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Background. Cellular signaling involves a sequence of events from ligand binding to membrane receptors through
transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal
role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented
here. Methodology. Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel
sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene
expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the
dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast
the gene of interest is expressed. Principal Findings. SLM is verified by a set of well studied expression data on endo16 of
Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for
endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with
experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16
expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16
expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch
activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage.
Conclusions/Significance. The sequential logic formalism allows for a simplification of regulation network dynamics going
from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-
independent, yet providing rich biological insight. The demonstration of the efficacy of this approach in endo16 is a promising
step for further application of the proposed method.
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INTRODUCTION
Understanding of dynamic control of gene regulatory networks is

a prime challenge in molecular biology. As gene regulatory

network is underpinned by dynamical interaction of transcrip-

tional-regulatory systems through transcriptional activation, tran-

scriptional-regulatory system can be considered as an elementary

component of gene regulatory networks [1,2,3,4,5]. Moreover,

substantial evidence supports that evolution and regulation of

transcriptional-regulatory systems are major contributing factor on

the variation and selection of biological phenotypes [6]. A

transcriptional-regulatory system is based on the presence of

transcription factor binding sites of genes which are responsible for

receiving temporal regulatory input signals, integrating these

signals and producing output in terms of gene expression [7]. The

relationship between regulatory input signals and gene expression

profile is a complex mapping [8,9,10,11,12] and combinatorial

regulatory inputs add further complexity to the entire framework

[8,10,13].

To decipher the dynamic regulation mechanism of a transcrip-

tional-regulatory system, a sequential logic model (SLM) is used to

demonstrate the existence of dynamical logical mapping between

trans-activation and temporal mRNA expression profiles. Our

efforts are driven by the following goals: 1. Generalization of

dynamical transcription for control and prediction of gene

expression at mRNA level using SLM. 2. Identify a formalism

that allows the extraction of the functional information that is

associated with transcriptional-regulatory components that control

mRNA expression (e.g. dynamic-function of cis-acting sites and

dynamic-dependency among the sites including cooperative

effects).

On the basis of this SLM, both characteristic equation analysis and

time-simulation analysis (Methods) have been developed to investigate

the dynamics of transcriptional-regulation circuits. Characteristic

equation is employed for systematically extracting the dynamic

function of cis-acting sites and their relationship in regulating gene

expression. Time-simulation analysis is performed to simulate gene

expression profile in mutagenesis analysis (in silico mutagenesis), to

predict novel gene expression profiles under different activity of cis-

acting sites (forward mapping) and to identify specific binding

activity when a particular expression profile is given (reverse

mapping). SLM is part of the logical model family and has a long

and established tradition in engineering and systems analysis; it is

distinctive from classical Boolean model by its capability for
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modeling of non-binary expression levels as well as for consideration

of dynamic behaviour. The state transition from present to next state

at a given time interval is expressed as an AND logic for activation of

cis-acting sites and present state conditions. Therefore, expression of

AND logic terms at a given time interval (characteristic equation)

manifests when the effect of activation of cis-acting sites, such as

enhancer and silencer, has occurred as well as logical dependence

among cis-acting sites. Construction and analysis of the SLM only

requires two input information: temporal gene expression profiles

and activity of cis-acting sites. Therefore, SLM is non-parametric and

model-independent, yet providing rich biological insight. Moreover

it can in principle incorporate other elements of gene regulation

different from TF like post-transcriptional regulation by means of

differential mRNA stability [14,15].

Our model is verified using a set of well studied expression data

on endo16, a marker for sea urchin gut development, provided by

Davidson’s group [9,10]. The choice of an embryonic develop-

ment gene regulation circuit allows us to circumvent all the

problems linked to the vagaries of gene expression noise and

modulating signals: in fact, it is well known that developing

embryo filters out the inherent genetic noise in order to follow

a specific temporal development scheme [16,17], which makes it

possible to treat the gene regulation as a deterministic logic

machine. In our verification model, three regulatory sites: Otx, R

and UI are selected due to their significant functions in controlling

the onset as well as transition of specification and differentiation

for the gut development of the species. Our model allows to

account for the entire endo16 gene expression dynamics as

controlled by Otx, R and UI cis-acting sites during transition

from specification of endomesoderm to differentiation of midgut in

sea urchin. For instance, our endo16 SLM clearly reveals when

repressive effect of R on the Otx cis-acting site occurs in order to

prepare for the transition from specification to differentiation of

the mid gut development. In addition, our model has the utility to

demonstrate that the activation of binding site of R and Otx is

distinct from the resultant functional activation of endo16

expression (e.g. Figure 1).

In this report, the construction and analysis of endo16 SLM are

first introduced to provide validation over our approach. Sub-

sequently, a mechanism of transcriptional-regulatory control on

endo16 expression is proposed on the basis of the analyses. This is

followed by Conclusion and Methods sections. In Methods section,

apart of the mathematical framework for our approach, three

synthetic models are included to further illustrate the features of

SLM analysis. Moreover, we also demonstrate the construction of

gene expression control at network level by combining multiple

SLMs that are representing different gene components of a gene

network (Methods).

RESULTS

Generation and first test of the model
Temporal activation of transcription factor binding sites is defined

as the occupation of transcription factors on these sites over time in

which causing the regulation mRNA expression of a particular

gene. For verification purposes, our approach is applied to

decipher cis-regulation of sea urchin endo16 temporal gene

expression data [9,10] to construct a sequential logical model;

although our approach can handle general transactivity, in this

section we only focus on cis-regulation due to the fact that we are

using mutation data on cis-acting sites of endo16. The strict

deterministic control exerted on gene expression during embryo

development makes this model system almost ideal for testing the

SLM approach. Recent work by Yuh et al [10] demonstrated that

the so called A and B modules are the main cis-regulatory regions

that control the expression of endo16 for specification and

differentiation of sea urchin gut development. In our analysis,

UI (Unique Factor I, characterized as Brn1/2/4 Yuh et al [18])

Figure 1. Identify time period required for preparation from specification to differentiation during midgut development. Left: the characteristic
analysis at 29–40 pfh and 40–50 pfh. The characteristic equation (Table 1) shows when repressive effect of R and Otx together occurs; Right: 29–
40 pfh(red bar) and 40–50 pfh (blue bar) are corresponding time periods in the control profile. Given that UI, R and Otx are activated at 29–40 pfh,
only UI drives the state transition from 012 state: R and Otx are independent of the state transition. However, at 40–50 pfh (UI, R and Otx remain
activated), the characteristic equation consists of the AND logic (ROtx)’ which indicates that (ROtx)’ is repressive: activation of R and Otx cooperatively
prevent the state rises from 102 to 112 since (ROtx)’ generates q0,t+1 = 0 when R = 1 and Otx = 1. Further analysis of Otx mutation (Table 3) shows R has
no effect on any state transition suggesting that R is a silencer to Otx at 40–50 pfh (main text).
doi:10.1371/journal.pone.0000776.g001
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and Otx (Orthodenticle-like) [19] are selected because they are the

key-drivers of module B and A respectively [10]. R is chosen as

another input since it is suggested to be critically involved in the

switching from specification of sea urchin endomesoderm to its

differentiation into embryonic gut. It has been shown that UI, R

and Otx are sufficient to resemble the regulation caused by

module A and B during the same developmental period [10]. A set

of temporal gene expression profiles related to UI, Otx and R sites

are elected for modeling. All temporal gene expression levels are

normalized with respect to the control BA-BpNCAT expression

profile in term of concentration of CAT (chloramphenicol acetyl

transferase) acting as reporter (i)Figure S1(A,B,D–F)).

Our modelling approach involves the discretization and

digitization of temporal mRNA expression profiles into a finite

number of levels (states), which are defined by discretization of

continuous/analogue gene expression levels (Step 1 & 2, Figure 2

and Methods). During the mapping process (Step 3&4), we

consider the variation in mRNA expression level (state) to exhibit

a behaviour in which the transition from present to the next state

only depends on the present state and the corresponding input

conditions. The input condition is defined as the activation state of

cis-acting sites (Step 2, Methods).From the BA-BpNCAT construct

(Figure S1(A)) the Otx input is considered as ‘on’ (represented by

1) if the sampling time falls between 18–48 post fertilization hours

(pfh), and ‘off’ (represented by 0) otherwise [10]. If the sampling

time falls between 24–72 pfh, we assign 1 to UI input only in this

period. R is always considered to be ‘on’ at all intervals within

0–72 pfh (refer Figure S1(A)). Hence, the temporal input condition

of UI, R and Otx is given as (0102, 0102, 0102, 0102, 0102, 0112,

0112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1102, 1102, 1102,

1102, 1102, 1102), where a unit time interval is about 3.6 hours.

