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ABSTRACT: The advent of parallel MRI over recent years has prompted a variety of concepts and techniques for performing

parallel imaging. A main distinguishing feature among these is the specific way of posing and solving the problem of image

reconstruction from undersampled multiple-coil data. The clearest distinction in this respect is that between k-space and

image-domain methods. The present paper reviews the basic reconstruction approaches, aiming to emphasize common

principles along with actual differences. To this end the treatment starts with an elaboration of the encoding mechanisms and

sampling strategies that define the reconstruction task. Based on these considerations a formal framework is developed that

permits the various methods to be viewed as different solutions of one common problem. Besides the distinction between k-

space and image-domain approaches, special attention is given to the implications of general vs lattice sampling patterns. The

paper closes with remarks concerning noise propagation and control in parallel imaging and an outlook upon key issues to be

addressed in the future. Copyright # 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Parallel MRI relies on the simultaneous detection of
magnetic resonance with multiple receiver coils sur-
rounding the object under examination. In this fashion
multiple signals of distinct information content are
obtained at one time, marking the key advantage of the
parallel approach over standard Fourier MRI. Different
coil elements yield different information because each
exhibits an individual spatial reception characteristic,
corresponding to a distinct spatial encoding effect. The
latter can be used to complement and hence reduce
conventional gradient encoding, leading to faster imaging
and numerous derived benefits.
The basic idea of parallel MRI dates back to the late

1980s when first concepts were proposed by Carlson (1),
Hutchinson et al.(2) and Kelton et al.(3), followed by
further contributions by Kwiat et al.(4), Carlson et al.(5)
and Ra et al.(6) in the early 1990s. However, only in the
late 1990s was parallel detection first successfully used
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for actually accelerating an MRI procedure. This second
era of parallel MRI development was triggered by the
introduction of the SMASH technique (Simultaneous
acquisition of spatial harmonics) (7), followed by the
SENSE approach (sensitivity encoding) (8,9). Since then
the family of parallel imaging methods has quickly
grown, now including a range of further variants such as
PILS (parallel imaging with localized sensitivities) (10),
SPACERIP (sensitivity profiles from an array of coils for
encoding and reconstruction in parallel) (11), generalized
SMASH (12), GRAPPA (generalized autocalibrating
partially parallel acquisitions) (13), and PARS (parallel
imaging with augmented radius in k-space) (14).

The increasing use of parallel detection in MRI (15,16)
has far-reaching consequences with respect to radio-
frequency instrumentation, data acquisition, data proces-
sing and image properties. Many of these implications are
quite similar for the various parallel imaging techniques.
One distinguishing feature, however, is the specific way
of posing and solving the problem of image reconstruc-
tion from multiple-coil data. The existing methods are
often categorized into k-space and image-domain
approaches, based on the data representation used for
performing the essential reconstruction steps. These two
views lead to quite different formalisms and procedures,
marking one reason for the present variety of coexistent
techniques. Besides permitting efficient reconstruction,
the two views also offer useful intuition for conceptual
considerations, coil array design and identifying sampling
strategies. However, the focus on either k-space or image-
domain thinking is also problematic. It makes it more
NMR Biomed. 2006; 19: 288–299
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difficult to pin down differences between algorithms, e.g.
in terms of reconstruction fidelity and noise behavior.
Perhaps it also tends to overrate conceptual differences,
sometimes obscuring that the two domains are only
alternative perspectives of a single reconstruction task.

The purpose of the present paper is to review the basic
approaches to parallel imaging reconstruction in light of
the preceding remarks. Emphasizing distinguishing
features is one of its goals. However it is also an attempt
to establish a framework that permits the various methods
to be viewed as different solutions of one common
problem. To this end, the paper focuses on conceptual
considerations and generic aspects, including the encod-
ing mechanisms and sampling strategies that define the
reconstruction task. Describing each of the current
parallel MRI techniques in detail is beyond the scope
of this contribution. Rather, for actual algorithms and
implementation specifics the reader is referred to the
literature.
SPATIAL ENCODING

