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ABSTRACT

Data analysis for scientific experiments, large-scale simula-
tions, and machine learning tasks all entail the use of com-
plex computational pipelines to reach quantitative and qual-
itative conclusions. If some of these activities produce er-
roneous or uninformative outputs, the pipeline may fail or
derive incorrect results. Inferring the root cause of failures is
challenging, usually requiring much human thought, and is
prone to error. We propose a new approach that makes use
of iteration and provenance to automatically infer the root
causes and derive succinct explanations of failures. Through
a detailed experimental evaluation, we assess the cost, pre-
cision, and recall of our approach compared to the state of
the art.
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1. INTRODUCTION

Computational pipelines in many domains, from astro-
physics and biology to machine learning, are often complex,
consisting of interdependent tasks and associated parame-
ters, data inputs, and outputs. If one or more tasks of a
pipeline produce erroneous outputs, the experimental and
analytical conclusions may be compromised. Discovering
the root cause of failures is challenging as errors can come
from many different sources, including bugs in the code, in-
put data, and improper parameter settings. In addition,
some pipelines will not fail explicitly, but return abnormal
results. The problem is compounded due to the fact that an
error early in the pipeline may only surface at later steps.
To understand these problems and track their causes, users
must expend considerable effort reasoning about possible in-
correct settings and executing new pipeline instances to test
hypotheses. This is both tedious and time consuming.
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We propose an approach that automatically identifies one
or more minimal causes of failures in computational pro-
cesses. The problem of data diagnosis has received a lot
of attention in the recent literature [21} |2} |9 [17]. Some
works have focused on explaining where and how errors
occur in the data generation process [21] and which data
items are more likely to be causes of relational query out-
puts |17, 22|. Others have attempted to use data to explain
salient features in data (e.g., outliers) by discovering rela-
tionships between attribute values |2} |9]. Unlike these ap-
proaches, we aim to explain abnormal behavior in computa-
tional pipelines that result from bad parameter settings.

To motivate our problem, consider a setting in which sev-
eral analytical algorithms can be used each with a variety of
hyperparameters. The results of using some hyperparameter
settings can lead to useless outputs (e.g., low quality predic-
tions) or even a crash. Sometimes, it is unclear which single
hyperparameter-value setting or which combinations cause
such results. Instead of having a person trying to guess and
check, our goal is to derive a minimal explanation for what is
causing these useless (for practical purposes, buggy) results.
Consider the example in Figure [I| which shows a generic
template for a simple machine learning pipeline and a log
of different instances that were run with their associated re-
sults. The pipeline reads a data set, splits it into training
and test subsets, creates and runs an estimator, and com-
putes the F-measure score using 10-fold cross-validation. A
data scientist uses this template to understand how differ-
ent estimators perform for different types of input data, and
ultimately, to derive a pipeline instance that leads to high
scores. This entails exploring different parameters, data sets
and learning classifiers. Note that, gradient boosting leads
to low scores for two of the data sets, but it has a high score
for another. At the same time, decision trees worked well
for both the Iris and Digits data sets, and logistic regression
leads to a high score for Iris. This may suggest that there is
a problem with the gradient boosting module, that decision
trees provide a good compromise for different data, and that
logistic regression is good for the Iris data. However, this
is hard to determine with confidence without running the
pipeline for additional data sets and potentially, additional
estimators and different settings for the estimators.

While prior work has relied solely on data or querying
existing provenance to derive explanations, we leverage the
ability to execute computational pipelines to test new param-
eter settings and generate additional provenance that can be
used to synthesize better explanations. This, however, in-
troduces new challenges. First, pipelines can consist of a
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Figure 1: Simple machine learning pipeline that enables
users to select different input datasets and classifier esti-
mators

large number of tasks which in turn may contain many pa-
rameters. Running all possible combinations of these over
a potentially large number of input data sets can be pro-
hibitively expensive. Second, readable and concise expla-
nations are needed to help users understand the causes of
abnormal behavior.

Contributions. We introduce BugDoc, a new approach
that analyzes the provenance of pipeline instances and de-
rives new instances to identify sources of problems. Our ap-
proach takes the parameter-value pairs underlying already
executed pipelines, as well as their success/fail status, and
either proposes new executions or generates minimal root
causes. This feedback-driven approach uses heuristics to
swiftly discard false root causes and works well in parallel.

Our algorithms combine parameter exploration, similar to
hyperparameter tuning works [5], with explainability [21].
We perform an extensive experimental evaluation to assess
the effectiveness and efficiency of our approach. The results
indicate that for settings in which there are even as few as
seven or eight parameters, our explanations are better than
those of the state-of-the-art algorithms when using the same
number of pipeline instances.

Outline. The remainder of this paper is organized as fol-
lows. Section [2| introduces how we model computational
processes and formally defines the problem we address. In
Section 3] we present algorithms to search for simple and
complex causes of failures. Our experimental evaluation and
its results are discussed in Sectiond] We review related work
in Section and conclude in Section@, where we outline di-
rections for future work.

2. DEFINITIONS AND PROBLEM STATE-
MENT

With the intuition that all data that vary with different
pipeline instances is an input parameter in mind, we for-
mally define our problem as follows.

