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Different experimental technologies measure different aspects of
a system and to differing depth and breadth. High-throughput
assays have inherently high false-positive and false-negative rates.
Moreover, each technology includes systematic biases of a differ-
ent nature. These differences make network reconstruction from
multiple data sets difficult and error-prone. Additionally, because
of the rapid rate of progress in biotechnology, there is usually no
curated exemplar data set from which one might estimate data
integration parameters. To address these concerns, we have de-
veloped data integration methods that can handle multiple data
sets differing in statistical power, type, size, and network coverage
without requiring a curated training data set. Our methodology is
general in purpose and may be applied to integrate data from any
existing and future technologies. Here we outline our methods and
then demonstrate their performance by applying them to simu-
lated data sets. The results show that these methods select true-
positive data elements much more accurately than classical ap-
proaches. In an accompanying companion paper, we demonstrate
the applicability of our approach to biological data. We have
integrated our methodology into a free open source software
package named POINTILLIST.

Fisher’s method � mixture distribution models

Systems biology (1, 2) aims to understand cellular behavior in
terms of the spatiotemporal interactions among cellular com-

ponents, such as genes, proteins, metabolites, and organelles. In
systems biology, one typically perturbs a system and, with high-
throughput measurements to identify all pertinent elements and
their interactions, integrates them into a biological network to
understand the system’s behavior. As such, systems biology is
predicated on the integration of experimental data from an ever
increasing number of technologies, such as gene expression arrays,
proteomics, and chromatin immunoprecipitation on chip assays (3).
Integration achieves one of the most important imperatives of
systems biology, namely it reduces the dimensionality of global data
to deliver useful information about the system of interest.

A major challenge in systems biology is that technologies that
globally interrogate biological systems have inherently high false-
positive and false-negative rates (4); thus, each data type alone has
a limited utility. The integration of data from different sources
provides an effective means to deal with this issue by reinforcing
bona fide observations and reducing false negatives. Moreover,
because different experimental technologies provide different in-
sights into a system, the integration of multiple data types offers the
greatest information about a particular cellular process. For exam-
ple, gene perturbation experiments (e.g., knockouts or RNA inter-
ference) reveal relationships between genes that may imply direct
physical interactions or indirect logical interactions. In contrast,
chromatin immunoprecipitation chip data can reveal direct pro-
tein–DNA interactions or cofactor associations with bound tran-
scription factors (3). Combined together, these technologies can
provide a much more detailed view of a transcriptional regulatory
network than either alone (5).

There are a number of confounding problems that make data
integration nontrivial. First, the types of data to be integrated range
from discrete (e.g., a protein molecule may be localized to one or

more organelles) to continuous (e.g., mRNA expression level).
Second, each technology used has a different degree of reliability
and different amounts of the various types of error. Even when
considering multiple data sets generated by a common method,
simply taking the intersection of these data sets does not remove
random errors completely (6). Third, each data set includes its own
systematic biases (4, 7). For example, labeling-based mass spec-
trometry approaches (e.g., isotope-coded affinity tag) tend to favor
identification of highly abundant proteins. Small-scale experiments
tend to provide strong evidence for a small portion of a network but
say little about what may have been missed. Finally, in addition to
data generated by high-throughput technologies, there are other
attractive sources of data, such as small-scale experiments, curated
databases, and computational predictions. To fully realize the
potential of systems biology, it is imperative to draw from all of
these sources of data. However, curated databases often favor
widely studied proteins and genes. Curated databases may also
merge data from different strains�cell types or from various ex-
perimental conditions, and they may contain considerable data on
one part of a system while omitting other parts. Computational
predictions that extrapolate from earlier experimental data [e.g.,
prediction of protein–protein interactions from known interactions
of homologous proteins (8)] run the risk of perpetuating any
systematic bias in the source data (in addition to false-positive and
false-negative errors). De novo predictions are even more error
prone.