In standard Fourier MRI the spatial resolution within an
image plane (or three-dimensional volume) relies
exclusively on gradient fields, which impose plane-wave
modulations on the transverse magnetization M(r).
Precessing in the main field B0 and the superimposed
gradient fields, the magnetization generates radiofre-
quency (RF) electromagnetic fields, which are detected
Figure 1. Encoding functions. Top row: exam
as created by gradient fields in standard Fou
FOV). Its k-space representation is a single D
encoding functions, resulting from the same
sensitivities. In k-space each hybrid encoding
equal to the Fourier transform of the respectiv
that the encoding functions are complex-valu
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with one or multiple receiver coils. Neglecting constant
factors, a data sample taken with a homogeneously
sensitive coil is given by:

dk ¼
Z

MðrÞe jkkrdr (1)

where j denotes the imaginary unit and kk is the wave
vector describing the kth plane-wave encoding. Figure 1
shows an example of one such plane wave, along with its
Fourier transform. The latter is a single Dirac peak at kk,
reflecting the fact that the encoding operation is
equivalent to sampling the Fourier transform of M(r) at
this position.

The gradient fields directly manipulate the magnetiza-
tion to be depicted; hence each plane-wave encoding
corresponds to a certain magnetization state. As a
consequence only one such encoding can be performed
at a time, resulting in the long scan durations that are
notorious for MRI.

This situation is still essentially the same in traditional
phased-array imaging, as described by Roemer et al.(17).
There a signal sample taken with the gth coil element is
given by

dg;k ¼
Z

MðrÞsgðrÞe jkkrdr (2)

where sg(r) denotes the coil’s complex-valued, spatially
varying sensitivity. With full Fourier encoding and
standard Fourier reconstruction each coil yields an
individual image weighted by the coil sensitivity. The
ple of a plane-wave encoding function
rier MRI (kx¼6�2p/FOV, ky¼�3�2p/
irac peak at (kx, ky). Other rows: hybrid
plane wave multiplied with different coil
function has a distinct shape, which is
e coil sensitivity, shifted by (kx, ky). Note
ed, the plots showing only the real part
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290 K. P. PRUESSMANN
essential algorithms for combining such single-coil
images were described by Roemer et al. in their original
work (17). Root-sum-of-squares combination yields a
magnitude image with near-optimal signal-to-noise
ratio (SNR). A complex image with optimal SNR can
be obtained with a matched-filter combination,
incorporating the coil sensitivities sg(r) and the noise
covariance (or resistance) matrix of the coil array.

In a sense, the transition from this more traditional
paradigm to actual parallel MRI hinges on a mere shift of
viewpoint. In single-coil reconstruction, sg(r) in eqn. (2)
is effectively treated as a modulation of M(r), hence
causing a modulation of the resulting image. As opposed
to that, in parallel MRI sg(r) is considered a modulation of
the plane-wave encoding function, leading to the hybrid
encoding basis:

encg;kðrÞ ¼ sgðrÞe jkkr (3)

and the encoding equation

dg;k ¼
Z

MðrÞ encg;kðrÞ dr (4)

This shift of viewpoint has far-reaching consequences.
Figure 1 illustrates that the hybrid encoding functions are
no longer pure plane waves but plane waves multiplied by
coil sensitivity. Accordingly, in their equivalent k-space
representation they are no longer Dirac peaks but now
have distinct shapes and a significant extent. Mathemat-
ically speaking, this is the result of a convolution with the
Fourier transform of the respective coil sensitivity
function. Hence the hybrid encoding functions of a given
coil are all copies of this Fourier transform, each shifted
according to kk (18). Based on this observation, the
Fourier representations of the coil sensitivities may also
be referred to as the coils’ k-space kernels.
Owing to the extent of these kernels, each encoding no

longer yields a genuine k-space sample but rather a
weighted integral of data from a certain k-space
neighborhood. Therefore the encoding operation can no
longer be interpreted as sampling the Fourier transform of
M(r). In a more general mathematical sense the integral in
eqn. (4) represents a scalar product, which may be
interpreted as the projection of M(r) onto encg,k(r). As a
consequence, image reconstruction can no longer be
accomplished by mere Fourier transform but amounts
to recovering M(r) from a set of more general
projections.
The most important aspect of the transition to hybrid

encoding functions is that different coils have different
sensitivities and hence different k-space kernels. This
means that, with an array of receiver coils, one can
perform multiple different encodings at one time. It is
instructive to ask how this is possible in view of the
inability to accomplish the same with gradient encoding.
A short answer to this question is that the twomechanisms
rely on different physics and use different carriers of
Copyright # 2006 John Wiley & Sons, Ltd.
image information. An attempt of a more detailed answer
is sketched in the following.