The optimum unit interval is chosen such that maximum number

of state transitions is obtained and minimum consecutively

identical states transitions are generated. Consecutively identical

states transitions occur at multiple unit time intervals due to over

sampling. Since such state transitions can be viewed as a single

state transition over a longer time interval, they are lumped locally

together to represent one state transition. The truth table for

endo16 only consists of state transitions extracted from results of

CAT reporter provided from the publications (Step 3). State

transitions that are not available are regarded as don’t care

conditions (Methods).

We present a single valued function of sequential logic mapping

(Eq. (1)) which suggests the involvement of extra number of cis-

acting sites in the transactivation control of gene expression BA-

BpNCAT during 50–61 pfh. The sequential logic mapping is

a single valued function since only a unique next state is given by

a particular pair of present state and input condition. However, we

found out that there are one-to-many correspondences occurring in

some of the temporal expression profiles. In a temporal expression

profile, B(UIm)A(Otxm)-BpNCAT (UIm: UI mutation; Otxm: Otx

mutation)(refers to Figure S1(B)) two different state transition occurs

from a unique pair of present state and input condition at 25–40 and

50–61 pfh respectively. Given 102 as present state and 0102 as input

condition of UI, R and Otx, two different next states, 102 at 25–

40 pfh and 012 at 50–61 pfh are mapped. State transition at 25–

40 pfh is selected base on two selection criteria: 1) The selected

transition is due to the combined activities of three cis-acting sites:

UI, R and Otx; 2) one-to-many correspondence for the chosen state

transition is not found in other expression profiles.

Beyond 25 pfh, in order to check the involvement of UI (first

criterion), we compare the next state of B(UIm)A(Otxm)-BpNCAT

(UI mutant) (refer to Figure S1(B)) and BA(Otxm)-BpNCAT (non-

UI mutant) (refer to Figure S2(B)) at time interval 25–40 pfh.

Under the same present state (102), no transition (102) is induced in

the UI mutant, whereas in the non-UI mutant, state transition to

112 level occurs. Therefore, UI is required for the state transition

of non-UI mutant. However, we are unable to conclude the UI

involvement at 50–61 pfh since the present state of BA(Otxm)-

BpNCAT is different from B(UIm)A(Otxm)-BpNCAT: two state

transitions are comparable if their present states are identical.

Criterion 2 is applied which reveals another one-to-many

correspondence occurring in a different profile when state

transition at 50–61 pfh is selected. In B(Rm)A-BpNCAT (Rm: R

mutation)(refer to Figure S1(B)) during 50–61 pfh and 74–80 pfh,

for the same present state (112) and the same input condition of

UI, R and Otx, 1002, two different next states are observed: 102 at

50–61 pfh and 112 at 74–80 pfh. This conflict (one-to-many

correspondence for the chosen state transition) suggests that the

binary activities of the three cis-acting sites, UI, R and Otx are not

enough to understand state transition activity at 50–61 pfh in the

wild type expression profile and additional cis-acting sites are

required in sequential logic modeling. The findings not only

specified the requirement of extra regulatory site, it also identified

when such regulation is occurring.

A simple analysis of sequential logic mapping reveals coopera-

tivity and conditional effect of three transcription factors, UI, R

and Otx. Pertaining to the case of endo16, present states are divided

into four levels: 002; 012; 102; 112, corresponding to basal

(46105 mol per embryo), threshold (86105 mol per embryo),

specification (126105 mol per embryo) and differentiation (16

6105 mol per embryo) respectively from analysis in Yuh et al. [9,10].

These states are used in both characteristic equation and simulation

analysis (Step4, Methods). The simplified logical equation (sequential

logic equation, SLE) of endo16 SLM is derived and shown in Eq. (1)

(Table S1 shows the corresponding truth table).

q1,tz1

q0,tz1

� �
~

q01q0UIzq1q00UIzq0UIR0zq0UIOtx0

q01UI 0Otxzq01q0UI 0zq1UIR0zq1UIOtx0

� �
ð1Þ

where q1,t q0,t and q1,t+1 q0,t+1 are binary variables representing

present and next state respectively; UI, R and Otx (italic for variable)

are the binary variables for the input condition of the three cis-acting

sites.

The characteristic equation analysis is achieved by substituting

input conditions into variables UI, R and Otx in Eq. (1). (Methods).

The equations given in Table 1 allow for the derivation of some

important insights about the role played by the different actors in

time:

1. When present state equals to basal (002) level, Otx functions

as an activating site since state increase only if Otx = 1,

provided that UI = 0. Otx activation occurs between 0–

25 pfh of the control expression profile whereas UI is not

activated during this time period. The result suggests Otx

activation function as a ‘kick off’ switch for endo16 expression.

2. At the threshold (012) level, the characteristic equation

suggests that state transition is only dependent on UI

(Table 1). This is clearly shown during 25–40 pfh of the

control expression profile that equally shows that, at this

level, the state transition is independent of R and Otx. Thus,

UI alone plays a role as gene driver to increase endo16

expression level beyond threshold level at 25–40 pfh.

3. If present state has reached the specification (102) level,

activation of R and Otx (R = 1 and Otx = 1) will initiate

a repressive effect on gene expression (refer to Figure S1(B)).

This situation can be found during 40–50 pfh of control

Control of Gene Expression
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Figure 2. Overviews of SLM and analyses. Step 1. Obtain temporal transcriptional activation and corresponding time-series expression data; Step 2.
SLM Mapping: Dicretization and digitization into time-series bar chart; Step 3. Truth table construction: tabulate the digitized data into present states,
input conditions and next states; Step 4. Mathematical mapping: Characteristic equation analysis and time simulation analysis; Step 5. Network
motifs construction: integration of multiple SLMs to form gene network model.
doi:10.1371/journal.pone.0000776.g002

Control of Gene Expression

PLoS ONE | www.plosone.org 4 August 2007 | Issue 8 | e776



expression profile (Figure 1). As long as both R and Otx are

activated, the state will not increase from specification to

differentiation (112) level. The characteristic equation con-

tains the repressive term: (ROtx)’ ((ROtx)’ = 0 for R = 1 and

Otx = 1) at specification level (Table 2). This implies that Otx

and R sites operate together to introduce a repressive effect

on gene expression such that the state cannot achieve

differentiation level. One interesting point to note is that

although cis-acting sites, R and Otx are activated during 29–

50 pfh, repressive activation occurs only during 40–50 pfh.

This result clearly demonstrates that activation of binding

site of R and Otx is distinct from the resultant functional

activation of endo16 expression (Figure 1).

4. Previous experimental analyses from Yuh et al [10] suggested

activation of R switch depends on UI activation. Character-

istic equation analysis further explores and specifies that

whether the dependency is a direct or indirect. A direct

dependency is due to physiochemical interaction of two TFs

(formation of functional complex) whereas indirect de-

pendency occurs when two TFs are interacting via a third

party (no complex formation) (see Methods: Prediction of

interactions between transcriptional binding sites from the transition

map). When R switch repression occurs (at 30–48 pfh, state

transition from 102 to 102), UI = 1, R = 1 and Otx = 1

(Table 2), suggests the function of R switch depends on the

activation of UI. Since, the UI(ROtx)’ term consists UI

outside the parentheses of (ROtx)’, therefore, UI is not

considered as part of the repressive complex, hence

indicating R switch is indirectly dependent on UI

activation.

From the above considerations, it is cleared that how we can

easily derive from the characteristic equation a detailed tale of the

roles played by the different regulators at subsequent times and

their mutual interactions in a way formally similar to sensitivity

analysis in differential equation style but allowing for a much

greater flexibility (Table 2).

