
Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:06

D

2D/3D/4D Data

▶Query Evaluation Techniques for Multidimensional

Data

DAC

▶Discretionary Access Control

Daplex

TORE RISCH

Uppsala University, Uppsala, Sweden

Definition
Daplex is a query language based on a functional data

model [1] with the same name. The Daplex data model

represents data in terms of entities and functions.

The Daplex datamodel is close to the entity-relationship

(ER) model with the difference that relationships be-

tween entities in Daplex have a logical direction, whereas

ER relationships are directionless. Unlike ER entities,

relationships, and properties are all represented as

functions in Daplex. Also, entity types are defined as

functions without arguments returning sets of a built-

in type ENTITY. The entity types are organized in a

type/subtype hierarchy. Functions represent properties

of entities and relationships among entities. Functions

also represent derived information. Functions may be

set-valued and are invertible. The database is repre-

sented as tabulated function extents. Database updates

change the function extents.

The Daplex query language has been very influen-

tial for many other query languages, both relational,

functional, and object oriented. Queries are expressed

declaratively in an iterative fashion over sets similar to

the FLWR semantics of the XQuery language. Daplex

queries cannot return entities but a value returned

from a query must always be a literal.

The query language further includes schema (func-

tion) definition statements, update statements, con-

straints, etc.

Key Points
Daplex functions are defined using a DECLARE state-

ment, for example:

DECLARE name(Student) = STRING

Where ‘‘Student’’ is a user defined entity type and

‘‘STRING’’ is a built-in type. Set valued functions are

declared by a ‘‘ = > >’’ notation, e.g.

DECLARE course(Student) = > > Course

Entity types are functions returning the built-in

type ENTITY, for example:

DECLARE Person() = > > ENTITY

Inheritance among entity types is defined by defining

entities as functions returning supertypes, for example:

DECLARE Student() = > > Person

Functions may be overloaded on different entity

types.

Queries in Daplex are expressed using a FOR

EACH – SUCH THAT – PRINT fashion similar to

the FLWR semantics of XQuery. For example:

FOR EACH X IN Employee

SUCH THAT Salary(X) > Salary(Manager (X))

PRINT Name(X)

The PRINT statement is here not regarded as a side

effect but rather as defining the result set from the

query. Derived functions are defined though the DE-

FINE statement, e.g.

DEFINE Course(Student) = > Course

SUCH THAT

FOR SOME Enrollment

Stud#(Student) = Stud#(Enrollment) AND

Course#(Enrollment) = Course#(Course)

Daplex was first implemented in the Multibase sys-

tem [2]. There, it was used as a multi-database query

language to query data from several databases.

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:06

The P/FDM [1] data model and query language is

close toDaplex. Thequery languagesOSQLandAmosQL

are also based on Daplex. These languages extend Daplex

with object identifiers (OIDs) to represent actual entities

and thus queries can there return entities as OIDs.

Cross-references
▶AmosQL

▶ Functional Data Model

▶OSQL

▶ P/FDM

▶Query Language

▶XQuery

Recommended Reading
1. Gray P.M.D., Kerschberg L., King P.J.H., and Poulovassilis A.

(eds.). The Functional Approach to DataManagement. Springer,

Berlin, 2004.

2. Landers T. and Rosenberg R.L. An overview of Multibase. In

Proceedings of the Second International SymposiumonDistributed

Databases, Berlin, Germany. North Holland, 1982, pp. 153–184.

3. Shipman D.W. The functional data model and the data language

DAPLEX. ACM Trans. Database Syst., 6(1):140–173, 1981.

DAS

▶Direct Attached Storage

Data

▶ Information Quality Assessment

Data Acquisition

▶Data Acquisition and Dissemination in Sensor

Networks

Data Acquisition and Dissemination
in Sensor Networks

TURKMEN CANLI, ASHFAQ KHOKHAR

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Data gathering; Data collection; Data acquisition

Definition
Wireless sensor networks (WSNs) are deployed to mon-

itor and subsequently communicate various aspects of

physical environment, e.g., acoustics, visual, motion,

vibration, heat, light, moisture, pressure, radio, magne-

tic, biological, etc. Data acquisition and dissemination

protocols for WSNs are aimed at collecting information

from sensor nodes and forwarding it to the subscribing

entities such that maximum data rate is achieved while

maximizing the overall network life time. The informa-

tion can be simple raw data or processed using basic

signal processing techniques such as filtering, aggrega-

tion/compression, event detection, etc.

Historical Background
Wireless sensor networks consist of tiny dispensable

smart sensor nodes, with limited battery power and

processing/communication capabilities. In addition,

these networks also employ more powerful ‘‘sink’’

node(s) that collect information from the sensor nodes

and facilitate interfacing with the outside computing

and communication infrastructure. WSNs are config-

ured to execute two fundamental tasks: information

acquisition/collection at the sink nodes, and dissemina-

tion of information to the nodes across the network.

Existing data acquisition and dissemination techniques

have been investigated for different levels of application

abstractions including: structured data collection

[1,5,6,11,12] in a query-database paradigm, and raw

data acquisition in for field reconstruction and event

recognition at the sink nodes [2,3,4,7,9,10,13].

Foundations
In WSNs, devices have limited battery life, which is

generally considered non-replenishable, therefore the

pertinent challenge is to design protocols and algo-

rithms that maximize the network life time. In data

acquisition and dissemination tasks, data volume is

high therefore another optimization criteria is to in-

crease throughput while reducing power consumption.

Several data collection protocols aiming at data reduc-

tion using data transformation techniques have been

suggested [2,10]. In [10], authors have proposed the

use of wavelet compression to reduce data volume in

structure monitoring WSN applications, thus resulting

in low power consumption and reduced communication

latency. Similar data transformation and compression

techniques have been used to compute summary of the

raw data [2].

2 D DAS

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:06

In most of the data collection algorithms, the net-

work nodes are organized into logical structures, and

communication among the nodes and with the sink is

realized using such logical structures. For example, in

tree based data acquisition protocols, a collection tree

is built that is rooted at the data collection center such

as the sink node [8]. The dissemination of the data

requests from the participating nodes and collection of

data from the sensor nodes are accomplished using this

tree. A cluster based data acquisition mechanism has

been proposed in [3]. As shown in Fig. 1, nodes are

organized into a fixed number of clusters, and nodes

within each cluster dynamically elect a cluster head.

The data acquisition is carried out in two phases. In

the first phase, cluster heads collect data from their

cluster nodes. In the second phase, cluster heads send

collected data to the nodes that have subscribed to the

data. The cluster heads are re-elected to balance energy

consumption among the nodes in the cluster. Zhang

et al. [13] have proposed an adaptive cluster based data

collection protocol that dynamically adjusts the number

of cluster heads to the traffic load in the network. This

dynamic traffic model is developed at the sink node.

In [7], network is divided into virtual grids and

sensor nodes in each grid are classified as either gateway

nodes or internal nodes. For example, in Fig. 2 nodes B,

G are selected as gateway nodes that are responsible for

transmitting data to nodes outside the grid. By doing

so, data contention and redundant data transmission

of a packet are reduced, which saves energy.

The common characteristic of all the aforementioned

protocols is the pro-actively built routing infrastructure.

As an alternative, authors in [4] have proposed the

directed diffusion approach. The routing infrastructure

is constructed on the fly. The sink node disseminates its

interest to the network and gradients are set-up from

nodes that match the sink’s interest. There may be more

than one path from a sensor node to the sink node. Sink

nodes regulate data rate across all the paths.

Data acquisition and dissemination techniques

designed with a higher level of application abstraction

model the sensor network as a distributed database

system. In these techniques, data center disseminates

its queries, and database operation such as ‘‘join’’ or

‘‘select’’ operations are computed distributively using

sensor nodes that have the requested data. For exam-

ple, in [12] a new layer, referred to as query layer, is

proposed that is logically situated between the network

and application layers of the network protocol stack.

This layer processes descriptive queries and determines

a power efficient execution plan that makes use of in-

network processing and aggregation operations. An

in-network aggregation is realized by packet merging

or by incrementally applying aggregation operators

such as min, max, count, or sum.

Cougar system [11] presents a framework for spe-

cifying a Query execution plan in WSNs. It allows

specification of routing among sensor nodes and exe-

cution of aggregate operation over the collected data.

As depicted in Fig. 3, each sensor node samples the

environment as specified by the query. According to

the execution plan, sampled data is sent to a leader

node, or together with the partially aggregated data

received from other nodes, an aggregation operators is

applied. The new partially aggregated value is then sent

towards the leader node. Partial aggregation is possible

only for the aggregation operators that can be com-

puted incrementally. The volume of data is decreased

by partial or incremental aggregation. The responsibil-

ity of the leader node is to combine all the partially

Data Acquisition and Dissemination in Sensor

Networks. Figure 2. Principle of LAF.

Data Acquisition and Dissemination in Sensor

Networks. Figure 1. Clustering concept as proposed in

LEACH [3].

Data Acquisition and Dissemination in Sensor Networks D 3

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:06

aggregated results and report it to the gateway node if

the value exceed the set threshold.

In TinyDB framework [5], WSN is viewed as one

big relational table. The columns of the table corre-

spond to the type of phenomenon observed, i.e,

humidity, temperature, etc. The aim is to reduce the

power consumption during data acquisition by in-

network processing of raw data. In other words, it

addresses questions such as when data should be sam-

pled for a particular query, which sensors should re-

spond to a query, in which order sensors should

sample the data, and how to achieve balance between

in-network processing of the raw samples and collec-

tion of the raw samples at sink nodes without any

processing. Moreover, the structured query language

(SQL) is extended specifically for sensor network

applications. Keywords such as, SAMPLE, ON EVENT

and LIFETIME have been added to SQL language

to facilitate realization of basic sensor network

applications.

Through SAMPLE clause, the sampling rate of the

sensors can be controlled. LIFETIME allows automatic

sampling rate adjustment for a given lifetime. ON

EVENT is used for trigger, i.e. query is executed only

when the specified event occurs. A query sample shown

below [5] illustrates the use of extended SQL. In this

example query, the sampling period is set via introdu-

cing SAMPLE clause. The query planner needs meta

data information regarding power consumption, sens-

ing and communication costs to compute lifetime

approximation and execute the LIFETIME clause. ON

EVENT type queries may trigger multiple instances of

same type of internal query.

SELECT COUNT(*)

FROM sensors AS s, recentLight AS r1

WHERE r1.nodeid=s.nodeid

AND s.light < r1.light

SAMPLE INTERVAL 10s

Optimization of the data sampling order can also

reduce energy consumption significantly. Typically, a

sensor node has more than one on-board sensor, i.e.

nodes may have all temperature, humidity, pressure,

etc. sensors on a single sensing platform. If in the query

it is requested to report the temperature of the nodes

where humidity value is greater than some threshold, it

would be inefficient to simultaneously sample temper-

ature and humidity values. The energy spent on sam-

pling temperature values where humidity is less than

the threshold could be saved by reordering the predi-

cate evaluation [5].

The semantic tree (SRT) [5] is a mechanism that

allows nodes to find out whether their children have

the data for the incoming query. Every parent node

stores the range of its children’s values. Therefore when

query arrives to a node it is not forwarded to those

children that do not have the data. For instance in

Fig. 4, node 1 will not send query request to node 2,

similarly, node 3 will not send query to node 5.

Authors in [1] have used probabilistic models

to facilitate efficient query processing and data acqui-

sition on sensor networks. The idea is to build statisti-

cal model of the sensor readings from stored and

current readings of the sensors. Whenever an SQL

query is submitted to the network, constructed

model is used to provide answers. Accuracy of the

requested data can be specified by setting the

Data Acquisition and Dissemination in Sensor Networks. Figure 3. Query plan at a source and leader node [11].

4 D Data Acquisition and Dissemination in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:06

Data Acquisition and Dissemination in Sensor Networks. Figure 5. Model based querying in sensor networks [1].

Data Acquisition and Dissemination in Sensor Networks. Figure 4. A semantic routing tree in use for a query. Gray

arrows indicate flow of the query down the tree, gray nodes must produce or forward results in the query [5].

Data Acquisition and Dissemination in Sensor Networks D 5

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

confidence interval in the SQL statement. Figure 5

illustrates typical SQL query. Depending on error tol-

erance levels, response to the query may involve col-

lecting information from every sensor node, for

example, if 100% accuracy is required. On the other

hand, if the error tolerance is high, query can be

answered by only using the constructed model.

Key Applications
Building Health Monitoring, Micro-climate Monitor-

ing, Habitat Monitoring, Hazardous Environment

Monitoring.

Cross-references
▶Ad-hoc Queries in Sensor Networks

▶Continuous Queries in Sensor Networks

▶Data Aggregation in Sensor Networks

▶Data Compression in Sensor Networks

▶Data Estimation in Sensor Networks

▶Data Fusion in Sensor Networks

▶Data Storage and Indexing in Sensor Networks

▶Database Languages for Sensor Networks

▶Model-Based Querying in Sensor Networks

▶Query Optimization in Sensor Networks

▶ Sensor Networks

Recommended Reading
1. Deshpande A., Guestrin C., Madden S.R., Hellerstein J.M., and

Hong W. Model-driven data acquisition in sensor networks.

2004.

2. Ganesan D., Greenstein B., Perelyubskiy D., Estrin D., and

Heidemann J. An evaluation of multi-resolution storage for

sensor networks. In Proc. 1st Int. Conf. on Embedded Net-

worked Sensor Systems, 2003, pp. 89–102.

3. Heinzelman W.R., Chandrakasan A., and Balakrishnan H.

Energy-efficient communication protocol for wireless microsen-

sor networks. In Proc. 33rd Annual Hawaii Conf. on System

Sciences, 2000, pp. 8020.

4. Intanagonwiwat C., Govindan R., Estrin D., Heidemann J., and

Silva F. Directed diffusion for wireless sensor networking. IEEE/

ACM Trans. Netw., 11(1):2–16, 2003.

5. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. The

design of an acquisitional query processor for sensor networks. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 491–502.

6. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

TinyDB: an acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30(1):122–173, 2005,

doi:http://doi.acm.org/10.1145/1061318.1061322.

7. Sabbineni M.H. and Chakrabarty S.M.K. Location-aided flood-

ing: an energy-efficient data dissemination protocol for wireless

sensor networks. IEEE Trans. Comput., 54(1):36–46, 2005.

8. Szewczyk R., Osterweil E., Polastre J., Hamilton M., Mainwaring

A., and Estrin D. Habitat monitoring with sensor networks.

Commun. ACM, 47(6):34–40, 2004.

9. Xi Y., Yang W., Yamauchi N., Miyazaki Y., Baba N., and Ikeda H.

Real-time data acquisition and processing in a miniature wire-

less monitoring system for strawberry during transportation.

Proc. Int. Technical Conf. of IEEE Region 10 (Asia Pacific Re-

gion), 2006.

10. Xu N., Rangwala S., Chintalapudi K.K., Ganesan D., Broad A.,

Govindan R., and Estrin D. A wireless sensor network for struc-

tural monitoring. In Proc. 2nd Int. Conf. on Embedded Net-

worked Sensor Systems, 2004, pp. 13–24.

11. Yao Y. and Gehrke J. The cougar approach to in-network query

processing in sensor networks. SIGMOD Rec., 31(3):9–18, 2002.

12. Yao Y. and Gehrke J. Query processing in sensor networks. 2003.

13. Zhan X., Wang H., and Khokhar A. An energy-efficient data

collection protocol for mobile sensor networks. Vehicular Tech-

nology Conference, 2006, pp. 1–15.

Data Aggregation in Sensor
Networks

JUN YANG
1, KAMESH MUNAGALA

1, ADAM SILBERSTEIN2

1Duke University, Durham, NC, USA
2Yahoo! Research Silicon Valley, Santa Clara, CA, USA

Definition
Consider a network ofN sensor nodes, each responsible

for taking a reading vi ð1 � i � NÞ in a given epoch.

The problem is to compute the result of an aggregate

function (cf. Aggregation) over the collection of all

readings n1; v2; :::; vN taken in the current epoch.

The final result needs to be available at the base station

of the sensor network. The aggregate function ranges

from simple, standard SQL aggregates such as SUM

and MAX, to more complex aggregates such as top-k,

median, or even a contour map of the sensor field

(where each value to be aggregated is a triple

hxi; yi; zii, with xi and yi denoting the location co-

ordinates of the reading zi).

In battery-powered wireless sensor networks,

energy is the most precious resource, and radio

communication is often the dominant consumer of

energy. Therefore, in this setting, the main optimiza-

tion objective is to minimize the total amount of

communication needed in answering an aggregation

query. A secondary objective is to balance the energy

consumption across all sensor nodes, because the first

node to run out of battery may render a large portion

of the network inaccessible.

6 D Data Aggregation in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

There are many variants of the above problem

definition. For example, the aggregation query may

be continuous (cf. Continuous Queries in Sensor Net-

works) and produce a new result for each epoch; not all

nodes may participate in aggregation; the result may be

needed not at the base station but at other nodes in

the network. Some of these variants are further

discussed below.

Historical Background
Early deployments of wireless sensor networks collect

and report all data to the base station without summa-

rization or compression. This approach severely limits

the scale and longevity of sensor networks, because

nodes spend most their resources forwarding data on

behalf of others. However, many applications do not

need the most detailed data; instead, they may be

interested in obtaining a summary view of the sensor

field, monitoring outlier or extreme readings, or

detecting events by combining evidence from readings

taken at multiple nodes. Data aggregation is a natural

and powerful construct for applications to specify

such tasks.

Data aggregation is supported by directed diffusion

[9], a data-centric communication paradigm for sen-

sor networks. In directed diffusion, a node diffuses its

interests for data in the network. Then, nodes with data

matching the interests return the relevant data along

the reverse paths of interest propagation. Intermediate

nodes on these paths can be programmed to aggregate

relevant data as it converges on these nodes. Systems

such as TinyDB and Cougar take a database approach,

providing a powerful interface for applications to pose

declarative queries including aggregation over a sensor

network (cf. Database Languages for Sensor Network

Tasking), and hiding the implementation and optimi-

zation details from application programmers. The

seminal work by Madden et al. [12] on TAG (Tiny

AGgregation) is the first systematic study of database-

style aggregation in sensor networks. One of the first

efforts at supporting more sophisticated aggrega-

tion queries beyond SQL aggregates is the work by

Hellerstein et al. [8], which shows how to extend

TAG to compute contour maps, wavelet summaries,

and perform vehicle tracking. Since these early efforts,

the research community has made significant progress

in sensor data aggregation; some of the developments

are highlighted below.

Foundations
The key to efficient sensor data aggregation is in-

network processing. On a typical sensor node today,

the energy cost of transmitting a byte over wireless

radio is orders-of-magnitude higher than executing a

CPU instruction. When evaluating an aggregate query,

as data converges on an intermediate node, this node can

perform aggregate computation to reduce the amount

of data to be forwarded, thereby achieving a favorable

tradeoff between computation and communication.

To illustrate, consider processing a simple SUM

aggregate with TAG [12]. TAG uses a routing tree

rooted at the base station spanning all nodes in the

network. During aggregation, each node listens to

messages from its children in the routing tree, com-

putes the sum of all values in these messages and its

own reading, and then transmits this result – which

equals the sum of all readings in the subtree rooted at

this node – to its parent. To conserve energy, each node

only stays awake for a short time interval to listen,

compute, and transmit. To this end, TAG coordinates

the nodes’ communication schedules: the beginning of

a parent node’s interval must overlap with the end of

its children’s intervals, so that the parent is awake to

receive children’s transmissions. Overall, to compute

SUM, each node needs to send only one constant-size

message, so the total amount of communication

is Y(N). In comparison, for the naı̈ve approach,

which sends all readings to the root, the amount of

data that needs to be forwarded by a node increases

closer to the root, and the total amount of communi-

cation can be up to Y(Nd), where d is the depth of the

routing tree. Clearly, in-network aggregation not only

decreases overall energy consumption, but also bal-

ances energy consumption across nodes.

The above algorithm can be generalized to many

other aggregates. Formally, an aggregate function can be

implemented using three functions: an initializer fi con-

verts an input value into a partial aggregate record; a

merging function fm combines two partial aggregate

records into one; finally, an evaluator fe computes the

final result from a partial aggregate record. During

aggregation, each node applies fi to its own reading;

each non-leaf node invokes fm to merge partial aggre-

gate records received from its children with that of its

own; the root uses fe to compute the aggregate result

from the final partial aggregate record. As an example,

standard deviation can be computed (in theory, without

regard to numerical stability) using the following

Data Aggregation in Sensor Networks D 7

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

functions, where the partial aggregate record is a triple

hs; r; ni consisting of a sum (s), a sum of squares (r),

and a count (n):

fiðvÞ ¼ hv; v2; 1i;

fmðhs1; r1; n1i; hs2; r2;n2iÞ ¼ hs1 þ s2; r1 þ r2; n1 þ n2i;

feðhs; r; niÞ ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr � s2

p
:

In general, one cannot expect the partial aggregate

record to be of constant size for arbitrary aggregate

functions. Consider the following examples. For a top-k

aggregate, which finds the k largest values, a partial

aggregate record needs to be of size Y(k). For exact

median computation, the size requirement becomes

Y(N), which is no better than the naı̈ve approach of

sending all readings to the root. For contour map

construction, the size of the partial aggregate records

depends on the complexity of the field being sensed,

and can be Y(N) in the worst case.

Approximate Aggregation

Approximation is a popular and effective technique for

bounding the communication cost in evaluating com-

plex aggregation functions. The basic idea is to replace

an exact partial aggregate record with an approximate

partial aggregate record that consumes less space and is

therefore cheaper to send. An early example of apply-

ing this idea is the work by Hellerstein et al. [8]. Since

then, a diverse collection of approximation methods

has been developed for many aggregate functions; a

few illustrative examples are given below.

To compute order-statistics (e.g., quantile queries

including top-k and median), Greenwald and Khanna

[7] propose a technique based on e-approximate quan-

tile summaries. An e-approximate quantile summary for

a collection S of sensor readings is an ordered subset

{qi} of S, where each qi is associated with a lower

bound r mini and an upper bound r mini on qi’s rank

within S, and the difference between rmaxi+1 and r

mini is no greater than 2e Sj j. Any quantile query over
S can be answered instead on this summary within an

additive rank error of e Sj j. Specifically, a query request-
ing the r -th ranked reading can be answered by return-

ing qj from the summary, where r � e Sj j � rminj and

rmax � r þ e Sj j. Greenwald and Khanna represent a

partial aggregate record sent up from a node u by a set

of quantile summaries – at most one for each class

numbered 1 through log N – which together disjointly

cover all readings in the subtree rooted at u; the sum-

mary for class i covers between 2i and 2i+1�1 readings

using at most ðlogN=eþ 1Þ of these readings. Each

sensor node starts with an e=2-approximate summary

of all its local readings. Each intermediate node merges

summaries from its children together with its own

summary into up to log N merged summaries, prunes

each of them down to the maximum size allowed, and

then sends them up to the parent. Finally, the root

merges all summaries into a single one and prunes it

down to ðlogN=eþ 1Þ readings. Although pruning

introduces additional error, the use of per-class sum-

maries bounds the error in a class-i summary to

e=2þ ði=ð2 logN=eÞÞ, which in turn allows the error

in the final summary to be bounded by e. Overall, the

communication cost incurred by each node during

aggregation is only oðlog2 N=eÞ.
Silberstein et al. [15] approach the problem of

computing top-k aggregates using a very different

style of approximation. Instead of having each node

always sending the top k readings in its subtree, a node

sends only the top k 0 readings among its local reading

and those received from its children, where k 0 � k.

The appropriate setting of k 0 for each node is based

on the samples of past sensor readings, or, more gen-

erally, a model capturing the expected behavior of

sensor readings (cf. Model-Based Querying in Sensor

Networks). Intuitively, a subtree that tends to contrib-

ute few of the top values will be allotted a smaller k 0.

Unlike the e-approximate quantile summaries, which

provide hard accuracy guarantees, the accuracy of this

approach depends on how well the past samples or the

model reflect the current behavior of readings. Never-

theless, the approach can be augmented by transmit-

ting additional information needed to establish the

correctness of some top-k answers, thereby allowing

the approximation quality to be assessed.

As a third example, the contour map of a sensor

field is a complex spatial aggregate defined over not

only values but also locations of the sensor readings. In

this case, the partial aggregate record produced by a

node is a compact, usually lossy, representation of the

contour map encompassing all readings in this node’s

subtree. In Hellerstein et al. [8], each contour in the

map is represented by an orthogonal polygon whose

edges follow pre-imposed 2-d rectangular grid lines.

This polygon is obtained by starting with the mini-

mum bounding rectangle of the contour, and then

8 D Data Aggregation in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

repeatedly subtracting the largest-area rectangle that

does not contain any point in the contour, until a

prescribed limit on the number of vertices is reached.

Gandhi et al. [5] use general polygons instead of

orthogonal ones. During aggregation, each node con-

structs and sends to its parent an approximate descrip-

tion of its contour map consisting of up to k possibly

disconnected line segments. The root then connects

and untangles such line segments to obtain the final

contour map. It is shown that the approximation error

in the k -segment representation produced by dis-

tributed aggregation is within a constant factor of the

smallest possible error attainable by any k segments,

and it is conjectured that the resulting contour map

has size o(k).

Duplicate-Insensitive Aggregation

Approximate aggregation methods based on duplicate-

insensitive synopses (cf. Data Sketch/Synopsis) are espe-

cially worth noting because of their resiliency against

failures, which are common in sensor networks. Tree-

based aggregation techniques are vulnerable to mes-

sage failures. If a message carrying the partial aggregate

record from a node fails, all information from that

subtree will be lost, resulting in significant error. Send-

ing the same message out on multiple paths towards

the base station decreases the chance of losing all

copies, and is a good solution for aggregation func-

tions such as MAX. However, for other aggregation

functions whose results are sensitive to duplicates in

their inputs, e.g., SUM and COUNT, having multiple

copies of the same partial aggregation record causes a

reading to participate multiple times in aggregation,

leading to incorrect results. In general, if an aggrega-

tion method is order- and duplicate-insensitive (ODI)

[14], it can be implemented with more failure-resilient

routing structures such as directed acyclic graphs,

without worrying about the duplicates they introduce.