There is therefore a pressing need for more effective methods of
integrating data. These methods should accommodate various
sources of binary, categorical, and continuous valued data acquired
from high-throughput experiments, small-scale experiments, data-
bases, and computational predictions; and should be suitable for
dealing with missing data, high error rates, and systematic biases in
each data set. In addition, there are few fully verified data sets
available for training. Integration methods not requiring a training
set have so far been limited to particular classes of data where
specific assumptions hold true (9).

To address these concerns, we have developed a data integration
methodology that can handle multiple data sets differing in type,
size, and network coverage and does not require a training data set.
This methodology uses an optimization algorithm to minimize the
numbers of false positives and false negatives, and it makes no
assumptions about the number of data sets integrated; rather, it is
for general purposes and may be applied to integrate data from any
existing and future technologies. We have integrated our method-
ology into a freely available software package named POINTILLIST.

In this paper, we describe our methodology and its statistical
foundations using simple illustrative example data sets. Also in this
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issue of PNAS (10), we demonstrate the utility and efficacy of
POINTILLIST by applying it to the integration of 18 data sets to arrive
at a network model of the galactose utilization network in yeast. The
resulting network recapitulates the known biology of galactose
utilization and provides new insights and predictions, some of which
we verified experimentally.

Methods
Simulated Data Sets. Although we developed and tested our meth-
odologies by using many sets of real experimental data, for clarity
we base this paper on the simplest set of data that would be
sufficient to illustrate the pertinent characteristics of the various
methods presented. See the companion paper (10) for a demon-
stration of the applicability of our methods to a wide variety of
experimental data. We generated simulated data mimicking real
high-throughput data as follows. First, true differences (e.g., fold
changes of gene expression levels) for the data elements affected by
a perturbation (e.g., disease) were drawn with random signs from
a noncentral distribution (gamma distribution with a � 1.25 and b �
1.25). We used two parameters (� and �) to define the proportion
of affected elements (�) and the fraction of affected elements with
negative differences (�), respectively. True differences for nonaf-
fected elements (1 � �) were set to zero (Figs. 5–11, which are
published as supporting information on the PNAS web site, illus-
trate characteristic features of the data and our methods). Second,

normal random noise (riei) was added to the true differences (ti) of
each data set (Ti): Ti � ti � riei, where ri is a noise level inversely
related to the statistical power of the technology producing each
data set, i, and ei is standard normal. The affected data elements in
a data set with a small noise level produce high absolute Ti values,
resulting in low P values in the following test. Finally, a two-tailed
test was performed on Ti to produce P values for each data set (Pi):
Pi � 2Ncdf(��Ti�ri�), where the division using the scaling factor ri is
the scale of the noise. The same two data sets were used for Figs.
1–3 (ri � 0.666 for data set 1 and 0.334 for data set 2, and a � b �
2). For the more noisy, three-dimensional data used in Fig. 4B, a
and b values were randomly selected in the range 1.25–2.0 to
generate 3 � 10 � 30 data sets (for the example shown in Fig. 4A,
a � 1.5 and b � 1.5). The noise level (ri) was selected from a uniform
distribution and multiplied by a scaling factor of three for half the
data and four for the rest.

Weighted Integration Methods. Several integration methods (11),
such as Fisher’s �2 (12) and Stouffer’s Z (11), have been widely
used in statistical metaanalysis to combine P values from k data
sets. In this study, we used ‘‘weighted’’ versions of the following
integration statistics to maximize the overall statistical power of
the weighted sum of nonlinearly transformed P values in each
method:

Fig. 1. Illustration of classical approaches and unweighted Fisher’s method for integrating two simulated data sets. (A) Selection of significant elements using (i)
intersection approaches with � � 0.05 and � � 0.025, (ii) union approaches with � � 0.05 and � � 0.1, and (iii) unweighted Fisher’s method with � � 0.05 and � � 0.1.
(B) Effects of integration statistics on the shape of the decision boundaries. (C) Selection of significant elements using weighted Fisher’s method with (i) � � 0.05 and
(ii) �T � 0.013 to reduce false-positive errors based on the null hypothesis of the weighted Fisher’s method. For these particular data sets, it can be seen that the selection
using � T � 0.013 maximizes the precision (Table 1).