In-silico mutagenesis of endo16 cis-regulatory

region
Having obtained a reliable SLM describing cis-regulation by

means of detailed analysis of the correspondence between

activation states of the transcription factors and the reporter gene

temporal profile, we tested the model by means of a sort of in-silico

mutagenesis (Methods). Since the state transitions in the truth table

only carry information within the time periods 0–50 pfh and

61–s80 pfh, the model derived from the truth table is not supposed

to perform simulation with time period of 0–80 pfh. Hence,

a truncated-time-simulation for 0–50 pfh and 61–80 pfh are

executed separately with different initial state conditions. The

initial condition for present state in all expression profiles within

0–50 pfh is equal to 002 basal level by default whereas the initial

state for expression profiles within 61–80 pfh is varying. The initial

state of BA?Bp-CAT for 61–80 pfh, for instance, is found to be

threshold level in the discretized profiles of the raw data (refer to

Table 2. Functional effect of combinatorial input condition in
state transition for endo16 SLM.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input condition State transition Function

Otx 00R01 Activation

R 00R00 No effect/Repression

01R01 No effect/Repression

UI 00R00 No effect/Repression

01R10 Activation

10R11 Activation

11R11 Activation

UI R 00R00 No effect/Repression

01R10 Activation

10R11 Activation

11R11 Activation

R Otx 00R01 Activation

01R00 No effect/Repression

UI Otx 01R10 Activation

10R11 Activation

11R11 Activation

UI R Otx 01R10 Activation

10R10 No effect/Repression

doi:10.1371/journal.pone.0000776.t002..
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Table 1. Summary of characteristic equation analysis for endo16 SLM with Otx, R and UI as variable of input conditions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Present state
(expression)

Characteristic equation
(from Eq. (1)) Activity of cis-acting sites Function of cis-acting sites

00 q1,tz1

q0,tz1

� �
~

0
UI 0Otx

� �
N Otx = 1 increases state iff UI = 0 N Otx is an activating site

N R is independent N UI is an repressive site

N R has no effect

01 q1,tz1

q0,tz1

� �
~

UI

UI 0

� �
N UI = 1 increases state N UI is an activating site

N R and Otx are independent N R and Otx have no effect

10 q1,tz1

q0,tz1

� �
~

UI

UI(ROtx)0

� �
N UI = 1 increases state if either or both R and Otx equal to 0 N UI is an activating site

N UI = 1 remains at present state if both R and Otx equal 1 N R and Otx has repressive effect

11 q1,tz1

q0,tz1

� �
~

UI(ROtx)0

UI(ROtx)0

� �
N UI = 1 increases state if either or both R and Otx equal to 0 N UI is an activating site

N Reduced state if both R and Otx equal 1 N R and Otx has repressive effect

doi:10.1371/journal.pone.0000776.t001..
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Figure S1(A)). Same procedure is applied for forward and reverse

mapping mentioned in the next section.

The above procedure allows for the derivation of the functional

consequences of different mutations of the system:

1. Unlike wild type, the R mutant (R = 0, Table 3) reaches

a premature differentiation level early at about 40–50 pfh.

This differentiation can be achieved even if Otx is activated

since (ROtx)’ = 1 (Table 1).

2. UI mutant is investigated by setting UI = 0. Threshold level is

the maximum state that can be achieved and there is no

differentiation level in UI mutant. UI mutant can establish

a threshold level only when Otx is activated. Subsequently,

the mutation of Otx (Otx = 0) introduces a profile similar to R

mutant where an early differentiation expression level at 40–

50 pfh is identified when Otx is mutated.

The operational consequences of simultaneous mutations of

different sites can be investigated as well: three different mutant

couples (ROtx)m , (UIOtx)m and (UIR)m are generated by setting

(R = 0, Otx = 0), (UI = 0, Otx = 0) and (UI = 0, R = 0) respectively.

Some consequences of these double mutations can be derived:

1. If initial state is equal to basal level, (ROtx)m will always

remain in the same state.

2. In the case of (UIOtx)m, from any state different from

threshold level, R activation has no effect and the expression

profile always remains at basal level.

3. Expression profile generated by (UIR)m is restricted to

threshold level and the only non-mutated input, Otx, is

functional at low state (002, 012).

These results highlight other dependencies among the cis-acting

sites not evident from the simple characteristic equation analysis.

The identical logic equations of (OtxR)m and Otxm indicate that

R has no effect. Table 1 shows that the AND logic (OtxR)’

(repression) is found in the characteristic equations that are derived

from setting 012 and 102 as present state. Hence, R functions as

silencer in which the repressive effect is dependent on the activation

of Otx (Figure 1 and Figure S1(C)).

Forward and Reverse Mapping: predict novel

expression and profile specific binding activities of

UI, R and Otx
Forward mapping is applied on endo16 sequential logic equation to

infer a novel temporal gene expression profile with a given

temporal activity of cis-acting sites (input condition), whereas

reverse mapping can be used to deduce possible input conditions

from a given temporal gene expression profile (details in Methods).

Forward mapping is performed to replicate the expression

profile of BA-BpNCAT for verification of endo16 SLM. The state

transitions during 50–61 pfh are excluded in endo16 sequential

logic modelling. Truncated-time-simulation is performed where

forward mappings for 0–50 pfh and 61–80 pfh are carried out

separately with different initial present state (Figure 3). To simulate

the profile beyond 61 pfh the present state is reset at 47–50 pfh.

Next, forward mapping with a novel input series is used to prove

the statement Otx is the driver of Module A, to do so the following

series: input condition (UIt Rt Otxt) (0002, 0002, 0002, 0002, 0002,

0012, 0012, 0012, 0012, 0012, 0012, 0012, 0012, 0012, 0002, 0002,

0002, 0002, 0002, 0002) is substituted into Eq. (1). This simulation

indicates that the state level is 012 during 18–50 pfh and is 002

otherwise. The results generate good approximation to experi-

mentally observed Otx-BpNCAT (refers to Figure S2(B)). This

confirms Otx as the main driver for module A.

Reverse mapping is applied on a specific expression profile in

which the differentiation level (112) is achieved before 21 pfh, for

the estimation of a series of input condition that establish such an

expression profile. The particular state level for reverse mapping

Table 3. Combinatorial mutant logic equations for in silico mutagenesis of endo16 SLM.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mutation x site (x = 0) Characteristic equation (from Eq. (1)) Remarks

R = 0 q1,tz1

q0,tz1

� �
~

UI(q1zq0)

q01(q0zOtx)UI 0zq1UI

� �
N Exceed 102 state during specification stage (control profile)

N Establish differentiation expression level earlier

UI = 0 q1,tz1

q0,tz1

� �
~

0
q01Otxzq01q0

� �
N Cannot exceed 012 (Threshold level)

N No differentiation expression

N Only driven by Otx

Otx = 0 q1,tz1

q0,tz1

� �
~

UI(q1zq0)
q01q0UI 0zq1UI

� �
N Exceed 102 state during specification stage (control profile)

N Establish differentiation expression level earlier

N R has no effect

R = 0 q1,tz1

q0,tz1

� �
~

UI(q1zq0)
q01q0UI 0zq1UI

� �
N Always remain at basal level unless present state is brought to 012

Otx = 0

UI = 0 q1,tz1

q0,tz1

� �
~

0

q01q0

� �
N R has no effect

Otx = 0 N Always remain at basal level except present state is 012

UI = 0 q1,tz1

q0,tz1

� �
~

0
q01Otxzq01q0

� �
N Cannot exceeds 012 (Threshold level)

R = 0 N Otx only functions at low state (002, 012)

doi:10.1371/journal.pone.0000776.t003..
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during 0–21 pfh is given as 002 012 102 102 112 112 112. The results

of reverse mapping provide 216 possible combinations of temporal

input conditions in total. However, it is known that R activation is

time-invariant in endo16 mRNA expression. As a result, only 2 out of

the 216 possible combinations are selected under the condition

where R is always being activated (Table 4). Reverse mapping

analysis suggests that activation of UI and Otx in advance and then

followed by earlier deactivation of Otx can result in the expression

reaching differentiation level before 21 pfh.

Regulatory mechanism for endo16 expression

during gut specification to differentiation
The sequential logic analyses (characteristic equation analysis and

simulation analysis) are able to model the regulatory mechanism

Figure 3. Forward mapping and in silico mutagenesis of endo16 SLM. (A) Discretized profile of BA-Bp?CAT at 0–50 and 61–72 pfh are reproduced
by forward mapping. (B) In silico mutagenesis of R is achieved by providing input series with R is always set to 0. State transition to differentiation
expression level occurred early at 40–50 pfh. The rest of the state transition beside 40–50 pfh is same as Figure 3(A). (C) In silico mutagenesis with Otx
as the only input condition; the state transitions are generated to show similar expression profile to that of A-Bp?CAT ((Figure S1 (A))
doi:10.1371/journal.pone.0000776.g003

Table 4. Reverse mapping of given endo16 expression profile
when R is considered to be always activated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Unit time (pfh) State transition Possible Input (UI R Otx) combination

0–3.6 00R01 011

3.6–7.2 01R10 110/111

7.2–10.8 10R10 111

10.8–14.4 10R11 110

14.4–18 11R11 110

18–21.6 11R11 110

doi:10.1371/journal.pone.0000776.t004..
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for endo16 expression during gut specification to differentiation as

follows.