The challenge, then, is in designing ODI aggregation

methods for duplicate-sensitive aggregation functions.

Duplicate-insensitive synopses provide the basis for

computing many duplicate-sensitive aggregation func-

tions approximately in an ODI fashion. This approach

is pioneered by Considine et al. [1] and Nath et al. [14].

To illustrate the idea, consider COUNT, which is

duplicate-sensitive. Nodes in the sensor network are

organized into rings centered at the base station,

where the i -th ring includes all nodes at i hops away

from the base station. A partial aggregate record is

a Flajolet-Martin sketch (cf. FM Sketch), a fixed-size

bit-vector for estimating the number of distinct

elements in a multi-set. This sketch is duplicate-

insensitive by design: conceptually, it is obtained by

hashing each element to a bitmap index (using an

exponential hash function) and setting that bit to

one. During aggregation, each node first produces a

sketch for its local sensors. A node in the i-th ring

receives sketches from its neighbors (i.e., nodes within

direct communication distance) in the (i+1)-th ring,

takes the bitwise OR of all these sketches and its own,

and broadcasts the result sketch to all its neighbors in

the (i�1)-th ring. Taking advantage of broadcast com-

munication, each node sends out only one message

during aggregation, but the information therein can

reach the base station via multiple paths, boosting

reliability. The overall COUNT can be estimated accu-

rately with high probability using sketches of size

Y(log N).

The failure-resiliency feature comes with two costs

in the above approach: the final answer is only approx-

imate, and the size of each message is larger than the

tree-based exact-aggregation approach. Manjhi et al.

[13] have developed an adaptive, hybrid strategy that

combines the advantages of the two approaches by

applying them to different regions of the network,

and dynamically exploring the tradeoffs between the

two approaches.

Temporal Aspects of Aggregation

The preceding discussion has largely ignored the tem-

poral aspects of aggregation. In practice, aggregation

queries in sensor networks are often continuous

(cf. Continuous Queries in Sensor Networks). In its

simplest form, such a query executes continuously over

time and produces, for each epoch, an aggregate result

computed over all readings acquired in this epoch. A key

optimization opportunity is that sensor readings often

are temporally correlated and do not change haphazard-

ly over time. Intuitively, rather than re-aggregating from

scratch in every epoch, evaluation efforts should focus

only on relevant changes since the last epoch.

An effective strategy for implementing the above

intuition is to install on nodes local constraints that

dictate when changes in subtrees need to be reported.

These constraints carry memory about past readings

and filter out reports that do not affect the current

aggregate result, thereby reducing communication. For

example, to compute MAX continuously, Silberstein

Data Aggregation in Sensor Networks D 9

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

et al. [16] set a threshold at each node, which is always

no less than its local reading and its children’s thresh-

olds. A node sends up the current maximum value in

its subtree only if that value exceeds the threshold; the

threshold is then adjusted higher. If the current global

maximum falls, nodes with thresholds higher than the

new candidate maximum must be visited to find the

new maximum; at the same time, their thresholds are

adjusted lower. Thresholds control the tradeoff be-

tween reporting and querying costs, and can be set

adaptively at runtime. Alternatively, optimum settings

can be found by assuming adversarial data behavior or

using predictive models of data behavior.

As another example, consider continuous SUM.

Unlike MAX, even a small change in one individual

reading affects the final SUM result. Approximation is

thus needed to do better than one message per node

per epoch. Deligiannakis et al. [4] employ an interval

constraint at each node, which bounds the sum of

all current readings within the subtree. In each epoch,

the node sends its estimate of this partial sum to its

parent only if this value falls outside its interval; the

interval then recenters at this value. The length of

the interval controls the error allowance for the sub-

tree. Periodically, based on statistics collected, the in-

terval lengths are adjusted by recursively redistributing

the total error allowed in the final result to all nodes.

Continuous versions of more complex queries, for

which approximation is needed to reduce the size of

partial aggregate records, have also been studied. For

example, Cormode et al. [2] show how to continuously

compute e-approximate quantile summaries using a

hierarchy of constraints in the network to filter out

insignificant changes in subtree summaries. As with

other techniques described above, a major technical

challenge lies in allocating error tolerance to each con-

straint; optimum allocation can be computed for pre-

dictive models of data behavior. Xue et al. [17] consider

the continuous version of the contour map query. In-

stead of sending up the entire partial aggregate record (in

this case, a contour map for the subtree), only its differ-

ence from the last transmitted version needs to be sent.

In the continuous setting, aggregation can apply not

only spatially to the collection of readings acquired in

the same epoch, but also temporally over historical data

(e.g., recent readings in a sliding window). Cormode

et al. [3] consider the problem of continuously com-

puting time-decaying versions of aggregation functions

such as SUM, quantiles, and heavy hitters. The

contribution of a reading taken at time t0 to the aggre-

gate result at the current time t 0 ¼ t 0 þ D is weighted

by a user-defined decay function f ðDÞ � 0, which is

non-increasing with D. The solution is based on dupli-

cate-insensitive sketching techniques, and it approxi-

mates a general decay function using a collection of

sliding windows of different lengths.

Other Aspects of Aggregation in Sensor Networks

Besides the above discussion, there are many other

aspects of sensor data aggregation that are not covered

by this entry; some of them are outlined briefly below.

Most techniques presented earlier opportunistically

exploit in-network processing, whenever two partial

aggregate records meet at the same node following

their standard routes to the base station. More generally,

routing can bemade aggregation-driven [11] by encour-

aging convergence of data that can be aggregated more

effectively (e.g., the merged partial aggregate record uses

less space to achieve the required accuracy).

Oftentimes, only a sparse subset of nodes contribute

inputs to aggregation, and this subset is not known a

priori, e.g., when aggregation is defined over the output

of a filter operation evaluated locally at each node. The

challenge in this scenario is to construct an ad hoc aggre-

gation tree of high quality in a distributed fashion [6].

Finally, for some applications, the final aggregate

result is needed at all nodes in the sensor network as

opposed to just the base station. Gossiping is an effec-

tive technique for this purpose [10], which relies only

on local communication and does not assume any

particular routing strategy or topology.

Key Applications
Aggregation is a fundamental query primitive indis-

pensible to many applications of sensor networks

(cf. Sensor Network, Applications of Senor Network

Data Management). It is widely used in expressing

and implementing common sensor network tasks

such as summarization, compression, monitoring,

and event detection. Even for applications that are

interested in collecting all detailed sensor readings,

aggregation can be used in monitoring system and

data characteristics, which support maintenance of

the sensor network and optimization of its operations.

Cross-references
▶Ad-Hoc Queries in Sensor Networks

▶Aggregation

10 D Data Aggregation in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

▶Continuous Queries in Sensor Networks

▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

Recommended Reading
1. Considine J., Li F., Kollios G., and Byers J. Approximate aggre-

gation techniques for sensor databases. Proc. 20th Int. Conf. on

Data Engineering, 2004, pp. 449–460.

2. Cormode G., Garofalakis M., Muthukrishnan S., and Rastogi R.

Holistic aggregates in a networked world: distributed tracking of

approximate quantiles. Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 25–36.

3. Cormode G., Tirthapura S., and Xu B. Time-decaying sketches

for sensor data aggregation. ACM Symposium on Principles

of Distributed Computing, 2007, pp. 215–224.

4. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. Advances

in Database Technology, Proc. 9th Int. Conf. on Extending

Database Technology, 2004, pp. 658–675.

5. Gandhi S., Hershberger J., and Suri S. Approximate isocontours

and spatial summaries for sensor networks. Proc. 6th Int. Symp.

Inf. Proc. in Sensor Networks, 2007, pp. 400–409.

6. Gao J., Guibas L.J., Milosavljevic N., and Hershberger J. Sparse

data aggregation in sensor networks. Proc. 6th Int. Symp. Inf.

Proc. in Sensor Networks, 2007, pp. 430–439.

7. Greenwald M. and Khanna S. Power-conserving computation of

order-statistics over sensor networks. Proc. 23rd ACM SIGACT-

SIGMOD-SIGART Symp. Principles of Database Systems, 2004,

pp. 275–285.

8. Hellerstein J.M., Hong W., Madden S., and Stanek K. Beyond

average: toward sophisticated sensing with queries. Proc. 2nd

Int. Workshop Inf. Proc. in Sensor Networks, 2003, pp. 63–79.

9. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor

networks. Proc. 6th Annual Int. Conf. on Mobile Computing

and Networking, 2000, pp. 56–67.

10. Kempe D., Dobra A., and Gehrke J. Gossip-based computation

of aggregate information. IEEE Symposium on Foundations

of Computer Science, 2003, pp. 482–491.

11. Luo H., Y. Liu, and S. Das. Routing correlated data with fusion

cost in wireless sensor networks. IEEE Transactions on Mobile

Computing, 11(5):1620–1632, 2006.

12. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG: a

tiny aggregation service for ad-hoc sensor networks. Proc. 5th

USENIX Symp. on Operating System Design and Implementa-

tion. 2002.

13. Manjhi A., Nath S., and Gibbons P.B. Tributaries and deltas:

efficient and robust aggregation in sensor network streams.

Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 287–298.

14. Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis

diffusion for robust aggregation in sensor networks. Proc. 2nd Int.

Conf. onEmbeddedNetworkedSensor Systems. 2004, pp. 250–262.

15. Silberstein A., Braynard R., Ellis C., and Munagala K.

A sampling-based approach to optimizing top-k queries in sen-

sor networks. Proc. 22nd Int. Conf. on Data Engineering. 2006.

16. Silberstein A., Munagala K., and Yang J. Energy-efficient moni-

toring of extreme values in sensor networks. Proc. ACM SIG-

MOD Int. Conf. on Management of Data. 2006.

17. Xue W., Luo Q., Chen L., and Liu Y. Contour map matching

for event detection in sensor networks. Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006, pp. 145–156.

Data Analysis

▶Data Mining

Data Anomalies

▶Data Conflicts

Data Broadcasting, Caching and
Replication in Mobile Computing

PANOS K. CHRYSANTHIS
1, EVAGGELIA PITOURA

2

1University of Pittsburgh, Pittsburgh, PA, USA
2University of Ioannina, Ioannina, Greece

Synonyms
Data dissemination; Push/pull delivery; Data copy

Definition
Mobile computing devices (such as portable computers

or cellular phones) have the ability to communicate

while moving by being connected to the rest of the

network through a wireless link. There are two general

underlying infrastructures: single-hop and multi-hop

ones. In single-hop infrastructures, each mobile device

communicates with a stationary host, which corre-

sponds to its point of attachment to the wired network.

In multi-hop infrastructures, an ad-hoc wireless net-

work is formed in which mobile hosts participate in

routing messages among each other. In both infrastruc-

tures, the hosts between the source (or sources) and the

requester of data (or data sink) form a dissemination

tree. The hosts (mobile or stationary) that form the

dissemination tree may store data and participate in

computations towards achieving in network processing.

Challenges include [14], (i) intermittent connectivity,

which refers to both short and long periods of network

Data Broadcasting, Caching and Replication in Mobile Computing D 11

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:07

unavailability, (ii) scarcity of resources, including stor-

age and battery life, and (iii) mobility itself.

To handle these challenges, data items may be

stored locally (cached or replicated) at the requester

or at the intermediate nodes of the dissemination tree.

Cache and replication aim at increasing availability in

the case of network disconnections or host failures as

well as at handling intermittent connectivity. Mobility

introduces additional challenges in maintaining cache

and replica consistency and in replica placement pro-

tocols. Wireless data delivery in both infrastructures

physically supports broadcasting. This broadcast facil-

ity has been used for providing a push-mode of

data dissemination where a server broadcasts data to

a large client population often without an explicit

request from the clients. Issues addressed by related

research include broadcast scheduling and organiza-

tion (i.e, which items to broadcast and in which order),

indexing broadcast data, and update propagation.

Historical Background
Mobile computing can be traced back to file systems

and the need for disconnected operations in the late

1980s. With the rapid growth in mobile technologies

and the cost effectiveness in deploying wireless networks

in the 1990s, the goal of mobile computing was the

support of AAA (anytime, anywhere and any-form)

access to data by users from their portable computers,

mobile phones and other devices with small displays

and limited resources. These advances motivated

research in data management in the early 1990s.

Foundations

Data Broadcasting

Many forms of wireless network infrastructures rely on

broadcast technology to deliver data to large client

populations. As opposed to point-to-point data deliv-

ery, broadcast delivery is scalable, since a single broad-

cast response can potentially satisfy many clients

simultaneously. There are two basic modes of broad-

cast data delivery: pull-based and push-based. With

push-based data delivery, the server sends data to cli-

ents without an explicit request. With pull-based or on-

demand broadcast delivery, data are delivered only

after a specific client request. In general, access to

broadcast data is sequential with clients monitoring

the broadcast channel and retrieving any data items

of interest as they arrive. The smallest access unit of

broadcast data is commonly called a bucket or page.

Scheduling and Organization

A central issue is determining the content of the broad-

cast or broadcast scheduling. Scheduling depends on

whether we have on demand, push or hybrid delivery.

In on-demand broadcast, there is an up-link channel

available to clients to submit requests. The item to be

broadcast next is chosen among those for which there

are pending requests. Common heuristics for on-de-

mand scheduling include First Come First Served and

Longest Wait First [7]. The R � W strategy selects the

data item with the maximal R � W value, where R is

the number of pending requests for an item andW the

amount of time that the oldest pending request for that

item has spent waiting to be served [3]. More recent

schemes extended R �W to consider the semantics of

the requested data and applications such as subsump-

tion properties in data cubes [15]. Push-based broad-

cast scheduling assumes a-priori knowledge of client

access distributions and prepares an off-line schedule.

Push-based data delivery is often periodic. In hybrid

broadcast, the set of items is partitioned, so that some

items are pushed, i.e., broadcast continuously, and

the rest are pulled, i.e., broadcast only after being

requested [2]. Commonly, the partition between push

and pull data is based on popularity with the most

popular items being pushed periodically and the rest

delivered on demand. One problem is that for push

items, there is no way to detect any changes in their

popularity. One solution is to occasionally stop broad-

casting some pushed items. This forces clients to send

explicit requests for them, which can be used to esti-

mate their popularity [16]. An alternative that avoids

flooding of requests requires a percentage of the clients

to submit an explicit request irrespective of whether or

not a data item appears on the broadcast [5].

The organization of the broadcast content is

often called broadcast program. In general, broadcast

organizations can be classified as either flat where each

item is broadcast exactly once or skewed where an item

may appear more than once. One can also distinguish

between clustered organizations, where data items

having the same or similar values at some attribute

appear consecutively, and non-clustered ones, where

there is no such correlation. In skewed organizations,

the broadcast frequency of each item depends on its

popularity. For achieving optimal access latency or

12 D Data Broadcasting, Caching and Replication in Mobile Computing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

response time, it was shown that (i) the relative number of

appearances of items should be proportional to the square

root of their access probabilities and (ii) successive broad-

casts of the same item should be at equal distances [7]. It

was also shown that the Mean Aggregate Access (MAD)

policy that selects to broadcast next the item whose

access probability � the interval since its last broadcast

is the highest achieves close to optimal response time

[17]. Along these lines, a practical skewed push broad-

cast organization is that of broadcast disks [1]. Items

are assigned to virtual disks with different ‘‘speeds’’

based on their popularity with popular items being

assigned to fast disks. The spin speed of each disk is

simulated by the frequency with which the items

assigned to it are broadcast. For example, the fact

that a disk D1 is three times faster than a disk D2,

means that items assigned to D1 are broadcast

three times as often as those assigned to D2. To achieve

this, each disk is split into smaller equal-sized units

called chunks, where the number of chunks per disk is

inversely proportional to the relative frequence of the

disk. The broadcast program is generated by broad-

casting one chunk from each disk and cycling through

all the chunks sequentially over all the disks.

Indexing

To reduce energy consumption, a mobile device may

switch to doze or sleep mode when inactive. Thus,

research in wireless broadcast also considers reducing

the tuning time defined as the amount of time a mobile

client remains active listening to the broadcast. This is

achieved by including index entries in the broadcast so

that by reading them, the client can determine when to

tune in next to access the actual data of interest. Adding

index entries increases the size of the broadcast and thus

may increase access time. The objective is to develop

methods for allocating index entries together with data

entries on the broadcast channel so that both access and

tuning time are optimized. In (1, m) indexing [18], an

index for all data items is broadcast following every

fraction (1 ∕m) of the broadcast data items. Distributed

indexing [18] improves over this method by instead of

replicating the whole index m times, each index seg-

ment describes only the data items that follow it.

Following the same principles, different indexing

schemes have been proposed that support different

query types or offer different trade-offs between access

and tuning time. Finally, instead of broadcasting an

index, hashing-based techniques have also been applied.

Data Caching and Replication

A mobile computing device (such as a portable com-

puter or cellular phone) is connected to the rest of

the network through a wireless link. Wireless commu-

nication has a double impact on the mobile device

since the limited bandwidth of wireless links increases

the response times for accessing remote data from a

mobile host and transmitting as well as receiving of

data are high energy consumption operations. The

principal goal of caching and replication is to store

appropriate pieces of data locally at the mobile device

so that it can operate on its own data, thus reducing the

need for communication that consumes both energy

and bandwidth. Several cost-based caching policies

along the principles of greedy-dual ones have been

proposed that consider energy cost.

In the case of broadcast push, the broadcast itself

can be viewed as a ‘‘cache in the air.’’ Hence, in contrast

to traditional policies, performance can be improved

by clients caching those items that are accessed fre-

quently by them but are not popular enough among all

clients to be broadcast frequently. For instance, a cost-

based cache replacement policy selects as a victim the

page with the lowest p ∕x value, where p is the local

access probability of the page and x its broadcast fre-

quency [1]. Prefetching can also be performed with

low overhead, since data items are broadcast anyway.

A simple prefetch heuristic evaluates the worth of each

page on the broadcast to determine whether it is more

valuable than some other page in cache and if so, it

swaps the cache page with the broadcast one.

Replication is also deployed to support disconnec-

ted operation that refers to the autonomous operation

of a mobile client, when network connectivity becomes

either unavailable (for instance, due to physical con-

straints), or undesirable (for example, for reducing

power consumption). Preloading or prefetching data

to sustain a forthcoming disconnection is often termed

hoarding. Optimistic approaches to consistency control

are typically deployed that allow data to be accessed

concurrently at multiple sites without a priori synchro-

nization between the sites, potentially resulting in short

term inconsistencies. At some point, operations per-

formed at the mobile device must be synchronized

with operations performed at other sites. Synchroniza-

tion depends on the level at which correctness is sought.

This can be roughly categorized as replica-level correct-

ness and transaction-level correctness. At the replica

level, correctness or coherency requirements are

Data Broadcasting, Caching and Replication in Mobile Computing D 13

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

expressed per item in terms of the allowable divergence

among the values of the copies of each item. At the

transaction level, the strictest form of correctness is

achieved through global serializability that requires

the execution of all transactions running at mobile

and stationary hosts to be equivalent to some serial

execution of the same transactions. With regards to

update propagation with eager replication, all copies

of an item are synchronized within a single transaction,

whereas with lazy replication, transactions for keeping

replica coherent execute as separate, independent data-

base transactions after the original transaction commits.

Common characteristics of protocols for consis-

tency in mobile computing include:

� The propagation of updates performed at the

mobile site follows in general lazy protocols.

� Reads are allowed at the local data, while updates of

local data are tentative in the sense that they need to

be further validated before commitment.

� For integrating operations at the mobile hosts with

transactions at other sites, in the case of replica-

level consistency, copies of each item are reconciled

following some conflict resolution protocol. At the

transaction-level, local transactions are validated

against some application or system level criterion.

If the criterion is met, the transaction is committed.

Otherwise, the execution of the transaction is either

aborted, reconciled or compensated.

Representative approaches along these lines include

isolation-only transactions in Coda, mobile open-nested

transactions [6], two-tier replications [8], two-layer

transactions [10] and Bayou [9].

When local copies are read-only, a central issue

is the design of efficient protocols for disseminating

server updates to mobile clients. A server is called

stateful, if it maintains information about its clients

and the content of their caches and stateless otherwise.

A server may use broadcasting to efficiently propagate

update reports to all of its clients. Such update reports

vary on the type of information they convey to

the clients, for instance, they may include just the

identifiers of the updated items or the updated values

themselves. They may also provide information for

individual items or aggregate information for sets of

items. Update propagation may be either synchronous

or asynchronous. In asynchronous methods, update

reports are broadcast as the updates are performed.

In synchronous methods, the server broadcasts an

update report periodically. A client must listen for the

report first to decide whether its cache is valid or not.

This adds some latency to query processing, however,

each client needs only tune in periodically to read the

report. The efficiency of update dissemination proto-

cols for clients with different connectivity behavior,

such as for workaholics (i.e., often connected clients)

and sleepers (i.e., often disconnected clients), is evalu-

ated in [4].

Finally, in the case of broadcast push-data delivery,

clients may read items from different broadcast pro-

grams. The currency of the set of data items read by

each client can be characterized based on the current

values of the corresponding items at the server and on

the temporal discrepancy among the values of the

items in the set [13]. A more strict notion of correct-

ness may be achieved through transaction-level cor-

rectness by requiring the client read-only transactions

to be serializable with the server transactions. Meth-

ods for doing so include: (i) an invalidation method

[12], where the server broadcasts an invalidation re-

port that includes the data items that have been

updated since the broadcast of the previous report,

and transactions that have read obsolete items are

aborted, (ii) serialization graph testing (SGT) [12],

where the server broadcasts control information related

to conflicting operations, and (iii) multiversion broad-

cast [11], where multiple versions of each item are

broadcast, so that client transactions always read a

consistent database snapshot.

Key Applications
Data broadcasting, caching and replication techniques

are part of the core of any application that requires

data sharing and synchronization among mobile

devices and data servers. Such applications include

vehicle dispatching, object tracking, points of sale

(e.g., ambulance and taxi services, Fedex/UPS), and

collaborative applications (e.g., homecare, video

gaming). They are also part of embedded or light ver-

sions of database management systems that extend en-

terprise applications to mobile devices. These include

among others Sybase Inc.’s SQL Anywhere, IBM’s DB2

Everyplace, Microsoft SQL Server Compact, Oracle9i

Lite and SQL Anywhere Technologies’ Ultralite.

Cross-references
▶Concurrency Control

▶Hash-Based Indexing

14 D Data Broadcasting, Caching and Replication in Mobile Computing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

▶MANET Databases

▶Mobile Databases

▶Replicated Databases

▶Transaction Management

Recommended Reading
1. Acharya S., Alonso R., Franklin M.J., and Zdonik S.B. Broadcast

disks: data management for asymmetric communications envir-

onments. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 199–210.

2. Acharya S., Franklin M.J., and Zdonik S.B. Balancing push

and pull for data broadcast. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1997, pp. 183–194.

3. Aksoy D. and Franklin M.J. RxW: a scheduling approach for

large scale on-demand broadcast. IEEE/ACM Trans. Netw.,

7(6):846–860, 1999.

4. Barbará D. and Imielinski T. Sleepers and workaholics: caching

strategies in mobile environments. VLDB J., 4(4):567–602, 1995.

5. Beaver J., Chrysanthis P.K., and Pruhs K. To broadcast push or

not and what? In Proc. 7th Int. Conf. on Mobile Data Manage-

ment, 2006, pp. 40–45.

6. Chrysanthis P.K. Transaction processing in a mobile computing

environment. In Proceedings of the IEEE Workshop on

Advances in Parallel and Distributed Systems, 1993, pp. 77–82.

7. Dykeman H.D., Ammar M.H., and Wong J.W. Scheduling algo-

rithms for videotex systems under broadcast delivery. In Proc.

IEEE Int. Conf. on Communications, 1986, pp. 1847–1851.

8. Gray J., Helland P., Neil P.O., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

9. Petersen K., Spreitzer M., Terry D.B. Theimer M., and

Demers A.J. Flexible update propagation for weakly consistent

replication. In Proc. 16th ACM Symp. on Operating System

Principles, 1997, pp. 288–301.

10. Pitoura E. and Bhargava B. Data consistency in intermittently

connected distributed systems. IEEE Trans. Knowl. Data Eng.,

11(6):896–915, 1999.

11. Pitoura E. and Chrysanthis P.K. Exploiting versions for handling

updates in broadcast disks. In Proc. 25th Int. Conf. on Very

Large Data Bases, 1999, pp. 114–125.

12. Pitoura E. and Chrysanthis P.K. Scalable processing of read-only

transactions in broadcast push. In Proc. 19th Int. Conf. on

Distributed Computing Systems, 1999, pp. 432–439.

13. Pitoura E., Chrysanthis P.K., and Ramamritham K. Character-

izing the temporal and semantic coherency of broadcast-based

data dissemination. In Proc. 9th Int. Conf. on Database Theory,

2003, pp. 410–424.

14. Pitoura E. and Samaras G. Data Management for Mobile

Computing. Kluwer, Boston, USA, 1998.

15. Sharaf MA. and Chrysanthis P.K. On-demand data broadcasting

for mobile decision making. MONET, 9(6):703–714, 2004.

16. Stathatos K., Roussopoulos N., and Baras J.S. Adaptive data

broadcast in hybrid networks. In Proc. 23th Int. Conf. on Very

Large Data Bases, 1997, pp. 326–335.

17. Su C.J, Tassiulas L., and Tsotras V.J. Broadcast scheduling for

information distribution. Wireless Netw., 5(2):137–147, 1999.

18. T I., Viswanathan S., and Badrinath B.R. Data on air:

organization and access. IEEE Trans. Knowl. Data Eng.,

9(3):353–372, 1997.