It is helpful in this context to consider the RF fields that
all portions of magnetization jointly generate by their
precession. These fields vary in both space and time and
hold all image information that can possibly be extracted
with a receiver coil. The gradient mechanism encodes the
position of a magnetization vector in the frequency and
phase of its precession, relying on spin physics as
governed by the Bloch equations. The frequency and
phase modulation then translates to the electromagnetic
fields that the magnetization generates. In other words,
gradient encoding stores image information only in the
temporal degrees of freedom of the RF fields. This is not
surprising given that the concept was once adopted from a
spectroscopy method (19).

However, as mentioned above, the relevant RF fields
also have spatial degrees of freedom. Every small portion
of magnetization generates a characteristic spatial
distribution of electric and magnetic RF fields, governed
by electrodynamics as described by Maxwell’s equations.
As a result, the RF fields’ spatial degrees of freedom store
a significant amount of image information. In conven-
tional MRI with a single coil this information is lost when
collapsing the spatially varying fields into a single voltage
value. As opposed to that, with multiple receiver coils at
different positions at least some of the inherent spatial
variation is preserved. In this fashion, the image
information encoded in the spatial electrodynamic
degrees of freedom is partly recovered.

To summarize this point, gradient encoding recruits
only the temporal degrees of freedom of electrodynamics
as carriers of image information. Clearly, only one such
degree of freedom can be read out at any single point in
time. The spatial degrees of freedom of electrodynamics
are per se carriers of substantial image information in an
MRI experiment. Parallel detection is a way of tapping
these inherently parallel information channels, yielding
data of distinct information content simultaneously.

In principle the electrodynamics offer an infinite
number of spatial degrees of freedom. Nevertheless, the
amount of image information that can be extracted from
them is limited, as has been established in several recent
studies (20–22). The main reason for the limitation is that
those field components that exhibit the strongest spatial
variation decay rapidly with the distance from their
source. Therefore the ability to detect them outside the
object is greatly reduced.

The difference in nature between the two encoding
mechanisms is relevant also in another respect. Owing to
the different underlying physics they do not interfere and
can hence be freely combined. Note that most contrast
mechanisms used in MRI are, like gradient encoding,
based on spin physics. As a consequence the additional
encoding via the electrodynamic pathway does not
perturb the image contrast. Jointly these favorable
properties form the basis for the extraordinary versatility
NMR Biomed. 2006; 19: 288–299
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of parallel imaging. It permits virtually any conventional
MRI technique to be enhanced without affecting the basic
interpretation of the imaging results (15,16).
SAMPLING STRATEGIES

Simultaneous encoding by coil sensitivity can be used to
complement gradient encoding and hence to reduce the
number of gradient-encoding steps required for one
image. It is an important and as yet largely unanswered
question how the reduced set of sampling positions in k-
space can be optimally chosen. With few exceptions
(11,23,24), implementations so far have mostly followed
the rule of thumb that parallel detection permits reducing
the density of k-space sampling, while its extent needs to
be roughly maintained. This can be understood, at least
qualitatively, from Fig. 1, illustrating that the hybrid
encoding functions retrieve k-space information from the
neighborhood of the nominal kk but hardly across larger
distances.

In most MRI techniques the plane-wave vector k is
varied in a continuous fashion, following a prescribed k-
space trajectory. In principle, the sampling density can
then be reduced in two ways, by reducing the density of
the trajectory as such or by reducing the sampling
frequency along the trajectory. However, the latter is of
little use because it reduces only the data rate but not the
readout duration. Hence, parallel imaging is usually
performed with full sampling rate but enhanced distance
between adjacent trajectory segments. In common spin-
warp techniques this means that the spacing of phase
encoding steps is increased, while reducing their number.
Similarly, with spiral and radial schemes the sampling
density can be reduced by reducing the radial distance of
spiral revolutions (9,25,26) or the angular spacing of radii
(9,27,28), respectively.
1Despite the linearity of the encoding equation, nonlinear reconstruc-
tion can be prompted by nonlinear constraints or image models (49),
which are beyond the scope of this survey. In current parallel imaging
root-sum-of-squares combination of single-coil images is sometimes
used in a final reconstruction step. In this case the analysis based on
eqn. (5) holds only for the single-coil images prior to this nonlinear
operation.
IMAGE RECONSTRUCTION

Continuous formulation

Generally, image reconstruction amounts to recovering
M(r) from the sampled data dg,k, corresponding to
inverting eqn. (4). Since the encoding functions no longer
form a Fourier basis, this cannot be achieved by mere
Fourier transform, requiring more general reconstruction
approaches. As in standard Fourier MRI the reconstruc-
tion problem faced in parallel MRI is per se vastly
underdetermined due to finite k-space coverage. There-
fore image reconstruction generally aims only at
estimating M(r) at a finite number of positions rr, which
form the image grid.