Fig. 2. Mixture distribution model. (A) The
results of mixture distribution modeling,
which indicates that the estimated H0 and H1

distributions represent the real data distribu-
tion (�2 of the residual was less than the cutoff
with � � 0.05). �T was chosen as the area under
the H0 distribution from where the H0 and H1

distributions meet to the positive infinite. (B)
Selection of significant elements using the �T

and its comparison with the weighted Fisher’s
method with � � 0.05. The selection using �T

provides the best accuracy F measure (Table 1).
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Fisher’s weighted F :Fw � �2 �
i�1

k

wi ln(Pi).

Mudholkar–George’s (MG) weighted T :Tw �

�� 15k � 12
�5k � 2�k�2 �

i�1

k

wi ln� Pi

1 � Pi
� .

Liptak–Stouffer’s (LS) weighted Z :Zw �

1

��wi
2 �

i�1

k

wiN�1�1 	 Pi� ,

where N�1(�) is the inverse of a standard normal cumulative density
function (cdf). The weight (wi) for the P values of each data set
represents a relative measure of statistical power compared with the
other data sets. Fig. 6 shows the definitions of false-positive and
false-negative error rates and statistical power by using two distri-
butions for nonaffected (background) and affected elements, when
Fisher’s weighted F was used. Also, Figs. 7 and 8 show the effect of
random noise on the distribution of P values of the background and
affected elements, respectively.

Determination of Weights. We determined the weights by maximiz-
ing the overall statistical power (observed in the data sets; Fig. 6)

of the weighted integration statistics for a given significance level
(0 
 � 
 1). This maximization was implemented by using
enhanced simulated annealing (ESA) (see ref. 13). (i) Guess an
initial weight vector. (ii) For the weight vector, determine by using
Monte Carlo simulations a cdf of background data elements (those
satisfying the null hypothesis H0) for a given integration statistic.
The rejection method (14) was used to generate random numbers
from a central distribution with k � 1 (i.e., �2 distribution with two
degrees of freedom for Fisher’s method, t-distribution with nine
degrees of freedom for MG method, or standard normal distribu-
tion for LS method). (iii) Find an overall statistic value (c) corre-
sponding to cdf(H0) � 1 � �. (iv) Define a decision boundary for
Fw � c by generating a grid matrix P�j � {P1, P2, . . . , Pj�1, Pj�1,
. . . , Pk} using Gauss-Legendre quadrature (15) and then by
computing Pj values for the grid points:

pj � exp� � c � 2 �
i��j

wi ln�pi�� � � 	 2wj�	 ,

(v) Count selected data elements by using this boundary as the
objective function to be maximized. (vi) Try another weight
vector and reject or accept it by using the Metropolis algorithm
until the ESA stopping criteria (13) are met. Finally, the
overall P value for each data element was calculated using
cdf(H0). The selected elements should have overall P values
less than the value of �.

Fig. 3. NP weighted Fisher’s method. (A) Se-
lected elements after the first iteration. (B) Se-
lected elements after the fifth iteration, which
shows that the elements selected by P1 (which
has less statistical power) are being eliminated
first. Thus, the iteration procedure correctly cap-
tures the relative importance of the data sets. (C)
The final set of selected elements and its com-
parison with the selection using the decision
boundary from �T � 0.015 determined by mix-
ture distribution model (Fig. 3). Selections based
on the mixture distribution model and the NP
Fisher’s method produce comparable accuracy
(Table 1).