Data Cache

▶ Processor Cache

Data Cleaning

VENKATESH GANTI

Microsoft Research, Redmond, WA, USA

Definition
Owing to differences in conventions between the exter-

nal sources and the target data warehouse as well as

due to a variety of errors, data from external sources

may not conform to the standards and requirements at

the data warehouse. Therefore, data has to be trans-

formed and cleaned before it is loaded into a data

warehouse so that downstream data analysis is reliable

and accurate. Data Cleaning is the process of standar-

dizing data representation and eliminating errors in

data. The data cleaning process often involves one or

more tasks each of which is important on its own.

Each of these tasks addresses a part of the overall data

cleaning problem. In addition to tasks which focus

on transforming and modifying data, the problem of

diagnosing quality of data in a database is important.

This diagnosis process, often called data profiling, can

usually identify data quality issues and whether or not

the data cleaning process is meeting its goals.

Historical Background
Many business intelligence applications are enabled

by data warehouses. If the quality of data in a data

warehouse is poor, then conclusions drawn from busi-

ness data analysis could also be incorrect. Therefore,

much emphasis is placed on cleaning and maintaining

high quality of data in data warehouses. Consequently,

the area of data cleaning received considerable atten-

tion in the database community. An early survey of

automatic data cleaning techniques can be found in

[14]. Several companies also started developing do-

main-specific data cleaning solutions (especially for

the customer address domain). Over time, several ge-

neric data cleaning techniques have been also been

Data Cleaning D 15

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

developed (e.g., [10,5,15,8,9,1]) and, domain neutral

commercial data cleaning software also started making

its appearance (e.g., [13,11]).

Foundations

1 Main Data Cleaning Tasks

In this section, the goals of several data cleaning tasks

are introduced informally. The set of tasks mentioned

below consists of those addressing commonly encoun-

tered problems in data cleaning and may not be a

comprehensive list. However, note that most of the

tasks mentioned below are important whether one

wants to clean data at the time of loading a data

warehouse or at the time of querying a database [6].

1.1 Column Segmentation Consider a scenario where

a customer relation is being imported to add new

records to a target customer relation. Suppose the

address information in the target relation is split into

its constituent attributes [street address, city, state, and

zip code] while in the source relation they are all

concatenated into one attribute. Before the records

from the source relation could be inserted in the target

relation, it is essential to segment each address value in

the source relation to identity the attribute values at

the target. The goal of a column segmentation task is to

split an incoming string into segments, each of which

may be inserted as attribute values at the target. A

significant challenge to be addressed by this task is to

efficiently match sub-strings of an input string with

patterns such as regular expressions and with members

of potentially large reference tables in order to identify

values for target attributes. Note that, in general data

integration may involve more complex schema transfor-

mations than achieved by the column segmentation task.

1.2 Record Matching Consider a scenario where a new

batch of customer records is being imported into a

sales database. In this scenario, it is important to verify

whether or not the same customer is represented in

both the existing as well as the incoming sets and only

retain one record in the final result. Due to representa-

tional differences and errors, records in both batches

could be different and may not match exactly on their

key attributes (e.g., name and address or the Custo-

merId). The goal of a record matching task is to identify

record pairs, one in each of two input relations, which

correspond to the same real world entity. Challenges

to be addressed in this task include (i) identification

of criteria under which two records represent the same

real world entity, and (ii) efficient computation strate-

gies to determine such pairs over large input relations.

1.3 Deduplication Consider a scenario where one

obtains a set of customer records or product records

from an external (perhaps low quality) data source.

This set may contain multiple records representing the

same real world (customer or product) entity. It is

important to ‘‘merge’’ records representing the same

entity into one record in the final result. The goal of a

deduplication task is to partition a relation into disjoint

sets of records such that each group consists of records

which represent the same real world entity. Deduplica-

tion may (internally) rely on a record matching task

but the additional responsibility of further grouping

records based on pairwise matches introduces new

challenges. The output of record matching may not

be transitively closed. For instance, a record matching

task comparing record pairs in a relation may output

pairs (r1, r2) and (r2, r3) as matches, but not (r1, r3).

Then, the problem of deriving a partitioning that

respects the pairwise information returned by record

matching is solved by deduplication.

1.4 Data Standardization Consider a scenario where a

relation contains several customer records with miss-

ing zip code or state values, or improperly formatted

street address strings. In such cases, it is important to

fill in missing values and adjust, where possible,

the format of the address strings so as to return correct

results for analysis queries. For instance, if a business

analyst wants to understand the number of customers

for a specific product by zip code, it is important for

all customer records to have correct zip code values.

The task of improving the quality of information

within a database is often called data standardization.

Similar tasks also occur in various other domains such

as product catalog databases. The data standardiza-

tion task may also improve the effectiveness of record

matching and deduplication tasks.

1.5 Data Profiling The process of cleansing data is often

an iterative and continuous process. It is important to

‘‘evaluate’’ quality of data in a database before one initi-

ates data cleansing process, and subsequently assesses its

success. The process of evaluating data quality is called

data profiling, and typically involves gathering several

16 D Data Cleaning

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

aggregate data statistics which constitute the data pro-

file, and ensuring that the values match up with expec-

tations. For example, one may expect the customer

name and address columns together to uniquely deter-

mine each customer record in a Customer relation. In

such a case, the number of unique [name, address]

values must be close to that of the total number of

records in the Customer relation. Note that a large

subset of elements of a data profile may each be

obtained using one or more SQL queries. However,

because all the elements of a data profile are computed

together, there is an opportunity for a more efficient

computation strategy. Further, the data profile of a

database may also consist of elements which may not

easily be computed using SQL queries.

Besides the set of data cleaning tasks mentioned

above, other data cleaning tasks such as filling in miss-

ing values, identifying incorrect attribute values and

then automatically correcting them based on known

attribute value distributions are also important for

applications such as cleaning census data.

2 Data Cleaning Platforms

The above requirements for a variety of data cleaning

tasks have led to the development of utilities that

support data transformation and cleaning. Such soft-

ware falls into two broad categories:

Vertical Solutions: The first category consists of

verticals such as Trillium [15] that provide data clean-

ing functionality for specific domains, e.g., addresses.

Since they understand the domain where the vertical is

being applied, they can fine tune their software for the

given domain. However, by design, these are not ge-

neric and hence cannot be applied to other domains.

Horizontal Platforms: The other approach of

building data cleaning software is to define and imple-

ment basic data cleaning operators. The broad goal

here is to define a set of domain neutral operators,

which can significantly reduce the load of developing

common data cleaning tasks such as those outlined

above. An example of such a basic operator is the set

similarity join which may be used for identifying

pairs of highly similar records across two relations

(e.g., [16,4]). The advantage is that custom solutions

for a variety of data cleaning tasks may now be devel-

oped for specialized domains by composing one or

more of these basic operators along with other (stan-

dard or custom) operators. These basic operators do

the heavy lifting and thus make the job of developing

data cleaning programs easier. Examples of such plat-

forms include AJAX [7,8] and Data Debugger [3].

The above mentioned data cleaning operators may

then be included in database platforms so as to enable

programmers to easily develop custom data cleaning

solutions. For instance, ETL (extract-transform-load)

tools such as Microsoft SQL Server Integration Ser-

vices (SSIS) [13] and IBM Websphere Information

Integration [11] that can be characterized as ‘‘horizon-

tal’’ platforms. These platforms are applicable across a

variety of domains, and provide a set of composable

operators (e.g., relational operators) enabling users to

build programs involving these operators. Further,

these platforms also allow users to build their own

custom operators which may then be used in these

programs. Hence, such ETL platforms provide a great

vehicle to include core data cleaning operators.

Key Applications
Data cleaning technology is critical for several informa-

tion technology initiatives (such as data warehousing

and business intelligence) which consolidate, organize,

and analyze structured data. Accurate data cleaning pro-

cesses are typically employed during data warehouse

construction andmaintenance to ensure that subsequent

business intelligence applications yield accurate results.

A significant amount of recent work has been focus-

ing on extracting structured information from docu-

ments to enable structured querying and analysis over

document collections [2,12]. Invariably, the extracted

data is unclean and many data cleaning tasks discussed

above are applicable in this context as well.

Cross-references
▶Column segmentation

▶Constraint-driven database repair

▶Data deduplication

▶Data profiling

▶Record matching

▶ Similarity functions for data cleaning

Recommended Reading
1. Borkar V. Deshmukh V. and Sarawagi S. Automatic segmen-

tation of text into structured records. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001.

2. Cafarella M.J. Re C. Suciu D. Etzioni O. and Banko M.

Structured querying of the web 2007.

3. Chaudhuri S. Ganti V. and Kaushik. R. Data debugger: an

operator-centric approach for data quality solutions. IEEE

Data Eng. Bull., 2006.

Data Cleaning D 17

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

4. Chaudhuri S. Ganti V. and Kaushik. R. A primitive operator

for similarity joins in data cleaning. In Proc. 22nd Int. Conf. on

Data Engineering 2006.

5. Cohen. W. Integration of heterogeneous databases without

common domains using queries based on textual similarity. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1998.

6. Fuxman A. Fazli E. and Miller. R.J. Conquer: efficient

management of inconsistent databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005.

7. Galhardas H. Florescu D. Shasha D. and Simon. E. An extensible

framework for data cleaning. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1999.

8. Galhardas H. Florescu D. Shasha D. Simon E. and Saita. C.

Declarative data cleaning: language, model, and algorithms. In

Proc. 27th Int. Conf. on Very Large Data Bases, 2001.

9. Gravano L. Ipeirotis P.G. Jagadish H.V. Koudas N.

Muthukrishnan S. and Srivastava. D. Approximate string joins

in a database (almost) for free. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001.

10. Hernandez. M. and Stolfo. S. The merge/purge problem for

large databases. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1995.

11. IBM Websphere information integration. http://ibm.ascential.

com.

12. Ipeirotis P.G. Agichtein E. Jain P. and Gravano. L. To search or to

crawl? towards a query optimizer for text-centric tasks. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2006.

13. Microsoft SQL Server 2005 integration services.

14. Rahm E. and Do. H.H. Data cleaning: problems and current

approaches. IEEE Data Engineering Bulletin, 2000.

15. Raman V. and Hellerstein. J. An interactive framework for data

cleaning. Technical report, Univeristy of California, Berkeley, 2000.

16. Sarawagi S. and Kirpal. A. Efficient set joins on similarity

predicates. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2004.

17. Trillium Software. www.trilliumsoft.com/trilliumsoft.nsf.

Data Collection

▶Data Acquisition and Dissemination in Sensor

Networks

Data Compression in Sensor
Networks

AMOL DESHPANDE

University of Maryland, College Park, MD, USA

Synonyms
Distributed source coding; Correlated data collection;

Data suppression

Definition
Data compression issues arise in a sensor network

when designing protocols for efficiently collecting all

data observed by the sensor nodes at an Internet-

connected base station. More formally, let Xi denote

an attribute being observed by a node in the sensor

network – Xi may be an environmental property being

sensed by the node (e.g., temperature), or it may be

the result of an operation on the sensed values (e.g., in

an anomaly-detection application, the sensor node

may continuously evaluate a filter such as ‘‘temperature

> 100’’ on the observed values). The goal is to design

an energy-efficient protocol to periodically collect the

observed values of all such attributes (denoted X1,. . .,

Xn) at the base station, at a frequency specified by the

user. In many cases, a bounded-error approximation

might be acceptable, ie., the reported values may only

be required to be within � 2 of the observed values,

for a given 2. The typical optimization metric is the

total energy expended during the data collection pro-

cess, commonly approximated by the total communi-

cation cost. However, metrics such as minimizing the

maximum energy consumption across all nodes or

maximizing the lifetime of the sensor network may

also be appropriate in some settings.

Key Points
The key issue in designing data collection protocols is

modeling and exploiting the strong spatio-temporal

correlations present in most sensor networks. Let Xi
t

be a random variable that denotes the value of Xi

at time t (assuming time is discrete), and let H(Xi
t)

denote the information entropy of Xi
t. In most sensor

network deployments, especially in environmental

monitoring applications, the data generated by the

sensor nodes is typically highly correlated both

in time and in space — in other words, H(Xi
t+1jXi

t)

� H(Xi
t+1), and H(X1

t,. . .,Xn
t) � H(X1

t) + . . .

H(Xn
t). These correlations can usually be captured

quite easily by constructing predictive models using

either prior domain knowledge or historical data

traces. However, because of the distributed nature of

data generation in sensor networks, and the resource-

constrained nature of sensor nodes, traditional data

compression techniques cannot be easily adapted to

exploit such correlations.

The distributed nature of data generation has been

well-studied in the literature under the name of

Distributed Source Coding, whose foundations were

18 D Data Collection

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

laid almost 35 years ago by Slepian and Wolf [6]. Their

seminal work proves that it is theoretically possible to

encode the correlated information generated by

distributed data sources at the rate of their

joint entropy even if the data sources do not communi-

cate with each other. However this result is non-

constructive, and constructive techniques are known

only for a few specific distributions [4]. More impor-

tantly, these techniques require precise and perfect

knowledge of the correlations. This may not be accept-

able in practical sensor networks, where deviations

from the modeled correlations must be captured accu-

rately. Pattem et al. [3] and Chu et al. [2], among

others, propose practical data collection protocols

that exploit the spatio-temporal correlations while

guaranteeing correctness. However, these protocols

may exploit only some of the correlations, and further

require the sensor nodes to communicate with each

other (thus increasing the overall cost).

In many cases, it may not be feasible to construct a

predictive model over the sensor network attributes, as

required by the above approach, because of mobility,

high failure rates or inherently unpredictable nature of

the monitored phenomena. Suppression-based proto-

cols, that monitor local constraints and report to the

base station only when the constraints are violated,

may be used instead in such scenarios [5].

Sensor networks, especially wireless sensor net-

works, exhibit other significant peculiarities that

make the data collection problem challenging. First,

sensor nodes are typically computationally constrained

and have limited memories. As a result, it may not be

feasible to run sophisticated data compression algo-

rithms on them.

Second, the communication in wireless sensor net-

works is typically done in a broadcast manner – when a

node transmits a message, all nodes within the radio

range can receive the message. This enables many opti-

mizations that would not be possible in a one-to-one

communication model.

Third, sensor networks typically exhibit an extreme

asymmetry in the computation and communication

capabilities of the sensor nodes compared to the base

station. This motivates the design of pull-based data

collection techniques where the base station takes an

active role in the process. Adler [1] proposes such a

technique for a one-hop sensor network. The proposed

algorithm achieves the information-theoretical lower

bound on the number of bits sent by the sensor nodes,

while at the same time offloading most of the compute-

intensive work to the base station. However, the number

of bits received by the sensor nodes may be very high.

Finally, sensor networks typically exhibit high mes-

sage loss and sensor failure rates. Designing robust and

fault-tolerant protocols with provable guarantees is a

challenge in such an environment.

Cross-references
▶Continuous Queries in Sensor Networks

▶Data Aggregation in Sensor Networks

▶Data Fusion in Sensor Networks

▶ In-Network Query Processing

▶Model-based Querying in Sensor Networks

Recommended Reading
1. Adler M. Collecting correlated information from a sensor net-

work. In: Proc. 16th Annual ACM -SIAM Symp. on Discrete

Algorithms. 2005.

2. Chu D., Deshpande A., Hellerstein J., and HongW. Approximate

data collection in sensor networks using probabilistic models. In

Proc. 22nd Int. Conf. on Data Engineering. 2006.

3. Pattem S., Krishnamachari B., and Govindan R. The impact of

spatial correlation on routing with compression in wireless sen-

sor networks. In Proc. 3rd Int. Symp. Inf. Proc. in Sensor Net-

works. 2004.

4. Pradhan S. and Ramchandran K. Distributed source coding

using syndromes (DISCUS): Design and construction. IEEE

Trans. Inform. Theory, 49(3), 2003.

5. Silberstein A., Puggioni G., Gelfand A., Munagala K., and Yang J.

Making sense of suppressions and failures in sensor data: a

Bayesian approach. In: Proc. 33rd Int. Conf. on Very Large

Data Bases. 2007.

6. Slepian D. and Wolf J. Noiseless coding of correlated informa-

tion sources. IEEE Trans. Inform. Theory, 19(4), 1973.

Data Confidentiality

▶ Security Services

Data Conflicts

HONG-HAI DO

SAP AG, Dresden, Germany

Synonyms
Data problems; Data quality problems; Data anoma-

lies; Data inconsistencies; Data errors

Data Conflicts D 19

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

Definition
Data conflicts are deviations between data intended to

capture the same state of a real-world entity. Data with

conflicts are often called ‘‘dirty’’ data and can mislead

analysis performed on it. In case of data conflicts, data

cleaning is needed in order to improve the data quality

and to avoid wrong analysis results. With an under-

standing of different kinds of data conflicts and their

characteristics, corresponding techniques for data

cleaning can be developed.

Historical Background
Statisticians were probably the first who had to face

data conflicts on a large scale. Early applications, which

needed intensive resolution of data conflicts, were sta-

tistical surveys in the areas of governmental adminis-

tration, public health, and scientific experiments. In

1946, Halbert L. Dunn already observed the problem of

duplicates in data records of a person’s life captured at

different places [3]. He introduced the term Record

Linkage to denote the process to resolve the problem,

i.e., to obtain and link all unique data records to a

consistent view on the person. In 1969, Fellegi and

Sunter provided a formal mathematical model for the

problem and thereby laid down the theoretical foun-

dation for numerous record linkage applications de-

veloped later on [5].

Soon it became clear that record linkage is only the

tip of the iceberg of the various problems, such as

wrong, missing, inaccurate, and contradicting data,

which makes it difficult for humans and applications

to obtain a consistent view on real-world entities. In

the late 1980s, computer scientists began to systemati-

cally investigate all problems related to data quality,

increasingly from a practical perspective in the context

of business applications. This was essentially pushed by

the need to integrate data from heterogeneous sources

for business decision making and by the emergence

of enterprise data warehouses at the beginning of the

1990s. To date, various research approaches and com-

mercial tools have been developed to deal with the

different kinds of data conflicts and to improve data

quality [1,2,4,7].

Foundations

Classification of Data Conflicts

As shown in Fig. 1, data conflicts can be classified

according to the following criteria:

� Single-source versusmulti-source: Data conflicts can

occur among data within a single source or between

different sources.

� Schema-level versus instance-level: Schema-level

conflicts are caused by the design of the data

schemas. Instance-level conflicts, on the other

hand, refer to problems and inconsistencies in the

actual data contents, which are not visible at the

schema level.

Figure 1 also shows typical data conflicts for the vari-

ous cases. While not shown, the single-source conflicts

occur (with increased likelihood) in the multi-source

case, too, besides specific multi-source conflicts.

Single-Source Data Conflicts The data quality of a

source largely depends on the degree to which it is gov-

erned by schema and integrity constraints controlling

permissible data values. For sources without a schema,

Data Conflicts. Figure 1. Examples of multi-source problems at schema and instance level.

20 D Data Conflicts

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:08

such as files, there are few restrictions onwhat data can be

entered and stored, giving rise to a high probability of

errors and inconsistencies. Database systems, on the

other hand, enforce restrictions of a specific data model

(e.g., the relational approach requires simple attribute

values, referential integrity, etc.) as well as application-

specific integrity constraints. Schema-related data quality

problems thus occur because of the lack of appropri-

ate model-specific or application-specific integrity con-

straints, e.g., due to data model limitations or poor

schema design, or because only a few integrity constraints

were defined to limit the overhead for integrity control.

Instance-specific problems are related to errors and

inconsistencies that cannot be prevented at the schema

level (e.g., misspellings).

Both schema- and instance-level conflicts can be

further differentiated according to the different prob-

lem scopes attribute, record, record type, and source. In

particular, a data conflict can occur within an individ-

ual attribute value (attribute), between attributes of

a record (record), between records of a record type

(record type), and between records of different record

types (source). Examples of data conflicts in each prob-

lem scope are shown and explained in Tables 1 and 2

for the schema and instance level, respectively. Note

that uniqueness constraints specified at the schema

level do not prevent duplicated instances, e.g., if infor-

mation on the same real world entity is entered twice

with different attribute values (see examples in

Table 2).

Multi-Source Data Conflicts The problems present in

single sources are aggravated when multiple sources

need to be integrated. Each source may contain dirty

data and the data in the sources may be represented

differently, may overlap, or contradict. This is because

the sources are typically developed, deployed and main-

tained independently to serve specific needs. This results

in a large degree of heterogeneity with respect to data-

basemanagement systems, datamodels, schema designs,

and the actual data.

At the schema level, data model and schema design

differences are to be addressed by the steps of schema

translation and schema integration, respectively. The

main problems with respect to schema design are

naming and structural conflicts. Naming conflicts

arise when the same name is used for different objects

(homonyms) or different names are used for the same

object (synonyms). Structural conflicts occur in many

variations and refer to different representations of the

same object in different sources, e.g., attribute versus

table representation, different component structure,

different data types, different integrity constraints, etc.

In addition to schema-level conflicts, many con-

flicts appear only at the instance level. All problems

from the single-source case can occur with different

representations in different sources (e.g., duplicated

records, contradicting records). Furthermore, even

when there are the same attribute names and data

types, there may be different value representations

(e.g., M/F vs. Male/Female for marital status) or differ-

ent interpretation of the values (e.g., measurement

units Dollar vs. Euro) across sources. Moreover, infor-

mation in the sources may be provided at different

aggregation levels (e.g., sales per product vs. sales per

product group) or refer to different points in time

(e.g., current sales as of yesterday for Source 1 vs. as

of last week for Source 2).

A main problem for cleaning data from multiple

sources is to identify overlapping data, in particular

matching records referring to the same real-world

entity (e.g., a particular customer). This problem is

Data Conflicts. Table 1. Examples for single-source problems at schema level (violated integrity constraints)

Scope Type of conflict Dirty data Reasons/Remarks

Attribute Illegal values birthdate = 13/30/1970 Values outside of domain
range

Record Violated attribute
dependencies

city = ‘‘Redmond,’’ zip = 77777 City and zip code should
correspond

Record
type

Uniqueness
violation

emp1 = (name = ‘‘John Smith,’’ SSN = ‘‘123456’’),
emp2 = (name = ‘‘Peter Miller,’’ SSN = ‘‘123456’’)

Uniqueness for SSN (social
security number) violated

Source Referential
integrity violation

emp = (name = ‘‘John Smith,’’ deptno = 127) Referenced department (127)
not defined

Data Conflicts D 21

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

also referred to as the record linkage problem, the

object identity problem, or the deduplication problem.

Frequently, the information is only partially redundant

and the sources may complement each other by

providing additional information about an entity.

Thus duplicate information should be purged and

complementing information should be consolidated

and merged in order to achieve a consistent view of

real-world entities.

The two relational sources, Source 1 and Source 2,

in the example of Fig. 2 exhibit several kinds of con-

flicts. At the schema level, there are name conflicts

(synonyms Customer vs. Client, CID vs. Cno, Sex vs.

Gender) and structural conflicts (different structures

for names Name vs. {LastName, FirstName}, and for

addresses {Street, City, Zip} vs. Address). At the in-

stance level, one can see that there are different gender

representations (‘‘0’’/‘‘1’’ vs. ‘‘F ’’/‘‘M ’’) and presum-

ably a duplicate record (Kristen Smith). The latter

observation also reveals that while CID and Cno are

both source-specific identifiers, their contents are not

comparable between the sources; different numbers

(‘‘11,’’ ‘‘49’’) refer to the same person while different

persons have the same number (‘‘24’’).

Dealing with Data Conflicts

Data conflicts can be dealt with in a preventive and/or

corrective way. As resolving existing data conflicts is

generally an expensive task, preventing dirty data to be

entered is promising to ensure a high data quality. This

requires appropriate design of the database schema

with corresponding integrity constraints and strict en-

forcement of the constraints in the databases and data

entry applications. For most applications, however, a

corrective strategy, i.e. data cleaning (a.k.a. cleansing

or scrubbing), is needed in order to remove conflicts

from given data and make it suitable for analysis.

Typically, this process involves thorough analysis of

the data to detect conflicts and transformation of the

data to resolve the identified conflicts.

Key Applications

Data Warehousing

Data warehousing aims at a consolidated and consistent

view of enterprise data for business decision making.

Transactional and non-transactional data from a variety

of sources is aggregated and structured typically in a

multidimensional schema to effectively support dynamic

Data Conflicts. Table 2. Examples for single-source problems at instance level

Scope Type of conflict Dirty data Reasons/Remarks

Attribute Missing values phone = 9999–999999 Unavailable values during data
entry (dummy values or null)

Misspellings city = ‘‘London’’ Usually typos, phonetic errors

Cryptic values,
Abbreviations

experience = ‘‘B’’; occupation = ‘‘DB Prog.’’ Use of code lists

Embedded
values

name = ‘‘J. Smith 02/12/70 New York’’ Multiple values entered in one
attribute (e.g. in a free-form field)

Misfielded
values

city = ‘‘Germany’’ City field contains value of
country field

Record Violated
attribute
dependencies

city = ‘‘Redmond,’’ zip = 77777 City and zip code should
correspond

Record
type

Word
transpositions

name1 = ‘‘J. Smith,’’ name2 = ‘‘Miller P.’’ Usually in a free-form field

Duplicated
records

emp1 = (name = ‘‘John Smith,’’ . . .);
emp2 = (name = ‘‘J. Smith,’’ . . .)

Same employee represented
twice due to some data entry
errors

Contradicting
records

emp1 = (name = ‘‘John Smith,’’ bdate = 02/12/70);
emp2 = (name = ‘‘John Smith,’’ bdate = 12/12/70)

The same real world entity is
described by different values

Source Wrong
references

emp = (name = ‘‘John Smith,’’ deptno = 17) Referenced department (17) is
defined but wrong

22 D Data Conflicts

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

querying and reporting, such as Online Analytical Pro-

cessing (OLAP). As multiple data sources are considered,

the probability that some of the sources contain

conflicting data is high. Furthermore, the correctness of

the integrated data is vital to avoid wrong conclusions.