During 0–25 pfh, Otx functions as an activation site that drives

the endo16 expression level from basal to threshold level. The

threshold level holds a role of temporal checkpoint for specification

level to occur since UI is unable to drive the expression further (to

reach specification level) if threshold level is not reached. Beyond

25 pfh (transition from threshold to specification level), Otx has no

activating effect on endo16 expression even though the site is still in

activation. Just above threshold level, UI is activated and has

begun to drive the expression profile to the specification level.

Although activation of UI is able to drive the endo16 expression

beyond differentiation level during 70–80 pfh [10], it is found that

the expression does not exceed specification level between 25–

70 pfh even UI is activated. Hence, a repressive effect must be

present to prevent UI from driving the expression beyond

specification level. In fact, apart from earlier (0–25 pfh) activation,

Otx exhibits a repressive effect at the period of 40–50 pfh when R

is activated. When present state is 102 (specification level), the

characteristic equation derived from Eq. (1) consists of (ROtx)’

(Table 1) term, which indicates that presence of both R and Otx

prevents a state jump from 102 to 112 state within 40–50 pfh. The

repressive effect plays an important role for specifying collabora-

tive effect of ROtx as an essential switching control from

specification to differentiation. The maintenance of specification

level at 40–50 pfh is required such that gene expression does not

reach differentiation level (state greater than 102) at the earlier

developmental stage. During 50–61 pfh, additional cis-acting sites

other than UI, R and Otx are responsible to turn off the

specification expression (from 102 to 012) as the only committed

cells are preparing for differentiation expression. Upon removal of

Otx activation at later stage, R repression is deactivated, i.e.

differentiation expression is allowed to begin only when Otx

control is absent.

DISCUSSION
The analysis based on the sequential logic modeling consists of

characteristic equation and simulation analyses. Analysis of SLM

systematically extracts functional information on transcriptional

activities hidden in mutation on cis-acting sites and corresponding

gene expression data. Nevertheless, to attain input condition, SLM

construction is not restricted on the usage of mutation data. For

instance a model can be derived by the observations coming from

a pharmacological intervention on specific trans-activating

inducers.

The discrete nature of SLM operates noise suppression on the

experimental data by collapsing the continuous value of expression

into modal classes. Characteristic equation analysis allows for

systematic identification of the key function of cis-acting sites and

the logical relationship between the sites. Our model reveals that

the function of a cis-acting site can vary under different present

state instead of solely determined by input condition. The

variation of the function of cis-acting site due to different present

state is defined as conditional effect of state transition. This

conditional effect can be due to several factors, including the

consequence of DNA structure remodeling, co-factor activity or

other mechanical and chemical process such as covalent

modification during transcription. These results can provide the

mean for hypothesis formulation and experimental design in

understanding the mechanism of transcription.

Three time-simulation analyses, in silico mutagenesis, forward

and reverse mapping can be achieved based on sequential logic. In

silico mutagenesis, performed by deactivating cis-acting sites,

provides prediction of mutant expression profiles and identifies

global functional activity of cis-acting sites in the gene expression.

In contrast, characteristic equation analysis reveals local functional

activities with given present state and input condition. Forward

mapping is employed for prediction of novel or uncharacterized

temporal expression profile under different input conditions. The

forward mapping simulation establishes a platform to investigate

the variation in dynamics of the activation of cis-acting sites. Lastly,

reverse mapping is a useful feature to suggest possible input

condition in a dynamical manner, which leads to a particular

expression profile. The resulting time series of input conditions

provide indication for the dynamics of transcription factors that

are involved in transcriptional regulation. As a potential approach

for constructing gene regulatory network, reverse mapping could

be used to extract active signaling pathways. These signaling

pathways are associated with the activity of these transcription

factors from the given temporal RNA expressions.

In summary, sequential logic modelling has provided a non-

parametric, model independent, dynamic and quantitative ap-

proach to facilitate systematic analysis of cis-regulatory system. At

current stage, only the expression level is non-Boolean whereas the

activation of cis-acting site is still considered as binary. Recent

study on embryonic development also shows that the possibility of

representing gene relative activation by means of few states is

totally consistent with recent computational and experimental

findings [18,20,21,22,23,24].

The concentration effect of transcription factor during tran-

scription can be incorporated in our approach as non-binary

activation of cis-acting sites [23,25]. In our subsequent work, we

are focusing on dealing with the binding effect (defined as

occupancy by Bolouri et al [23] and Istrail et al [24]) of

transcription factors on the activation of cis-acting sites to

generalise the simple on/off model of activation. This can be

simply carried out by assigning two (or more) binary number for

activation of each cis-acting site (e.g., UIRUI1UI0) which is same

as dealing with the expression state, q1q0.

A fully differentiated biological system may display a more

analogical behaviour of gene regulation. We handle this situation

in i) cis-acting sites activation as well as ii) gene mRNA induction.

In i), activation level of cis-acting sites is discretized (beyond on/off)

based on transcription factor concentration (see above). In ii), gene

regulatory networks have often been considered to be naturally

‘discretized processes’ [26,27]. Bistable and multistable (and hence

discrete) hysteretic switches, enabling cells to adopt multiple

internal expression states in response to an external input have

a pivotal impact on biological systems, ranging from cell-fate

decisions to cell-cycle control [26]. This has to do with the

modular and hierarchical characteristics of biological systems. For

example, the existence of ‘modules’ implies some form of

discretization occurs while any form of hierarchy implies the

possibility to define ‘discrete layers’. The choice of the ‘optimal

discretization’ when in presence of a sufficient amount of data can

be based on the maximization of explained variance by a cluster

analysis procedure [28,29], a well studied statistical problem. A

specific observation is assigned to its ‘discrete class’ on the basis the

minimum distance to the k centroid values (average values for the

studied variables, in this case the clustering variable is only one

and corresponds to the expression level of the correspondent gene)

relative to the best k-means cluster solution. The optimal number

of clusters k (discrete classes) is maximizing the model explained

variance (R-square), namely, the ratio between the variance of the

distribution of the single statistical units coded by the relative

cluster centroid value and the original distribution total variance.

Our discretization procedure is based on the analysis of Yuh et

al. [9,10], which utilizes experimental replicates for noise
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averaging effect. However, we can extend our discussion on the

effect of noise to the construction of SLM, after the optimal

discretization is obtained, by the following 2 points: a) discretiza-

tion is a well known technique to reduce noise in engineering field.

With sufficient data, using basic statistical analysis such as looking

at standard deviation and mean values, we can appropriately

discretize the state levels in both transcription factor binding

activation and mRNA expression. In the case of a sufficiently high

number of observations, a data driven discretization process can

be performed by means of k-means cluster analysis [28,29] by

assigning each observation to the nearest cluster. The noise is not

a major issue for this approach given that substituting actual value

with the cluster centroid value (cluster = discrete classes) facilitates

the noise filtration. b) If a wrong transition state occurs due to the

noise, this will be seen in simulation analysis, e.g. i) result in

conflicting binding activation (in comparison to experimental data

for modelling) by Reverse mapping, Step 4b, ii) multiple state

transitions occurs for same input and present state by Forward

mapping, Step 4b; however, this type of errors are not expected to

be frequent if clusters are well formed (e.g. k-means cluster analysis

is bounded to generate clusters with the most separate as possible).

Endo 16 data is particularly a favourable example i) as it based on

a very good previous experimentation and ii) clearly because

developmental system is under strict control and consequently the

classes of concentrations (discretization) are easy to detect.