Fig. 4. Comparison of the perfor-
mance of different integration
methods. (A) P values for three com-
plex data sets. (B) Receiver operating
characteristic graph showing the rel-
ative performance of different inte-
gration methods in terms of false-
positive and true-positive error rates.
The MM and NP integration meth-
ods outperform the other methods
(see text for details). UF, unweighted
Fisher’s method; WF, weighted Fish-
er’s method; FT, threshold Fisher’s
method.
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Determination of Significance Threshold (�T) for Combined P Value.
For a given weight vector, we compute the ratios of cumulative
observed densities to cumulative expected densities by using the
real data distributions in the range of � between 0 and a:

R�� � a� �
1 	 Dcdf(Sw � c�a�)
1 	 H0

cdf(Sw � c�a�)
�

1 	 Dcdf(Sw � c�a�)
a

,

where Dcdf(�) is the cdf of the observed data distribution, and c(a)
corresponds to the integration statistic Sw (e.g., Fw) value when � �
a. Note c(� � 0) is infinite. As a decreases, the decision boundary
moves toward the origin in P-value space. When there are true-
positive elements, this results in a large cumulative density ratio
because the expected density is small but the observed density is
large. As a increases, however, the ratio decreases because the
observed density slowly increases relative to the expected density.
The plot of the ratio versus a shows that the curve can be split into
two regions, one rich in true positives and the other in background
data elements (Fig. 11). �T was determined as the x axis value of the
point nearest to the origin.

Mixture Distribution Model. For a given weight vector, we define the
probability density function (PDF) of a mixture distribution model
M as PDF(M) � (1 � �)PDF(H0) � �PDF(H1) (16, 17). We directly
estimated an H1 distribution by fitting to the distribution of the real
data elements as follows: (i) guess a � (0 
 � 
 1); (ii) define a
PDF(H0) by using Monte Carlo simulation; (iii) define a PDF(H1)
of integration statistic values (Sw) as a distribution of affected data
elements by guessing two parameters (a and b) for a gamma
distribution; (iv) compute the PDF(M) by using the equation above;
(v) calculate the objective function as the squared sum of the
difference between cdf(M) and the cdf of the real data 
Dcdf(Sw) �
Mcdf(Sw)
2

2; (vi) repeat steps ii–v with a different set of gamma
distribution parameters (a and b) and � and then recompute the
objective function; (vii) accept or reject these new trials by using the
Metropolis algorithm until the ESA stopping criteria are met.

Nonparametric (NP) Decision Boundary. For a given �T (see below),
the initial set of elements is selected with the union method:
C � �{Pi � �T}, i � {1,2,. . . , k}. A weight for each data set was
then computed as the nonoverlapping area between the P value
distributions of C and the set of random background elements (B):

wi � Max{CDF(Si,B) 	 CDF(Si,C)},
s i

where the instances of Si are the transformed P values for data set
i [e.g., when Fisher’s method is used, Si � �2ln(Pi)]. To quantify the
overall statistical power for the two sets C and B, we compute as an
objective function, f, the nonoverlapping area between distributions
of weighted integration statistic values (Sw) of C and B:

f � Max{CDF(Sw, B) 	 CDF(Sw, C)}.
s i

Note that f is related to statistical power of C, i.e., 1 �cdf(Sw
max, C),

where Sw
max is the Sw value at which the cdf difference is at maximum.

Also, the final set of selected elements depends on �T. The initial
�T value was determined in a manner similar to the mixture
distribution method above, except that we approximated the PDF
of H1 by using kernel density estimation (18).

Results
Example Data Sets. For the purposes of illustration, here we use two
artificially generated example data sets. In this way, we know the
data characteristics a priori and can illustrate and evaluate each step
in our methodology unambiguously. The simulated data are de-
signed to be as simple as possible while mimicking data from
high-throughput technologies. In a companion paper (10), we

demonstrate the application of the methodology to real biological
data.