Due to the wide range of possible data inconsistencies

and the sheer data volume, data cleaning is one of the

biggest problems for data warehousing. Data conflicts

need to be detected and resolved during the so-called

ETL process (Extraction, Transformation, and Load),

when source data is integrated from corresponding

sources and stored into the data warehouse.

Data Mining

Data mining, or knowledge discovery, is the analysis of

large data sets to extract new and useful information.

Developed algorithms utilize a number of techniques,

such as data visualization (charts, graphs), statistics

(summarization, regression, clustering), and artificial

intelligence techniques (classification, machine learning,

and neural networks). As relevant data typically needs

to be integrated from different sources, data warehous-

ing represents a promising way to build a suitable data

basis for data mining. However, due to performance

reasons on large data sets, specialized data mining algo-

rithms often operate directly on structured files. In

either case, resolving data conflicts to obtain correct

data is crucial for the success of data mining. On the

other hand, the powerful data mining algorithms can

also be utilized to analyze dirty data and discover

data conflicts.

Cross-references
▶Data Cleaning

▶Data Quality

▶Duplicate Detection

Recommended Reading
1. Barateiro J. and Galhardas H. A survey of data quality tools.

Datenbank-Spektrum, 14:15–21, 2005.

2. Batini C. and Scannapieco M. Data Quality – Concepts, Meth-

odologies and Techniques. Springer, Berlin, 2006.

3. Dunn H.L. Record linkage. Am. J. Public Health,

36(12):1412–1416, 1946.

4. Elmagarmid A.K., Ipeirotis P.G., and Verykios V.S. Duplicate

record detection – a survey. IEEE Trans. Knowl. Data Eng.,

19(1):1–16, 2007.

5. Fellegi I.P. and Sunter A.B. A theory for record linkage. J. Am.

Stat. Assoc., 64(328):1183–1210, 1969.

6. Kim W., Choi B.-J., Kim S.-K., and Lee D. A taxonomy of dirty

data. Data Mining Knowl. Discov., 7(1):81–99, 2003.

7. Rahm E. and Do H.-H. Data cleaning – problems and current

approaches. IEEE Techn. Bull. Data Eng., 23(4):3–13, 2000.

Data Copy

▶Data broadcasting, caching and replication

Data Corruption

▶ Storage Security

Data Corruption. Figure 2. Classification of data conflicts in data sources.

Data Corruption D 23

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

Data Deduplication

▶Record Matching

Data Dependency

▶Database Dependencies

Data Dictionary

JAMES CAVERLEE

Texas A&M University, College Station, TX, USA

Synonyms
System catalog; Metadata repository

Definition
A data dictionary catalogs the definitions of data ele-

ments, data types, data flows and other conventions that

are used in an information system. Data dictionaries

have been widely adopted by both (i) the database com-

munity, where a dictionary typically describes database

entities, schemas, permissions, etc.; and (ii) the software

development community, where a dictionary typically

describes flows of information through the system. In

essence, a data dictionary is a virtual database of meta-

data about an information system itself. A data dictio-

nary may also be referred to as a ‘‘system catalog.’’

Key Points
Understanding and managing an information system –

both from a design and from an implementation

point-of-view – requires some documentation of the

schema, capabilities, constraints, and other descriptive

features of the system. This documentation is typically

embodied by a data dictionary – that is, a repository of

information for an information system that describes

the entities represented as data, including their attri-

butes and the relationships between them [3].

The importance of a systematic way to store and

manage the metadata associated with an information

system has been well known since the earliest days of

database and large-scale systems development. By the

time the relational model was garnering attention in

the 1970s, metadata management via a system catalog

was a standard feature in database management sys-

tems (DBMSs) like System R [1] and INGRES [5].

Around the same time, the structured analysis ap-

proach for large-scale systems development also advo-

cated for the use of a data dictionary [2].

The phrase data dictionary has two closely related

meanings: (i) as documentation primarily for consump-

tion by human users, administrators, and designers; and

(ii) as a mini-database managed by a DBMS and tightly

coupled with the software components of the DBMS.

In the first meaning, a data dictionary is a docu-

ment (or collection of documents) that provides a

conceptual view of the structure of an information

system for those developing, using, and maintaining

the system. In this first meaning, a data dictionary

serves to document the system design process, to iden-

tify the important characteristics of the system (e.g.,

schemas, constraints, data flows), and to provide the

designers, users, and administrators of the system a

central metadata repository [6]. A data dictionary can

provide the names of tables and fields, types for data

attributes, encoding information, and further details of

an overall structure and usage. The owner of a database

or database administrator (DBA) might provide it as a

book or a document with additional descriptions and

diagrams, or as generated documentation derived from

a database. Database users and application developers

then benefit from the data dictionary as an accepted

reference, though this hardcopy version is not always

provided nor required.

In the second meaning, a data dictionary is a mini-

database tightly coupled and managed by an informa-

tion system (typically a DBMS) for supporting query

optimization, transaction processing, and other typical

features of a DBMS. When used in this sense, a data

dictionary is often referred to as a catalog or as a system

catalog. As a software component of a database or a

DBMS, a data dictionary makes up all the metadata and

additional functions needed for a database manipulation

language (DML) to select, insert, and generally operate on

data. A database user will do this in conjunction with a

high-level programming language or from a textual or

graphical user interface (GUI). The data dictionary for a

database or DBMS typically has these elements:

� Descriptions of tables and fields

� Permissions information, such as usernames and

privileges

� How data is indexed

24 D Data Deduplication

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

� Referential integrity constraints

� Definitions for database schemas

� Storage allocation parameters

� Usage statistics

� Stored procedures and database triggers

For an example, a developer unfamiliar with what

tables are available within a database could query the

virtual INFORMATION_SCHEMA database, which

serves as the data dictionary for MySQL databases [4].

Besides this low-level version of a data dictionary,

some software frameworks add another layer of abstrac-

tion to create a high-level data dictionary as well. This

layer can reduce development time by providing features

not supported at the lower level, such as alternative

database scheme models. One example is Object-

Relational Mapping (ORM), which seeks to map the

data types created in the Object-Oriented Programming

(OOP) paradigm to a relational database.

Cross-references
▶Metadata

▶Metadata Repository

Recommended Reading
1. Astrahan M. et al. (1979) System R: a relational data base

management system. IEEE Comput. 12(5):42–48, 1979.

2. Demarco T. Structured Analysis and System Specification.

Yourdon, 1978.

3. Elmasri R. and Navathe S. Fundamentals of database systems.

Addison-Wesley, Reading, MA, 2000.

4. MySQL MySQL 5.0 Reference Manual, 2008.

5. Stonebraker M., Wong E., Kreps P., and Held G. The design

and implementation of INGRES. ACM Trans. Database Syst.,

1(3):189–222, 1976.

6. Yourdon E. Modern Structured Analysis. Yourdon 1989.

Data Dissemination

▶Data broadcasting, caching and replication

Data Encryption

NINGHUI LI

Purdue University, West Lafayette, IN, USA

Synonyms
Encryption; Cipher

Definition
Data encryption is the process of transforming data

(referred to as plaintext) to make it unreadable except

to those possessing some secret knowledge, usually

referred to as a key. The result of the process

is encrypted data (referred to as ciphertext). Data

encryption aims at preserving confidentiality of mes-

sages. The reverse process of deriving the plaintext

from the ciphertext (using the key) is known as de-

cryption. A cipher is a pair of algorithms which per-

form encryption and decryption. The study of data

encryption is part of cryptography. The study of

how to break ciphers, i.e., to obtaining the meaning

of encrypted information without access to the key, is

called cryptanalysis.

Historical Background
Encryption has been used to protect communications

since ancient times by militaries and governments to

facilitate secret communication. The earliest known

usages of cryptography include a tool called Scytale,

which was used by the Greeks as early as the seventh

century BC, and the Caesar cipher, which was used by

Julius Caesar in the first century B.C.

The main classical cipher types are transposition

ciphers, which rearrange the order of letters in a message,

and substitution ciphers, which systematically replace

letters or groups of letters with other letters or groups

of letters. Ciphertexts produced by classical ciphers al-

ways reveal statistical information about the plaintext.

Frequent analysis can be used to break classical ciphers.

Early in the twentieth century, several mechanical

encryption/decryption devices were invented, includ-

ing rotor machines – most famously the Enigma ma-

chine used by Germany in World War II. Mechanical

encryption devices, and successful attacks on them,

played a vital role in World War II.

Cryptography entered modern age in the 1970s,

marked by two important events: the introduction of

the U.S. Data Encryption Standard and the invention

of public key cryptography. The development of digital

computers made possible much more complex ciphers.

At the same time, computers have also assisted crypt-

analysis. Nonetheless, good modern ciphers have stayed

ahead of cryptanalysis; it is usually the case that use of a

quality cipher is very efficient (i.e., fast and requiring few

resources), while breaking it requires an effort many

orders of magnitude larger, making cryptanalysis so

inefficient and impractical as to be effectively impossible.

Data Encryption D 25

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

Today, strong encryption is no longer limited to se-

cretive government agencies. Encryption is now widely

used by the financial industry to protectmoney transfers,

by merchants to protect credit-card information in elec-

tronic commerce, by corporations to secure sensitive

communications of proprietary information, and by citi-

zens to protect their private data and communications.

Foundations
Data encryption can be either secret-key based or pub-

lic-key based. In secret-key encryption (also known as

symmetric encryption), a single key is used for both

encryption and decryption. In public-key encryption

(also known as asymmetric encryption), the encryption

key (also called the public key) and the corresponding

decryption key (also called the private key) are different.

Modern symmetric encryption algorithms are often

classified into stream ciphers and block ciphers.

Stream Ciphers

In a stream cipher, the key is used to generate a pseu-

do-random key stream, and the ciphertext is computed

by using a simple operation (e.g., bit-by-bit XOR or

byte-by-byte modular addition) to combine the plain-

text bits and the key stream bits. Mathematically, a

stream cipher is a function f :{0,1}‘ !{0,1}m, where

‘ is the key size, and m determines the length of the

longest message that can be encrypted under one key;

m is typically much larger than ‘. To encrypt a message

x using a key k, one computes c = f(k) ⊕ x, where ⊕
denote bit-by-bit XOR. To decrypt a ciphertext c using

key k, one computes f(k) ⊕ c.

Many stream ciphers implemented in hardware

are constructed using linear feedback shift registers

(LFSRs). The use of LFSRs on their own, however,

is insufficient to provide good security. Additional var-

iations and enhancements are needed to increase the

security of LFSRs.

The most widely-used software stream cipher is

RC4. It was designed by Ron Rivest of RSA Security

in 1987. It is used in popular protocols such as Secure

Sockets Layer (SSL) (to protect Internet traffic) and

WEP (to secure wireless networks).

Stream ciphers typically execute at a higher speed

than block ciphers and have lower hardware complexity.

However, stream ciphers can be susceptible to serious

security problems if used incorrectly; in particular, the

same starting state (i.e., the same generated key stream)

must never be used twice.

Block Ciphers

A block cipher operates on large blocks of bits, often

64 or 128 bits. Mathematically, a block cipher is a

pair of functions E : f0; 1g‘ � f0; 1gn ! f0; 1gn and

D : f0; 1g‘ � f0; 1gn ! f0; 1gn, where ‘ is the key size
and n is the block size. To encrypt a message x using

key k, one calculates Eðk; xÞ, which is often written

as Ek½x�. To decrypt a ciphertext c using key k, one

calculates Dðk; cÞ, often written as Dk½c�. The pair E
and D must satisfy

8k 2 f0; 1g‘ 8x 2 f0; 1gn Dk½Ek½x�� ¼ x:

The two most widely used block ciphers are the Data

Encryption Standard (DES) and the Advanced Encryp-

tion Standard (AES).

DES is a block cipher selected as Federal Informa-

tion Processing Standard for the United States in 1976.

It has subsequently enjoyed widespread use interna-

tionally. The block size of DES is 64 bits, and the key

size 56 bits. The main weakness of DES is its short key

size, which makes it vulnerable to bruteforce attacks

that try all possible keys.

One way to overcome the short key size of DES is to

use Triple DES (3DES), which encrypts a 64-bit block

by running DES three times using three DES keys.

More specifically, let ðE;DÞ be the pair of encryption

and decryption functions for DES, then the encryp-

tion function for 3DES is

3DESk1;k2;k3ðxÞ ¼ Ek1 ½Dk2 ½Ek3ðxÞ��:

AES was announced as an U.S. Federal Information

Processing Standard on November 26, 2001 after a

5-year selection process that is opened to the public. It

became effective as a standard May 26, 2002. The algo-

rithm is invented by Joan Daemen and Vincent Rijmen

and is formerly known as Rijndael. AES uses a block size

of 128 bits, and supports key sizes of 128 bits, 192 bits,

and 256 bits.

Because messages to be encrypted may be of arbi-

trary length, and because encrypting the same plaintext

under the same key always produces the same output,

several modes of operation have been invented which

allow block ciphers to provide confidentiality for mes-

sages of arbitrary length. For example, in the electronic

codebook (ECB) mode, the message is divided into

blocks and each block is encrypted separately. The

disadvantage of this method is that identical plaintext

blocks are encrypted into identical ciphertext blocks.

26 D Data Encryption

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

It is not recommended for use in cryptographic pro-

tocols. In the cipher-block chaining (CBC) mode, each

block of plaintext is XORed with the previous cipher-

text block before being encrypted. This way, each

ciphertext block is dependent on all plaintext blocks

processed up to that point. Also, to make each message

unique, an initialization vector must be used in the

first block and should be chosen randomly. More spe-

cifically, to encrypt a message x under key k, let x1,

x2,. . . ,xm denote the message blocks, then the cipher-

text is c0jjc1jj. . .jjcm where jj denote concatenation,

c0 = IV, the randomly chosen initial value, and

ci ¼ Ek½xi� 	 ci�1 for 1 � i � m. Other well-known

modes include Cipher feedback (CFB), Output feed-

back (OFB), and Counter (CTR).

Public Key Encryption Algorithms

When using symmetric encryption for secure commu-

nication, the sender and the receiver must agree upon a

key and the key must kept secret so that no other party

knows the key. This means that the key must be

distributed using a secure, but non-cryptographic,

method; for example, a face-to-face meeting or a

trusted courier. This is expensive and even impossible

in some situations. Public key encryption was invented

to solve the key distribution problem. When public key

encryption is used, users can distribute public keys

over insecure channels.

One of the most widely used public-key encryption

algorithm is RSA. RSA was publicly described in 1977

by Ron Rivest, Adi Shamir and Leonard Adleman at

MIT; the letters RSA are the initials of their surnames.

To generate a pair of RSA public/private keys, one does

the following: choose two distinct large prime numbers

p, q, calculate N = pq and f(N) = (p � 1)(q � 1),

choose an integer e such that 1 < e < f(N), and e and

f(N) share no factors other than 1. The public key is

(N, e), and the private key is (N, d), where ed
 1(mod

f(N)). A message to be encrypted is encoded using a

positive integer x where x < N. To encrypt x, compute

c = xe mod N. To decrypt a ciphertext c, compute

ce mod N. Practical RSA implementations typically

embed some form of structured, randomized padding

into the value x before encrypting it. Without such

padding, the ciphertext leaks some information about

the plaintext and is generally considered insecure for

data encryption. It is generally presumed that RSA is

secure if N is sufficiently large. The lengths of N are

typically 1,024–4,096 bits long.

A central problem for public-key cryptography is

proving that a public key is authentic and has not been

tampered with or replaced by a malicious third party.

The usual approach to this problem is to use a public-

key infrastructure (PKI), in which one or more third

parties, known as certificate authorities, certify owner-

ship of key pairs.

Asymmetric encryption algorithms are much more

computationally intensive than symmetric algorithms.

In practice, public key cryptography is used in combi-

nation with secret-key methods for efficiency reasons.

For encryption, the sender encrypts the message with a

secret-key algorithm using a randomly generated key,

and that random key is then encrypted with the reci-

pient’s public key.

Attack Models

Attack models or attack types for ciphers specify how

much information a cryptanalyst has access to when

cracking an encrypted message. Some common attack

models are:

� Ciphertext-only attack: the attacker has access only

to a set of ciphertexts.

� Known-plaintext attack: the attacker has samples of

both the plaintext and its encrypted version

(ciphertext).

� Chosen-plaintext attack: the attacker has the capa-

bility to choose arbitrary plaintexts to be encrypted

and obtain the corresponding ciphertexts.

� Chosen-ciphertext attack: the attacker has the capa-

bility to choose a number of ciphertexts and obtain

the plaintexts.

Key Applications
Data encryption is provided by most database manage-

ment systems. It is also used in many settings in which

database is used, e.g., electronic commerce systems.

Cross-references
▶Asymmetric Encryption

▶ Symmetric Encryption

Recommended Reading
1. Federal information processing standards publication 46-3: data

encryption standard (DES), 1999.

2. Federal information processing standards publication 197:

advanced encryption standard, Nov. 2001.

3. Diffie W. and Hellman M.E. New directions in cryptography.

IEEE Trans. Inform. Theory, 22:644–654, 1976.

Data Encryption D 27

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

4. Kahn D. The codebreakers: the comprehensive history of secret

communication from ancient times to the internet. 1996.

5. Menezes A.J., Oorschot P.C.V., and Vanstone S.A. Handbook of

applied cryptography (revised reprint with updates). CRC, West

Palm Beach, FL, USA, 1997.

6. Rivest R.L., Shamir A., and Adleman L.M. A method for obtain-

ing digital signatures and public-key cryptosystems. Commun.

ACM, 21:120–126, 1978.

7. Singh S. The code book: the science of secrecy from ancient

Egypt to quantum cryptography. Anchor, Garden City, NY,

USA, 2000.

Data Errors

▶Data Conflicts

Data Estimation in Sensor Networks

LE GRUENWALD

University of Oklahoma, Norman, OK, USA

Synonyms
Data imputation

Definition
In wireless sensor networks, sensors typically transmit

their data to servers at predefined time intervals. In

this environment, data packets are very susceptible to

losses, delays or corruption due to various reasons, such

as power outage at the sensor’s node, a higher bit error

rate of the wireless radio transmissions compared to the

wire communication alternative, an inefficient routing

algorithm implemented in the network, or random

occurrences of local interferences (e.g., mobile radio

devices, microwaves or broken line-of-sight path). To

process queries that need to access the missing data, if

repeated requests are sent to sensors asking them to

resend the missing information, this would incur

power-costly communications as those sensors must be

constantly in the listening mode. In addition, it is not

guaranteed that those sensors would resend their miss-

ing data or would resend them in a timely manner.

Alternatively, one might choose to estimate the missing

data based on the underlying structure or patterns of the

past reported data. Due to the low power-cost of com-

putation, this approach represents an efficient way of

answering queries that need to access the missing

information. This entry discusses a number of existing

data estimation approaches that one can use to estimate

the value of a missing sensor reading.

Key Points
To estimate the value of a missing sensor reading, the

quality of service in terms of high estimate accuracy

and low estimation time needs to be observed. Data

estimation algorithms can be divided into three major

groups: (i) traditional statistical approaches; (ii) statis-

tical-based sensor/stream data approaches, and (iii)

association rule data mining based approaches. Many

traditional statistical data approaches are not appro-

priate for wireless sensor networks as they require

either the entire data set to be available or data to be

missed at random, or do not consider relationships

among sensors. Some statistical based sensor/stream

data estimation algorithms include SPIRIT [3] and

TinyDB [2]. SPIRIT is a pattern discovery system that

uncovers key trends within data of multiple time series.

These trends or correlations are summarized by a

number of hidden variables. To estimate current miss-

ing values, SPIRIT applies an auto-regression forecast-

ing model on the hidden variables. TinyDB is a sensor

query processing system where missing values are esti-

mated by taking the average of all the values reported

by the other sensors in the current round. Two associ-

ation rule based data estimation algorithms areWARM

[1] and FARM [1]. WARM identifies sensors that are

related to each other in a sliding window containing the

latest w rounds using association rule mining. When the

reading of one of those sensors is missing, it uses the

readings of the other related sensors to estimate the

missing reading. FARM is similar to WARM except

that it does not use the concept of sliding window and

it considers the freshness of data.

Cross-references
▶Association Rule Mining

▶Data Quality

▶ Sensor Networks

▶ Stream Data Management

Recommended Reading
1. Gruenwald L., Chok H., and Aboukhamis M. Using data mining

to estimate missing sensor data. In Proceedings of the Seventh

IEEE ICDM Workshop on Optimization-Based Data Mining

Techniques with Applications. Omaha, NE, 2007, pp. 207–212.

28 D Data Errors

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:09

2. Madden S., Franklin M., Hellerstein J., and Hong W. TinyDB:

an acquisitional query processing system for sensor networks.

Trans. Database Syst., 30(1):122–173, 2005.

3. Papadimitriou S., Sun J., and Faloutsos C. Pattern discovery in

multiple time-series. In Proceedings of the 31st International

Conference on Very Large Data Bases. Trondheim, Norway,

2005, pp. 697–708.

Data Exchange

LUCIAN POPA

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Data translation; Data migration; Data transformation

Definition
Data exchange is the problem of materializing an

instance of a target schema, given an instance of a

source schema and a specification of the relationship

between the source schema and the target schema.

More precisely, a data exchange setting is a quadruple

of the form (S, T, Sst, St), where S is the source schema,

T is the target schema, Sst is a schema mapping that

expresses constraints between S and T, and St is a set

of constraints on T. Such a setting gives rise to the

following data exchange problem: given an instance I

over the source schema S, find an instance J over the

target schema T such that I and J together satisfy the

schema mapping Sst, and J satisfies the target con-

straints St. Such an instance J is called a solution for I

in the data exchange setting. In general, many different

solutions for an instance Imay exist. The main focus of

the data exchange research is to study the space of all

possible solutions, to identify the ‘‘best’’ solutions to

materialize in a practical application, and to develop

algorithms for computing such a best solution.

Historical Background
The first systems supporting the restructuring and

translation of data were built several decades ago. An

early such systemwas EXPRESS [21], which performed

data exchange between hierarchical schemas. The need

for systems supporting data exchange has persisted

over the years and has become more pronounced

with the proliferation of data in various formats rang-

ing from traditional relational database schemas to

semi-structured/XML schemas and scientific formats.

An example of a modern data exchange system is Clio

[18,20], a schema mapping prototype developed at

IBM Almaden Research Center and in collaboration

with University of Toronto that influenced both theo-

retical and practical aspects of data exchange.

The data exchange problem is related to the data

integration problem [16] in the sense that both problems

are concerned with management of data stored in hete-

rogeneous formats. The two problems, however, are

different for the following reasons. In data exchange,

the main focus is on actually materializing a target

instance (i.e., a solution) that reflects the source data

as accurately as possible. This presents a challenge, due

to the inherent under-specification of the relationship

between the source and the target, which means that in

general there are many different ways to materialize

such a target instance. In contrast, a target instance

need not be materialized in data integration.There, the

main focus is on answering queries posed over the

target schema using views that express the relationship

between the target and source schemas.

Fagin et al. [8] were the first to formalize the data

exchange problem and to embark on an in-depth inves-

tigation of the foundational and algorithmic issues that

surround it. Their framework focused on data exchange

settings in which S and T are relational schemas, Sst is

a set of tuple-generating dependencies (tgds) between

S and T, also called source-to-target tgds, and St is a

set of tgds and equality-generating dependencies

(egds) on T. Fagin et al. isolated a class of solutions

for the data exchange problem, called universal solu-

tions, and showed that they have good properties that

justify selecting them as the preferred solutions in data

exchange. Universal solutions are solutions that can be

homomorphically mapped into every other solution;

thus, intuitively, universal solutions are the most gen-

eral solutions. Moreover, in a precise sense, universal

solutions represent the entire space of solutions. One

of the main results in [8] is that, under fairly general

conditions (weak acyclicity of the set of target tgds),

a canonical universal solution can be computed (if

solutions exist) in polynomial time, by using the

classical chase procedure [2].

In general, universal solutions need not be unique.

Thus, in a data exchange setting, there may be many

universal solutions for a given source instance. Fagin,

Kolaitis and Popa [9] addressed the issue of further

isolating a ‘‘best’’ universal solution, by using the con-

cept of the core of a graph or a structure [14]. By

Data Exchange D 29

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:10

definition, the core of a structure is the smallest sub-

structure that is also a homomorphic image of that

structure. Since all universal solutions for a source in-

stance I are homomorphically equivalent, it follows that

they all have the same core (up to isomorphism). It is

then shown in [9] that this core is also a universal

solution, and hence the smallest universal solution. The

uniqueness of the core of a universal solution together

with its minimality make the core an ideal solution for

data exchange. In a series of papers that started with [9]

and continuedwith [12,13], it was shown that the core of

the universal solutions can be computed in polynomial

time, for data exchange settings where Sst is a set of

source-to-target tgds and St is the union of a weakly-

acyclic set of tgds with a set of edgs. This is in contrast

with the general case of computing the core of an

arbitrary structure, for which it is known that, unless

P¼NP, there is no polynomial-time algorithm.

There are quite a few papers on data exchange

and theory of schema mappings that extended or

made use of the concepts and results introduced in

[8,9]. Some of the more representative ones addressed:

extensions to XML data exchange [1], extensions to

peer data exchange [11], the study of solutions under

the closed-world assumption (CWA) [17], combined

complexity of data exchange [15], schema mapping

composition [10,19] and schema mapping inversion

[7]. The Clio system, which served as both motivation

and implementation playground for data exchange,

was the first to use source-to-target dependencies as

a language for expressing schema mappings [20].

Mapping constraints, expressed as either embedded

dependencies (which comprise tgds and egds) or as

equalities between relational or SQLS expressions,

also play a central role in the model management

framework of Bernstein and Melnik [3].