Definition 1 (Computational process, process instance, pa-
rameter-value pairs, value universe, results). Given an ex-
periment modeled as a computational process (a pipeline)
CP containing a set of parameters P (i.e., including hy-
perparameters, input data, versions of programs, computa-
tional modules, and so on), we denote as C'P; a process in-
stance of C'P that defines values for the parameters. Thus,

an instance C'P; is associated with a list of parameter-
value pairs Pv; containing some assignment (p,v) for all
p € P. For each parameter p € P, the parameter-value
universe U, is the set of all values assigned to p, i.e.,
Up = {v[3i(p,v) € P}

Definition 2 (Evaluation). Let E be a procedure that eval-
uates the results of an instance such that E(CP;) = succeed
if the results are acceptable, and E(CP;) = fail otherwise.
Acceptability might mean passing a set of tests that a user
determines.

Definition 3 (Hypothetical root cause of failure). Given
a set of instances CPi,...,C' P, and their associated eval-
uations E(CP),...., E(CPy), a hypothetical root cause of
failure is a set Cy consisting of a Boolean conjunction of
parameter-comparator-value triples which obey the follow-
ing properties: (i) if E(C'P;) = succeed, then the parameter-
values pairs Pv; of CP; do not satisfy the conjunction Cy;
and (ii) there is at least one C'P; such that Puv; satisfies
Cy and E(CP;) = fail. For example, if Cy = A > 5 and
B =7, and CP; has the parameter values A =15and B =7
and succeeds, then Cy is unacceptable as a hypothetical root
cause of failure.

Definition 4 (Definitive root cause of failure). A hypothet-
ical root cause of failure D is a definitive root cause of fail-
ure if there is no instance C'P; such that Pv, takes values
from the parameter-value universe with the property where
E(CP,) = succeed and Pu, satisfies D. That is, D does
not lead to false positives.

Definition 5 (Minimal Definitive Root Cause of Failure).
A definitive root cause D is minimal if no proper subset of
D is a definitive root cause.

The example in Figure [l illustrates these concepts using
a simple machine learning pipeline. Here, the parameters
the user manipulates are the input data and the estimator
used. A possible evaluation procedure would test whether
the resulting score is greater than 0.6. In this case, Data
being different from Images and Estimator equal to gradient
boosting is a hypothetical root cause of failure. Section [3]
presents the algorithms that could determine if this root
cause is definitive and minimal.

Problem Definition. Given a computational process and
a set of parameter-value pairs, our goal is to derive minimal
definitive root causes. Note that this model is general and
can capture any computational process, including queries,
scripts, simulations.

3. DEBUGGING STRATEGIES

Approach Overview. BugDoc consists of two iterative
debugging algorithms, the first, called minimal pairs, discov-
ers single parameter-value (formally, parameter-equal-value)
definitive root causes (or, more simply, bugs) and the sec-
ond, called debugging decision tree, discovers conjunctive
bugs. When a single parameter-value constitutes a defini-
tive root cause, the heuristics of the minimal pairs algorithm
find such root cause using fewer pipeline instances.

In operation, we first run the minimal pairs algorithm,
described in Section and, if the minimal pairs algo-
rithm does not find any definitive root causes, we run the
debugging decision tree algorithm (Section — building



from the results of the pipeline instances run by the mini-
mal pair algorithm. The debugging decision tree approach
may yield root causes having parameter-comparator-value
triples in which the comparator includes inequalities as well
as equalities. Because the results of the debugging decision
tree algorithm are disjunctions of conjunctions, they may
contain redundancies which we simplify using the heuristic
described in Section 3.3l

3.1 Looking for Single Root Causes: The Min-
imal Pairs Algorithm

The minimal pairs algorithm is inspired by methods in
phonology to determine which changes in sounds convey
meaning in a language |16]. For example, in English the
minimal pair “bad” and “pad” shows that “voice” (the dif-
ference caused by the vocal chords between the phones ”b”
and ”p”) conveys meaning. By analogy, the minimal pairs
method starts with a set of initial pipeline instances C'PI,
some of which have failed and some have succeeded. Our
goal is to find at least one minimal definitive root cause for
the failures. Thus, the initial instances define the parameter-
value universe that we care about. The algorithm proceeds
as follows:

1 very pipeline in C'PI that contains some parameter-
ue pair (P;,v) evaluates to fail, then (P;,v) is
considered a “suspect”. Here, (P;,v) is shorthand for
the triple P; = v, because the minimal pair algorithm
works only for equality comparisons.

2. Next, for each suspect parameter-value pair (P;,v),
the minimal pairs algorithm creates pipeline instances
containing (P;,v) and for every other attribute Pj,
for ¢ # j, it preferentially chooses a value y such
that (Pj,y) has led only to succeed instances (which
we sometimes refer to as good_instances) among the
pipeline instances tried so fa any instance with
(P;,v) turns out to be good, themrremove (P;,v) from
the suspect list. erwise, try pipeline instances with
other values fm@

3. If al sible combinations of other parameter-values
pro failure, then (P;,v) by itself is a sufficient
cause of a bad execution, so it is a minimal defini-
tive root cause. Note that this is the only safe way of
being sure that (P;,v) is definitive.

To improve the efficiency of the debugging process, the
minimal pairs algorithm applies two heuristics: (1) it dis-
cards simple potential root causes quickly by prioritizing
parameter values among other attributes that have led to
successful executions in the past, and (2) if there are mul-
tiple parameter-value pairs that are always associated with
failure in the initial set of experiments, then the minimal
pair method will start with the parameter that has the most
values, thus reducing the worst case number of instances to
explore. Below we present a simple example that illustrates
how the Minimal Pairs Algorithm works.