Fig. 1A presents two example data sets generated as described in
Methods. Each of our data sets (assays for genes or proteins or their
interactions) consists of two types of elements: true positives (the
elements affected by an experimental perturbation, which we wish
to detect) and true negatives (background elements not affected by
the perturbation). As is common for high-throughput technologies,
each data element is presented as a P value (the probability of
observing a value when the corresponding data element is not
affected by the experimental perturbation). Thus, data elements
with lower P values are more likely to be true positives. In Fig. 1A,
the true negatives are distributed uniformly (shown as gray dots).
When plotting multiple data sets together, P values for true
positives would ideally be expected to be distributed near the origin.
In practice, because of the different noise characteristics of each
measurement technology, P values for the same data element may
be low in one measurement (along one axis) and not in another.
This results in the distribution of true positives near the axes. Note
that the true-positive elements in Fig. 1A are asymmetrically
distributed. Data set two (measured along the y axis) was generated
with a lower level of noise (thereby containing more statistical
power) and therefore has more true-positive data elements with low
P values. Finally, note that, although the true positives are highly
correlated (as expected), the true negatives are not correlated. For
real high-throughput data, true positives will comprise a small
proportion of the total data. Thus data sets from different tech-
nologies will be largely uncorrelated (19). For the example pre-
sented in the companion paper, only 69 genes of 6,000 genes were
selected as potential positive elements; 16,985 protein–protein
interactions were selected out of 6,0002; and 8,555 protein–DNA
interactions were selected out of 135 � 6,0002. The correlation
coefficients between the above data sets were all �0.3. To make it
easier to understand and compare the methodologies presented,
the same data are used for the analyses presented in Figs. 1–3.

Classical Approaches to Data Integration. Fig. 1A shows the decision
boundaries for three commonly used approaches to data integra-
tion: intersection, union (20), and unweighted Fisher’s method (12).
As described above, true-positive data elements tend to be distrib-
uted near the axes and especially near the origin. Thus, data
integration methods typically divide the total P value space into two
regions by determining a decision boundary. Data elements in the
region near the axes and�or origin, which is rich in true positives,
are selected as significant. Data elements in the complementary
region (away from the origin and axes) are considered true nega-
tives. In the intersection and union methods, significant elements
are identified independently in each data set using a cutoff P value
(e.g., 0.05). For intersection, only the significant elements common
to all data sets are selected. This method tends to miss many
true-positive data elements near the P1 axis and away from the
origin (see Fig. 1A). The union method improves this situation by
selecting elements significant in any one data set but includes many
false positives near the P2 axis and may still miss many elements with
low geometric-mean P values. Note that the union and intersection
methods treat each data set independently. In contrast, Fisher’s
method selects significant data elements by using a more sophisti-
cated measure that results in a hyperbolic (curved) decision bound-
ary, allowing selection of data elements near both axes and within
a larger region near the origin.

Two additional integration methods widely used in metaanalysis
to combine P values from multiple data sets are MG T and LS Z
(see Methods for formulae). Fig. 1B illustrates the differences
between these methods and Fisher’s. The three methods involve
different transformations of the P values (see Methods), resulting in
different shapes of the decision boundary. As can be seen in Fig. 1B,
the LS and MG methods favor data elements with low P values in
all data sets (points near the origin). In contrast, Fisher’s method
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permits the selection of elements as long as there is at least one very
small P value. Thus, Fisher’s method is most effective when P values
for true-positive data elements in different data sets tend not to
agree (many data elements scattered near the axes), and the MG
or LS methods when data sets tend to agree (many data elements
scattered near the origin). Importantly, all of these methods treat
both data sets equally, producing a symmetric decision boundary,
even though our data are highly asymmetric. The methods we
present below overcome this limitation by producing asymmetric
decision boundaries (POINTILLIST provides all three methods. The
user should select the appropriate method for the given data
characteristics). For the remainder of this paper, for simplicity, we
will use only Fisher’s method without loss of generality.