Foundations
Given a source schema S and a target schema T that are

assumed to be disjoint, a source-to-target dependency is,

in general, a formula of the form 8x(fS(x) ! wT(x)),
where fS(x) is a formula, with free variables x, over the

source schema S, and wT(x) is a formula, with free

variables x, over the target schema T. The notation x

signifies a vector of variables x1, . . .,xk. A target depen-

dency is, in general, a formula over the target schema T

(the formalism used to express a target dependency

may be different in general from those used for the

source-to-target dependencies). The source schema

may also have dependencies that are assumed to be

satisfied by every source instance. Source dependencies

do not play a direct role in data exchange, because the

source instance is given.

The focus in [8] and in most of the subsequent

papers on data exchange theory is on the case when S

and T are relational schemas and when the dependen-

cies are given as tuple-generating dependencies (tgds)

and equality-generating dependencies (egds) [2]. More

precisely, each source-to-target dependency in Sst is

assumed to be a tad of the form

8xðfSðxÞ ! 9ycTðx; yÞÞ;

where fS(x) is a conjunction of atomic formulas over S

and cT(x, y) is a conjunction of atomic formulas

over T. All the variables in x are assumed to appear in

fS(x). Moreover, each target dependency in St is either

a tad (of the form shown below left) or an edg (of

the form shown below right):

8xðfTðxÞ ! 9ycTðx; yÞÞ 8xðfTðxÞ ! ðx1 ¼ x2ÞÞ

In the above, fT(x) and cT(x, y) are conjunctions

of atomic formulas over T, where all the variables in

x appear in fT(x), and x1, x2 are among the variables

in x. An often used convention is to drop the universal

quantifiers in front of a dependency, and implicitly

assume such quantification. However, the existential

quantifiers are explicitly written down.

Source-to-target tgds are a natural and expressive

language for expressing the relationship between a

source and a target schema. Such dependencies are

semi-automatically derived in the Clio system [20]

based on correspondences between the source schema

and the target schema. In turn, such correspondences

can either be supplied by a human expert or discovered

via schema matching techniques. Source-to-target tgds

are also equivalent to the language of ‘‘sound’’ global-

and-local-as-view (GLAV) assertions often used in data

integration systems [16].

It is natural to take the target dependencies to be

tgds and egds: these two classes together comprise

the (embedded) implicational dependencies [6]. How-

ever, it is somewhat surprising that tgds, which were

originally ‘‘designed’’ for other purposes (as con-

straints), turn out to be ideally suited for specifying

desired data transfer.

Example 1. Figure 1b shows a source schema

(on the left) and a target schema (on the right) with

30 D Data Exchange

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:10

correspondences between their attributes. The source

schema models two different data sources or databases,

src1 and src2, each representing data about students.

The first source consists of one relation, src1.students,

while the second source consists of two relations, src2.

students and src2.courseEvals. The attributes S,N,C,G,F

represent, respectively,‘‘student id,’’ ‘‘student name,’’

‘‘course,’’ ‘‘grade’’ (only in src1), and ‘‘file evaluation’’

(a written evaluation that a student receives for a

course; only in src2). The attribute K in src2 is used to

link students with the courses they take; more con-

cretely, K plays the role of a foreign key in src2.students

and the role of a key in src2.courseEvals. As seen in the

instance in Fig.1a, information in the two sources may

overlap: the same student can appear in both sources,

with each source providing some information that

the other does not have (e.g., either grade or file

evaluation).

The two data sources are mapped into a target

schema with three relations: students (with general

student information), enrolled (listing course entries

for each student), and evals (with evaluation entries

per student and per course). The attribute E (evalua-

tion id) is used to link enrollment entries with the

associated evaluation records (E is a foreign key in

enrolled and a key in evals). Similarly, the attribute S

(student id) links enrolled with students.

The relationship between the individual attributes

in the schemas is described by the arrows or corre-

spondences that ‘‘go’’ between the attributes. However,

the more precise mapping between the schemas is

given by the set Sst ¼ {t1,t2} of source-to-target tgds

that is shown in Fig.1c.

The first source-to-target tad, t1, specifies that for

each tuple in src1.students there must exist three

corresponding tuples in the target: one in students,

one in enrolled, and one in evals. Moreover, t1 specifies

how the four components of the source tuple (i.e., s, n,

c, g) must appear in the target tuples. The tad also

specifies the existence of ‘‘unknown’’ values (via the

existential variables E and F) for the target attributes

that do not have any corresponding attribute in the

source. Note that existential variables can occur multi-

ple times; in the example, it is essential that the same

variable E is used in both enrolled and evals so that the

association between students, courses and their grades

is not lost in the target.

The second source-to-target tad, t2, illustrates a case

where the source pattern (the premise of the tad) is not

limited to one tuple of a relation but encodes a join

between multiple relations. In general, not all variables

in the source pattern must occur in the target (e.g.,

k does not occur in the target). In this example, t2 plays

a ‘‘complementary’’ role to t1, since it maps a different

source that contains file evaluations rather than grades.

The target dependencies in St are formulas

expressed solely in terms of the target schema that

further constrain the space of possible target instances.

In this example, the tgds i1 and i2 are inclusion depen-

dencies that encode referential integrity constraints

from enrolled to students and evals, respectively. The

egds e1, e2 and e3 encode functional dependencies. that

must be satisfied. In particular, e1 requires that a stu-

dent and a course must have a unique evaluation id,

while e2 and e3 together specify that the evaluation id

must be a key for evals.

Data Exchange. Figure 1. A data exchange example.

Data Exchange D 31

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:10

Solutions In general, in a data exchange setting (S,

T, Sst,St), there can be zero or more solutions J for a

given source instance I. In other words, there can be

zero or more target instances J such that: (1) J satisfies

the target dependencies in St, and (2) I together with J

satisfy the source-to-target dependencies in Sst. The

latter condition simply means that the instance hI, J i
that is obtained by considering together all the rela-

tions in I and J satisfies Sst. Note that hI, Ji is an

instance over the union of the schemas S and T.

Example 2. Figure 2 illustrates three target instances

that are plausible for the source instance I shown in

Fig.1a, and given the dependencies Sst and St in Fig.1b.

Consider the first instance J0, shown in Fig.2a. It can be

seen that hI, J0i satisfies all the source-to-target depen-
dencies in Sst; in particular, for any combination of the

source data in I that satisfies the premises of some

source-to-target tad in Sst, the ‘‘required’’ target tuples

exist in J0. Note that in J0, the special values E1, . . . ,E4,

F1, F2, G3 and G4 are used to represent ‘‘unknown’’

values, that is, values that do not occur in the source

instance. Such values are called labeled nulls or nulls

and are to be distinguished from the values occurring

in the source instance, which are called constants.

(See the later definitions.) It can then be seen that J0
fails to satisfy the set St of target dependencies; in

particular, the egd e1 is not satisfied (there are two

enrolled tuples for student 001 and course CS120 hav-

ing different evaluation ids, E1 and E3). Thus, J0 is not a

solution for I.

On the other hand, the two instances J1 and J2
shown in Fig.2b and c, respectively, are both solutions

for I. The main difference between J1 and J2 is that J2 is

more ‘‘compact’’: the same null E2 is used as an evalu-

ation id for two different pairs of student and course

(in contrast, J1 has different nulls, E2 and E4).

In this example, J1 and J2 illustrate two possible

ways of filling in the target that both satisfy the given

specification. In fact, there are infinitely many possible

solutions: one could choose other nulls or even con-

stants instead of E1,E2, . . ., or one could add ‘‘extra’’

target tuples, and still have all the dependencies satis-

fied. This raises the question of which solutions to

choose in data exchange and whether some solutions

are better than others.

Universal solutions. A key concept introduced in [8]

is that of universal solutions, which are the most general

among all the possible solutions.

Let Const be the set, possibly infinite, of all the

values (also called constants) that can occur in source

instances. Moreover, assume an infinite set Var of values,

called labeled nulls, such that Var \ Const ¼ ;.
The symbols I, I0, I1, I2, . . . are reserved for instances

over the source schema S and with values in Const. The

symbols J, J0, J1, J2, . . . are reserved for instances over

the target schema T and with values in Const [Var.

All the target instances considered, and in particular,

the solutions of a data exchange problem, are assumed

to have values in Const [Var. If J is a target instance,

then Const(J) denotes the set of all constants occurring

in J, and Var(J) denotes the set of labeled nulls occur-

ring in J.

Let J1 and J2 be two instances over the target sche-

ma. A homomorphismh : J1 ! J2 is a mapping from

Const(J1) [Var(J1) to Const(J2) [Var(J2) such that:

(1) h(c) ¼ c, for every c 2 Const(J1); (2) for every tuple

Data Exchange. Figure 2. Examples of target instances.

32 D Data Exchange

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:10

t in a relation R of J1, the tuple h(t) is in the relation R

of J2 (where, if t¼(a1, . . .,as), then h(t)¼(h(a1),. . .,h

(as))). The instance J1 is homomorphically equivalent to

the instance J2 if there are homomorphisms h : J1!J2
and h0 : J2!J1.

Consider a data exchange setting (S,T,Sst,St). If I is

a source instance, then a universal solution for I is a

solution J for I such that for every solution J0 for I,

there exists a homomorphism h : J!J0.

Example 3. The solution J2 in Fig. 2c is not univer-

sal. In particular, there is no homomorphism from J2
to the solution J1 in Fig. 2b. Specifically, the two

enrolled tuples (005, CS500, E2) and (001,CS200,E2)

of J2 cannot be mapped into tuples of J1 (since E2
cannot be mapped into both E2 and E4). Thus, J2 has

some ‘‘extra’’ information that does not appear in all

solutions (namely, the two enrolled tuples for (005,

CS500) and (001,CS200) sharing the same evaluation

id). In contrast, a universal solution has only informa-

tion that can be homomorphically mapped into every

possible solution. It can be shown that J1 is such a

universal solution, since it has a homomorphism to

every solution (including J2).

As the above example suggests, universal solutions

are the preferred solutions in data exchange, because

they are at least as general as any other solution (i.e.,

they do not introduce any ‘‘extra’’ information).

Computing universal solutions with the chase. Fagin

et al. [8] addressed the question of how to check the

existence of a universal solution and how to compute

one, if one exists. They showed that, under a weak

acyclity condition on the set St of target dependencies,

universal solutions exist whenever solutions exist.

Moreover, they showed that, under the same condi-

tion, there is a polynomial-time algorithm for com-

puting a canonical universal solution, if a solution

exists; this algorithm is based on the classical chase

procedure.

Intuitively, the following procedure is applied to

produce a universal solution from a source instance I:

start with the instance hI, ;i that consists of I for the
source, and the empty instance for the target; then

chase hI, ;i with the dependencies in Sst and St in

some arbitrary order and for as long as they are appli-

cable. Each chase step either adds new tuples in the

target or attempts to equate two target values (possibly

failing, as explained shortly). More concretely, let hI, Ji
denote an intermediate instance in the chase process

(initially J ¼ ;). Chasing with a source-to-target tad

fS(x) !∃ycT(x, y) amounts to the following: check

whether there is a vector a of values that interprets x

such that I ⊨fS(a), but there is no vector b of values

that interprets y such that J ⊨cT(a, b); if such a exists,

then add new tuples to J, where fresh new nulls Y

interpret the existential variables y, such that the

resulting target instance satisfies cT(a, Y). Chasing

with a target tad is defined similarly, except that only

the target instance is involved. Chasing with a target

egd fT(x)!(x1 ¼ x2) amounts to the following: check

whether there is a vector a of values that interprets x

such that J ⊨fT(a) and such that a1 6¼ a2; if this is the

case, then the chase step attempts to identify a1 and a2,

as follows. If both a1 and a2 are constants then the

chase fails; it can be shown that there is no solution

(and no universal solution) in this case. If one of a1
and a2 is a null, then it is replaced with the other one

(either a null or a constant); this replacement is global,

throughout the instance J. If no more chase steps are

applicable, then the resulting target instance J is a

universal solution for I.

Example 4. Recall the earlier data exchange scenario

in Fig. 1. Starting from the source instance I, the

source-to-target tgds in Sst can be applied first. This

process adds all the target tuples that are ‘‘required’’ by

the tuples in I and the dependencies in Sst. The result-

ing target instance after this step is an instance that is

identical, modulo renaming of nulls, to the instance J0
in Fig. 2a. Assume, for simplicity, that the result is J0.

The chase continues by applying the dependencies

in St to J0. The tgds (i1) and (i2) are already satisfied.

However, the egd (e1) is not satisfied and becomes

applicable. In particular, there are two enrolled tuples

with the same student id and course but different

evaluation ids (E1 and E3). Since E1 and E3 are nulls,

the chase with e1 forces the replacement of one with the

other. Assume that E3 is replaced by E1. After the

replacement, the two enrolled tuples become identical

(hence, one is a duplicate and is dropped). Moreover,

there are now two evals tuples with the same evaluation

id (E1). Hence, the egds e2 and e3 become applicable.

As a result, the null G3 is replaced by the constant A

and the null F1 is replaced by the constant file01. The

resulting target instance is the instance J1 in Fig. 2b,

which is a canonical universal solution for I.

As a remark on the expressive power of depen-

dencies (and of their associated chase), note how

the above process has merged, into the same tuple,

information from two different sources (i.e., the

Data Exchange D 33

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:10

grade, and respectively, the file, for student 001 and

course CS120). Also note that the chase is, inherently,

a recursive procedure.

In general, the chase with an arbitrary set of target

tgds and egds may not terminate. Hence, it is natural to

ask for sufficient conditions for the termination of the

chase. An extensively studied condition that guaran-

tees termination is that the target tgds in St form a

weakly acyclic set of tgds (the latter is also known as a set

of constraints with stratified witnesses) [8,5]. Two im-

portant classes of dependencies that are widely used in

database dependency theory, namely sets of full target

tgds and acyclic sets of inclusion dependencies, are

special cases of weakly acyclic sets of tgds.

The following theorem summarizes the use of chase

in data exchange and represents one of the main results

in [8].

Theorem 1 Assume a data exchange setting (S, T,

Sst,St) where Sst is a set of source-to-target tgds, and

St is the union of a weakly acyclic set of tgds with a set of

egds. Then: (1) The existence of a solution can be checked

in polynomial time. (2) A universal solution exists if and

only if a solution exists. (3) If a solution exists, then a

universal solution can be produced in polynomial time

using the chase.

The weak acyclicity restriction is essential for the

above theorem to hold. In fact, it was shown in [15]

that if the weak-acyclicity restriction is removed,

the problem of checking the existence of solutions

becomes undecidable.

Multiple universal solutions and core. In general, in a

data exchange setting, there can be many universal solu-

tions for a given source instance. Nevertheless, it has

been observed in [9] that all these universal solutions

share one common part, which is the core of the univer-

sal solutions. The core of the universal solutions is

arguably the ‘‘best’’ universal solution to materialize,

since it is the unique most compact universal solution.

It is worth noting that the chase procedure computes

a universal solution that may not necessarily be the

core. So, additional computation is needed to produce

the core.

A universal solution that is not a core necessarily

contains some ‘‘redundant’’ information which does

not appear in the core. Computing the core of the

universal solutions could be performed, conceptually,

in two steps: first, materialize a canonical universal

solution by using the chase, then remove the redun-

dancies by taking to the core. The second step is tightly

related to conjunctive query minimization [4], a proce-

dure that is in general intractable. However, by exploit-

ing the fact that in data exchange, the goal is on

computing the core of a universal solution rather

than that of an arbitrary instance, polynomial-time

algorithms were shown to exist for certain large classes

of data exchange settings. Specifically, for data

exchange settings where Sst is a set of arbitrary

source-to-target tgds and St is a set of egds, two poly-

nomial-time algorithms, the blocks algorithm and the

greedy algorithm, for computing the core of the uni-

versal solutions were given in [9]. By generalizing the

blocks algorithm, this tractability case was further ex-

tended in [12] to the case where the target tgds are full

and then in [13] to the more general case where the

target tgds form a weakly acyclic set of tgds.

Further results on query answering. The semantics

of data exchange problem (i.e., which solution to

materialize) is one of the main issues in data exchange.

Another main issue is that of answering queries for-

mulated over the target schema. Fagin et al. [8]

adopted the notion of the ‘‘certain answers’’ in incom-

plete databases for the semantics of query answering in

data exchange. Furthermore, they studied the issue of

when can the certain answers be computed based on

the materialized solution alone; in this respect, they

showed that in the important case of unions of con-

junctive queries, the certain answers can be obtained

simply by running the query on an arbitrary universal

solution and by eliminating the tuples that contain

nulls. This in itself provided another justification for

the ‘‘goodness’’ of universal solutions. The followup

paper [9] further investigated the use of a materialized

solution for query answering; it showed that for the

larger class of existential queries, evaluating the query

on the core of the universal solutions gives the best

approximation of the certain answers. In fact, if one

redefines the set of certain answers to be those that

occur in every universal solution (rather than in every

solution), then the core gives the exact answer for

existential queries.

Key Applications
Schema mappings are the fundamental building blocks

in information integration. Data exchange gives theo-

retical foundations for schema mappings, by studying

the transformation semantics associated to a schema

mapping. In particular, universal solutions are the

main concept behind the ‘‘correctness’’ of any

34 D Data Exchange

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

program, query or ETL flow that implements a schema

mapping specification. Data exchange concepts are

also essential in the study of the operators on schema

mappings such as composition of sequential schema

mappings and inversion of schema mappings.

Cross-references
▶Data Integration

▶ Schema Mapping

▶ Schema Mapping Composition

Recommended Reading
1 Arenas M. and Libkin L. XML data exchange: consistency and

query answering. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005, pp.

13–24.

2. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM (JACM), 31(4):718–741, 1984.

3. Bernstein P.A. and Melnik S. Model management 2.0: manipu-

lating richer mappings. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 1–12.

4. Chandra A.K. and Merlin P.M. Optimal implementation of

conjunctive queries in relational data bases. In Proc. 9th Annual

ACM Symp. on Theory of Computing, 1977, pp. 77–90.

5. Deutsch A. and Tannen V. XML queries and constraints, con-

tainment and reformulation. Theor. Comput. Sci. (TCS), 336

(1):57–87, 2005.

6. Fagin R. Horn clauses and database dependencies. J. ACM

(JACM), 29(4):952–985, 1982.

7. Fagin R. Inverting schema mappings. ACM Trans. Database Syst.

(TODS), 32(4), 2007.

8. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data exchange:

semantics and query answering. Theor. Comput. Sci. (TCS), 336

(1):89–124, 2005.

9. Fagin R., Kolaitis P.G., and Popa L. Data exchange: getting to the

core. ACM Trans. Database Syst. (TODS), 30(1):174–210, 2005.

10. Fagin R., Kolaitis P.G., Popa L., and Tan W.-C. Composing

schema mappings: second-order dependencies to the rescue.

ACM Trans. Database Syst. (TODS), 30(4):994–1055, 2005.

11. Fuxman A., Kolaitis P.G., Miller R.J., and Tan W.-C. Peer

data exchange. ACM Trans. Database Syst. (TODS), 31(4):

1454–1498, 2006.

12. Gottlob G. Computing cores for data exchange: new algorithms

and practical solutions. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005.

13. Gottlob G. and Nash A. Data exchange: computing cores in

polynomial time. In Proc. 25th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2006, pp.

40–49.

14. Hell P. and Nešetřil J. The core of a graph. Discrete Math,

109:117–126, 1992.

15. Kolaitis P.G., Panttaja J., and Tan W.C. The complexity of

data exchange. In Proc. 25th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2006, pp. 30–39.

16. Lenzerini M. Data Integration: A Theoretical Perspective.

In Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 2002, pp. 233–246.

17. Libkin L. Data exchange and incomplete information. In Proc.

25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2006, pp. 60–69.

18. Miller R.J., Haas L.M., and Hernández M.A. Schema mapping as

query discovery. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 77–88.

19. Nash A., Bernstein P.A., and Melnik S. Composition of

mappings given by embedded dependencies. ACM Trans. Data-

base Syst. (TODS), 32(1):4, 2007.

20. Popa L., Velegrakis Y., Miller R.J., Hernández M.A., and Fagin R.

Translating Web data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 598–609.

21. Shu N.C., Housel B.C., Taylor R.W., Ghosh S.P., and Lum V.Y.

EXPRESS: A Data EXtraction, Processing, and REStructuring

System. ACM Trans. Database Syst. (TODS), 2(2):134–174,

1977.

Data Expiration

▶Temporal Vacuuming

Data Extraction

▶ Screen Scraper

Data Flow Diagrams

▶Activity Diagrams

Data Fusion

▶ Semantic Data Integration for Life Science Entities

Data Fusion in Sensor Networks

AMAN KANSAL, FENG ZHAO

Microsoft Research, Redmond, WA, USA

Synonyms
Distributed sensor fusion

Data Fusion in Sensor Networks D 35

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

Definition
Data fusion in sensor networks is defined as the set of

algorithms, processes, and protocols that combine data

from multiple sensors. The goal may be to extract

information not readily apparent in an individual sen-

sor’s data, improve the quality of information com-

pared to that provided by any individual data, or

improve the operation of the network by optimizing

usage of its resources.

For instance, the output of a magnetic sensor and

an audio sensor may be combined to detect a vehicle

(new information), outputs of multiple vibration sen-

sors may be combined to increase the signal to noise

ratio (improving quality), or a passive infrared sensor

may be combined with a camera in a people detection

network to reduce the frame-rate of the camera for

conserving energy (improving operation).

The sensors fused may be of the same or different

types. Key features of data fusion in sensor networks,

that distinguish it from other methods to combine

multiple sources of data, are that the former methods

are designed to (i) reduce the amount of communica-

tion among and from the sensors, and (ii) increase the

life-time of the sensor network when all or some of the

sensors are battery operated. The methods used to

combine the data may leverage past observations

from the same sensors, previously known models of

the sensed phenomenon, and other information in

addition to the sensor data.

Historical Background
Data fusion in sensor networks is founded on the

methods developed for fusion of data in several older

systems that used multiple sensors but not under the

same system constraints as are typical of sensor net-

works. The Radar systems used in World War II pres-

ent one of the first notable examples of such systems.

The advantages that these systems demonstrated in

robustness to failure of a fraction of sensors increased

quality of data due to increased dimensionality of

the measurement space. Since then, better discrimina-

tion between available hypotheses have led to the use of

fusion methods in many sensor systems.

Most of the algorithms for sensor data processing

can be viewed as derivatives of the Kalman filter

and related Bayesian methods [7,9]. Decentralized

forms of these methods have been developed to take

data from multiple sensors as input and produced a

single higher quality fused output [15,16]. Latest

advances in these areas are discussed at the IEEE Sen-

sor Array and Multichannel Signal Processing Work-

shop and the International Conference on Information

Fusion among other venues. Other related works on

fusion of sensor data are found in computer vision,

tracking, and defense applications [2,3,5,6,8].

The achievable advantage in reducing signal distor-

tion through fusion of multiple sensor inputs has been

derived using information theoretic methods for gen-

eral and Gaussian models for the phenomenon and

sensor noise [1,12,13].

Foundations
The basic data fusion problem may be expressed as

follows. The sensor network is deployed to measure a

phenomenon represented by a state vector x(t). For

example, if the phenomenon is an object being tracked,

x(t) may represent a vector of position and velocity of

the object at time t. The observation model at sensor i,

that relates the observation z to state x, is assumed to

be Gaussian in many of the works, for computational

tractability:

ziðtÞ ¼ HiðxðtÞÞ þ wiðtÞ ð1Þ

Linear models where H is a matrix are often used.

The belief about the phenomenon at time t is

defined to be the a posteriori distribution of x:

pðxjz1; :::; znÞ ð2Þ

where n is the number of sensors. The belief is suffi-

cient to characterize the phenomenon and compute

typical statistics such as the expected value of x and its

residual uncertainty after the estimation.

The centralized methods to determine this belief

from the observations require a knowledge of measure-

ments zi from all the sensors. The decentralized Kal-

man filters, such as [15,16], typically assume that each

of the n sensors in the sensor network is connected to

every other sensor and an O(n2) communication over-

head is acceptable. This design may be used for fusion

in systems with a small number of sensors or when

high data rate communication links are present among

sensors, such as networks of defense vehicles. However,

such a high overhead is not acceptable in sensor net-

works based on embedded and wireless platforms. In

these systems, both due to the large number of sensors

and the low data rates supported by their radios for

battery efficiency, the fusion methods must minimize

36 D Data Fusion in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

the communication requirements. Such fusion meth-

ods are said to be distributed.

One approach [17,18] to realize a distributed fusion

method is to selectively use only a subset of the large

number of sensors that have the most relevant informa-

tion about the phenomenon being sensed. The fusion

method then is also required to provide for appropriate

selection of these most informative sensors and to dyna-

mically adapt the set of selected sensor as the phenome-

non evolves over time. To this end, a quantitative

measure of the usefulness of a sensor for fusion is

introduced, referred to as the information content of

that sensor. An information utility function is defined:

c : PðRdÞ ! R ð3Þ

that acts on the class PðRdÞ of all probability distribu-
tions on Rd and returns a real number, with d being

the dimension of x. Specific choices of c are derived

from information measures known from information

theory, such as entropy, the Fischer information

matrix, the size of the covariance ellipsoid for Gaussian

phenomena models, sensor geometry based measures

and others. An example form of c if information

theoretic entropy is used, is:

cðpxÞ ¼
Z
S

pxðxÞlogðpxðxÞÞdx ð4Þ

where S represents the domain of x and px is its proba-

bility distribution. Let U � {1,. . .,n} be the set of

sensors whose measurements have been incorporated

into the belief, i.e., the current belief is:

pðxjfzigi2U Þ ð5Þ

If the measurement from sensor j is also selected for

inclusion in the computation of belief, the belief

becomes:

pðxjfzigi2U [fzjgÞ ð6Þ

To select the sensor that has the maximum information

content, the sensor j should be selected to maximize

the information utility of the belief after including zj.

