# Another look at $e^{*}$ 

Samuel L. Marateck ${ }^{\dagger}$<br>Courant Institute of Mathematical Sciences, New York University, New York, N.Y. 10012


#### Abstract

This note describes a way of obtaining $e$ that differs from the standard one. It could be used as an alternate way of showing how the value of $e$ is obtained. No attempt is made to show the existence of the limit in the definition of $e$ that appears in the final equation.


## 1. Introduction.

In this section we give an approximation of $e$ using a technique we generalize in the next section.
If $f^{\prime}(x)$, the derivative of $f(x)$, exists at point $x$, and you start at point $x$ and move a distance $\Delta x$, the value at the point $x+\Delta$ is given by

$$
\begin{equation*}
f(x+\Delta x) \cong f(x)+f^{\prime}(x) \cdot \Delta x \tag{1}
\end{equation*}
$$

We want to find a constant, let's call it $e$, such that when it's raised to the power $x$ obtaining the function $e^{x}$, the function's derivative is also $e^{x \ddagger}$.
Since $f^{\prime}(x)$ equals $f(x)$, we rewrite equation (1) as

$$
\begin{equation*}
f(x+\Delta x) \cong f(x)(1+\Delta x) \tag{2}
\end{equation*}
$$

We will analyse this in the interval $[1,2]$. Let's take $\mathrm{x}=1$ and $\Delta x=0.1$. So $x+\Delta x$ is 1.1. Equation (2) gives

$$
\begin{equation*}
f(1.1) \cong f(1)(1+0.1) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
e^{1.1} \cong 1.1 e \tag{4}
\end{equation*}
$$

Now take $x=1.1$ and use the same value of $\Delta x$, i.e., 0.1 . We will be using the same increment in $x$ in this and all subsequent steps since eventually we will let $\Delta x$ approach zero. Continuing in this way

$$
\begin{equation*}
f(1.1+0.1) \cong 1.1 f(1.1) \tag{5}
\end{equation*}
$$

[^0]So $f(1.2) \cong 1.1 e^{1.1}$. Or

$$
\begin{equation*}
e^{1.2} \cong(1.1)^{2} e \tag{6}
\end{equation*}
$$

Eventually we will get $e^{2}$ on the left side of the equation, so we can solve for e. So let's compute $e^{1.3}$. We get $e^{1.3} \cong 1.1 e^{1.2}$ But this equals $(1.1)^{3} e$. If we extrapolate to $x=1.8$, we see that

$$
\begin{equation*}
e^{1.9} \cong(1.1)^{9} e \tag{7}
\end{equation*}
$$

and finally that

$$
\begin{equation*}
e^{2} \cong(1.1)^{10} e \tag{8}
\end{equation*}
$$

Solving for $e$ we get $e \cong(1.1)^{10}$ or $e$ equals 2.59 to three digits, where the 10 corresponds to dividing 1 by 0.1 . Equation (1) presupposes that $\Delta x$ approaches zero. If we let $\Delta x=.00000001$, or $10^{-8}$, we raise $(1+.00000001)$ to $10^{8}$. The answer for $e$ is 2.71828 to five significan figures.

## 2. Generalization.

We now sketch the steps that describe the preceding method in general. Using equation (2), and setting $x=1$, we write

$$
\begin{equation*}
e^{1+\Delta x} \cong e(1+\Delta x) \tag{9}
\end{equation*}
$$

We continue, letting $x=x+\Delta x$ and keeping $\Delta x$ the same, and write

$$
\begin{equation*}
e^{1+\Delta x+\Delta x} \cong e^{1+\Delta x}(1+\Delta x) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
e^{1+2 \Delta x} \cong e(1+\Delta x)^{2} \tag{11}
\end{equation*}
$$

We have to add $\Delta x$ to $x 1 / \Delta x$ times to get $e^{2}$ on the left side of these equations. So we get

$$
\begin{equation*}
e^{1+(1 / \Delta x) \cdot \Delta x} \cong e(1+\Delta x)^{1 / \Delta x} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
e^{2}=e(1+\Delta x)^{1 / \Delta x} \tag{13}
\end{equation*}
$$

Solve for e and since the definition of the derivative in equation (1) lets $\Delta x \rightarrow 0$, take the same limit here. We get

$$
\begin{equation*}
e=\lim _{\Delta x \rightarrow 0}(1+\Delta x)^{1 / \Delta x} \tag{14}
\end{equation*}
$$

which is one of the definitions of $e$.


[^0]:    *The initial version of this paper was submitted for publication on July12, 2009
    ${ }^{\dagger}$ email: marateck@courant.nyu.edu
    ${ }^{\ddagger}$ Our analysis also holds if $f(x)=C e^{x}$ where $C$ is a constant.