Example 1. Consider the machine learning pipeline in Fig-
ure[I] This pipeline selects a data set, splits it into training
and test sets, fits a classification estimator to the training
set and outputs the accuracy score on the test set. In this
scenario, we assume that the evaluation function returns
succeed if score > 0.6.

In this pipeline, three parameters can be changed as fol-
lows:

e Dataset, the input data to be classified.
e Estimator, the classification algorithm to be executed.

e Library Version, parameter that indicates the ver-
sion of the machine learning library used.

Note that the parameters of our model can be used to
capture different properties of an experiment. In addition
to actual parameters in pipeline modules (or steps), they
can encode for example, specific algorithms or versions of
libraries and operating system. Table [1| shows examples of
three executions of the pipeline.

For each parameter, as detailed in Algorithm [T} this strat-
egy creates three lists of values:

1. Pure good list Good, containing parameter-value pairs
that are present only in instances that evaluate to
succeed.

2. Pure bad list Bad, containing parameter-value pairs
that are present only in instances that evaluate to
fail.

3. Mixed list Mixed, containing parameter-value pairs
that are present in some instances that evaluate to
succeed and in others to fail.

Algorithm 1: Create pure good and bad lists for use in
the heuristics
Input: CPI, the set of pipeline instances in the
execution history characterized by their
parameter-values
Input: evaluation, the evaluation function
Output: The lists Good, Bad and Mized
/* Initialization */
good_set <+ (J;
bad_set < (;
for c¢p; € CPI do
if evaluation(cp;) = succeed then
| good_set < good_set U {cpi};
else
| bad_set + bad_set U {cpi};
end
end
puregood < {good_set — bad_set};
purebad < {bad_set — good_set};
mized < {good_set N bad_set};
return puregood, purebad and mixed

From the initial traces shown in Table [I] for Example
the following lists are generated:@

Good = {Dataset={Iris,Digits},
Estimator={"Logistic Regression”,” Decision Tree” },
LibraryVersion={1.0} }

Bad = {Dataset={Iris},
Estimator={” Gradient Boosting”},
LibraryVersion={2.0} }

PureGood = {Dataset={Digits},
Estimator={"Logistic Regression”,” Decision Tree},
LibraryVersion={1.0} }


I051496
Sticky Note
Alternative formulation: if every pipeline in CPI that evaluates to fail contains the parameter value pair (P_i,v) then ...

If I take your definition: it is not true that every pipeline that contains P=gradient boosting evaluates to fail, so P=gradient boosting should not be a suspect.

With my formulation, it is true that every pipeline that evaluates to fail has =gradient boosting, so this is a suspect.

I051496
Highlight

I051496
Highlight

I051496
Sticky Note
What is the scope of this universal quantification?
Do you mean any pipeline instance containing a value of P_j that belongs to the values that only evaluates to succeed? This would mean that I create as many pipelines as the Cartesian product of "good values" for the P_j?

Or do you you mean: "if the created pipeline instance evaluates to ....". Then you should say at the beginning: "for each suspect ... do the following: create a pipeline instance .... If it evaluates to succeed then remove ... otherwise use another good value for P_j"


I051496
Sticky Note
"Otherwise" means there is at least one pipeline which has a combination of good values for the P_j which evaluates to fail (if my previous interpretation is correct). 

I051496
Sticky Note
only necessary to test all combinations of "good values" where a good value for P_j is a value that only led to success so far. Is this right? 

I051496
Highlight

I051496
Sticky Note
traces are not consistent with your definitions. We expect set of parameter-value pairs, not set of sets. 


Table 1: An initial set of classification pipelines instances

Dataset Estimator Library Version | Score | Evaluation (score > 0.6)
Iris Logistic Regression 1.0 0.9 succeed
Digits Decision Tree 1.0 0.8 succeed
Iris Gradient Boosting 2.0 0.2 fail

PureBad = {Estimator={"Gradient Boosting” },
LibraryVersion={2.0} }

Mixed = {Dataset={Iris}}

The elements in puregood and purebad are parameter-value
candidates that lead to good (i.e., evaluate to succeed) or
bad (i.e., evaluate to fail) results, respectively. For exam-
ple, we may suspect that the experiment will fail if Gradient
Boosting is the selected estimator.

Given a parameter-value pair pv in purebad we assemble
new tests containing pv and the values for the other param-
eters. We sample first from puregood and mized, because
pipeline instances containing those parameter-value pairs
are heuristically the most likely to evaluate to true (i.e.,
pass all the tests). If any do evaluate to true then pv by it-
self is not a definitive root cause. By contrast, we declare pv
to be a definitive root cause only if every pipeline instance
containing pv leads to failure regardless of the values of the
other parameters.

After assembling new configurations for the Example[T] as
presented in Table [2| the Minimal Pairs algorithm returns
the following lists:

PureGood = {LibraryVersion={1.0} }
PureBad = {LibraryVersion={2.0} }

Mixed = {Dataset={Iris,Digits},
Estimator={"Logistic Regression”, ”Decision Tree”,
”Gradient Boosting” }}

Hence, we would find our bug at parameter Library Version
with value 2.0.