Noting that j is to be selected from set A = {1, . . . , n}�
U, the best sensor ĵ is:

ĵ ¼ arg j2Amax c pðxjfzigi2U [fzjgÞ
� �

ð7Þ

However, in practice, the knowledge about zj is not

available before having selected j. The most likely best

sensor j can then be selected by computing the expec-

tation of the information utility with respect to zj:

ĵ ¼ arg j2Amax Ezj ½c pðxjfzigi2U [fzjgÞ
� �

jfzigi2U �
ð8Þ

among other options.

Also, the cost of communication from a sensor is

explicitly modeled. Suppose the current belief is held at

sensor l, referred to as the leader node. Suppose Mc(l, j)

denotes the cost of communication to sensor j. Then

the sensor selection method choses the best sensor as

follows:

ĵ ¼ arg j2Amax½aMuðjÞ � ð1� aÞMcðl; jÞ� ð9Þ

where Mu(j) denotes the expectation of the informa-

tion utility as expressed in (8), and a 2 [0,1] balances

the contribution from Mu and Mc.

These fundamentals can be used to develop a

distributed data fusion algorithm for a sensor network.

Suppose the sensor nodes are synchronized in time, and

the phenomenon is initially detected at time t = 0.

At this time, a known distributed leader election algo-

rithm may be executed to select a node l as the leader,

which computes the initial belief using only its own

observation. It now selects the next sensor to be

included in the belief calculation using (9). The pro-

cess continues until the belief is known to a satisfactory

quality as characterized by known statistical measures.

The flowchart of the fusion algorithm followed at all

the nodes is shown in Fig. 1.

The sensor selection process used in the algorithm

above is a greedy one – at each selection step, it only

considers a single sensor that optimizes the selectionmet-

ric. It is possible that selectingmultiple sensors at the same

time yields a better choice. This can be achieved at the cost

of higher computation complexity by selecting a set of

sensors instead a single sensor j in (9), using appropriate

modifications to the cost and utility metrics.

The distributed fusion method described above

limits the number of sensors used and hence signifi-

cantly reduces the communication overhead as com-

pared to the O(n2) overhead of decentralized methods.

It is well-suited for problems where the sensed phe-

nomenon is localized, such as an object being tracked,

since the number of most informative nodes selected

can then yield fused results close to that provided by

the entire network.

Data Fusion in Sensor Networks D 37

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

In another approach, a distributed Kalman filter is

derived. The sensing model is as expressed before in

(1). However, instead of using a centralized Kalman

filter to estimate the state x, n micro-Kalman filters,

each executing locally at the n sensor nodes, using the

measurements from only the local node, are used. In

addition, two consensus problems are solved using a

method that requires communication only with one

hop wireless neighbors [10,11]. This approach is more

relevant when the observations from all the nodes in

the network are important, such as when measuring a

distributed phenomenon.

Distributed fusion methods that are tolerant to

communication losses and network partitioning have

also been developed using message passing on junc-

tion trees [14] and techniques from assumed density

filtering [4].

Additionally, distributed methods are also available

for cases where the sensed phenomenon is not itself

required to be reproduced but only some of its proper-

ties are to be obtained. These properties may be global

and depend on the measurements of all the sensors in

the network, such as the number of targets in the region,

the contours of a given phenomenon value in a heat

map, or tracking relations among a set of objects [17].

The field of data fusion in sensor networks is rapidly

evolving with new advances being presented frequently at

forums including the ACM/IEEE IPSN and ACM SenSys.

Key Applications
Infrastructure monitoring, pervasive health-care, de-

fense, scientific experimentation, environmental sens-

ing, urban monitoring, home automation, supply-

chain control, industrial control, business process

monitoring, security.

Data Sets
Several data sets collected from experimental sensor

network deployments are available for researchers to

test their data fusion methods:

Center for Embedded Networked Sensing, http://

www.sensorbase.org/

Data Fusion in Sensor Networks. Figure 1. Distributed sensor fusion based on selecting only the most informative and

cost effective sensors.

38 D Data Fusion in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

Intel Lab Data, http://db.csail.mit.edu/labdata/lab

data.html

Cross-references
▶Data Aggregation in Sensor Networks

▶Data Estimation in Sensor Networks

▶ In-Network Query Processing

Recommended Reading
1. Berger T., Zhang Z., and Vishwanathan H. The CEO problem.

IEEE Trans. Inform. Theory, 42(3):887–902, 1996.

2. Brooks R.R. and Iyengar S.S. Multi-sensor fusion: Fundamentals

and applications with software. Prentice-Hall, Englewood, Cliffs,

NJ, 1997.

3. Crowley J.L. and Demazeau Y. Principles and techniques

for sensor data fusion. Signal Process., 32(1–2):5–27, 1993.

4. Funiak S., Guestrin C., Paskin M., and Sukthankar R.

Distributed inference in dynamical systems. In Advances in

Neural Information Processing Systems 19, B. Scholkopf,

J. Platt, and T. Hoffman (eds.). MIT, Cambridge, MA, 2006,

pp. 433–440.

5. Hall D.L. and McMullen S.A.H. Mathematical Techniques in

Multisensor Data Fusion. Artech House, 2004.

6. Isard M. and Blake A. Condensation – conditional density prop-

agation for visual tracking. Int. J. Comput. Vision, 29(1):5–28,

1998.

7. Jazwinsky A. Stochastic processes and filtering theory. Academic,

New York, 1970.

8. Lodaya M.D. and Bottone R. Moving target tracking

using multiple sensors. In Proc. SPIE, Vol. 4048, pp. 333–344,

Signal and Data Processing of Small Targets 2000, O.E. Drum-

mond (ed.)., vol. 4048 of Presented at the Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference, 2000, pp. 333–344.

9. Maybeck P. Cox I. and Wilfong G. (eds.). Autonomous robot

vehicles, chap. The Kalman filter: An introduction to concepts.

Springer, Berlin, 1990.

10. Olfati-Saber R. Distributed kalman filtering for sensor networks.

In Proc. 46th IEEE Conf. on Decision and Control. 2007.

11. Olfati-Saber R. and Shamma J.S. Consensus filters for sensor

networks and distributed sensor fusion. In Proc. 44th IEEE

Conf. on Decision and Control. 2005.

12. Oohama Y. The rate distortion function for the quadratic Gauss-

ian CEO problem. IEEE Trans. Inform. Theory, 44(3), 1998.

13. Pandya A., Kansal A., Pottie G.J., and Srivastava M.B. Fidelity

and resource sensitive data gathering. In 42nd Allerton Confer-

ence. 2004.

14. Paskin M., Guestrin C., and McFadden J. A robust architecture

for distributed inference in sensor networks. In Proc. 4th Int.

Symp. Inf. Proc. in Sensor Networks. 2005.

15. Rao B., Durrant-Whyte H., and Sheen J. A fully decentralized

multi-sensor system for tracking and surveillance. Int. J. Robot.

Res., 12.

16. Speyer J.L. Computation and Transmission requirements for a

decentralized linear-quadratic-Gaussian control problem. IEEE

Trans. Automat. Control, 24(2):266–269, 1979.

17. Zhao F., Liu J., Liu J., Guibas L., and Reich J. Collaborative

Signal and Information Processing: An Information Directed

Approach. Proc. IEEE, 91(8):1199–1209, 2003.

18. Zhao F. and Guibas L. Wireless Sensor Networks: An Informa-

tion Processing Approach. Morgan Kaufmann, 2004.

Data Gathering

▶Data Acquisition and Dissemination in Sensor

Networks

Data Grids

▶ Storage Grid

Data Imputation

▶Data Estimation in Sensor Networks

Data Inconsistencies

▶Data Conflicts

Data Integration

▶ Information Integration

Data Integration Architectures and
Methodology for the Life Sciences

ALEXANDRA POULOVASSILIS

University of London, London, UK

Definition
Given a set of biological data sources, data integration

is the process of creating an integrated resource com-

bining data from the data sources, in order to allow

queries and analyses that could not be supported by

the individual data sources alone. Biological data

Data Integration Architectures and Methodology for the Life Sciences D 39

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

sources are characterized by their high degree of het-

erogeneity, in terms of their data model, query inter-

faces and query processing capabilities, data types

used, and nomenclature adopted for actual data values.

Coupled with the variety, complexity and volumes of

biological data that are becoming increasingly avail-

able, integrating biological data sources poses many

challenges, and a number of methodologies, architec-

tures and systems have been developed to support it.

Historical Background
If an application requires data from different data

sources to be integrated in order to support users’

queries and analyses, one possible solution is for the

required data transformation and aggregation function-

ality to be encoded into the application’s programs.

However, this may be a complex and lengthy process,

andmay also affect the robustness andmaintainability of

the application. These problems have motivated the

development of architectures and methodologies which

abstract out data transformation and aggregation func-

tionality into generic data integration software.

Much work has been done since the early 1990s

in developing architectures and methodologies for inte-

grating biological data sources in particular. Many sys-

tems have been developed which create and maintain

integrated data resources: examples of significant sys-

tems are DiscoveryLink [7], K2/Kleisli [3], Tambis [6],

SRS [16], Entrez [5], BioMart [4]. The main aim of such

systems is to provide users with the ability to formulate

queries and undertake analyses on the integrated re-

source which would be very complex or costly if per-

formed directly on the individual data sources,

sometimes prohibitively so.

Providing access to a set of biological data sources via

one integrated resource poses several challenges, mainly

arising from the large volumes, variety and complexity

of othe data, and the autonomy and heterogeneity of

the data sources [2,8,9]. Data sources are developed by

different people in differing research environments for

differing purposes. Integrating them tomeet the needs of

new users and applications requires the reconciliation

of their different data models, data representation and

exchange formats, content, query interfaces, and query

processing capabilities.Data sources are in general free to

change their data formats and content without consid-

ering the impact this may have on integrated resources

derived from them. Integrated resourcesmay themselves

serve as data sources for higher-level integrations,

resulting in a network of dependencies between

biological data resources.

Foundations
Three main methodologies and architectures have

been adopted for biological data integration, materia-

lized, virtual and link-based:

� With materialized integration, data from the data

sources is imported into a data warehouse and it is

transformed and aggregated as necessary in order

to conform to the warehouse schema. The ware-

house is the integrated resource, typically a rela-

tional database. Queries can be formulated with

respect to the warehouse schema and their evalua-

tion is undertaken by the database management

system (DBMS), without needing to access the

original data sources.

� With virtual integration, a schema is again created

for the integrated resource. However, the integrated

resource is represented by this schema, and the

schema is not populated with actual data. Addi-

tional mediator software is used to construct map-

pings between the data sources and the integrated

schema. The mediator software coordinates the

evaluation of queries that are formulated with re-

spect to the integrated schema, utilizing the map-

pings and the query processing capabilities of the

database or file management software at the data

sources. Data sources are accessed via additional

‘‘wrapper’’ software for each one, which presents a

uniform interface to the mediator software.

� With link-based integration no integrated schema is

created. Users submit queries to the integration

software, for example via a web-based user interface.

Queries are formulated with respect to data sources,

as selected by the user, and the integration software

provides additional capabilities for facilitating query

formulation and speeding up query evaluation. For

example, SRS [16] maintains indexes supporting

efficient keyword-based search over data sources,

and also maintains cross-references between differ-

ent data sources which are used to augment query

results with links to other related data.

A link-based integration approach can be adopted if

users will wish to query the data sources directly, will

only need to pose keyword and navigation-style

queries, and the scientific hypotheses that they will be

investigating will not require any significant

40 D Data Integration Architectures and Methodology for the Life Sciences

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

transformation or aggregation of the data. Otherwise,

the adoption of a materialized or virtual integration

approach is indicated. The link-based integration ap-

proach is discussed further in [1] and in the entry on

Pathway Databases.

A key characteristic of materialized or virtual inte-

gration is that the integrated resource can be queried

as though it were itself a single data source rather than

an integration of other data sources: users and applica-

tions do not need to be aware of the schemas or formats

of the original data sources, only the schema/format of

the integrated resource. Materialized integration is usu-

ally chosen for query performance reasons: distributed

access to remote data sources is avoided and sophisticat-

ed query optimization techniques can be applied to

queries submitted to the data warehouse. Other advan-

tages are that it is easier to clean and annotate the source

data than by usingmappings within a virtual integration

approach. However, maintaining a data warehouse can

be complex and costly, and virtual integration may be

the preferred option if these maintenance costs are too

high, or if it is not possible to extract data from the data

sources, or if access to the latest versions of the data

sources is required.

Examples of systems that adopt the materialized

integration approach are GUS [3], BioMart [4], Atlas

[14], BioMap [12]. With this approach, the standard

methodology and architecture for data warehouse cre-

ation and maintenance can be applied. This consists of

first extracting data from the data sources and trans-

porting it into a ‘‘staging’’ area. Data from the data

sources will need to be re-extracted periodically in

order to identify changes in the data sources and to

keep the warehouse up-to-date. Data extraction from

each data source may be either full extraction or incre-

mental extraction. With the former, the entire source

data is re-extracted every time while with the latter it is

only relevant data that has changed since the previous

extraction. Incremental extraction is likely to be more

efficient but for some data sources it may not be

possible to identify the data that has changed since

the last extraction, for example due to the limited

functionality provided by the data sources, and full

extraction may be the only option. After the source

data has been brought into the staging area, the

changes from the previous versions of the source data

are determined using ‘‘difference’’ algorithms (in the

case of full re-extraction) and the changed data is

transformed into the format and data types specified

by the warehouse schema. The data is then ‘‘cleaned’’

i.e., errors and inconsistencies are removed, and it is

loaded into the warehouse. The warehouse is likely to

contain materialized views which transform and aggre-

gate in various ways the detailed data from the data

sources. View maintenance capabilities provided by the

DBMS can be used to update such materialized views

following insertions, updates and deletions of the de-

tailed data. It is also possible to create and maintain

additional ‘‘data marts’’ each supporting a set of spe-

cialist users via a set of additional views specific to their

requirements. The warehouse serves as the single data

source for each data mart, and a similar process of

extraction, transformation, loading and aggregating

occurs to create and maintain the data mart.

One particular characteristic of biological data in-

tegration, as compared with business data integration

for example, is the prevalence of both automated

and manual annotation of data, either prior to its

integration, or during the integration process, or

both. For example, the Distributed Annotation System

(DAS) (http://www.biodas.org) allows annotations to

be generated and maintained by the owners of data

resources, while the GUS data warehouse supports

annotations that track the origins of data, information

about algorithms or annotation software used to derive

new inferred data, and who performed the annotation

and when. Being able to find out the provenance of

any data item in an integrated resource is likely to be

important for users, and this is even more significant

in biological data integration where multiple annota-

tion processes may be involved.

Another characteristic of biological data integration

is the wide variety of nomenclatures adopted by different

data sources. This greatly increases the difficulty of

aggregating their data and has led to the proposal of

many standardized ontologies, taxonomies and con-

trolled vocabularies to help alleviate this problem e.g.,

from the Gene Ontology (GO) Consortium, Open Bio-

medical Ontologies (OBO) Consortium, Microarray

Gene Expression Data (MGED) Society and Proteomics

Standards Initiative (PSI). The role of ontologies in

scientific data integration is discussed in the entry on

Ontologies in Scientific Data Integration. Another key

issue is the need to resolve possible inconsistencies in the

ways that biological entities are identifiedwithin the data

sources. The same biological entity may be identified

differently in different data sources or, conversely, the

same identifier may be used for different biological

Data Integration Architectures and Methodology for the Life Sciences D 41

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

entities in different data sources. There have been a

number of initiatives to address the problem of incon-

sistent identifiers e.g., the Life Sciences Identifiers (LSID)

initiative and the International Protein Index (IPI). De-

spite such initiatives, there is still a legacy of large num-

bers of non-standardized identifiers in biological

datasets and therefore techniques are needed for asso-

ciating biological entities independently of their identi-

fiers. One technique is described in [12] where a

clustering approach is used to identify sets of data source

entities that are likely to refer to the same real-world

entity.

Another area of complexity is that data sources may

evolve their schemas over time to meet the needs of new

applications or new experimental techniques (hence-

forth, the term ‘‘data source schema’’ is used to encom-

pass also the data representation and exchange formats of

data sources that are not databases). Changes in the data

source schemas may require modification of the extrac-

tion-transformation-loading (ETL), viewmaterialization

and view maintenance procedures. Changes in the ware-

house schema may impact on data marts derived from it

and on the procedures for maintaining these.

Turning now to virtual data integration, architec-

tures that support virtual data integration typically

include the following components:

� A Repository for storing information about data

sources, integrated schemas, and the mappings be-

tween them.

� A suite of tools for constructing integrated schemas

and mappings, using a variety of automatic and

interactive methods.

� A Query Processor for coordinating the evaluation

of queries formulated with respect to an integrated

schema; the Query Processor first reformulates

such a query, using the mappings in the Repository,

into an equivalent query expressed over the data

source schemas; it then optimizes the query and

evaluates it, submitting as necessary sub-queries to

the appropriate data source Wrappers and merging

the results returned by them.

� An extensible set of Wrappers, one for each type of

data source being integrated; each Wrapper extracts

metadata from its data source for storage in the

Repository, translates sub-queries submitted to it

by the Query Processor into the data source’s query

formalism, issues translated sub-queries to the data

source, and translates sub-query results returned by

the data source into the Query Processor’s data

model for further post-processing by the Query

Processor.

An integrated schema may be defined in terms of a

standard data modeling language, or it may be a

source-independent ontology defined in an ontology

language and serving as a ‘‘global’’ schema for multiple

potential data sources beyond the specific ones that

are being integrated (as in TAMBIS for example). The

two main integration methodologies are top-down and

bottom-up. With top-down integration, the integrated

schema, IS, is first constructed, or may already exist

from previous schema design, integration or standar-

dization efforts. The set of mappings, M, between IS

and the data source schemas are then defined. With

bottom-up integration, an initial version of IS and M

are first constructed – for example, these may be based

on just one of the data source schemas. The integrated

schema IS and the set of mappings M are then incre-

mentally extended by considering in turn each of the

other data source schemas: for each object O in each

source schema, M is modified so as to encompass the

mapping between O and IS, if it is possible to do so

using the current IS; otherwise, IS extended as neces-

sary in order to encompass the data represented by O,

and M is then modified accordingly.

A mixed top-down/bottom-up approach is also pos-

sible: an initial IS may exist from a previous design or

standardization activity, but it may need to be extended

in order to encompass additional data arising from the

set of data sources being integrated within it. With

either top-down, bottom-up or mixed integration, it is

possible that ISwill not need to encompass all of the data

of the data sources, but only a subset of the data which is

sufficient for answering key queries and analyses – this

avoids the possibly complex process of constructing a

complete integrated schema and set of mappings.

There are a number of alternatives to defining the

set of mappings M above, and different data integra-

tion systems typically adopt different approaches: with

the global-as-view (GAV) approach, each mapping

relates one schema object in IS with a view that is

defined over the source schemas; with the local-as-

view (LAV) approach, each mapping relates one sche-

ma object in one of the source schemas with a view

defined over IS; and with the global-local-as-view

(GLAV) approach, each mapping relates a view over a

source schema with a view over IS [10,11]. Another

42 D Data Integration Architectures and Methodology for the Life Sciences

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:11

approach is the both-as-view [13] approach supported

by the AutoMed system. This provides a set of primi-

tive transformations on schemas, each of which adds,

deletes or renames a schema object. The semantic

relationships between objects in the source schemas

and the integrated schema are represented by reversible

sequences of such transformations. The ISPIDER proj-

ect [15] uses AutoMed for virtual integration of several

Grid-enabled proteomics data sources.

In addition to the approach adopted for specifying

mappings between source and integrated schemas, dif-

ferent systems may also make different assumptions

about the degree of semantic overlap between the data

sources: some systems assume that each data source

contributes to a different part of the integrated resource

(e.g., K2/Kleisli); some relax this assumption but do

not undertake any aggregation of duplicate or over-

lapping data that may be present in the data sources

(e.g., TAMBIS); and some can support aggregation at

both the schema and the data levels (e.g., AutoMed).

The degree of data source overlap impacts on the degree

of schema and data aggregation that will need to be

undertaken by the mappings, and hence on their com-

plexity and the design effort involved in specifying

them. The complexity of the mappings in turn impacts

on the sophistication of the query processing mechan-

isms that will be needed in order to optimize and

evaluate queries posed on the integrated schema.

Key Applications
� Integrating, analyzing and annotating genomic

data.

� Predicting the functional role of genes and integrat-

ing function-specific information.

� Integrating organism-specific information.

� Integrating and analyzing chemical compound data

and metabolic pathway data to support drug

discovery.

� Integrating protein family, structure and pathway

data with gene expression data, to support func-

tional genomics data analysis.

� Integrating, analyzing and annotating proteomics

data sources recording data from experiments on

protein separation and identification.

� Supporting systems biology research.

� Integrating phylogenetic data sources for genealog-

ical reconstruction.

� Integrating data about genomic variations in order to

analyze the impact of genomic variations on health.

� Integrating genomic and proteomic data with clin-

ical data to support personalized medicine.

Future Directions
Identifying semantic correspondences between different

data sources is a necessary prerequisite to integrating

them. This is still largely a manual and time-consuming

process undertaken with significant input from domain

experts. Semi-automatic techniques are being developed

to alleviate this problem, for example name-based or

structural comparisons of source schemas, instance-

based matching at the data level to determine overlap-

ping schema concepts, and annotation of data sources

with terms from ontologies to facilitate automated

reasoning over the data sources.

The transformation of source data into an integrated

resourcemay result in loss of information, for example due

to imprecise knowledge about the semantic correspon-

dences between data sources. This is leading to research

into capturing within the integrated resource incomplete

and uncertain information, for example using probabilis-

tic or logic-based representations and reasoning.

Large amounts of information are potentially

available in textual form within published scientific

articles. Automated techniques are being developed

for extracting information from such sources using

grammar and rule-based approaches, and then inte-

grating this information with other structured or semi-

structured biological data.

Traditional approaches to data integration may

not be sufficiently flexible to meet the needs of

distributed communities of scientists. Peer-to-peer

data integration techniques are being developed in

which there is no single administrative authority for

the integrated resource and it is maintained instead by

a community of peers who exchange, transform and

integrate data in a pair-wise fashion and who cooper-

ate in query processing over their data.

Finally, increasing numbers of web services are being

made available to access biological data and computing

resources - see, for example, the entry on Web Services

and the Semantic Web for Life Science Data. Similar

problems arise in combining such web services into

larger-scale workflows as in integrating biological data

sources: the necessary services are often created indepen-

dently by different parties, using different technologies,

formats and data types, and therefore additional code

needs to be developed to transform the output of one

service into a format that can be consumed by another.

Data Integration Architectures and Methodology for the Life Sciences D 43

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

Cross-references
▶Data Provenance

▶Ontologies and Life Science Data Management

▶Ontologies in Scientific Data Integration

▶ Pathway Databases

▶ Provenance of Scientific Databases

▶ Semantic Data Integration for Life Science Entities

▶Web Services and the Semantic Web for Life

Science Data

Recommended Reading
1. Cohen-Boulakia S., Davidson S., Froidevaux C., Lacroix Z., and

Vidal M.E. Path-based systems to guide scientists in the maze

of biological data sources. J. Bioinformatics Comput. Biol.,

4(5):1069–1095, 2006.

2. Davidson S., Overton C., and Buneman P. Challenges in

integrating biological data sources. J. Comput. Biol.,

2(4):557–572, 1995.

3. Davidson S.B., et al. K2/Kleisli and GUS: experiments

in integrated access to genomic data sources. IBM Syst. J., 40

(2):512–531, 2001.

4. Durnick S., et al. Biomart and Bioconductor: a powerful

link between biological databases and microarray data analysis.

Bioinformatics, 21(16):3439–3440, 2005.

5. Entrez – the life sciences search engine. Available at: http://www.

ncbi.nlm.nih.gov/Entrez

6. Goble C.A., et al. Transparent access to multiple bioinformatics

information sources. IBM Syst. J., 40(2):532–551, 2001.

7. Haas L.M., et al. Discovery Link: a system for integrated access to

life sciences data sources. IBM Syst. J., 40(2):489–511, 2001.

8. Hernandez T. and Kambhampati S. Integration of biological

sources: current systems and challenges ahead. ACM SIGMOD

Rec., 33(3):51–60, 2004.

9. Lacroix Z. and Critchlow T. Bioinformatics: Managing Scientific

Data. The Morgan Kaufmann Series in Multimedia Information

and Systems. Morgan Kaufmann, San Francisco, CA, 2004.

10. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.

11. Madhavan J. and Halevy A.Y. Composing mappings among data

sources. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003,

pp. 572–583.

12. Maibaum M., et al. Cluster based integration of heterogeneous

biological databases using the AutoMed toolkit. In Proceedings

of the Second International Workshop on Data Integration in the

Life Sciences (DILS’05). Lecture Notes in Computer Science, 3615.

2005, pp. 191–207.

13. McBrien P. and Poulovassilis A. Data integration by bi-

directional schema transformation rules. In Proc. 19th Int.

Conf. on Data Engineering, 2003, pp. 227–238.

14. Shah S.P., et al. Atlas – a data warehouse for integrative

bioinformatics. BMC Bioinformatics, 6:34, 2005.

15. Zamboulis L., et al. Data access and integration in the

ISPIDER Proteomics Grid. In Proceedings of the Third Interna-

tional Workshop on Data Integration in the Life Sciences

(DILS ’06). Springer, Lecture Notes in Computer Science,

5075. 2006, pp. 3–18.

16. Zdobnov E.M., Lopez R., Apweiler R., and Etzold T. The

EBI SRS Server – recent developments. Bioinformatics,

18(2):368–373, 2002.