Weighted Integration of P Values. To allow for various levels of
statistical power (reliability) in different data sets, we use a
weighted method for combining P values. In this approach, P values
from different high-throughput assays are transformed, scaled [by
a weight representing the reliability (statistical power) of the assay]
and summed to generate a combined P value (see Methods). The
combined P values are then tested by using Monte Carlo generated
H0 distributions as described in Methods. Data elements whose
combined P values are below a threshold are accepted as compo-
nents of the system of interest. All other data elements are rejected.
The selection threshold corresponds to a significance level (�)
reflecting the proportion of area below the decision boundary.
Infinitely many combinations of weights can satisfy a given � (Fig.
9). For a given �, we select weights that maximize the number of
elements chosen (Fig. 10, elements between the decision boundary
and axes), which maximizes the number of true positives selected
because the majority of data elements near the axes are true
positives (for illustrative examples, see Fig. 1C). We used ESA to
search for such optimal weights (see Methods). Fig. 1C compares the
unweighted (green line) and weighted (blue line) Fisher’s methods
for our example data. In this example, P values from data set 2 are
twice as reliable as those in data set 1, thus skewing the P2 values
correspondingly closer to 0 (see Methods). As shown, a weighted
integration method produces an asymmetric decision boundary and
can therefore capture more of the true positives.

Selecting a Joint-Significance Threshold (�). As shown in Figs. 7 and
8, the choice of the �-threshold is constrained by the opposing needs
to minimize false positives and false negatives. A large � value can
produce a high false-positive rate, whereas a small � value can lead
to a high false-negative rate. To estimate a suitable threshold �
value (�T), we note that true-positive data elements cluster near the
axes whereas the remaining data elements tend to be uniformly
distributed. Therefore, one way to select �T would be to find the
value of � for which the resulting decision boundary best separates
uniformly distributed data elements from the nonuniform distri-
bution of data elements near the axes. For a given �, the cumulative
density of the data elements measures the fraction of data elements
selected. The cumulative expected density of the background
(uniformly distributed) data elements is �. Thus to compute �T, we
calculate the ratios of cumulative observed densities to cumulative
expected densities as � is increased from zero. �T is the x-axis value
of the point nearest to the origin (see Methods and Fig. 11). Because
the data integration weights are calculated for a given �, it is
necessary to recalculate the weights for �T. For these recalculated
weights, another �T is determined. This procedure is repeated until
�T converges. The black line in Fig. 1C shows the decision boundary
arrived at using this method for selecting �T. Note how this
boundary is much more stringent, resulting in fewer false positives.

Improved Threshold Significance Level Selection by Using Mixture
Distribution Models. The above approach to estimating �T uses only
the distribution of the putative background data elements. As such,
this approach focuses on minimizing the false positive rate only. By

explicitly dividing the data elements into two populations (a puta-
tive true-positive set, H1, and a putative background set, H0), we can
estimate false-positive and false-negative rates in each set. This
approach allows optimization of the membership of H0 and H1 to
minimize the false-positive and false-negative rates, as follows. (i)
For an initial value of � (e.g., 0.05), determine the weight vector as
described in Weighed Integration of P Values. (ii) Assume that the
full set of observed data elements (green histogram in Fig. 2A)
divides into two sets H1 and H0. (iii) The PDF of observed data
elements can be approximated by a ‘‘mixture model’’ (MM), M:
PDF(M) � (1 � �)PDF(H0) � �PDF(H1), where 0 
 � 
 1 is the
proportion of H1 in M (red curve in Fig. 2A). (iv) For a given set
of weights, the PDF of H0 (dashed blue curve in Fig. 2A) can be
evaluated numerically by Monte Carlo sampling of a uniform
distribution (or the corresponding �2, T, or Z distributions, see
Methods for details). (v) Guess an initial value for �. (vi) Estimate
the PDF of H1 (black curve in Fig. 2A) as a gamma distribution that
best satisfies the relationship in step 2 above using ESA (see
Methods). (vii) Determine �T as the right-hand tail of H0 measured
from the point where H1 and H0 PDFs meet [marked as c(�T) in
Fig. 2A]. (viii) Repeat steps 1–7 (repeat step 1 by using � � �T) until
�T estimates converge. Finally, the significant elements are selected
by using the decision boundary given by �T.