The most time consuming aspect of the Minimal Pairs
approach is the execution of the pipeline instances. Fortu-
nately, since each pipeline instance is independent, instances
can be run in parallel. However, such an approach may lead
to the execution of pipelines that are ultimately unneces-
sary (e.g., if one pipeline instance shows that A.v is not a
definitive root cause, then further tests on A.v may not be
useful). We experimentally evaluate the parallel execution
in Section [l

3.2 Looking for Complex Explanations: De-
bugging Decision Trees

Often, a conjunction of parameter-values must all be present
for a pipeline to fail. To give an emotive example, the large
number of deaths on the Titanic resulted from several fail-
ures: the ship was going too fast, there was no lookout,
there were not enough lifeboats, there was no training in
water safety.... If all those factors had not been true at the
same time, the loss of life would have been far less. In a sce-
nario where a conjunction or a disjunction of conjunctions of
parameter-value pairs may lead to failing pipeline instances,
Minimal Pairs would not be able to establish candidate lists
because no single parameter-value pair would be a definitive
root cause.

We propose the construction of a debugging decision tree
using the parameters of the pipeline as features and the
evaluation of the instances as the target. Thus the leaves
are either purely true — if all pipeline instances leading to
a leaf evaluate to succeed, false — if all pipeline instances
leading to a leaf evaluate to fail, or mized. The decision
tree is constructed as follows:

1. Given some initial set of instances CPI (which may
be generated at random or by some combinatorial de-
sign technique [10]), construct a decision tree based on
the evaluation results for those instances (succeed or
fail). Each interior node of the decision tree repre-
sents a triple (Parameter, Comparator,Value), where
the Comparator indicates whether a given Parameter
has a value equal to, greater than (or equal to), less
than (or equal to), or unequal to Value.

2. If a conjunction involving a set of parameters, say, 1
P,, and P; leads to a consistently failing execution (a
pure leaf in decision tree terms), then that combination
becomes a suspect by analogy to the way that a single
parameter-value pair became a suspect in the Minimal
Pairs algorithm.

3. Each conjunction leading to a pure fail outcome (i.e.,
each suspect) is used as a filter in a Cartesian product
of the parameter values from which new experiments
will be sampled. For simplicity, consider an exam-
ple where all comparators denote equality. Suppose a
path in the decision tree consists of Pi = v1, P> = va,
and P3 = v3. To test that path, all other parameters
will be varied. If every instance having the parameter-
values Pi = v1, P = v2, and P; = w3 leads to fail-
ure, then that conjunction constitutes a definitive root
cause of failure. If the path consists of other compara-
tors (e.g., Pr = v1, P> = v, and P3 > 6), then choose
a value for each of those parameters as an example,
(e.g., Ps = 7) and choose pipeline instances having
those values (e.g., all pipelines P; = v1, P> = v2, and
P3; = 7). Conversely, if any of the newly generated ex-
periments presents a good (succeed) pipeline instance,
then the decision tree is rebuilt taking into account
the whole set of executed pipeline instances C'PI and
a new suspect path is tried.

Note that if the values associated with a parameter are
continuous, BugDoc starts by choosing the values already
attempted. Further analysis can sample other values to un-
cover additional bugs, but our purpose here is to understand
the bugs already uncovered rather than to give any form of
complete verification as that problem is in general undecid-
able [4].

3.3 Simplifying Explanations
Decision trees are easy to read, but they do not always

provide minimal explanations. For example, we may have
two paths leading to pure false leaves that differ only in



Table 2: Set of classification pipelines instances after assembling new instances based on pure bad, pure good, and mixed lists

Dataset Estimator Library Version | Score | Evaluation (score > 0.6)
Iris Logistic Regression 1.0 0.9 succeed
Digits Decision Tree 1.0 0.8 succeed
Iris Gradient Boosting 2.0 0.2 fail
Digits Gradient Boosting 2.0 0.2 fail
Digits Gradient Boosting 1.0 0.7 succeed
Digits Logistic Regression 2.0 0.3 fail
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Figure 2: Decision tree fitted over instances where evalua-
tions to fail occur if Py = v1,, P» = vo,, and P3 = v3, or
P = v, Py = v4;, and P5 = vs,. Tree paths through the
tree lead to pure bad (fail) results.

their value of the first parameter which takes just two val-
ues. Such paths can be reduced to a single conjunction
consisting of the parameter-values they share. To generate
concise explanations from the decision tree, we apply the
Quine-McCluskey algorithm [14], which provides a method
to minimize Boolean functions. Because the algorithm is
exponential and encodes the Set Cover problem which is
NP-complete, we use heuristics that do not achieve com-
plete minimality but still reduce the size of the explanation.
We illustrate this process below in Example [2] Because the
use of Quine-McCluskey is not our research contribution,
our explanation is brief.

Example 2. Consider an experiment whose instances lead
the decision tree shown in Figure [2| There are three paths
through the tree that evaluate to pure fail outcomes. The
Quine-McCluskey algorithm attempts to shorten these paths
to a simpler expression or expressions. The output of the
algorithm contains the following conjunctions:

o (P1,v1,),(P2,v2,), and (Ps3,vs, )
o (P1,v1,),(Ps,v4,), and (Ps,vs, )

4. EXPERIMENTAL EVALUATION

This section presents the results of our experimental eval-
uation of BugDoc compared against state-of-the-art meth-
ods for deriving explanations as well as for hyperparameter
optimization, using both synthetic and real pipelines. We
examined different scenarios, including when a single solu-
tion is sought and when a budget for the number of instances

that can be run is set. We also explore the scalability of
our approach when multiple cores are available to execute
pipeline instances in parallel.