Data Integration in Web Data
Extraction System

MARCUS HERZOG
1,2

1Vienna University of Technology, Vienna, Austria
2Lixto Software GmbH, Vienna, Austria

Synonyms
Web information integration and schema matching;

Web content mining; Personalized Web

Definition
Data integration in Web data extraction systems refers

to the task of providing a uniform access to multiple

Web data sources. The ultimate goal of Web data

integration is similar to the objective of data integra-

tion in database systems. However, the main difference

is that Web data sources (i.e., Websites) do not feature

a structured data format which can be accessed and

queried by means of a query language. In contrast,

Web data extraction systems need to provide an addi-

tional layer to transform Web pages into (semi)-

structured data sources. Typically, this layer provides

an extraction mechanism that exploits the inherent

document structure of HTML pages (i.e., the docu-

ment object model), the content of the document (i.e.,

text), visual cues (i.e., formatting and layout), and the

inter document structure (i.e., hyperlinks) to extract

data instances from the given Web pages. Due to

the nature of the Web, the data instances will most

often follow a semi-structured schema. Successful data

integration then requires to solve the task of reconcil-

ing the syntactic and semantic heterogeneity, which

evolves naturally from accessing multiple independent

Web sources. Semantic heterogeneity can be typically

observed both on the schema level and the data in-

stance level. The output of the Web data integration

task is a unified data schema along with consolidated

data instances that can be queried in a structured way.

From an operational point of view, one can distinguish

between on-demand integration of Web data (also

referred to as metasearch) and off-line integration

44 D Data Integration in Web Data Extraction System

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

of Web data similar to the ETL process in data

warehouses.

Historical Background
The concept of data integration was originally con-

ceived by the database community. Whenever data

are not stored in a single database with a single data

schema, data integration needs to resolve the structural

and semantic heterogeneity found in databases built by

different parties. This is a problem that researches have

been addressing for years [8]. In the context of web

data extraction systems, this issue is even more press-

ing due to the fact that web data extraction systems

usually deal with schemas of semi-structured data,

which are more flexible both from a structural and

semantic perspective. The Information Manifold [12]

was one of the systems that not only integrated rela-

tional databases but also took Web sources into ac-

count. However, these Web sources were structured in

nature and were queried by means of a Web form.

Answering a query involved a join across the relevant

web sites. The main focus of the work was on

providing a mechanism to describe declaratively the

contents and query capabilities of the available infor-

mation sources.

Some of the first research systems which covered the

aspects of data integration in the context of Web data

extraction systemswere ANDES, InfoPipes, and a frame-

work based on the Florid system. These systems combine

languages for web data extraction with mechanisms to

integrate the extracted data in a homogeneous data

schema. ANDES [15] is based on the Extensible Style-

sheet Language Transformations (XSLT) for both data

extraction and data integration tasks. The ANDES

framework merges crawler technology with XML-based

extraction techniques und utilized templates, (recursive)

path expressions, and regular expressions for data ex-

traction, mapping, and aggregation. ANDES is primarily

a software framework, requiring application developers

to manually build a complete process from components

such as Data Retriever, Data Extractor, Data Checker,

and Data Exporter.

The InfoPipes system [10] features a workbench for

visual composition of processing pipelines utilizing

XML-based processing components. The components

are defined as follows: Source, Integration, Transfor-

mation, and Deliverey. Each of those components fea-

tures a configuration dialog to interactively define the

configuration of the component. The components can

be arranged on the canvas of the workbench and can be

connected to form information processing pipelines,

thus the name InfoPipes. The Source component uti-

lized ELOG programs [13] to extract semi-structured

data from Websites. All integration tasks are subse-

quently performed on XML data. The Integration

component also features a visual dialog to specify the

reconciliation of the syntactic and semantic heteroge-

neity in the XML documents. These specifications are

then translated into appropriate XSLT programs to

perform the reconciliation during runtime.

In [14] an integrated framework for Web explora-

tion, wrapping, data integration, and querying is de-

scribed. This framework is based on the Florid [13]

system and utilizes a rule-based object-oriented language

which is extended by Web accessing capabilities and

structured document analysis. The main objective of this

framework is to provide a unified framework – i.e., data

model and language – in which all tasks (from Web data

extraction to data integration and querying) are per-

formed. Thus, these tasks are not necessarily separated,

but can be closely intertwined. The framework allows for

modeling theWeb both on the page level as well as on the

parse-tree level. Combined rules for wrapping,mediating,

and Web exploration can be expressed in the same lan-

guage and with the same data model.

More recent work can be found in the context ofWeb

content mining. Web content mining focuses on extract-

ing useful knowledge from the Web. In Web content

mining, Web data integration is a fundamental aspect,

covering both schema matching and data instance

matching.

Foundations

Semi-structured Data

Web data extraction applications often utilize XML as

data representation formalism. This is due to the fact

that the semi-structured data format naturally matches

with the HTML document structure. In fact, XHTML

is an application of XML. XML provides a common

syntactic format. However, it does not offer any means

for addressing the semantic integration challenge.

Query languages such as XQuery [5], XPath [1] or

XSLT [11] provide the mechanism to manipulate the

structure and the content of XML documents. These

languages can be used as basis for implementing inte-

gration systems. The semantic integration aspect has to

be dealt with on top of the query language.

Data Integration in Web Data Extraction System D 45

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

Schema and Instance Matching

The main issue in data integration is the finding the

semantic mapping between a number of data sources.

In the context of Web extraction systems, these sources

are web pages or more generally websites. There are

three distinct approaches to the matching problem:

manual, semiautomatic, or automatic matching. In

the manual approach, an expert needs to define the

mapping by using a toolset. This is of course time

consuming. Automatic schema matching in contrast

is AI-complete [3] and well researched in the database

community [16], but typically still lacks reliability. In

the semiautomatic approach, automatic matching

algorithms suggest certain mappings which are vali-

dated by an expert. This approach saves time due to

filtering out the most relevant matching candidates.

An example for manual data integration frame-

work is given in [6]. The Harmonize framework [9]

deals with business-to-business (B2B) integration on

the ‘‘information’’ layer by means of an ontology-based

mediation. It allows organizations with different data

standards to exchange information seamlessly without

having to change their proprietary data schemas. Part

of the Harmonize framework is a mapping tool that

allows for manually generating mapping rules between

two XML schema documents.

In contrast to the manual mapping approach, auto-

mated schema mapping has to rely on clues that can be

derived from the schema descriptions: utilizing the

similarities between the names of the schema elements

or taking the amount of overlap of data values or data

types into account.

While matching schemas is already a time-

consuming task, reconciling the data instances is even

more cumbersome. Due to the fact that data instances

are extracted from autonomous and heterogeneous

websites, no global identifiers can be assumed. The same

real world entity may have different textual representa-

tions, e.g., ‘‘CANOSCAN 3000ex 48 Bit, 1200�2400

dpi’’ and ‘‘Canon CanoScan 3000ex, 1200 � 2400dpi,

48Bit.’’ Moreover, data extracted from the Web is often

incomplete and noisy. In such a case, a perfect match

will not be possible. Therefore, a similarity metric for

text joins has to be defined. Most often the widely used

and established cosine similarity metric [17] from the

information retrieval field is used to identify string

matches. A sample implementation of text joins forWeb

data integrationbasedonanunmodifiedRDBMSisgiven

in[17].Due tothe fact that thenumberofdata instances is

much higher than the number of schema elements, data

instance reconciliation has to rely on automatic

procedures.

Web Content Mining

Web content mining uses the techniques and principles

of data mining to extract specific knowledge fromWeb

pages. An important step in Web mining is the integra-

tion of extracted data. Due to the fact that Web mining

has to work on Web-scale, a fully automated process is

required. In the Web mining process, Web data records

are extracted from Web pages which serve as input for

the subsequent processing steps. Due to the large scale

approach of Web mining it calls for novel methods that

draw from a wide range of fields spanning data mining,

machine learning, natural language processing, statis-

tics, databases, and information retrieval [4].

Key Applications
Web data integration is required for all applications

that draw data from multiple Web sources and need to

interpret the data in a new context. The following main

application areas can be identified:

Vertical Search

In contrast to web search as provided by major search

engines, vertical search targets a specific domain such as

e.g., travel offers, job offers, or real estate offers. Vertical

search applications typically deliver more structured

results than conventional web search engines. While

the focus of the web search is to cover the breath of all

available websites and deliver the most relevant web-

sites for a given query, vertical search typically searches

less websites, but with the objective to retrieve relevant

data objects. The output of a vertical search query is a

result set that contains e.g., the best air fares for a

specific route. Vertical search also needs to address the

challenge of searching the deep Web, i.e., extracting

data by means of automatically utilizing web forms.

Data integration in the context of vertical search is

both important for interface matching, i.e., merge the

source query interfaces and map onto a single query

interface, and result data object matching, where data

extracted from the individual websites is matched

against a single result data model.

Web Intelligence

In Web Intelligence applications, the main objective is

to gain new insights from the data extracted on the

46 D Data Integration in Web Data Extraction System

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

Web. Typical application fields are market intelligence,

competitive intelligence, and price comparison. Price

comparison applications are probably the most well

known application type in this field. In a nutshell these

applications aggregate data from the Web and integrate

different Web data sources according to a single data

schema to allow for easy analysis and comparison of

the data. Schema matching and data reconciliation are

important aspects with this type of applications.

Situational Applications

Situational applications are a new type of application

where people with domain knowledge can build an

application in a short amount of time without the

need to setup an IT project. In the context of the

Web, Mashups are addressing these needs. With Mash-

ups, readymade widgets are used to bring together

content extracted from multiple websites. Additional

value is derived by exploiting the relationship between

the different sources, e.g., visualizing the location of

offices in a mapping application. In this context, Web

data integration is required to reconcile the data

extracted from different Web sources and to resolve

the references to real world objects.

Cross-references
▶Data Integration

▶ Enterprise Application Integration

▶ Enterprise Information Integration

▶ Schema Matching

▶Web Data Extraction

Recommended Reading
1. Baumgartner R., Flesca S., and Gottlob G. Visual web informa-

tion extraction with Lixto. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.

2. Berglund A., Boag S., Chamberlin D., Rernandez M.F., Kay M.,

Robie J., and Simeon J. (eds.). XML XPath Language 2.0. W3C

Recommendation, 2007.

3. Bernstein P.A., Melnik S., Petropoulos M., and Quix C.

Industrial-strength schema matching. SIGMOD Record, 33

(4):38–43, 2004.

4. Bing L. and Chen-Chuan-Chang K. Editorial: special issue

on web content mining. ACM SIGKDD Explorations Newsletter,

6(2):1–4, 2004.

5. Boag S., Chamberlin D., Fernandez M.F., Florescu D., Robie J.,

and Simeon J. (eds.). XQuery 1.0. An XML Query Language.

W3C Recommendation, 2007.

6. Fodor O. and Werthner E. Harmonise: a step toward an interop-

erable e-tourism marketplace. Intl. J. Electron. Commerce,

9(2):11–39, 2005.

7. Gravano L., Panagiotis G.I., Koudas N., and Srivastava D. Text

joins in an RDBMS for web data integration. In Proc. WWW

Conf. Budapest, Hungary, 2003, pp. 90–101.

8. Halevy A., Rajaraman A., and Ordille J. Data integration: the

teenage years. In Proc. 32nd Int. Conf. on Very Large Data Bases,

2006, pp. 9–18.

9. Harmonise Framework. Available at: http://sourceforge.net/pro

jects/hmafra/.

10. Herzog M. and Gottlob G. InfoPipes: a flexible framework for

m-commerce applications. In Proc. Second Int. Workshop on

Technologies for E-Services. Springer, 2001, pp. 175–186.

11. Kay M. (ed.). XSL Transformations. Version 2.0. W3C Recom-

mendation, 2007.

12. Kirk T., Levy A.Y., Sagiv Y., and Srivastava D. The information

manifold. In Proc. Working Notes of the AAAI Spring Symp. on

Information Gathering from Heterogeneous, Distributed Envir-

onments. Stanford University. AAAI Press, 1995, pp. 85–91.

13. Ludäscher B., Himmeröder R., Lausen G., May W., and Schlep-

phorst C. Managing semistructured data with florid: a deductive

object-oriented perspective. Inf. Syst., 23(9):589–613, 1998.

14. May W. and Lausen G. A uniform framework for integration of

information from the web. Inf. Syst., 29:59–91, 2004.

15. Myllymaki J. Effective web data extraction with standard XML

technologies. Comput. Networks, 39(5):653–644, 2002.

16. Rahm E. and Bernstein P.A. A survey of approaches to auto-

matics schema matching. VLDB Journal, 10(4):334–350, 2001.

17. Salton G. and McGill M.J. Introduction to Modern Information

Retrieval. McGraw-Hill, New York, NY, 1983.

Data Integrity Services

▶ Security Services

Data Lineage

▶Data Provenance

Data Manipulation Language

▶Query Language

Data Map

▶Thematic Map

Data Map D 47

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

Data Mart

IL-YEOL SONG

Drexel University, Philadelphia, PA, USA

Definition
A data mart is a small-sized data warehouse focused on

a specific subject. While a data warehouse is meant for

an entire enterprise, a data mart is built to address the

specific analysis needs of a business unit. Hence, a data

mart can be defined as ‘‘a small-sized data warehouse

that contains a subset of the enterprise data warehouse

or a limited volume of aggregated data for specific

analysis needs of a business unit, rather than

the needs of the whole enterprise.’’ Thus, an enterprise

usually ends up having many data marts.

Key Points
While a data warehouse is for a whole enterprise, a

data mart focuses on a specific subject of a specific

business unit. Thus, the design and management of a

data warehouse must consider the needs of the whole

enterprise, while those of a data mart are focused on the

analysis needs of a specific business unit such as

the sales department or the finance department. Thus,

a data mart shares the characteristics of a data ware-

house, such as being subject-oriented, integrated, non-

volatile, and a time-variant collection of data [1]. Since

the scope and goal of a datamart is different from a data

warehouse, however, there are some important differ-

ences between them:

� While the goal of a data warehouse is to address the

needs of the whole enterprise, the goal of a data

mart is to address the needs of a business unit such

as a department.

� While the data of a data warehouse is fed from

OLTP (Online Transaction Processing) systems,

those of a data mart are fed from the enterprise

data warehouse.

� While the granularity of a data warehouse is raw at

its OLTP level, that of a data mart is usually lightly

aggregated for optimal analysis by the users of the

business unit.

� While the coverage of a data warehouse is fully

historical to address the needs of the whole enter-

prise, that of a data mart is limited for the specific

needs of a business unit.

An enterprise usually ends up having multiple data

marts. Since the data to all the data marts are fed from

the enterprise data warehouse, it is very important to

maintain the consistency between a data mart and the

data warehouse as well as among data marts themselves.

A way to maintain the consistency is to use the notion

of conformed dimension. A conformed dimension is a

standardized dimension or a master reference dimen-

sion that are shared across multiple data marts [2].

The technology for advanced data analysis for the

business intelligence in the context of data mart envi-

ronment is called OLAP (Online Analytic Processing).

Two OLAP technologies are ROLAP (Relational

OLAP) and MOLAP (Multidimensional OLAP). In

ROLAP, data are structured in the form a star schema

or a dimensional model. In MOLAP, data are struc-

tured in the form of multidimensional data cubes.

For MOLAP, a specialized OLAP software is used to

support the creation of data cubes and OLAP opera-

tions such as drill-down and roll-up.

Cross-references
▶Active and Real-Time Data Warehousing

▶Business Intelligence

▶Data Mining

▶Data Warehouse

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse Maintenance

▶Data Warehouse Metadata

▶Data Warehouse Security

▶Data Warehousing and Quality Data Management

for Clinical Practice

▶Data Warehousing for Clinical Research

▶Data Warehousing Systems: Foundations and

Architectures

▶Dimension

▶ Evolution and Versioning

▶ Extraction

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Transformation and Loading

Recommended Reading
1. Inmon W.H. Building the Data Warehouse, 3rd edn. Wiley, New

York, 2002.

2. Kimball R. and Ross M. The Data Warehouse Toolkit, 2nd edn.

Wiley, New York, 2002.

48 D Data Mart

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

Data Migration

▶Data Exchange

Data Mining

JIAWEI HAN

University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Synonyms
Knowledge discovery from data; Data analysis; Pattern

discovery

Definition
Data mining is the process of discovering knowledge or

patterns from massive amounts of data. As a young

research field, data mining represents the confluence

of a number of research fields, including database sys-

tems, machine learning, statistics, pattern recognition,

high-performance computing, and specific application

fields, such as WWW, multimedia, and bioinforma-

tics, with broad applications. As an interdisciplinary

field, data mining has several major research themes

based on its mining tasks, including pattern-mining

and analysis, classification and predictive modeling,

cluster and outlier analysis, and multidimensional

(OLAP) analysis. Data mining can also be categorized

based on the kinds of data to be analyzed, such asmulti-

relational datamining, textmining, streammining, web

mining, multimedia (or image, video) mining, spatio-

temporal data mining, information network analysis,

biological data mining, financial data mining, and so

on. Itcanalsobeclassifiedbasedontheminingmethodol-

ogyor the issues tobe studied, such asprivacy-preserving

data mining, parallel and distributed data mining, and

visual datamining.

Historical Background
Datamining activities can be traced back to the dawn of

early human history when data analysis methods (e.g.,

statistics and mathematical computation) were needed

and developed for finding knowledge from data. As a

distinct but interdisciplinary field, knowledge discov-

ery and data mining can be viewed as starting at

The First International Workshop on Knowledge Dis-

covery fromData (KDD) in 1989. The first International

Conference on Knowledge Discovery and Data Mining

(KDD) was held in 1995. Since then, there have been a

number of international conferences and several scien-

tific journals dedicated to the field of knowledge discov-

ery and data mining. Many conferences on database

systems, machine learning, pattern recognition, statis-

tics, and World-Wide Web have also published influen-

tial research results on data mining. There are also many

textbooks published on data mining, such as

[5,7,8,11,12], or on specific aspects of data mining,

such as data cleaning [4] andwebmining [2,9]. Recently,

there is also a trend to organize dedicated conferences

and workshops on mining specific kinds of data or

specific issues on data mining, such as International

Conferences onWeb Search and DataMining (WSDM).

Foundations
The overall knowledge discovery process usually consists

of a few steps, including (i) data preprocessing, e.g., data

cleaning and data integration (and possibly building up

data warehouse), (ii) data selection, data transformation

(and possibly creating data cubes by multidimensional

aggregation), and feature extraction, (iii) data mining,

(iv) pattern or model evaluation and justification, and

(v) knowledge update and application. Data mining is

an essential step in the knowledge discovery process.

As a dynamic research field, many scalable and

effective methods have been developed for mining pat-

terns and knowledge from an enormous amount of

data, which contributes to theories, methods, imple-

mentations, and applications of knowledge discovery

and data mining. Several major themes are briefly

outlined below.

Mining Interesting Patterns from Massive Amount

of Data

Frequent patterns are the patterns (e.g., itemsets, sub-

sequences, or substructures) that occur frequently in

data sets. This line of research started with association

rule mining [1] and has proceeded to mining sequen-

tial patterns, substructure (or subgraph) patterns, and

their variants. Many scalable mining algorithms have

been developed and most of them explore the A priori

(or downward closure) property of frequent patterns,

i.e., any subpattern of a frequent pattern is frequent.

However, to make discovered patterns truly useful in

many applications, it is important to study how to

mine interesting frequent patterns [6], e.g., the patterns

that satisfy certain constraints, patterns that reflect

Data Mining D 49

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

strong correlation relationships, compressed patterns,

and the patterns with certain distinct features. The

discovered patterns can also be used for classification,

clustering, outlier analysis, feature selection (e.g., for

index construction), and semantic annotation.

Scalable Classification and Predictive Modeling

There are many classification methods developed in ma-

chine learning [10] and statistics [8], including decision

tree induction, rule induction, naive-Bayesian, Bayesian

networks, neural networks, support vector machines,

regression, and many statistical and pattern analysis

methods [5,7,8,11,12]. Recent data mining research has

been exploring scalable algorithms for such methods as

well as developing new classification methods for hand-

ling different kinds of data, such as data streams, text

data, web data, multimedia data, and high-dimensional

biological data. For example, a pattern-based classifica-

tion method, called DDPMine [3], that first extracts

multidimensional features by discriminative frequent

pattern analysis and then performs classification using

these features has demonstrated high classification accu-

racy and efficiency.

Cluster and Outlier Analysis

Data mining research has contributed a great deal to the

recent development of scalable and effective cluster anal-

ysismethods. Newmethods have been proposed tomake

partitioning and hierarchical clustering methods more

scalable and effective. For example, the micro-clustering

idea in BIRCH [13] has been proposed that first groups

objects into tight, micro-clusters based on their inhe-

rent similarity, and then performs flexible and effi-

cient clustering on top of a relatively small number of

micro-clusters. Moreover, new clustering methodolo-

gies, such as density-based clustering, link-based cluster-

ing, projection-based clustering of high-dimensional

space, user-guided clustering, pattern-based clustering,

and (spatial) trajectory clustering methods have been

developed and various applications have been explored,

such as clustering high-dimensional microarray data

sets, image data sets, and interrelated multi-relational

data sets. Furthermore, outlier analysis methods have

been investigated, which goes beyond typical statistical

distribution-based or regression deviation-based outlier

analysis, and moves towards distance-based or density-

based outlier analysis, local outlier analysis, and tra-

jectory outlier analysis.

Multidimensional (OLAP) Analysis

Each object/event in a dataset usually carries multidi-

mensional information. Mining data in multidimen-

sional space will substantially increase the power and

flexibility of data analysis. By integration of data cube

and OLAP (online analytical processing) technologies

with data mining, the power and flexibility of data

analysis can be substantially increased. Data mining

research has been moving towards this direction with

the proposal of OLAP mining, regression cubes, pre-

diction cubes, and other scalable high-dimensional

data analysis methods. Such multidimensional, espe-

cially high-dimensional, analysis tools will ensure that

data can be analyzed in hierarchical, multidimensional

structures efficiently and flexibly at user’s finger tips.

OLAP mining will substantially enhance the power and

flexibility of data analysis and lead to the construction

of easy-to-use tools for the analysis of massive data

with hierarchical structures in multidimensional space.

Mining Different Kinds of Data

Different data mining methods are often needed for

different kinds of data and for various application

domains. For example, mining DNA sequences, moving

object trajectories, time-series sequences on stock prices,

and customer shopping transaction sequences require

rather different sequence mining methodology. There-

fore, another active research frontier is the development

of data- or domain-specific mining methods. This leads

to diverse but flourishing research on mining different

kinds of data, including multi-relational data, text data,

web data, multimedia data, geo-spatial data, temporal

data, data streams, information networks, biological

data, financial data, and science and engineering data.

Key Applications
Data mining claims a very broad spectrum of applica-

tions since in almost every domain, there is a need for

scalable and effective methods and tools to analyze

massive amounts of data. Two applications are illu-

strated here as examples:

Biological Data Mining

The fast progress of biomedical and bioinformatics

research has led to the accumulation of an enormous

amount of biological and bioinformatics data. How-

ever, the analysis of such data poses much greater

challenges than traditional data analysis methods. For

example, genes and proteins are gigantic in size (e.g., a

50 D Data Mining

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

DNA sequence could be in billions of base pairs), very

sophisticated in function, and the patterns of their

interactions are largely unknown. Thus it is a fertile

field to develop sophisticated data mining methods for

in-depth bioinformatics research. Substantial research

is badly needed to produce powerful mining tools for

biology and bioinformatics studies, including compar-

ative genomics, evolution and phylogeny, biological

data cleaning and integration, biological sequence

analysis, biological network analysis, biological image

analysis, biological literature analysis (e.g., PubMed),

and systems biology. From this point view, data mining

is still very young with respect to biology and bioinfor-

matics applications.

Data Mining for Software Engineering

Software program executions potentially (e.g., when

program execution traces are turned on) generate

huge amounts of data. However, such data sets are

rather different from the datasets generated from the

nature or collected from video cameras since they

represent the executions of program logics coded by

human programmers. It is important to mine such

data to monitor program execution status, improve

system performance, isolate software bugs, detect soft-

ware plagiarism, analyze programming system faults,

and recognize system malfunctions.

Data mining for software engineering can be parti-

tioned into static analysis and dynamic/stream analy-

sis, based on whether the system can collect traces

beforehand for post-analysis or it must react at real

time to handle online data. Different methods have

been developed in this domain by integration and

extension of the methods developed in machine

learning, data mining, pattern recognition, and statis-

tics. For example, statistical analysis such as hypothe-

sis testing approach can be performed on program

execution traces to isolate the locations of bugs which

distinguish program success runs from failing runs.

Despite of its limited success, it is still a rich domain

for data miners to research and further develop sophis-

ticated, scalable, and real-time data mining methods.

Future Directions
There are many challenging issues to be researched fur-

ther, and therefore, there are great many research fron-

tiers in data mining. Besides the mining of biological

data and software engineering data, as well as the above

introduced advancedminingmethodologies, a fewmore

research directions are listed here.

Mining Information Networks

Information network analysis has become an impor-

tant research frontier, with broad applications, such

as social network analysis, web community discovery,

computer network analysis, and network intrusion

detection. However, information network research

should go beyond explicitly formed, homogeneous net-

works (e.g., web page links, computer networks, and

terrorist e-connection networks) and delve deeply into

implicitly formed, heterogeneous, dynamic, interdepen-

dent, and multidimensional information networks,

such as gene and protein networks in biology, highway

transportation networks in civil engineering, theme-

author-publication-citation networks in digital libraries,

wireless telecommunication networks among comman-

ders, soldiers and supply lines in a battle field.

Invisible Data Mining

It is important to build data mining functions as an

invisible process in many systems (e.g., rank search

results based on the relevance and some sophisticated,

preprocessed evaluation functions) so that users may

not even sense that data mining has been performed

beforehand or is being performed and their browsing

and mouse clicking are simply using the results of or

further exploration of data mining. Google has done

excellent invisible data mining work for web search

and certain web analysis. It is highly desirable to intro-

duce such functionality to many other systems.

Privacy-Preserving Data Mining

Due to the security and privacy concerns, it is appeal-

ing to perform effective data mining without disclo-

sure of private or sensitive information to outsiders.

Much research has contributed to this theme and it

is expected that more work in this direction will lead to

powerful as well as secure data mining methods.