Conclusion
We have developed the model on a particularly well known

regulation system, acting in a quasi-deterministic matter so to

provide a reliable development scheme. This promises to be

potentially fruitful avenue for the systematic analysis of gene

regulation networks in general. The main strength of the model

resides in its flexibility: it allows for different roles played by the

same factors in different instants of times and different initial

conditions such as in understanding of time-delay in cis-regulation

of gene expression. One interesting feature of SLM can be traced

back to the possibility of dramatically reducing the complexity of

parameterization in regulatory circuits that until now have

hampered the classical differential equation approach in time-

course modeling of regulatory networks. Moreover, the proposed

method ends up with a description of the modeled regulation

circuits into easily understandable way to the mainframe biologists

without the need of mathematical formalisms which are relatively

difficult to grasp.

METHODS

The sequential logic models (SLM)
The SLM constitutes of the following 5 operations (Figure 2):

1. Obtaining data for temporal transcriptional activation and

corresponding temporal gene expression data from experi-

ments/literatures. Additionally, the information of active

transcriptional regulatory sites can also be estimated

computationally [30,31,32]

2. Discretization of gene expression level and expression time:

The full range (maximum level–minimum level among data)

of continuous gene expression levels is subdivided into

multiple discrete and equally separated states. Concurrently,

the time axis of the profile has also been discretized by

sampling the gene expression data at fixed time intervals. b)

Digitization of gene expression level and transcriptional

activity associated with unit time interval: Each discretized

expression state is encoded with binary value. There are

maximally 2n states can be coded by n number of binary bit.

For transcriptional activity, a binary input value representing

the activation of single transcriptional-regulatory site that

associates to the current state transition is assigned to each

interval. The set of binary input values (multiple activations)

is called input condition. Input condition is defined as the

activity of transactivation on cis-acting sites. A value of 1 (of

binary variable) denotes activation, whereas a value of

0 denotes deactivation. Binary variable, x’ is defined as

complementary representation of the binary variable, x.

3. Truth table construction: A truth table is a tabulated

representation that illustrates the mapping of possible state

(expression level) transitions under various input conditions,

which obtained from digitized temporal gene expression

profiles. The table includes the information of the states at

time t (present states), input conditions at time t and states at

time t+1 (next states) (three main columns). Present state and

next state are represented by (q1,t q0,t)and (q1,t+1 q0,t+1)

respectively, where qn,t and qn,t+1 refer to the nth bit (n = 0,1)

at present state (time interval t) and next state (time interval

t+1) respectively (Table 5). When binary transcriptional

activation is considered, there are 2m of possible input

conditions, where m is number of inputs (e.g. number of

transcription factor binding sites). If there are k = 2n states

and m cis-acting sites, the total number of row for a complete

table is equal to 2k+m.

4. Mathematical Mapping by SL (Text S1): The mapping can

be represented as a finite state machine (finite state

automata) [33,34] which consists of a finite number of states

(expression states), transitions between those states, and

inputs (transcriptional activity). The output of the ‘machines’

is equal to the next state. In general, the next state is

a function (F) of present input and present state (refers to

Mealy model [35]). F can be represented as sum of AND

logics in binary system [35], this function is called sequential

logic equation (SLE). On the basis of SLE, both character-

Table 5. Truth table representation of state transition
information for Enhancer-activator model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Row
Present state (t) Input Next state (t+1)

q1,tq0,t EtAt q1,t+1q0,t+1

1 00 00 00

2 00 01 01

3 00 10 00

4 00 11 01

5 01 00 00

6 01 01 10

7 01 10 00

8 01 11 10

9 10 00 00

10 10 01 10

11 10 10 00

12 10 11 11

13 11 00 00

14 11 01 10

15 11 10 00

16 11 11 11

doi:10.1371/journal.pone.0000776.t005..
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istic equation analysis and time-simulation analysis have

been developed to investigate the dynamics of transcription-

al-regulation. a) Characteristic equation analysis involves the

substitution of present state into its state variables in SLE and

forming a simplified equation that characterised the

transcriptional regulation by input variables at the particular

present state. The simplified characteristic equations de-

termine the dynamic functions and interactions among

transcriptional binding sites. b) Time-simulation analysis is

performed to simulate gene expression profile in mutagenesis

analysis (in silico mutagenesis), to predict novel gene expression

profiles under different activity of cis-acting sites (forward

mapping) and to identify specific binding activity when

a particular expression profile is given (reverse mapping).

5. Gene regulatory network motif construction: When more

than two genes are regulated by identical inputs, we

construct each corresponding SLE and combine then and

consider as co-regulated gene network of SLMs to describe

gene regulatory network motifs.

To further illustrate our approach conceptually, three synthetic

models are introduced at the following sections. In order to

develop binary cis-regulatory system through synthetic models, we

consider 2 cis-acting sites with binary activation and 2 bits

expression state discretization (n = 2 and m = 2 in Eq. (2)).

Synthetic Model: Enhancer-activator (EA) sequential

logic model
To illustrate the utility of our SLM, we developed a synthetic

model for EA binding (Figure 4) consisting of four temporal gene

expression output profiles (Figure 2, Step 1). The gene expression

level is discretized into four states by two binary bits (Step 2). Input

conditions, E and A are binary variables that represent the

activation (on/off) of the two cis-acting sites E and A. E and A are

specifically designed as non-synergistic enhancer and activating

site respectively. The complete truth table (Table 5) is constructed

from 16 possible state transition that represents the mapping

between activation of cis-acting sites and temporal mRNA

expression profiles described in Figure 2 (Step 3). Present state

and next state are represented by two binary variables, q1,t q0,t and

q1,t+1 q0,t+1 respectively. The current state, q1,t q0,t is simplified as q1

q0. Construction of SL equation is a standard procedure in digital

design [35]. For instance, from 8th row at Table 5, the next state

level, q1,t+1 q0,t+1 is 102, where q1,t+1 = 1 and q0,t+1 = 0. The first bit

(Least Significant Bit) of the next state, q0,t+1 produces 1 only when

q1 = 0, q0 = 1, E = 1 and A = 1. This condition is AND logic.

Therefore, the corresponding logical term (minterm) of q0 t+1 is given

as q1’q0EA (Figure 5). Subsequently, the sequential logic equation

corresponding to Table 5 is constructed (Step 4):

q1,tz1

q0,tz1

" #
~

q01q0E0Azq01q0EAzq1q00E0Azq1q00EAzq1q0E0Azq1q0EA

q01q00E0Azq01q00EAzq1q00EAzq1q0EA

" #ð2Þ

Eq. (2) can be further simplified (factorized) into Eq. (3)

computationally by Quine-McCluskey algorithm or identified

graphically by Karnaugh Map [35].

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00Azq1EA

� �
ð3Þ

Determination of dynamic function of transcriptional

binding sites using Eq. 3: cooperativity and physiochemical

variation (Step 4a) The construction of characteristic equation

for Eq. (3) requires setting present state, q1,t q 0,t equal to either of

002, 012, 102 or 112. As a result, four simpler mapping equations,

which are now functions of E and A, represent four characteristic

Figure 4. Synthetic model for activation of E and A inputs. (A) Only exhibits basal expression without binding of transcription factors. (B) Binding of
transcriptional activator on activation site increase the expression level. (C) Binding of another activator on enhancer does not alter expression level.
(D) Expression level is highly elevated in comparing to (B) when both activator site and enhancer are bound.
doi:10.1371/journal.pone.0000776.g004
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equations corresponding to the four present states respectively

(Table 6). By setting E and A to either 1 or 0, the next state is

obtained under these input conditions. For example, if present

state, q1q0 = 002, then the characteristic equation derived from Eq.

(3) becomes q1,t+1 = 0 and q0,t+1 = A (Table 6). Firstly, this shows

that the state transition from present state, 002 to next state only

depend on A and it is independent from E. Secondly, if A is set to 1

(A is activated), the state will rise from 002 (present state) to 012

(next state). Otherwise, if A = 0 then there is no effect. Hence, A is

concluded to be an activating site at 002 state and E has no effect

under the same condition. Characteristic equation at 102 present

state, q1,t+1 = A and q0,t+1 = EA, shows that activation of E site act as

an enhancer to A as followed: 1) E has no effect if A = 0; 2) State

transition remains at 102 state if E = 0; 3) State is transited to 112

state (1 level increment) if both A and E are activated. Moreover,

comparison of different characteristic equation with identical

present states can reveals when the enhancer function of E cis-

acting site occurs (Figure 6).