Baselines. Two state-of-the-art methods for pipeline de-
bugging and hyperparameter optimization are, respectively,
Data X-Ray [21] and Sequential Model-Based Algorithm
Configuration (SMAC) [15]. Note that the algorithms are
not strictly comparable with one another nor with BugDoc.
Data X-Ray analyzes existing pipeline instances, but does
not suggest new ones. SMAC does propose new pipeline in-
stances in an interactive fashion, but it stops once it finds a
pipeline of interest. This makes sense for SMAC’s primary
use case, which is to find a well-performing set of parame-
ters, but it is less helpful for debugging, because it makes
no attempt to find a minimal root cause. For example, if a
minimal definitive root cause of a pipeline is that parameter
P; must have a value of 5, SMAC will return a pipeline that
fails which will have P; set to 5. But since the pipeline may
have many other parameters, the user has no way of know-
ing that P; = 5 is the minimal definitive root cause and thus
no way of knowing how to rectify the bug. To give SMAC
a reasonable chance to find minimal root causes, we apply
Data X-Ray to suggest root causes for the pipeline instances
generated by SMAC.

Evaluation Criteria. We used two criteria to measure
quality: precision, which measures the fraction of causes
identified by any given method are in fact minimal definitive
root causes; and recall, which measures the fraction of test
cases for which at least one minimal definitive root cause is
found.

Our first set of tests allow BugDoc to find at least one
minimal definitive root cause and then uses the same number
of instances for the other algorithms. Thus, it gives the
same budget to each algorithm and checks its precision and
recall. A second set of tests tries different budgets of pipeline
instances and sees how each algorithm performs in terms of
these same quality metrics.

In these tests, Data X-Ray is given (i) the instances gen-
erated by BugDoc and, in a separate test, (ii) the instances
generated by SMAC.

Let UCP be a set of computational pipelines, where each
CP € UCP is associated with a set of minimal definitive
root causes R(CP).

Precision and recall are evaluated for all pipelines. For-
malizing these definitions, given a set of minimal root causes
asserted by an algorithm A for all CP in UCP, precision is
the number of minimal root causes predicted by A that are
truly minimal definitive root causes (true positives) divided
by the size of the set of all root causes asserted by A, which
includes true and false positives. That is,
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Figure 3: Synthetic Pipelines. Precision, Recall and F-measure for the first solution scenario in which BugDoc runs until it
reports a minimal definitive root cause. The same instances are given to the Bayesian technique SMAC. Data X-Ray uses
the results (succeed or fail) of executing the pipeline instances chosen by BugDoc and, separately, the results of the pipeline

instances chosen by SMAC.

> crevep A(CP)N R(CP)
> crevep ACP)

Recall is the fraction of times when a true minimal defini-
tive root cause is found by A.

Precision =

> crevce LACP)NR(CP)#0
|[UCP|
We also report the F-measure, i.e., the harmonic mean of
precision and recall:

Recall =

Fomeasure — 2 x precz:szion X recall

precision + recall

Pipelines. We evaluate our approach using both synthetic
and real pipelines. The synthetic test set spans the follow-
ing four scenarios, each consisting of multiple pipelines: (i) a
single parameter-comparator-value triple constitutes a min-
imal definitive root cause, (ii) a disjunction of parameter-
comparator-value triples, each constituting a minimal defini-
tive root cause, (iii) a single conjunction of some parameter-
comparator-value triples constitutes a minimal root cause,

and (iv) a disjunction of conjunctions of parameter-comparator-

value triples constitute a minimal root cause. We also present
two case studies of real pipelines (see Sections and.
Each pipeline is associated with one or more known defini-
tive root causes based on these scenarios.

We tried to generate synthetic data that reflect typical
pipelines in data science and computational science which
often involve multiple components and associated parame-
ters. The pipelines have between three and fifteen parame-
ters and each parameter has between five and forty values.
The parameter values are chosen to be ordinal (e.g., tem-
perature) or categorical (e.g., color) each with probability
1/2.  The example below illustrates the parameter space
and definitive root cause for a pipeline.

Example 3. A pipeline having three parameters with four
possible values each could have the following configuration:

e Parameter Space: p1 € [1.0,2.0,3.0,4.0], p2 € [1,2,3,4],
and 3 c [upgl”’ up32777 <:p33777 44p3417].

e Definitive Root Cause : (p1 = 4) or (p2 < 3.0 and p3 #
up3477).

Implementation and Experimental Setup The current
prototype of BugDoc is implemented in Python 2.7. It con-
tains a dispatching component which runs in a single thread
and spawns multiple pipeline instances in parallel. In our
experiments, we used five execution engine workers to exe-
cute the instances.

We used SMAC version for Python 3.6. The Data X-
Ray algorithm is implemented in Java 7 and the code was
kindly shared by its authors . Since Data X-Ray does
not generate new tests, we use the pipeline instances created



by BugDoc as input to the feature model input of Data X-
Ray. Separately, we convert the pipeline instances created
by SMAC as input to the feature model of Data X-Ray.
All experiments were run on a Linux Desktop (Ubuntu
14.04, 32GB RAM, 3.5GHz x 8 processor). For purposes of
reproducibility and community use, we have made our code
and experiments available at our GitHub repositoryﬂ and it
includes a binding to the VisTrails workflow system.

4.1 Finding One Solution

For our first set of experiments, we set BugDoc to stop
iterating as soon as it finds one minimal definitive root cause
for failure. Figure [3| presents the precision, recall and F-
measure for the four scenarios of root causes for a pipeline
to explore the relative generality of all the algorithms:

1. pipelines with a single root cause.
2. pipelines with a disjunction of root causes.

3. pipelines whose failure root cause is a conjunction of
parameter-comparator-value triples.

4. pipelines whose root cause is a disjunction of conjunc-
tions.