Note that the encoding equation (4) is linear in M(r).
Consequently, all current methods for parallel imaging
reconstruction generate the image values (pixels) ir as
Copyright # 2006 John Wiley & Sons, Ltd.
linear combinations of the raw data:1

ir ¼
X
g;k

Fr;ðg;kÞ dg;k (5)

where F denotes the net reconstruction matrix. Assem-
bling the data and image values in the vectors d, i,
respectively, eqn. (5) is more conveniently rewritten in
matrix notation as

i ¼ F d (6)

Ideally, each image value ir should exclusively reflect the
magnetization at the very position rr, which is not
possible with finite k-space coverage. Instead, each image
value will at best reflect signal from a certain volume
around rr and exhibit contamination from a greater
distance. These imperfections are expressed by the
individual pixel’s spatial response function (SRF), which
in this case reads

srfrðrÞ ¼
X
g;k

Fr;ðg;kÞ encg;kðrÞ (7)

Based on the SRF the problem of parallel imaging
reconstruction can be viewed as choosing the entries of
the reconstruction matrix such that each srfr(r) approxi-
mates a Dirac peak at rr:

srfrðrÞ ! drðr� rrÞ (8)
Discrete formulation

One intuitive approach for solving this problem is least-
squares approximation (8). In standard Fourier MRI this
is straightforward because the plane-wave encoding
functions are orthogonal and readily yield discrete
Fourier transform (DFT) as the least-squares solution.
In parallel imaging the situation is more complicated
because the encoding basis is no longer orthogonal.
Least-squares reconstruction is still feasible, yet numeri-
cally demanding (29). Therefore all of the currently more
widespread approaches rely on a mild simplification,
which consists in limiting the Dirac approximation to the
discrete image grid given by the pixel positions rr. Upon
discretization the SRFs jointly assume the structure of a
matrix given by

SRFr;r0 ¼
X
g;k

Fr;ðg;kÞ encg;kðrr0 Þ (9)
NMR Biomed. 2006; 19: 288–299
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The values of the encoding functions on the image grid
form the encoding matrix

Eðg;kÞ;r ¼ encg;kðrrÞ ¼ sgðrrÞ e jkkrr (10)

In this discrete formulation the task of approximating
Dirac SRFs reads

SRF ¼ FE ! Id (11)

where Id denotes the ni� ni identity matrix, ni being the
number of pixels to reconstruct. The remaining recon-
struction problem is shown schematically in Fig. 2(a). It is
significantly simplified by the discretization. As long as
the number of coils is at least as large as the degree of k-
space undersampling, the encoding matrix will usually
have sufficient rank to enable forming the desired identity
SRF matrix. Then one exact solution of the approxi-
mation task is the Moore–Penrose inverse of E:

F ¼ ðEHEÞ�1
EH ; (12)

where the superscript H denotes the complex conjugate
transpose. If E has full rank and more rows (i.e.
encodings) than columns (i.e. pixels to resolve), there
are multiple solutions, meaning that there is more than
one way of forming discrete Dirac SRFs from the discrete
encoding functions. In other words, some image
information was redundantly sampled and can be
averaged with arbitrary relative weights. One criterion
for choosing these weights is minimizing noise propa-
gation from the raw data into the resulting image values.
How the noise superimposes upon averaging depends on
the strength and correlation of noise in the input data,
which can be described by a noise covariance matrix.
Denoting the noise covariance by C, minimal noise and
hence maximal SNR for each pixel is obtained with (8)

F ¼ ðEHC�1EÞ�1
EHC�1 (13)

Note that, in the limiting case of no encoding
redundancy (i.e. E is square), eqn. (13) becomes
independent of C and both eqns. (12) and (13) yield
F¼E�1, as one should expect. Another interesting
limiting case is full Fourier encoding with multiple coils.
In this situation eqn. (13) is equivalent to coil-wise DFT
reconstruction and maximum-SNR combination, as
described by Roemer et al.(17). In the case of full
Fourier encoding with a single, homogeneously sensi-
tive coil, finally, both eqns. (12) and (13) yield F¼EH,
i.e. standard Fourier reconstruction with inverse DFT.
In the general parallel imaging case, evaluating eqns.