Prediction of interactions between transcriptional

binding sites from the transition map (Step 4a) Using the

Table 6. Summary of characteristic equation analysis for Enhancer-activator model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Present state (expression) Characteristic equation (from Eq. (3)) Activity of transcriptional inputs Function of transcriptional inputs

00 q1,tz1

q0,tz1

� �
~

0

A

� �
N A = 1increases state N A is an activating site

N E is independent N E has no effect

01 q1,tz1

q0,tz1

� �
~

A

0

� �
N A = 1 increases state N A is an activating site

N A = 0 reduces state N E has no effect

N E is independent

10 q1,tz1

q0,tz1

� �
~

A

EA

� �
N A = 1 increases state iff E = 1 N A is an activating site

N A = 0 reduces state N E is an enhancer to A

N E is independent if A = 0 N E and A has activating effect

N E = 0 holds state at ‘10’ if A = 1

11 q1,tz1

q0,tz1

� �
~

A

EA

� �
N A = 1 increases state iff E = 1 N A is an activating site

N A = 0 reduces state N E is an enhancer

N E is independent if A = 0 N E and A has activating effect

N E = 0 reduces state

doi:10.1371/journal.pone.0000776.t006..
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Figure 5. Construction of sequential logic mapping between dynamic transactivity and a state transition. State (expression level) is represented
by the two binary numbers, q1,t+1q0,t+1. (A) Activation of E and A inputs (E = 1, A = 1) generates the state transition from 012 to 102. The mapping
between the activation of EA sites (Transcriptional activity) and the state transition (Gene expression)) is established by q1,t+1 = q1’q0EA and q1,t+1 = 0,
where minterm (AND logic), q1’q0EA is 1 only if q1 = 0, q0 = 1, E = 1 and A = 1. (B) The mapping between input (E = 0, A = 1) and the state transition from
112 to 102 is established by q1,t+1 = q1q0E’A and q0,t+1 = 0, where minterm q1q0E’A is 1 only if q1 = 1, q0 = 1, E = 0 and A = 1.
doi:10.1371/journal.pone.0000776.g005
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Boolean conditions of each state transition generated from a given

characteristic equation defining one state level (Eq. S4), we can

determine possible functions and interactions between binding

sites for this state level. All possible Boolean combinations between

two Boolean variables (minterms) X and Y describing the

activation state of two binding sites X and Y can have a different

interpretation to determine dependency between two binding sites,

cooperativity and anti-cooperativity, and also binding sites functions

(repression, enhancement). For example, dependency of two binding

sites, X and Y can be determined in minterms motifs such as XY,

(XY)’, XY’ or (XY’)’, whereas non-dependency of X and Y are

determined for motifs X+Y and (X+Y)’ (manuscript in preparation).

In endo16 model, the (ROtx)’ motif was found in the characteristic

equations, determining dependency of R and Otx binding sites, and

describing R-Otx complex activity as one repressor. Moreover,

conditional effect can be determined by observing the different

interpretation we can find for some given binding sites for the other

characteristic equations at different state levels.

SLE for Synergistic EA (SEA) and Conditional EA (CEA)

model (Step 4a) A non-linear binding activity event is modeled

via slight modification of minterm on Eq. (3). Eq. (4) demonstrate

SLE for synergy effect on EA binding sites and Eq. (5) for

conditional EA (when the same transcription activation causes

different state transitions, there is the presence of a so-called

conditional effect).

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00AzEA

� �
ð4Þ

q1,tz1

q0,tz1

� �
~

q0Azq1E0A

q00Azq1E0Azq01EA

� �
ð5Þ

Synergistic effect, from characteristic equation (Table 7), is

observed in (012R112) state transition. The activation of A

alone increases the state by one step (102): A is an activating site.

On the other hand, the deactivation of A alone decreases the state

by one step (002): the activation of E alone has no effect. This

suggests that E and A act in synergy at 012 state.

In conditional Enhancer-activator model (Eq. (5)), the activation

of E and A show synergistic as well as repressive effect. Eq. (5)

illustrates that E and A are synergistic at 012 state (same

characteristic equation derived from Eq. (4), Table 7 and

Table 8). At present state, 112, characteristic equation (q1,t+1 = A

and q0,t+1 = E’A) shows repressive effect: activation of both E and A

generates (112R102) transition. The repressive effect is clearly

shown by the AND logic, E’A, since E’A is 1 only if E = 0 (off) and

A = 1 (on). This suggests that some physiochemical change occur in

the activation of E site as compared to activation of the synergistic

transition. Therefore, our SLM can point changes arising from

conditional effects such as physicochemical regulation of gene

expression.

Control of temporal gene expression by varying E and A

dynamically (Step 4b) In silico mutagenesis of EA (Eq. (3)), SEA

(Eq. (4)) and CEA model (Eq. (5)) are performed to demonstrate

the effect of E and A site mutants on temporal gene expression

profile (Figure 7). For in-silico mutagenesis of EA model, we

consider the deactivation of binding sites by setting E, A or both to

zero in Eq. (3). Setting A = 0 implies that all states remain at 002.

However, setting E = 0 means that 112 state cannot occur in the

mutant expression profile (Figure 7(A)). This result shows that the

temporal functional activity of the site E have an enhancer effect

only at 102 state and above. Similarly, for in-silico mutagenesis of

SEA model and CEA model, Figure 7(B) & Figure 7(C) show the

differential role of E (not always an enhancer) at different time

points. This suggests when conditional effect occurs on E acting site

through the 6. activity of transcription factor. Furthermore, in-silico

mutagenesis of the three models clearly indicates when the mutant

state transitions are occurred, which implies changes in rate of

gene expression between the wild-type and mutant conditions.

Forward and Reverse Mapping (Step 4b) Dynamic

simulation for forward mapping can be performed with novel

input conditions to infer a temporal gene expression (Step 4). For

Figure 6. Identification of dynamic functional activities of transcriptional inputs for EA model (Eq. (3)). Function of identical transcription factor
binding activity is not unique over time due to the dynamic nature. Left: characteristic equation analyses; Right: Colours (red and blue) indicate state
transitions corresponding to the analyses. From Left, characteristic equation of the model at 012 present state indicates that while E and A sites are
activated, E has no effect in the state transition from t3 to t4. The next state is generated by the characteristic equation q1,t+1 = A and q0,t+1 = 0, in
which there is no E variable, i.e., E is independent of the state transition. The characteristic equation at 102 present state, q1,t+1 = E and q0,t+1 = EA
shows that E is only functioning as enhancer at time t = t8 (see Right) when present state equals to 102 provided that A = 1. This example shows
characteristic equation analysis can reveal when the enhancer function of E site occurs. (see conditional effect in Methods).
doi:10.1371/journal.pone.0000776.g006
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example, given the starting state is 002, and if an arbitrary

temporal input series (EtAt) (t = 0, 1,..11) is given: (002 012 012 012

112 112 112 112 002 102 102 102), substituting these conditions into

Eq. (4), a new series of next state (q1,t+1 q0,t+1) (t = 0,1,..11) is

produced: (002 012 102 102 112 112 112 112 002 002 002 002).

Forward mapping based on a complete SLM (a complete truth

table) could provide a complete picture of how dynamic activation

of cis-acting sites via temporal activity of transcription factors is

able to control temporal gene expression. In order to illustrate the

process of extraction of input condition by reverse mapping (Step

4), a state transition map representation for Table 5 is constructed

in Figure 8(A). The state transition map describes the transition

from a state at one time point to another state at the following time

point under a particular input condition. It is possible that forward

mapping points to more than one time series of input conditions

being generated by reverse mapping. In fact, in our case, there are

64 possible combinations of input series are suggested (Figure 8(B)),

each one able to generate expression profiles given by forward

mapping. The multiple input series could account for system

robustness, given that it allows for more than one time series of

Table 8. Conditional Enhancer-activator model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Present state (expression) Characteristic equation (from Eq. (5)) Activity of transcriptional inputs Function of transcriptional inputs

00 q1,tz1

q0,tz1

� �
~

0

A

� �
N A = 1increases state N A is an activating site

N E is independent N E has no effect

01 q1,tz1

q0,tz1

� �
~

A

EA

� �
N A = 1 increases state N A is an activating site

N A = 0 reduces state N E is an enhancer

N E is dependent if A = 0 N E and A has synergistic effect

N Synergistic activation occurs if A = 1 and E = 1

10 q1,tz1

q0,tz1

� �
~

E0A
A

� �
N A = 1 increases state iff E = 0 N A is an activating site

N A = 0 reduces state N E is a repressive site

N E is dependent if A = 0 N E and A has repressive effect

N E = 1 reduces state

11 q1,tz1

q0,tz1

� �
~

A

E0A

� �
N A = 1 increases state iff E = 0 N A is an activating site

N A = 0 reduces state N E is a repressive site

N E is dependent if A = 0 N E and A has repressive effect

N E = 1 reduces state

doi:10.1371/journal.pone.0000776.t008..
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Table 7. Synergistic Enhancer-activator model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Present state (expression) Characteristic equation (from Eq. (4)) Activity of transcriptional inputs Function of transcriptional inputs