BugDoc outperforms Data X-Ray in all four scenarios,
both when Data X-Ray uses instances generated by BugDoc
and SMAC. If the root cause is a disjunction (Figures
and or a single parameter-comparator-value (Figure[3al),
BugDoc also attains high recall, since it usually identifies the
minimal definitive root cause. The likelihood that BugDoc
does not find a definitive answer is higher in the scenario
where a root cause is a conjunction of factors, as can be
seen in the relatively lower recall in Figure though the
result is still better than that of Data X-Ray.

4.2 Finding Solutions on a Budget

Running pipelines can be expensive, so executing instances
until we find a definitive root cause may not be feasible in
practice. Hence, for this set of experiments we give the al-
gorithm a budget of pipeline instances to be executed.

We compared BugDoc against Data X-Ray using the in-
stances generated by BugDoc and SMAC, but setting a bud-
get on the number of instances used. Figures 7] show the
quality metrics for the four root cause scenarios described
above as the number of instances increases (on the x axis).

Sometimes, when Data X-Ray uses the instances gener-
ated by BugDoc, it does better, at least in recall, for the
case where the root causes are conjunctions of parameter-
comparator-value triples. This is expected since Data X-Ray
is meant to find relevant conjunctions. That is, Data X-Ray
lists the parameter-value combinations that lead to bad sce-
narios. By contrast, BugDoc finds minimal decision trees
for the data seen so far. When there is little data, jump-
ing to generalizations can be a bad strategy (a lesson we
have all learned from real life). This reinforces the impor-
tance of doing a systematic and iterative search to obtain
more data. When the budget is high, BugDoc dominates the
other methods, because Data X-Ray provides explanations
that are not minimal definitive root causes.

! https://github.com/ViDA-NYU/debugging-science

4.3 Parallel execution

The major computational cost in any of these algorithms
is the cost of running the pipeline instances. Fortunately,
they can be run in parallel. The question is how good the
scale up and speed-up are. Figure[§|shows that the scale-up
is essentially linear with the number of cores for the first
solution setup (Figure , thus given sufficient computing
power, the approach is able to explore potentially large pa-
rameter spaces. Note that scale-up here leads to a speed up
because the pipelines executions are the most costly opera-
tions, and we can discard the executions in the queue if our
hypothesis proves to be false. By testing instances in paral-
lel, we can reduce the time to detect such stop criterion.

4.4 Case Study: Linguistic Dataset

The authors of Data X-Ray [21] tested their algorithm
with a linguistic database consisting of sentences consisting
of subjects, verbs, and objects. The sentences were tagged
with part-of-speech (POS) tags. Human labelers graded the
sentences as good or bad. We used the same data to evaluate
our framework. To model these data, we considered three
parameters: subject, verb, object, and various tags for each.
We applied BugDoc to generate instances (in this case sen-
tences) and then tried to determine the minimal definitive
root causes for the problems.

Because the sentence database was evaluated by people,
there was a certain subjectivity in their evaluations. For
that reason, there were cases where given two sentences sl
and s2, they could be identical with respect to their subject-
value, verb-value, and object-value, yet sl could be evalu-
ated as good and s2 as bad. In such cases, if one evaluation
was overwhelmingly more frequent (e.g., some subject-value,
verb-value, object-value combination was evaluated 90% of
the time as bad), then we set up the data to eliminate the
minority evaluations.

Figure |§| compares the results generated by BugDoc and
Data X-Ray for these data. In these experiments all three
algorithms (BugDoc, Data X-Ray using BugDoc instances,
and Data X-Ray using SMAC instances) work well. When
there are very few parameters and (in this case just sub-
ject, verb, object) and failure requires the combination of
two or three parameter-values, BugDoc is neither better nor
worse than the state of the art. Here, the root causes in-
volve either two or three of the possible parameters, and all
methods are able to find minimal explanations. By contrast,
BugDoc’s comparative advantage, as shown in Sections
and [£:2] occurs in pipelines that have many more parameters
but where only few parameters constitute minimal definitive
root causes.

4.5 Case Study: Data Polygamy Framework

To demonstrate our debugging strategies on a second real
computational pipeline, case, we created a VisTrails work-
flow”| for the Data Polygamy (DP) Framework [9|, shown
in Figure Data Polygamy aims to discover statistically
significant relationships among a large number of spatio-
temporal data sets. The computational pipeline evaluates
different methods for determining statistical significance.

The pipeline reproduces an experiment designed by the
Data Polygamy authors to evaluate the p-value and false
discovery rate for Data Polygamy under different scenarios.

Zyww.vistrails. org
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whether Data X-Ray uses the same instances as those generated by BugDoc or those used by SMAC.



—&— Max Instances per core Total Instances

2500

2000

1500

1000

Number of Instances

500

o - el

{4

&
3

o 10 20 30
Number of Cores

Figure 8: Simulated data. Scalability of BugDoc running on
multiple cores.

B BugDoc =3 Data X-Ray (BugDoc) EZA Data X-Ray (SMAC)

10

08

0.6

Quality Scores

0.4

02

0.0 T T T
Precision Recall F-Measure

Figure 9: Linguistic Data Set. BugDoc and Data X-Ray
using the instances generated by BugDoc and SMAC do
equally well on this data set from the Data X-Ray paper |21].
That data set has three parameters (subject, verb, object)
and where failures require a combination of at least two
parameter-values. BugDoc has no comparative advantage
over the other methods when there are few parameters and
all of them are involved conjunctively in any failures

The data sets are synthetically generated and their features
are given as input parameters for the experiment. This pro-
cess is a good use case for our approach because it has the
following properties:

e Data Polygamy constitutes a complex pipeline, includ-
ing steps for data cleaning, data transformation, fea-
ture identification, multiple hypothesis testing, and
other activities.

e The input data is heterogeneous — over 300 data sets
at different spatio-temporal resolutions.

e The parameter space is large, making hand-debugging
impractical.