(12) and (13) is numerically demanding because the
encoding matrix is typically very large, e.g. with eight
coils, an image matrix of 128� 128 and 4-fold Cartesian
undersampling, E has 8 � 1282/4¼ 32 768 rows and
1282¼ 16 384 columns, making straightforward inver-
sion impractical. However, various and quite different
ways have been identified to solve the inversion problem
efficiently. None of the currently used approaches were
Copyright # 2006 John Wiley & Sons, Ltd.
derived exactly in the way described here. It is never-
theless instructive to view and compare them using this
common framework.
K-SPACE APPROACHES

The encoding matrix, as defined in eqn. (10), is fully
populated and often the larger part of its entries are of
significant magnitude. This corresponds to the fact that
the encoding functions have a large extent in the image
domain, as illustrated in Fig. 1. By comparison they are
much more compact in k-space, where each has only the
extent of its coil kernel. One class of parallel imaging
techniques, in particular SMASH (7,12) and GRAPPA
(13), capitalize on this relative compactness by addres-
sing the reconstruction problem entirely in k-space.
Within the framework described above this transition
can be formally implemented by Fourier-transforming
eqn. (11) along its spatial dimensions, using DFT:

DFT F E DFT�1 ! DFT DFT�1 (14)

Defining the k-space versions of the encoding and
reconstruction matrices,

EðkÞ ¼ EDFT�1; FðkÞ ¼ DFT F (15)

the reconstruction task (14) reduces to

FðkÞEðkÞ ! Id (16)

Note that eqn. (15) implies

F ¼ DFT�1 FðkÞ: (17)

Hence with this approach the overall reconstruction F
begins with k-space reconstruction, F(k), followed by
inverse DFT of the combined data.

The advantage of the k-space view is illustrated in
Fig. 2(b), assuming 2-fold Cartesian undersampling in a
schematic one-dimensional imaging situation. The rows
of E(k) are the discretized coil kernels, shifted according to
kk. E

(k) has relatively few large entries, which are grouped
around the diagonal in each single-coil block. For two- or
three-dimensional imaging the band structure is some-
what more complicated. Irrespectively, the key point is
that due to the sparseness of E(k) the desired identity
matrix can be approximated with relatively few entries in
F(k).

The elementary implementation of this approach is the
original SMASH technique, using a single entry of F(k)

per row and per coil (7). This corresponds to forming a
suitably shifted Dirac function by linear combination of
coil kernels, or, in the image-domain view, forming a
low-order harmonic (i.e. a plane wave) by linear
combination of coil sensitivities. In this fashion, one
nearby k-space sample from each coil is retrieved for
reconstructing a k-space value of the final image. This is
illustrated in the top row of Fig. 2(b), as well as in Fig. 3.
Since the blocks of E(k) are only approximately diagonal,
NMR Biomed. 2006; 19: 288–299
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this approach will generally yield only an approximation
to the desired identity k-space response. One option for
improving the fit is constructing suitably modulated
functions instead of pure harmonics (30).
Copyright # 2006 John Wiley & Sons, Ltd.
Another option is staying in the pure k-space picture
and involving a larger number of coefficients in F(k).
This is done in the GRAPPA technique, which includes
data from an extended neighborhood along the
NMR Biomed. 2006; 19: 288–299



Figure 3. Image reconstruction from Cartesian data. The SMASH and GRAPPA
techniques operate in k-space. For reconstructing one k-space value of the
target image, SMASH retrieves one k-space sample per coil, while GRAPPA
involves neighboring data along the phase encoding direction. Cartesian SENSE
operates in the image domain, calculating each pixel from the corresponding set
of pixels in the aliased single-coil images
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phase-encoding direction (Fig. 3). In this fashion the
desired identity response is approximated more closely
[Fig. 2(b), bottom row]. In principle all phase-encoding
steps can be used. However, satisfactory results can be
obtained by including as few as four to eight data
samples per coil (13).
A special aspect of GRAPPA is that the coil weights

(i.e. the entries of F(k)) are not calculated from separately
determined coil sensitivities but learned from the
undersampled data set. To this end a limited portion of
k-space is sampled with full density, building upon the
concept of Auto-SMASH (31–33). With lattice sampling
(34), including Cartesian patterns, the appropriate coil
weights are shift-invariant. In this case they need to be
learned only once and can be efficiently reused
throughout k-space.