00 q1,tz1

q0,tz1

� �
~

0

A

� �
N A = 1increase state N A is an activating site

N E is independent N E has no effect

01 q1,tz1

q0,tz1

� �
~

A

EA

� �
N A = 1 increase state N A is an activating site

N A = 0 reduces state N E is an enhancer

N E is independent if A = 0 N E and A has synergistic effect

N Synergistic activation occurs if A = 1 and E = 1

10 q1,tz1

q0,tz1

� �
~

A

EA

� �
N A = 1 increases state iff E = 1 N A is an activating site

N A = 0 reduces state N E is an enhancer

N E is independent if A = 0 N E and A has activating effect

N E = 0 holds state at 102 if A = 1

11 q1,tz1

q0,tz1

� �
~

A

EA

� �
N A = 1 increases state iff E = 1 N A is an activating site

N A = 0 reduces state N E is an enhancer

N E is independent if A = 0 N E and A has activating effect

N E = 0 reduces state

doi:10.1371/journal.pone.0000776.t007..
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input conditions to achieve the same temporal state transition.

Reverse mapping can be used to infer transactivity on cis-acting

sites from temporal gene expression at a time interval of interest.

Incomplete sequential logic model: don’t care

condition
Thus far four binary variables: q1, q0, E and A are considered in

truth table construction and sixteen different state transitions are

required for the construction of complete truth table. In practical,

there will be cases where some of the state transitions are yet to be

obtained from experimental mRNA expression profiles and are

regarded as don’t care conditions [35]. For don’t care condition,

the next state of the state transitions is conventionally set to 002.

Existing state transitions from incomplete truth table, however, are

not affected by additional state transition in don’t care condition:

additional information in don’t care condition only gives rise to

state transition with a new set of present state and input condition,

which does not overlapped with present state and input condition

of existing state transitions. Therefore, characteristic equations

corresponding to existing state transitions are invariant under

additional information in don’t care condition. However, for

forward mapping and in silico mutagenesis, if present state and

input condition for don’t care condition become current mapping

condition, then the remaining time series is unreliable. In reverse

mapping, if next state is 002, it is also not possible to distinguish

present input conditions derived from don’t care condition and

existing state transition.

Figure 7. In silico mutagenesis: comparison of wild type and mutant expression profiles with 3 models. (A) EA model shows E is an enhancer; (B)
SEA model shows E is a synergistic enhancer and (C) CEA model reveals E is a synergistic enhancer as well as silencer. Figure 7 also shows when those
effects of the E site occur. Wild type profiles: (A)–(C) are generated by Eq. (3), (4) and (5) with given input condition: EtAt = (102 002 012 112 102 002 012

112 112 012 002 002), where t = t0–t11. The corresponding mutant profiles are obtained by setting Et = 0 in input condition.
doi:10.1371/journal.pone.0000776.g007
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Synthetic network motifs (Step 5)
We have discussed the systematic construction and analyses of

single SLM. In this section, we demonstrate that combination of

two connected SLMs which termed as network motif shows the

control of gene regulation at network level (Figure 9 and Table 9).

A network motif is defined as pattern or architecture of

connectivity in gene network that consists of specific regulatory

function and recur significantly more often than randomized

network [36,37,38]. Furthermore, we consider the possibility

where the input condition (e.g. E and A) of SLM is a function of its

output state (e.g. q1,t+1,q0,t+1), i.e. modeling of auto-regulative

motif. For example, if we consider a positive feed-forward motif

where one of the inputs of the second EA model is the output of

the first EA model, we have two model equations systems for each

EA model defined as the following:

M1 :
q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q0Azq1E1A

� �
ð6Þ

and

M2 :
q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q0Azq1E2A

� �
ð7Þ

In the case where E2 is a function of the output of the first EA

model, E2 is written as f
q1,tz1

q0,tz1

� �
M1

� �
. For the 1-bit input E2 has

2 values: 0 and 1; and for 2-bits input of the first EA model can

have 4 values: 00, 01, 10, and 11. The function f determines the

output state of the first EA model which corresponds to the input

state of E2. M1 and M2 can be considered as one single block

(M1–M2) via f mapping. And we can determine the equation

model for the composite of the two EA models:

M2�M1~M20M1
q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q0Azq1f
q1,tz1

q0,tz1

� �
M1

� �
A

2
64

3
75 ð8Þ

In general, the same principle can be applied to construct various

complexities of gene network motifs. (Figure 9 and Table 9).

Biological data
The temporal endo16 expression profiles were quantitated via CAT

(chloramphenicol acetyltransferase) reporter assays [9,10,39,40].

The method for the generation of endo16 expression profile had been

well described [10,39,40]. In these experiments, a 2.3 kb region in

the promoter of endo16 is cloned along with a CAT reporter gene.

This promoter region is chosen as it is able to represent the full

expression pattern of endo16 gene in sea urchin development

[10,39,40]. The function and organisation of endo16 regulatory

sequences in the region were well characterized [9,10,18,39,40].

SUPPORTING INFORMATION

Text S1

Found at: doi:10.1371/journal.pone.0000776.s001 (0.03 MB

DOC)

Table S1

Found at: doi:10.1371/journal.pone.0000776.s002 (0.04 MB

DOC)

Figure 8. Construction of state map representation and reverse mapping of EA model. (A) The state transition map (finite state machine),
constructed using truth table (Table 5), consists of four states (purple circles), 10 state transitions (in arrow) and 16 input conditions (binary values
associated to each arrow). (B) Using the state transition map in (a) the temporal binding activity corresponding digitized gene expression profile (002

012 102 102 112 112 112 112 002 002 002 002) is inferred (reverse mapping). There are 11 state transitions in 12 time steps. Following the 12 arrows in
state transition map, there are 2 possible inputs (01, 11) for each of the first two transitions (002R012R102), 1 possible input for the next five
transitions and 2 possible inputs for the final four transitions. In total, 64 possible combinations of input series are suggested where these input series
are able to generate expression profile given by forward mapping.
doi:10.1371/journal.pone.0000776.g008

Control of Gene Expression

PLoS ONE | www.plosone.org 15 August 2007 | Issue 8 | e776



Figure 9. Construction of gene network via SLMs: Synthetic network motifs. (A)–(D) Four sets of SLMs that resemble four fundamental units are
considered for construction of multiple gene network motifs (Table 9): EA/SEA models (positive regulation, set 1); Silencer-activator (SA)/Synergistic
SA models (repressive regulation, set 2); By considering input condition of E site for set 1 as a function of its output state, an auto-regulative positive
feedback is constructed; we denote this set as Simple positive feedback (set 3). Similarly, a silencer version of unit network motif for auto-regulative
feedback, Simple negative feedback, is formed by considering input condition of S site for set 2 as a function of its output state (set 4). (E)–(I) To
extend the single SLM approach to genes network, several combinations of two SLMs representing two genes, each regulated by two cis-acting sites
are constructed based on the four set of fundamental units albeit with auto-regulative feedback replaced by inter-genetic feedback control (Table 9).
In addition, all of these combinations are co-regulated networks with common activator site (A/A1). A co-regulated network is defined as set of genes
that contained at least one common active cis-acting site. The simplest form of co-regulated network occurred when no direct connectivity found
between two SLMs where Both Gene1 and Gene2 are linked by their common regulatory sites: E and A ((E)). Non-auto-regulative feedforward and
feedback control can occur if Gene1 and Gene2 are connected by at least one of the gene product. Thus, in addition to intra-genetic-feedback control
that happened in single SLM ((C)–(D)), network motifs constructed by multiple SLMs can exhibit inter-genetic-feedforward and feedback control. In
inter-genetic-feedback control, the input condition of a SLM is now a function of output state from another SLM. Given that output signal from Gene2
is function as feedback signal onto Gene1, the input condition of Gene1, X1, is defined as a function of output state of Gene2: X1 = X1(q1,t+1,Gene2, q0,t+1,

Gene2) where X1 can be either an enhancer or an silencer Gene1 ((H)–(I)). Inter-genetic-feedforward control is defined similarly to inter-feedback control
where X2 = X2(q1,t+1,Gene1, q0,t+1, Gene1) since we consider output signal from Gene1 to be the feedforward signal onto Gene2 ((F)–(G)).
doi:10.1371/journal.pone.0000776.g009
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Figure S1 Figures obtained from [10]. (A) Effect of mutation of

the R site in BA-Bp?CAT. The timecourse of expression of this

construct (B(Rm)A-Bp?CAT, orange curve) is compared with that

of the BA-Bp?CAT control (red), and to that of B-Bp?CAT (green)

and A-Bp?CAT (blue). (B) Same input condition and present state

generates different state transitions by B(UIm)A(Otxm)-Bp?CAT.