For this experiment, we selected, together with the Data
Polygamy authors, seven parameters to be debugged. To
achieve the goal of finding the best multiple hypothesis test-
ing method for a set of attributes in the input data sets
that may be more or less correlated with one another, the
pipeline generates ground truth data consisting of attribute
pairs that are truly related and other attribute pairs whose
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Figure 10: VisTrails pipeline for Data Polygamy Framework
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correlations may be spurious. Table[3|lists these parameters
and their data types.
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Figure 11: Data Polygamy case study. BugDoc and Data
X-Ray using the instances generated by BugDoc and SMAC
all find minimal definitive root causes as it is shown by the
perfect recall. However BugDoc enjoys far higher precision.

Each parameter can conceivably take on any value be-
longing to its type (e.g., Integer or Boolean). Given a set
of pipeline instances, some of which crash and some which
execute to completion, we want to find at least one minimal
set of parameter-values or combinations of parameter-values
which cause the execution to crash. Our experiments in fact
found that certain parameter-values are root causes individ-
ually or in combination. These were manually investigated
to assess their soundness, and four root causes were identi-
fied as follows:

R.1 Percentage < 0

R.2 Percentage > 50

R.3 Diff < 0 and Percentage > 0
R.4 Diff > 100 and Percentage > 0

Root causes andwere known by the Data Polygamy
authors, but it was surprising to them to find out that the
parameter Diff out of the interval [0,100] only affects the
pipeline execution negatively if Percentage is positive
and. Using definitive root causes|R.1HR.4] we created
ground truth for our case study, which allowed us to com-
pute the previous quality metrics and compare again with
Data X-Ray.
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Figure 12: Data Polygamy case study on a budget. Data X-Ray using the instances generated by BugDoc and SMAC finds
all minimal definitive root causes, BugDoc also finds all minimal root causes and increases its precision with more instances.

Figure[l1|shows that both BugDoc methods found all the
parameter-comparator-value triples that would cause the ex-
ecution of the pipeline to fail, as can be seen by the metric
of recall. As in Section [£I] Data X-Ray provides not only
definitive root causes, but also configurations that do not
always yield bad instances — this explain its lower precision.

The same behavior discussed in Section [4.2] was observed
this case study: as shown in Figure which shows the
results of BugDoc, Data X-Ray using SMAC’s instances, and
Data X-Ray using BugDoc’s instances on different budgets.
BugDoc only makes mistakes when there is not sufficient
data to characterize the minimal definitive root causes.

S. RELATED WORK

As discussed in Section[l} the problem of generating diag-
noses for issues encountered in the results of computations
and queries has received a lot of attention in the recent lit-
erature 21} 2| |9 [17]. Unlike these approaches, we aim to
explain abnormal behavior in computational pipelines that
result from bad parameter settings.

Our work combines aspects from hyper-parameter tuning
and workflow debugging. Hyper-parameter tuning meth-
ods explore the parameter space of computational pipelines
to optimize their outcome — they automatically derive in-
stances with improved performance. While they may find
good combinations for parameter values, they do not pro-
vide any insights into which other combinations may lead
to problems or bad performance. In contrast, prior work on
workflow debugging aims to identify and explain problems
based on existing provenance, but they do not iteratively de-
rive and test new workflow instances. As we demonstrated
in Section [4] BugDoc derives good explanations starting the
debugging process from scratch and generating fewer work-
flow instances than hyper-parameter optimization frame-
works.

Hyperparameter Optimization. Scientific pipelines of-
ten entail the use of hyper-parameters such as cutoff thresh-
olds for p-values and for variances, to name a few examples.
Bayesian optimization methods are considered the state of
the art for the hyperparameter optimization problem [5} |7}
18,119, [12]. They can outperform manual setting of param-
eters, grid search or random search [6]. These methods ap-
proximate a probability model of the performance outcome
given a parameter configuration that is updated from a his-
tory of executions. Gaussian Processes and Tree-structured
Parzen Estimator are examples of probability models [5]
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used to optimize an unknown loss function using the ’ex-
pected improvement’ criterion as acquisition function. To
do this, they assume the search space is smooth and differ-
entiable. This assumption, however, does not hold in general
for arbitrary pipelines.

Recent projects modeled the database parameter tuning
problem as a Bayesian optimization problem. OtterTune [20)]
is a system that uses supervised learning techniques to find
optimal settings of DBMS knobs given a database workload
and a set of metrics (optimization functions). OtterTune
uses lasso regularization to select the most important knobs.
Dalibar et al. [11] proposed BOAT, another auto tuning sys-
tem that optimizes DBMS parameters configurations using
Bayesian Optimization. However, instead of starting the op-
timization with a blank Gaussian process, it allows the user
to input an initial probabilistic model that exploits previ-
ous knowledge of the problem, what is called Structured
Bayesian Optimization. BOAT also combines parametric
and non-parametric approaches to build probabilistic mod-
els, the latter are used to learn the difference between the
former and the observed data.