Fig. 2B shows the decision boundaries arrived at through the
above procedure (black curve, �T � 0.015) and for � � 0.05 for
comparison. Note that MM-based estimation of �T reduces the
number of false positives considerably while incurring relatively few
additional false negatives (see Table 1, which is published as
supporting information on the PNAS web site). The explicit MM
also has fewer false negatives than the implicit method presented in
the previous section (see Fig. 4 for a quantitative comparison using
more demanding data that confirm that the MM method provides
better overall performance).

Using a NP Decision Boundary. The above methods are all based on
smooth parametric decision boundaries derived from assigning a
reliability parameter (the weight) to each type of data. In practice,
there are many sources of error for a given measurement error, in
turn affecting the resulting P values in an irregular manner. In such
cases, smooth parametric decision boundaries may be unable to
accommodate these irregularities. To allow estimation of non-
smooth-decision boundaries, we have developed a heuristic NP
method, as follows (see Methods for details).

First, we construct a first-pass set of candidate true-positive data
elements C whose P values are less than a threshold �T (see
Methods) in at least one data set. In Fig. 3A, these are the data
elements between the axes and the dashed blue lines. The remain-
ing elements are grouped into the complement data set Cc. We also
generate a set of random background elements (B, see Methods).
Second, we compute a weight for C and B proportional to the
nonoverlapping area between the two PDFs of transformed P
values of the elements in C and B (see Methods). Third, we compute
the combined P value statistic (Sw). Fourth, we quantify the
statistical power of the current memberships of C and B as the
nonoverlapping area between the corresponding Sw PDFs of C and
B. Fifth, if the nonoverlapping area ( f) is less than a user-specified
threshold (e.g., fc � 0.99), we remove putative false-positive ele-
ments with high Sw values from C and add them to Cc. The green
crosses in Fig. 3A indicate data elements retained in C after this
step. Sixth, steps 2 through 5 are repeated by using the new C and
Cc sets until f reaches fc. Finally, once the iteration process is
terminated, potential false negatives are identified as elements in Cc

whose Sw values exceed that of the point where the Sw PDFs of C
and Cc meet. These elements are then added to the final set of
candidate true-positive data elements C. Fig. 3B shows the final set
of selected data elements (green crosses). For comparison, the
dashed blue curve shows the decision boundary calculated using the
MM (see previous section).
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The above procedure is essentially the same as the parametric
method described in the preceding section. The main difference is
that, rather than moving a decision boundary (as in previous
methods), here we move individual data elements between C and
Cc. The final decision boundary is irregular because elements in a
different part of the P value space are removed as the weights
change in each iteration. To speed up the optimization process and
avoid potential local minima in the search process, we have limited
our optimization process to pruning. To be sure that the final set C
includes as many of the true-positive data elements as possible, we
initialize C by using a value for �T that assures the inclusion of most
true data elements at the expense of many false positives. These
false positives are then removed iteratively. An adaptive rule is used
to determine the fraction of C removed in step 5: Cf � min[( fc �
f)�fc,0.01]. This rule removes 1% of C in the beginning but
decreases the proportion of elements moved as f approaches fc.

Comparison of the Performance of Different Integration Methods.
The example data used in the previous figures were intentionally
simplistic for ease of understanding. To highlight differences in the
methods when applied to more complex data sets, here we compare
the performance of the methods discussed using 10 examples of
integration of three data sets. The individual data sets were
generated by using the same scheme as described earlier, but with
approximately three to four times more noise and less distinct
populations of true positives (reduced a and b parameters for the
gamma distributions). See Methods for details. Fig. 4A shows the
distribution of the true-positive data elements for an example case.