The timecourse of expression of the double mutation B(UI-

m)A(Otxm)-Bp?CAT (black) is compared with BA-Bp?CAT (red)

and the triple mutation B(UIm,CB2m)A(Otxm)-Bp?CAT (magen-

ta). From the profile of B(UIm)A(Otxm)-Bp?CAT, given that 102

as present state and 0102 as input condition of UI, R and Otx, two

different next states, 102 at 25–40 pfh and 012 at 50–61 pfh are

mapped. (C) Successive pathways of spatial and temporal control

within the endo16 cis-regulatory system. The diagram summarizes

results from several previous studies (Yuh et al., 1996; Yuh et al.,

1998; Yuh and Davidson, 1996). Module (Mod) A functions are

shown in red; Module B functions in blue. Early in development

the endo16 gene responds to a ubiquitous activator (SpOtx1)

binding in Module A, but in order to achieve accurate spatial

expression, activity must be extinguished outside the veg2

endomesodermal domain by repressors binding in the upstream

modules (F, E and DC). Later in development, the activity of

a transcriptional regulator (UI) binding in Module B rises and the

internal BA intermodule input switch shuts off Otx input so that

the system is now driven only by Module B input. This input is

amplified in Module A, which provides the sole communication

with the basal transcription apparatus. (D) Direct demonstration of

repression function mediated by the R target site. The timecourse

generated by a construct consisting of three copies of an

oligonucleotide that represents the R target site (Figure 3) ligated

to A-Bp?CAT ([R3]A-Bp?CAT, orange curve) is compared with

the timecourse of A-Bp?CAT, blue. (E) Additional mutation of UI

in a BA construct carrying the R mutation also negates the effect

of the R mutation. An average of two experiments is shown in

which the output of B(UIm,Rm)A-Bp?CAT (green) is seen to be

very similar to that of B(UIm)A-Bp?CAT (purple). That is, though

the R sites is intact in B(UIm)A-Bp?CAT, it fails to repress the

activity of Module A in this context. As controls, BA-Bp?CAT (red)

and A-Bp?CAT (blue) are shown in normal embryos of the same

batch of eggs. (F) The UI site alone produces the late rise in

expression. Output kinetics are shown from an experiment in

which only the UI site has been left intact (construct [UI]-

Bp+?CAT of Table 1) so that it alone provides regulatory input

into the enhanced basal promoter (black). This construct produces

exactly the same output as does [UI-R-CB2]-Bp+?CAT (orange),

again generating the late rise in expression. However, the output is

Table 9. Synthetic network motifs constructed by SLMs.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Network motifs Sequential Logic Equations (SLEs) Comments

A. Simple EA
M1

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00Azq1EA

� �
or M2

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00AzEA

� �
EA model (M1)/Synergistic EA model (M2)

B. Simple SA
M3

q1,tz1

q0,tz1

� �
~

(q1zq0)S0

(q1Szq00S0)A

� �
or M4

q1,tz1

q0,tz1

� �
~

(q1zq0)S0

q00S0A

� �
SA model (M3)/Synergistic SA model (M4)

C. Simple positive feedback
M1

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00Azq1EA

� �
or M2

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00AzEA

� �
EA model (M1)/Synergistic EA model (M2)

E = E(q1,t+1, q0,t+1)

D. Simple negative feedback
M3

q1,tz1

q0,tz1

� �
~

(q1zq0)S0

(q1Szq00S0)A

� �
or M4

q1,tz1

q0,tz1

� �
~

(q1zq0)S0

q00S0A

� �
SA model (M3)/Synergistic SA model (M4)

S = S(q1,t+1, q0,t+1)

E. Simple co-regulated gene
network

M1
q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00Azq1EA

� �
or M2

q1,tz1

q0,tz1

� �
~

q1Azq0A

q01q00AzEA

� �
Two EA model (M1)/Synergistic EA model (M2)

F. Positive feedforward network
M1

q1,tz1

q0,tz1

� �
~

q1A1zq0A1

q01q00A1zq1E1A1

� �
or M2

q1,tz1

q0,tz1

� �
~

q1A1zq0A1

q01q00A1zE1A1

� �
Two EA model (M1)/Synergistic EA model (M2)

and E2 = E2(q1,t+1,Gene1, q0,t+1, Gene1)

M1
q1,tz1

q0,tz1

� �
~

q1A1zq0A1
q01q00A1zq1E2A1

� �
or M2

q1,tz1

q0,tz1

� �
~

q1A1zq0A1
q01q00A1zE2A1

� �

G. Negative feedforward network
M1

q1,tz1

q0,tz1

� �
~

q1A1zq0A1

q01q00A1zq1E1A1

� �
or M2

q1,tz1

q0,tz1

� �
~

q1A1zq0A1

q01q00A1zE1A1

� �
An EA model (M1)/Synergistic EA model (M2) &
an SA model (M3)/Synergistic SA model (M4)

and S2 = S2(q1,t+1,Gene1, q0,t+1, Gene1)

M3
q1,tz1

q0,tz1

� �
~

(q1zq0)S10

(q1S1zq00S10)A1

� �
M4

q1,tz1

q0,tz1

� �
~

(q1zq0)S10

q00S10A1

� �

H. Positive feedback & negative
feedforward network

M1
q1,tz1

q0,tz1

� �
~

q1A1zq0A1
q01q00A1zq1E1A1

� �
or M2

q1,tz1

q0,tz1

� �
~

q1A1zq0A1
q01q00A1zE1A1

� �
An EA model (M1)/Synergistic EA model (M2) &
an SA model (M3)/Synergistic SA model (M4)

and E1 = E1(q1,t+1,Gene2, q0,t+1,Gene2)

M3
q1,tz1

q0,tz1

� �
~

(q1zq0)S10

(q1S1zq00S10)A1

� �
M4

q1,tz1

q0,tz1

� �
~

(q1zq0)S10

q00S10A1

� �
S2 = S2(q1,t+1,Gene1, q0,t+1,Gene1)

I. Negative feedback & positive
feedforward network

M3
q1,tz1

q0,tz1

� �
~

(q1zq0)S10

(q1S1zq00S10)A1

� �
or M4

q1,tz1

q0,tz1

� �
~

(q1zq0)S10

q00S10A1

� �
An SA model (M3)/Synergistic SA model (M4) &
an EA model (M1)/Synergistic EA model (M2)

and S1 = S1(q1,t+1,Gene2, q0,t+1,Gene2)

M1
q1,tz1

q0,tz1

� �
~

q1A1zq0A1

q01q00A1zq1E2A1

� �
or M2

q1,tz1

q0,tz1

� �
~

q1A1zq0A1

q01q00A1zE2A1

� �
E2 = E2(q1,t+1,Gene1, q0,t+1,Gene1)

doi:10.1371/journal.pone.0000776.t009..
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of low magnitude relative to that of BA-Bp?CAT: the inset shows

these data (i.e. for [UI]-Bp+?CAT) at reduced scale, to also

indicate BA-Bp?CAT output in the same experiment.

Found at: doi:10.1371/journal.pone.0000776.s003 (2.59 MB

DOC)

Figure S2 Figures obtained from [9]. (A) Effect of BA modules

during the absent of Otx. BA(Otx)-Bp?CAT (black) (note that

(Otx) is equivalent to (Otxm) in [10]) is compared with BA-

Bp?CAT (red). (B) Effect of Otx on temporal expression. A(Otx)-

Bp?CAT (red) is compared with A-Bp?CAT (dark blue) and OtxZ-

Bp?CAT (marine blue).

Found at: doi:10.1371/journal.pone.0000776.s004 (1.15 MB

DOC)
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