graph having 10k vertices. Here,
the x-axis the forward burning probability p of the Forest-Fire models. (c) Performance of
the three algorithms on the number of labels in the target graphs having 10,000 vertices. In
the third graph, the number of distinct labels in the target graph is expressed as a percentage
of the number of vertices. Conclusion: RI and RI-DS take the least time in all scenarios.

ber of target vertices, and Figure 6 groups results based on the number of
distinct target labels and number of pattern vertices. Figure 6 shows that RI
enjoys better performance than RI-DS especially for large patterns.
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RI VF3RI-DS

(c)

(b)

(a)

(c)

(d)

(b)

Fig. 4 Comparison of RI (red), RI-DS (green) and VF3 (blue) on the PPI dataset. Exe-
cution time is expressed in seconds. (a) Scalability of the algorithms on the various target
graphs (for each species, there is one topology but several labelings), the x-axis refers to
the reference organism of the graph. Times are expressed in log scale. (b) Performance of
compared algorithms on the number of labels in the target graphs. (c) Scalability of the
algorithms on the size of the pattern graph, the x-axis refers to the number of vertices of
the pattern graph. (d) Scalability of the algorithms on the density of the pattern graph.
Conclusion: RI and RI-DS take the least time in all scenarios.
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RI VF3RI-DS RI/RI-DS

(a)

(c)

(b)

(d)

Fig. 5 Number of instances, expressed as percentages w.r.t. the total amount of tests, that
one algorithm performed as the fastest approach over all benchmarks: Erdös-Rényi (a),
Barabási-Albert (b), Forest-Fire (c) and PPI (d). The cases in which the execution times
of RI and RI-DS are comparable are reported as RI/RI-DS. RI in red, RI-DS in green,
RI/RI-DS in blue and VF3 in purple. The results are grouped by number of vertices in the
target graph. RI or RI/RI-DS tends to be the best when there are many vertices. For few
vertices, RI-DS is best.

4 Conclusion

When faced with an NP-complete problem, heuristics are necessary. Subgraph
isomorphism has given rise to many sophisticated ones, some that depend on
the patterns to be matched and some that depend on the much larger target
graph. This work shows that heuristics depending only on the pattern graph
work very well, benefiting not only queries on single target graphs but on
multiple target graphs.

This is of course a field of ongoing research, therefore we doubt this is the
last word.
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RI VF3RI-DS RI/RI-DS

(b)(a)

Fig. 6 Number of instances, expressed as percentages w.r.t. the total amount of tests, that
one algorithm performed as the fastest approach over the PPI benchmark. The cases in
which the execution times of RI and RI-DS are equal are reported as RI/RI-DS. RI in red,
RI-DS in green, RI/RI-DS in blue and VF3 in purple. Results are grouped by number of
distinct target labels (a) and by number of pattern vertices (b). RI is best when there are
many vertices in the pattern graph.
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