IMAGE-DOMAIN APPROACHES

The k-space picture was obtained by Fourier transform
along the spatial dimensions of eqn. (11). Fourier
transform can likewise be used for creating an image-
domain perspective, namely by transforming E along its
k-space dimensions:

F DFTc DFT
�1
c E ! Id (18)
——————————————————————————————————————————
igure 2. Schematic of the reconstruction problem in parallel MRI (assuming 2-fold k-space undersampling with three coils). (a)
he product of the reconstruction matrix F and the encoding matrix E yields the spatial response functions (SRF) of the resulting
age values. Fmust be chosen such that the SRF matrix approaches identity. (b) The k-space formulation of the reconstruction
roblem is obtained by Fourier transform of F, E and Id along their spatial dimensions. In the SMASH method, one entry in F per
ow and per coil is used, yielding an approximation of the desired identity response (top row). In GRAPPA, a better
pproximation is accomplished by using more coefficients (bottom row). (c) The image-domain picture is obtained by Fourier
ransform of F, E along their k-space dimensions. With lattice sampling, E assumes a simple form, permitting identity-SRF
econstruction with a single coefficient per row per coil
3
F
T
im
p
r
a
t
r
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where DFTc represents separate DFT for each individual
coil:

DFTc ¼

DFT 0 � � � 0

0 DFT . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 DFT

0
BBB@

1
CCCA: (19)

Defining the image-domain versions of the encoding
and reconstruction matrices,

EðiÞ ¼ DFT�1
c E; FðiÞ ¼ F DFTc (20)

eqn. (18) can be rewritten as the image-domain version of
the reconstruction problem:

FðiÞEðiÞ ! Id (21)

Equation (20) implies that

F ¼ FðiÞ DFT�1
c (22)

so image-domain reconstruction begins with coil-wise
inverse DFT, followed by combining the single-coil data
in the image domain.
NMR Biomed. 2006; 19: 288–299
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The image domain picture was first used in the early
works of Kelton et al.(3) and Ra et al.(6) and later became
the basis of the Cartesian version of the SENSE technique
(8,35). It is schematically illustrated in Fig. 2(c), for
the same imaging situation as assumed in Fig. 2(b).
Again, the structure of E(i) was considerably simplified by
the Fourier transform. Its rows are the discrete SRFs of the
pure Fourier imaging, multiplied by the coil sensitivities.
Owing to the regularity of Cartesian undersampling, the
Fourier SRF is also highly regular, causing equidistant
aliasing among disjoint cliques of few pixels (two each in
this case). As a result the inversion problem disintegrates
into a large number of small, mutually independent
inversion problems, each of which amounts to unfolding
one clique of aliased pixels. In this situation a single
entry per row and per coil is sufficient for implementing
an exact inverse F(i), e.g. the Moore–Penrose inverse
(eqn 12) or the maximum-SNR inverse (eqn 13).

A special case of image-domain reconstruction occurs
when each row of E(i) contains only one significant entry
despite incomplete Fourier encoding. This can be the case
when the individual coil sensitivities are strongly localized
such that each encompasses only one pixel out of each
aliasing clique. In this case maximum-SNR reconstruction
reduces to matched-filter combination as described by
Roemer et al.(17), requiring knowledge of sg(r) and the
noise covariance C. If this side information is not
available, a magnitude image can still be reconstructed by
root-sum-of-squares combination, as done in the PILS
method (10,36). In doing so it is important to assign each
coil’s signal to the correct pixel within the respective
aliasing clique.