Fig. 4B summarizes the performance of eight different data
integration methods on the above 10 examples. For each run of each
method, the false-positive rate is plotted along the x axis and the
true-positive rate is plotted along the y axis. The 10 examples are
identified by numbers 1–10. Each method is identified by a different
marker shape and color (see legend). Instances of the letter M mark
the mean performance of the correspondingly colored method. In
a manner similar to receiver operating characteristic graphs (21),
ideal performance is given by X � 0, Y � 1. The Euclidean distance
from this point represents the degree of performance degradation
from the ideal. The dashed contour lines in Fig. 4B represent loci
of equal performance as defined by the above measure.

The NP and MM methods outperform all other methods on a
case-by-case basis and based on average performance. The perfor-
mance of the union method depends crucially on the choice of
significance level [compare U1 (� � 0.05) with U2 (� � 0.15), which
happens to be close to the � of the MM and NP methods]. The
intersection method I1 (for which � � 0.05) performs worse than
all other methods. I2 performance (� � 0.053) is not indicated
because its true-positive rate was significantly �0.5. As expected,
the thresholded Fisher’s method, in which we minimize the number
of false positives automatically, produced the smallest false-positive
error rate at the expense of lowering the true-positive rate. How-
ever, as shown in Table 1, for less noisy data, the false-positive
reduction method can be very effective. Finally, comparison of the
weighted and unweighted Fisher’s methods highlights the perfor-
mance advantage of the weighted method for data sets with unequal

amounts of noise, whereas the contour gradient between the
weighted Fisher’s method and the MM and NP methods highlights
the importance of optimizing �T. Overall, MM and NP perform
best for minimization of false-positive and false-negative rates,
followed by the thresholded Fisher’s method, which mainly reduces
the false-positive rate.

Handling Missing Values. Missing data points can arise from system-
atic biases in high-throughput technologies, e.g., favoring high
abundance species. Missing values also occur when we integrate
global data sets with curated database information. For methods
that combine independent, uniformly distributed P values into a
uniformly distributed P value, missing values may be handled by
using the available P values to compute each combined P value. The
simplest way of handling these missing values would be to assign a
fixed P value in place of the missing data (e.g., P � 0.5 to indicate
an equal chance of being a true positive or a true negative, or P �
1.0 to discourage elements with missing values from being selected).
If one or more data sets include many missing values, the above
approach can distort the calculated weights. To avoid such a
scenario, we exclude data elements with missing values from the
calculation of weights, thereby avoiding the above distortion prob-
lem. However, we include them in the data selection process so that
data elements with missing values can still be selected.

Conclusions
We have presented a generalized framework for data integration in
systems biology. The applicability of our methodology to different
types and sizes of data and to different numbers of data sets is
demonstrated by application to five different types of data integra-
tion in a companion paper (10). Although we focused here on
presenting our methodology from the perspective of maximizing
statistical power, it can also be applied to scenarios for which the
different types of data being integrated have systematic differences
between them, for example, combining mRNA and protein abun-
dance measurements or in vivo and in vitro measurements. Exam-
ples of this type of integration are given in the companion paper
(10). Data integration can never rule out inclusion of some false
positives or loss of some true positives. Our methodology provides
a framework for optimizing the tradeoff between these opposing
demands. We have implemented all of the methods presented in a
free open source software package (POINTILLIST) that allows users
to select the integration method most appropriate to their needs.

Our methodology provides a simple and efficient means for
combining multiple sets of noisy data to produce probabilistic
models. The final outcome of our data integration procedure is a
network model in which nodes represent biomolecular species (e.g.,
genes or proteins) and edges represent interactions (e.g., transcrip-
tional regulation). Our methodology associates a P value with each
node and edge in the network model. These P values indicate the
degree of confidence in a node or edge being a true component of
the system of interest (compared with background�control).

We thank Frederick Roth for insightful and critical analysis of an earlier
version of our data integration methodology. A.F.S. holds the Grant I.
Butterbaugh Professorship at the University of Washington.
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