At first glance, the workflow debugging problem could be
viewed as the task of finding parameter configurations that
minimize the occurrence of poor results. In that way, the
above work could be applied. Unfortunately, in the debug-
ging setting, certain data sets or parameter settings simply
stop a workflow from working properly. There is no justifi-
cation for any smoothness or other statistical assumptions.

Debugging and Predicting Pipelines. Previous work
on pipeline debugging has focused on analyzing execution
history with the goal of identifying problematic parameter
settings or inputs. Because they do not use an iterative ap-
proach to derive new instances (and associated provenance),
they can miss important explanations and also derive incor-
rect one. Nonetheless, to a large extent our work can be
combined with these approaches.

Bala and Chana [3] applied several machine learning algo-
rithms (Naive Bayes, Logistic Regression, Artificial Neural
Networks and Random Forests) to predict whether a partic-
ular pipeline instance will fail to execute in a cloud environ-
ment. The goal is to reduce the consumption of expensive
resources by recommending against executing the instance
if it has a high probability of failure. The system does not
try to find the root causes of failure. The system developed
by Chen et al. [8] identifies problems by differentiating be-
tween provenance (encoded as trees) of good runs and bad



Table 3: Data Polygamy pipeline parameters

Parameter Description Type

Diff This parameter governs the max- | Integer
imum difference allowed between
a set of time series from the orig-
inal time series from which they
are generated. The larger this
value, the more different they
can be. This is used to com-
pare different multiple hypothe-

size testing methods.

Percentage | Percentage of true relationships | Integer
among pairs of time series at-
tributes in the ground truth

data.

Varying

Size Boolean

If True, then the time series may
have different lengths. If False,

then they all have same lengths.

Time Reso-

lution String

The temporal resolution of data:
daily, weekly, monthly or ran-
dom (in which case one of daily,
weekly, or monthly is chosen

with uniform probability).

Permutations The number of permutations | Integer
used for a shuffle test to deter-
mine the p-value of each correla-

tion relationship.

Complete If True, then each shuffle is a | Boolean
random permutation on all the
data. If False, then shuffles
are constrained to respect cer-
tain kinds of temporal locality
(e.g. days within spring may
only be swapped with other days
in the spring)

If True, the same permutations
of an attribute are shared among
all correlation relationships in-
volving that attribute. If False,
permutations are independent
among different relationships.

Sync Boolean

ones. They then find differences in the trees that may be
the reason for the problems. However, the trees do not pro-
vide a succinct explanation for the problems, and it cannot
state whether the differences encountered are indeed the root
causes. Viska [13] allows users to define a causal relation-
ship between workflow performance and system properties
or software versions. It provides big data analytics and data
visualization tools to help users to explore their assump-
tions. Each causality relation defines a treatment (causal
variable) and an outcome (performance measurement), the
approach is limited to analyze one binary treatment at a
time with user in the loop. The Molly system [1] combines
the analysis of lineage with SAT solvers to find bugs in fault
tolerance protocols for distributed systems. Molly simulates
failures, such as permanent crash failures, message loss and
temporary network partitions, specifically to test fault tol-
erance protocols over a certain period of (logical clock) time.
The process considers all possible combinations of admissi-
ble failures up to a user-specified level (e.g., no more than
two crash failures and no more message losses after five min-
utes). While the goal of that system is very specific to fault
tolerance protocols, its attempt to provide completeness has
influenced our work. In the spirit of Molly, BugDoc tries to
find minimal definitive root causes.
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Although not designed for computational pipelines, Data
X-Ray [21] provides a mechanism for explaining systematic
causes of errors in the data generation process. The system
finds common features among corrupt data elements and
produce a diagnosis of the problems. If we have provenance
of the pipeline instances together with error annotations,
Data X-Ray’s diagnosis would derive explanations consist-
ing of features that describe the parameter-value pairs re-
sponsible for the errors. As discussed in Section [ BugDoc
produces explanations that are similar to those of Data X-
Ray, but that are also minimal. In addition, BugDoc also
employs a systematic method to automatically generate new
instances that enable it to derive concise explanations that
are root causes for a problem.

6. CONCLUSION

BugDoc combines features from explanation systems with
hyperparameter optimization approaches to address one of
the most cumbersome tasks for scientists: debugging the
computational pipelines they use to encode experiments. It
uses two algorithms, the first looks for root causes coming
from single parameter-comparator-value triples and the sec-
ond looks for more complex explanations (disjunctions of
conjunctions of parameter-comparator-value triples).

Compared to the state of the art, BugDoc makes no statis-

tical assumptions (as do Bayesian approaches like SMAC),
but generally achieves better precision and recall given the
same number of pipeline instances. The exceptions occur
when there are very few parameters or very pipeline in-
stances in which case Data X-Ray does better given the
instances generated by BugDoc. This suggests that a use-
ful strategy would be to have BugDoc generate instances
and, if it cannot guarantee a minimal definitive root cause,
then a user can use the hypotheses generated by both Bug-
Doc and Data X-Ray. However, when our goal is to find
minimal definitive root causes and there are at least several
parameters, BugDoc dominates the other methods. Our ex-
periments indicate that our approach is scalable and paral-
lelizes well: pipeline instances can be executed in parallel,
thus opening up the possibility of exploring even large pa-
rameter spaces. There are several avenues we plan to pur-
sue in future work. First, we would like to make BugDoc
available on a wide variety of systems that support pipeline
execution and improve its usability. We will also explore
the use of cost for different instances in our choice of which
pipeline instances to try next.
Acknowledgments. We thank the Data X-Ray authors
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der grants MCB-1158273, 10S-1339362, and MCB-1412232,
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