With Cartesian undersampling and, more generally,
with any lattice sampling pattern, the image-domain
picture permits exact reconstruction with minimal
computation. Its efficiency reflects the fact that recon-
structing a pixel in the final image involves only one pixel
in each single-coil image (Fig. 3). It is important to note
though that, by virtue of the initial DFToperation, all raw
data are involved in the reconstruction of every pixel in
the final image. Hence the equivalent k-space reconstruc-
tion matrix F(k) would generally be fully populated. It can
be determined using eqns. (15) and (22):

FðkÞ ¼ DFT FðiÞ DFT�1
c (23)

Likewise, any given k-space reconstruction can be
transformed into its image-domain equivalent:

FðiÞ ¼ DFT�1 FðkÞ DFTc (24)
Figure 4. Image reconstruction from non-Cartesian data.
With non-Cartesian data the GRAPPA approach can still be
used in subregions with regular sampling structure. Another
k-space approach, PARS, involves all single-coil data within a
certain k-space radius for constructing a target k-space value
GENERAL SAMPLING PATTERNS

Both k-space and image-domain reconstruction benefit
strongly from lattice sampling. In the k-space picture,
lattice sampling renders the optimal reconstruction
Copyright # 2006 John Wiley & Sons, Ltd.
coefficients shift-invariant, which essentially reduces
their application to a convolution operation. The concept
of self-calibration from a densely sampled k-space region,
as used in GRAPPA, also relies on the shift-invariance of
the reconstruction coefficients.

In the image domain, lattice sampling translates into a
Fourier SRF that also has lattice structure, corresponding
to highly regular aliasing among small, disjoint pixel
cliques (34,37). As described above, it is this property that
reduces the numerical demands of image domain
reconstruction to a minimum.

With general sampling patterns these properties hold
no longer or only partly, hence requiring additional
considerations and more computation. With certain
scanning strategies the benefits of lattice sampling are
at least partially available. For instance, spin warp
imaging with arbitrary spacing in the phase-encoding
direction still exhibits lattice sampling structure in the
readout direction. In this case the reconstruction problem
can be simplified by transforming it into the image
domain at least in the readout dimension. This was
proposed in the original work introducing the SPACERIP
technique (11). Other patterns such as radial and spiral
sampling exhibit approximate lattice structure within
limited regions of k-space. For these situations the
GRAPPA technique has recently been modified to operate
with an individual set of reconstruction coefficients in
each such region (38–40) (Fig. 4).
NMR Biomed. 2006; 19: 288–299



Figure 5. Iterative reconstruction based on the conjugate-gradient (CG) method. In
each loop the current residuum image undergoes various operations in the image
domain and k-space: I¼ correction for inhomogeneous overall sensitivity of the
array; sg

(�)¼multiplication by (complex conjugate of) coil sensitivity; DFT¼discrete
Fourier transform; GRID¼ forward and backward regridding; D¼ sampling density
correction
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Without relying on lattice properties one can still
benefit from the limited k-space extent of the coil kernels.
The k-space-based PARS technique (14,41) does so by
restricting the pool of raw data for reconstructing a k-
space value to a neighborhood of limited radius. In this
fashion the single comprehensive inversion problem can
be broken down into many smaller, local ones (Fig. 4).
Finally, despite its considerable size, the general

inversion problem can also be tackled as a whole. This is
currently impractical with direct inversion methods,
requiring on the order of N6 operations for an N�N
image. However, this complexity can be massively
reduced by using iterative inversion algorithms. Figure 5
shows a schematic of an iterative approach (9), based on
the conjugate gradient (CG) method. To make such an
algorithm efficient it is important to perform all matrix
operations in an appropriate domain where they are most
efficient. For this purpose the algorithm switches back and
forth between the image domain and k-space. In this
fashion, multiplications by coil sensitivity (sg) and
correction for overall array sensitivity (I) can be
performed in the image domain, where they are
represented by diagonal matrices. Likewise, sampling
density correction (D) is diagonal in k-space. Accounting
for Fourier encoding is also most efficient in k-space,
where the corresponding operations (GRID) are almost
diagonal. Optionally they can be fully diagonalized by the
transition to a k-space grid with doubled density (42).
However, the savings in computation thus achieved tend to
be nearly balanced by greater efforts for the Fourier
transforms (43). With or without this additional measure,
the aforementioned steps reduce the complexity of each
loop of the algorithm from N4 to N2logN, which is the
same as that of conventional gridding reconstruction (44).
In this fashion, maximum-SNR reconstruction with eqn.
Copyright # 2006 John Wiley & Sons, Ltd.
(13) can be accomplished in the range of seconds to
minutes (9,43), depending on the convergence speed and
targeted accuracy.

Switching back and forth between the two domains, the
described iterative reconstruction is neither a k-space nor
an image-domain approach but rather takes advantage of
both where appropriate. Nevertheless, the reconstruction
matrix thus implemented could again be viewed in either
domain. As suggested in Fig. 6, it is generally fully
populated in both pictures, retrieving information from all
raw data, as well as, equivalently, from all pixels in
aliased single-coil images.
NOISE AND SNR

The survey given in this paper has focused on the problem
of accurately reconstructing the MR signal component in
parallel imaging data. Besides the signal fidelity, the
usefulness of the resulting image also depends on its SNR
and hence on the noise level in the image. The many
ramifications of this issue are beyond the scope of this
article but have been studied in many previous works
((8,36,45,46), among others). Here only some key aspects
of noise propagation in parallel imaging reconstruction
shall be briefly mentioned.

A certain level of stochastic, Gaussian-distributed
noise is present in all MR data, arising from thermal
agitation of charges throughout the entire experimental
setup. The propagation of such noise can be readily
formalized. Using any reconstruction matrix F the noise
covariance in the resulting image is given by

X ¼ FCFH (25)
NMR Biomed. 2006; 19: 288–299



Figure 6. Full solution of the general reconstruction problem. With non-lattice
sampling an exact reconstruction will generally involve all raw data in the
reconstruction of each target k-space value. Likewise, in the image domain
view, all pixels in single-coil images contribute to each pixel in the reconstructed
image
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where C is again the covariance matrix of noise in the
input data. The diagonal elements of X are the noise
variances of the individual pixels.

Parallel imaging is generally prone to adverse noise
behavior because the hybrid encoding functions are not
orthogonal. Lack of orthogonality can cause bad
conditioning of the inverse problem, which leads to
large entries in F and hence to noise enhancement. For the
case of lattice sampling and maximum-SNR reconstruc-
tion, this phenomenon has been expressed in terms of the
so-called geometry factor, which reflects loss in SNR
efficiency relative to standard Fourier imaging (8).
Critically large geometry factors tend to occur primarily
with high acceleration factors, corresponding to strong
Fourier undersampling.

Excessive noise amplification can be avoided by
regularization (29,30,47,48). In doing so, one trades
accuracy of the matrix inversion for stability of the
solution. In the context of image reconstruction this
means that the quality of the spatial response is
compromised in favor of the image’s SNR. Regulariz-
ation is also a generic way of addressing noise
propagation into parts of k-space that were not sampled
at all, like for example the corners of k-space in spiral
acquisition. Alternatively, such noise can be removed
with a straightforward k-space filter (9).
OUTLOOK

For several years, image reconstruction has been one of
the key problems in parallel imaging and has thus
prompted major research efforts. As a result, the basic
reconstruction problem is now fairly well understood and
Copyright # 2006 John Wiley & Sons, Ltd.
a number of feasible solutions have been identified. In
particular, for most of the numerous applications of
parallel MRI, image reconstruction is now routinely
accomplished with satisfactory speed and image quality.
However, important challenges remain, of which only
three prominent ones shall be listed here.

One is the increasing need to manage and process very
large amounts of data. This development is driven by the
continuous increase in the number of coil elements, as
well as by growing demand for temporally resolved and
three-dimensional imaging. Hence the efficiency of
image reconstruction will remain a key issue.

Further progress is also required in the broad context of
coil calibration. As the number of coil array elements
increases, the individual coil size decreases, enhancing
the spatial frequency content of the coil sensitivity
functions. This trend enhances the demands on coil
calibration as well as issues related to geometric
inconsistency over time of non-rigid coil configurations.
The need for larger amounts of reference data favors
calibration by a separate scan, while the latter problem
will be easier to handle with embedded calibration. So the
choice between separate and embedded approaches will
remain interesting and important.

Finally, most of the existing reconstruction methods
for parallel imaging address the encoding effect of coil
sensitivity as the sole deviation from pure Fourier
encoding. However, in imaging practice one faces
various additional imperfections, including B0 inhom-
ogeneity, tissue motion and eddy current effects. Working
these into the reconstruction formalism and iden-
tifying efficient solutions will be a critical and challen-
ging step in exploring the full potential of the parallel
paradigm.
NMR Biomed. 2006; 19: 288–299
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