Experimental Results
There are many experimental results reported in nu-

merous conference proceedings and journals.

Data Sets
There are many, many data sets (mostly accessible on

the web) that can be or are being used for data mining.

Data Mining D 51

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

University of California at Irvine has an online

repository of large data sets which encompasses a

wide variety of data types, analysis tasks, and applica-

tion areas. The website of UCI Knowledge Discovery in

Databases Archive is http://kdd.ics.uci.edu.

Researchers and practitioners should work on real

data sets as much as possible to generate data mining

tools for real applications.

URL to Code
Weka (http://www.cs.waikato.ac.nz/ml/weka) presents

a collection of machine learning and data mining algo-

rithms for solving real-world data mining problems.

RapidMiner (http://rapid-i.com), which was previ-

ously called YALE (Yet Another Learning Environ-

ment), is a free open-source software for knowledge

discovery, data mining, and machine learning.

IlliMine (IlliMine.cs.uiuc.edu) is a collection of

data mining software derived from the research of the

Computer Science department at the University of

Illinois at Urbana-Champaign.

For frequent pattern mining, the organizers of the

FIMI (Frequent Itemset Mining Implementations)

workshops provides a repository for frequent itemset

mining implementations at http://fimi.cs.helsinki.fi.

There are many other websites providing source or

object codes on data mining.

Cross-references
▶Association Rules

▶Bayesian Classification

▶Classification

▶Classification by Association Rule Analysis

▶Clustering Overview and Application/Partitional

Clustering Algorithms

▶Data, Text, and Web Mining in Healthcare

▶Decision Rule Mining in Rough Set Theory

▶Decision Tree Classification

▶Decision Trees

▶Dimentionality reduction

▶ Event pattern detection

▶ Event Prediction

▶ Exploratory data analysis

▶ Frequent graph patterns

▶ Frequent itemset mining with constraints

▶ Frequent itemsets and association rules

▶Machine learning in Computational Biology

▶Mining of Chemical Data

▶Opinion mining

▶ Pattern-growth methods

▶ Privacy-preserving data mining

▶ Process mining

▶ Semi-supervised Learning

▶ Sequential patterns

▶ Spatial Data Mining

▶ Spatio-temporal Data Mining

▶ Stream Mining

▶Temporal Data Mining

▶Text Mining

▶Text mining of biological resources

▶Visual Association Rules

▶Visual Classification

▶Visual Clustering

▶Visual Data Mining

Recommended Reading
1. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

2. Chakrabarti S. 1Mining the Web: Statistical Analysis of Hypertex

and Semi-Structured Data. Morgan Kaufmann, Los Altos, CA,

2002.

3. Cheng H., Yan X., Han J., and Yu P.S. Direct discriminative

pattern mining for effective classification. In Proc. 24th Int.

Conf. on Data Engineering, 2008, pp. 169–178.

4. Dasu T. and Johnson T. Exploratory Data Mining and Data

Cleaning. Wiley, New York, 2003.

5. Duda R.O., Hart P.E., and Stork D.G. Pattern Classification, 2nd

edn. Wiley, New York, 2001.

6. Han J., Cheng H., Xin D., and Yan X. Frequent pattern mining:

Current status and future directions. Data Min. Knowl. Disc.,

15:55–86, 2007.

7. Han J. and Kamber M. Data Mining: Concepts and Techniques,

2nd edn. Morgan Kaufmann, Los Altos, CA, 2006.

8. Hastie T., Tibshirani R., and Friedman J. The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction. Springer,

2001.

9. Liu B. Web Data Mining: Exploring Hyperlinks, Contents, and

Usage Data. Springer, 2006.

10. Mitchell T.M. Machine Learning. McGraw-Hill, New York, 1997.

11. Tan P., Steinbach M., and Kumar V. Introduction to Data

Mining. Addison Wesley, 2005.

12. Witten I.H. and Frank E. DataMining: PracticalMachine Learning

Tools and Techniques, 2nd edn. Morgan Kaufmann, 2005.

13. Zhang T., Ramakrishnan R., and Livny M. BIRCH: an efficient

data clustering method for very large databases. In Proc. ACM-

SIGMOD Int. Conf. onManagement of Data, 1996, pp. 103–114.

Data Mining in Bioinformatics

▶Machine Learning in Computational Biology

52 D Data Mining in Bioinformatics

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

Data Mining in Computational
Biology

▶Machine Learning in Computational Biology

Data Mining in Moving Objects
Databases

▶ Spatio-Temporal Data Mining

Data Mining in Systems Biology

▶Machine Learning in Computational Biology

Data Mining Pipeline

▶KDD Pipeline

Data Mining Process

▶KDD Pipeline

Data Model Mapping

▶ Logical Database Design: From Conceptual to Logi-

cal Schema

Data Organization

▶ Indexing and Similarity Search

Data Partitioning

DANIEL ABADI

Yale University, New Haven, CT, USA

Definition
Data Partitioning is the technique of distributing data

across multiple tables, disks, or sites in order to improve

query processing performance or increase database

manageability. Query processing performance can be

improved in one of two ways. First, depending on how

the data is partitioned, in some cases it can be deter-

mined a priori that a partition does not have to be

accessed to process the query. Second, when data is

partitioned across multiple disks or sites, I/O parallel-

ism and in some cases query parallelism can be attained

as different partitions can be accessed in parallel. Data

partitioning improves database manageability by op-

tionally allowing backup or recovery operations to be

done on partition subsets rather than on the complete

database, and can facilitate loading operations into

rolling windows of historical data by allowing individ-

ual partitions to be added or dropped in a single

operation, leaving other data untouched.

Key Points
There are two dominant approaches to data

partitioning.

Horizontal partitioning divides a database table

tuple-by-tuple, allocating different tuples to different

partitions. This is typically done using one of five

techniques:

1. Hash partitioning allocates tuples to partitions by

applying a hash function to an attribute value (or

multiple attribute values) within the tuple. Tuples

with equivalent hash function values get allocated

to the same partition.

2. Range partitioning allocates tuples to partitions by

using ranges of attribute values as the partitioning

criteria. For example, tuples from a customer table

with last name attribute beginning with ‘‘A’’–‘‘C’’

are mapped to partition 1, ‘‘D’’–‘‘F’’ mapped to

partition 2, etc.

3. List partitioning allocates tuples to partitions by

associating a list of attribute values with each par-

tition. Using range or list partitioning, it can be

difficult to ensure that each partition contains ap-

proximately the same number of tuples.

4. Round-robin partitioning allocates the ith tuple

from a table to the (i mod n)th partition where n

is the total number of partitions.

5. Composite partitioning combines several of the

above techniques, typically range partitioning fol-

lowed by hash partitioning.

Vertical partitioning divides a table column-by-

column, allocating different columns (or sets of

Data Partitioning D 53

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

columns) to different partitions. This approach is less

frequently used relative to horizontal partitioning since

it is harder to parallelize query processing over multi-

ple vertical partitions, and merging or joining parti-

tions is often necessary at query time. Column-stores

are databases that specialize in vertical partitioning,

usually taking the approach to the extreme, storing

each column separately.

Cross-references
▶Horizontally Partitioned Data

▶ Parallel Query Processing

Data Pedigree

▶Data Provenance

Data Perturbation

▶Matrix Masking

Data Privacy and Patient Consent

DAVID HANSEN
1, CHRISTINE M. O’KEEFE

2

1The Australian e-Health Research Centre, Brisbane,

QLD, Australia
2CSIRO Preventative Health National Research

Flagship, Acton, ACT, Australia

Synonyms
Data protection

Definition
Data privacy refers to the interest individuals and

organisations have in the collection, sharing, use and

disclosure of information about those individuals or

organizations. Common information types raising

data privacy issues include health (especially genetic),

criminal justice, financial, and location. The recent

rapid growth of electronic data archives and associated

data technologies has increased the importance of data

privacy issues, and has led to a growing body of legis-

lation and codes of practice.

Patient consent, in relation to data, refers to a

patient’s act of approving the collection, sharing, use

or disclosure of information about them. It is impor-

tant because data with appropriate patient consent

often falls into exception clauses in privacy legislation.

The challenge in data privacy is to balance the need

to share and use data with the need to protect person-

ally identifiable information and respect patient con-

sent. For example, a person may have an expectation

that their health data is being held securely but is

available to clinicians involved in their care. In addi-

tion, researchers seek access to health data for medical

research and to answer questions of clinical and policy

relevance. Part of the challenge is that there are a range

of views about, for example, what constitutes legiti-

mate uses of data, what level of consent is required and

how fine-grained that consent should be, what consti-

tutes a clinical ‘‘care team,’’ and what privacy legisla-

tion should cover.

The development of technologies to support data

privacy and patient consent is currently attracting

much attention internationally.

Historical Background
Privacy issues began to attract attention in Europe and

North America in the 1960s, and shortly thereafter in

Australia. Probably a large factor in the relatively late

recognition of privacy as a fundamental right is that

most modern invasions of privacy involve new tech-

nology. For example, before the invention of computer

databases, data were stored on paper in filing cabinets

which made it difficult to find and use the information.

The traditional ways of addressing the harm caused by

invasions of privacy through invoking trespass, assault

or eavesdropping were no longer sufficient in dealing

with invasions of privacy enacted with modern infor-

mation technologies.

In the health care area, the notion of consent arose

in the context of both treatment and clinical trials in

research into new treatments. Patients undergoing a

procedure or treatment would either be assumed to

have given implicit consent by their cooperation, or

would be required to sign an explicit statement of

consent. Participants in clinical trials would be asked

to give a formal consent to a trial, considered necessary

because of the risk of harm to the individual due to the

unknown effects of the intervention under research.

The notion of consent has transferred to the context of

the (primary) use of data for treatment and the

54 D Data Pedigree

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

(secondary) use of data for research. For example,

implied or expressed consent would be required for

the transfer of medical records to a specialist or may be

required for the inclusion of data in a research database

or register. Increasingly, and somewhat controversially,

health data are being made available for research with-

out patient consent, but under strict legal and ethical

provisions. Where this is the case, ethics committees

are given the responsibility to decide if the research

benefits outweigh to a substantial degree the public

interest in protecting privacy. Ethics committees will

generally look for de-identified data to be used wher-

ever practical.

A recent development related to the privacy of

health data is the concept of participation or moral

rights (http://www.privireal.org/). This can be viewed

as an objection to the use of personal information on

moral grounds; that individuals should have the right

to know, and veto, how their data is used, even when

there is no risk to the release of that personal

information.

The major data privacy-related legislative provi-

sions internationally are Directive 95/46/EC of the

European Parliament and of the Council of 24 October

1995 on the protection of individuals with regard to

the processing of personal data and on the free move-

ment of such data, the Health Insurance Portability

and Accountability Act (HIPAA) enacted by the US

Congress in 1996, the Data Protection Act 1998 of the

UK Parliament and the Australian Privacy Act 1988.

There are apparent differences between these provi-

sions in terms of both their scope and philosophy.

Recent technological approaches to data privacy

include: tight governance and research approvals

processes, restricted access through physical and IT

security, access control mechanisms, de-identification,

statistical disclosure limitation and remote server tech-

nology for remote access and remote execution. Patient

consent is often built into the approvals process, but

can also be a component of the access control mecha-

nism. In all cases the purpose of access to the data is of

prime importance.

Foundations
The use of sensitive personal data falls broadly into two

areas: primary and secondary use.

Primary use of data refers to the primary reason the

data was captured. Increasing amounts of personal

health data are being stored in databases for the

purpose of maintaining a life long health record of an

individual. While in most cases this will provide for

more appropriate care, there will be times when the

individual will not want sensitive data revealed, even to

a treating clinician. This may particularly be the case

when the data is judged not relevant to the current

medical condition.

In some electronic health record programs, patients

will have the option to opt-in or opt-out of the pro-

gram. This can be a controversial aspect of health

record systems and often legislation is needed to sup-

port this aspect of any collection of health related data.

Once the patient data has been entered into an

electronic health record system, there will generally

be several layers of security protecting the data. Au-

thentication is often performed using a two pass sys-

tem – a password and a certificate are required to enter

the system, to ensure that the person accessing the

system is correctly authenticated. Once the person is

authenticated access to appropriate data must be man-

aged. Often a Role Based Access System (RBAC) [5] is

implemented to ensure that access to the data is only

granted to people who should have it. There are also

now XML based mark up languages, such as XACML,

which enable Role Based Access Control rules to be

encoded using the language and hence shared by mul-

tiple systems. Audit of access to electronically stored

health data is also important, to enable review access

granted to data.

Storage and transmission of data is also an issue for

privacy and confidentiality of patient data.

Encryption of the data when being transmitted is

one way of ensuring the security of the data. There are

also new computer systems which support Mandatory

Access Control (MAC) which embed the security algo-

rithms in the computer hardware, rather than at the

software level, which are now available for the storage

and access of electronic data. Security Assertion Mark-

up Language (SAML) token are one technology which

is being used to store privacy and security information

with health data as they are transmitted between

computers.

The USA HIPAA legislation covers the require-

ments of how to capture, store and transmit demo-

graphic and clinical data.

The secondary use of data is more problematic

when it comes to data privacy and patient consent,

since it refers to usage of the data for purposes which

are not directly related to the purpose for which it was

Data Privacy and Patient Consent D 55

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

collected. This includes purposes like medical research

and policy analysis, which are unlikely to have a direct

affect on the treatment of the patient whose data is

used.

There are a range of technological approaches to

the problem of enabling the use of data for research

and policy analysis while protecting privacy and confi-

dentiality. None of these technologies provides a com-

plete answer, for each must be implemented within an

appropriate legislative and policy environment and

governance structure, with appropriate management

of the community of authorised users and with an

appropriate level of IT security including user authen-

tication, access control, system audit and follow-up. In

addition, none of the technologies discussed here is the

only solution to the problem, since there are many

different scenarios for the use of data, each with a

different set of requirements. It is clear that different

technologies and approaches have different strengths

and weaknesses, and so are suitable for different

scenarios.

A high level discussion of the problem of enabling

the use of data while protecting privacy and confi-

dentiality typically discusses two broad approaches.

The first is restricted access, where access is only

provided to approved individuals and for approved

purposes. Further restrictions can be imposed, such

as access to data only given at a restricted data centre,

restrictions on the types of analyses which can be

conducted and restrictions on the types of outputs

which can be taken out of a data centre. There can be

a cost associated with access to the data. The second is

restricted or altered data, where something less than

the full data set is published or the data are altered in

some way before publication. Restricted data might

involve removing attributes, aggregating geographic

classifications or aggregating small groups of data.

For altered data, some technique is applied to the

data so that the released dataset does not reveal private

or confidential information. Common examples here

include the addition of noise, data swapping or the

release of synthetic data. Often these broad approaches

are used in combination.

Below, three current technological approaches to

the problem are reviewed. These fall into the category

restricted or altered data described above, and all are

used in combination with restricted access.

The first approach is to release de-identified data to

researchers under strict controls. De-identification is a

very complex issue surrounded by some lack of clarity

and standard terminology. It is also very important as

it underpins many health information privacy guide-

lines and legislation.

First, it is often not at all clear what is meant when

the term ‘‘de-identified’’ is used to refer to data. Some-

times it appears to mean simply that nominated iden-

tifiers such as name, address, date of birth and unique

identifying numbers have been removed from the data.

At other times its use appears to imply that individuals

represented in a data set cannot be identified from the

data – though in turn it can be unclear what this

means. Of course simply removing nominated identi-

fiers is often insufficient to ensure that individuals

represented in a data set cannot be identified – it can

be a straightforward matter to match some of the

available data fields with the corresponding fields

from external data sets, and thereby obtain enough

information to determine individuals’ names either

uniquely or with a low uncertainty. In addition, suffi-

ciently unusual records in a database without nomi-

nated identifiers can sometimes be recognized. This is

particularly true of health information or of informa-

tion which contains times and/or dates of events.

The second approach is statistical disclosure con-

trol where the techniques aim to provide researchers

with useful statistical data at the same time as preserv-

ing privacy and confidentiality.

It is widely recognized that any release of data or

statistical summaries increases the risk of identification

of some individual in the relevant population, with the

consequent risk of harm to that individual through

inference of private information about them. On the

other hand, attempts to limit such disclosures can

adversely affect the outcomes or usefulness of statisti-

cal analyses conducted on the data. Statistical disclo-

sure control theory attempts to find a balance between

these opposing objectives.

Statistical disclosure control techniques can be

organized into categories in several different ways. First,

there are different techniques for tabular data (where data

are aggregated into cells) versus microdata (individual

level data). Second, techniques can be perturbative or

non-perturbative. Perturbative methods operate by

modifying the data, whereas non-perturbative methods

do not modify the data. Perhaps the most well-known

perturbative method is the addition of random ‘‘noise’’

to a dataset, and perhaps the most well-known non-

perturbative method is cell suppression. In fact, current

56 D Data Privacy and Patient Consent

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:12

non-perturbative methods operate by suppressing or

reducing the amount of information released, and there

is much ongoing debate on whether a good perturba-

tive method gives more useful information than a non-

perturbative method. On the other hand, it has been

noted that perturbative techniques which involve add-

ing noise provide weak protection and are vulnerable to

repeated queries, essentially because the noise becomes

error in models of the data. There is much activity

directed at developing perturbative techniques that do

not suffer from this problem.

Virtually every statistical disclosure control tech-

nique can be implemented with differing degrees of

intensity, and hence depends on a parameter which is

usually pre-specified.

Remote analysis servers are designed to deliver

useful results of user-specified statistical analyses with

acceptably low risk of a breach of privacy and

confidentiality.

The third approach is the technology of remote

analysis servers. Such servers do not provide data to

users, but rather allow statistical analysis to be carried

out via a remote server. A user submits statistical

queries by some means, analyses are carried out on

the original data in a secure environment, and the user

then receives the results of the analyses. In some cases

the output is designed so that it does not reveal private

information about the individuals in the database.

The approach has several advantages. First, no in-

formation is lost through confidentialization, and

there is no need for special analysis techniques to

deal with perturbed data. In many cases it is found to

be easier to confidentialize the output of an analysis, in

comparison to trying to confidentialize a dataset when

it is not known which analyses will be performed.

However, analysis servers are not free from the risk

of disclosure, especially in the face of multiple, inter-

acting queries. They describe the risks and propose

quantifiable measures of risk and data utility that can

be used to specify which queries can be answered and

with what output. The risk-utility framework is illu-

strated for regression models.

Each of the broad technologies is implemented

within the context that the analyst is trusted to comply

with legal and ethical undertakings made. However, the

different approaches have been designed with different

risks of disclosure of private information, and so rely

more or less heavily on trust. De-identification requires

the greatest trust in the researcher, while remote servers

require the least. Statistical disclosure control, whether

used alone or in combination with a remote analysis

server, is somewhere inbetween these two extremes.

De-identification provides the most detailed informa-

tion to the researcher, while remote servers provide the

least. Again, Statistical Disclosure Control is inbetween.

These mechanisms of maintaining data privacy are

made more difficult when it is necessary to link two or

more databases together for the purpose of building a

linked data set for analysis. This sort of research is

increasingly being used as a way of reducing the cost

of collecting new data and to make better use of exist-

ing data. The difficulties are two fold. First, there is the

linkage step, i.e. recognizing that patients are the same

across the data sets. Recent work has included blind-

folded linkage methodologies [1,2] and encryption

techniques [4] as ways of linking datasets while not

revealing any patient information. The second difficul-

ty lies in the greater chance of revealing information

from a linked data set than a single data set, especially

when combining data from multiple modalities, e.g.

health data and geographic data.

Key Applications
As discussed above, data privacy and patient consent

has an impact on large sections of the health care

industry and the biomedical research community.

There are many applications which will need to con-

sider data privacy and patient consent issues. Below is a

discussion of Electronic Health Records, possibly the

fastest growing example of data collected for primary

use, and medical research, often the largest source of

requests for data for secondary use.

Electronic Health Records

Electronic Health Records (EHR) are the fastest growing

example of an application which concern data privacy

and patient consent. Increasing amounts of personal

health data are being stored in databases for the purpose

of maintaining a life long health record of an individual.

The data is being stored according to a number of

different international and local standards and devel-

opment for the format of the data, for example open-

EHR (http://www.openehr.org/), and the transmission

of the data, such as HL7 (http://www.hl7.org/). Some

of this data is stored using codes from clinical ter-

minologies, while some of it will be free text reports.

This data are being stored so that the data are available

to clinicians for the purpose of treating the individual.

Data Privacy and Patient Consent D 57

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

While in most cases this will provide more appropriate

care, there will be times when the individual will not

want sensitive data revealed, even to a treating clini-

cian. This may particularly be the case when the data is

judged not relevant to the current medical condition.

With a number of countries introducing Electronic

Health Records, there are concerns over who will

have access to the data. Generally these are governed

by strict privacy policies, as well as allowing patients

the opportunity to have some level of control over

whether data is added to the EHR or not.

Medical Research

Secondary use of data is primarily concerned with

providing health data for clinical or medical research.

For most secondary data use, it is possible to use de-

identified data, as described above. Increasingly, sec-

ondary use of data involves the linkage of data sets to

bring different modalities of data together, which raises

more concerns over the privacy of the data as described

above. The publication of the Human Genome gave

rise to new ways of finding relationships between clin-

ical disease and human genetics. The increasing use

and storage of genetic information also impacts the use

of familial records, since the information about the

patient also provides information on the patient’s rela-

tives. The issues of data privacy and patient confidenti-

ality and the use of the data for medical research are

made more difficult in this post-genomic age.

Cross-references
▶Access Control

▶Anonymity

▶ Electronic Health Records

▶ Exploratory Data Analysis

▶Health Informatics Databases

▶ Privacy Policies and Preferences

▶ Privacy-Enhancing Technologies

▶ Privacy-Preserving data mining

▶Record Linkage

Recommended Reading
1. Agrawal R., Evfimievski A., and Srikant R. Information sharing

across private databases. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 86–97.

2. Churches T. and Christen P. Some methods for blindfolded

record linkage. BMC Med. Inform. Decis. Making, 4:9, 2004.

3. Domingo-Ferrer J. and Torra V. (eds.). Privacy in Statistical

Databases. Lect. Notes Comput. Sci., Vol 3050. Springer Berlin

Heidelberg, 2004.

4. OKeefe C.M., Yung M., and Baxter R. Privacy-preserving linkage

and data extraction protocols. In Workshop on Privacy in the

Electronic Society in conjunction with the 11th ACM CCS

Conference, 2004.

5. Sandhu R.S., Coyne E.J., Feinstein H.L., and Youman C.E.

Role-based access control models. IEEE Comput., 29(2):38–47,

1996.

Data Problems

▶Data Conflicts

Data Profiling

THEODORE JOHNSON

AT&T Labs – Research, Florham, Park, NJ, USA

Synonyms
Database profiling

Definition
Data profiling refers to the activity of creating small

but informative summaries of a database [5]. These

summaries range from simple statistics such as the num-

ber of records in a table and the number of distinct values

of a field, to more complex statistics such as the distri-

bution of n-grams in the field text, to structural proper-

ties such as keys and functional dependencies. Database

profiles are useful for database exploration, detection

of data quality problems [4], and for schema matching

in data integration [5]. Database exploration helps a

user identify important database properties, whether it

is data of interest or data quality problems. Schema

matching addresses the critical question, ‘‘do two fields

or sets of fields or tables represent the same informa-

tion?’’ Answers to these questions are very useful for

designing data integration scripts.

Historical Background
Databases which support a complex organization

tend to be quite complex also. Quite often, documen-

tation and metadata are incomplete and outdated, no

DBA understands the entire system, and the actual data

fails to match documented or expected properties [2].

These problems greatly complicate already difficult

tasks such as database migration and integration, and

in fact database profiling was originally developed for

58 D Data Problems

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

their support. Newer developments in database pro-

filing support database exploration, and finding and

diagnosing data quality problems.

Foundations
A database profile is a collection of summaries

about the contents of a database. These summaries

are usually collected by making a scan of the database

(some profiles use sampled data, and some require

multiple complex queries). Many of the profile statis-

tics are collected by the DBMS for query optimization.

If the optimizer statistics are available, they can be

retrieved instead of calculated – though one must

ensure that the optimizer’s statistics are current before

using them. Profile summaries are typically stored in a

database for fast interactive retrieval.

Basic Statistics

These statistics include schema information (table

and field names, field types, etc.) and various types of

counts, such as the number of records in a table, and

the number of special values of a field (typically, the

number of null values).

Distributional Statistics

These statistics summarize the frequency distribution of

field values: for each distinct value of a field, how often

does it occur. Examples include the number of distinct

values of a field, the entropy of the frequency distri-

bution [10], and the most common values and their

frequency of occurrence. Another summary is the inverse

frequency distribution, which is the distribution of the

frequency distribution (e.g., the number of distinct

values which occur once, occur twice, and so on).

While the inverse frequency distribution is often

small, it can become large and in general needs to be

summarized also.

Textual Summaries

A textual summary represents the nature of the data

in a field. These summaries are very useful for explor-

ing the value and pattern distributions and for field

content matching in a schema matching task, i.e., to

determine whether or not two fields across tables or

databases represent similar content.

Textual summaries apply to fields with numeric

as well as string data types. The issue is that many

identifiers are numeric, such as telephone numbers,

Social Security numbers, IP addresses, and so on.

These numeric identifiers might be stored as numeric

or string fields in a given table – or even combined with

other string fields. To ensure that field matches can

be made in these cases, numeric fields should be con-

verted to their string representation for textual match-

ing. Patterns (say, regular expressions) which most

field values conform to are very useful in identifying

anomalies and data quality issues.

Minhash Signatures: One type of summary is

very useful in this regard, the minhash signature [1].

To compute a minhash signature of a field, one starts

with N hash functions from the field domain to the

integers. For each hash function, compute the hash

value of each field value, and collect the minimum.

The collection of minimum hash values for each hash

function constitutes the minhash signature.

For example, suppose our set consists of

X = {3,7,13,15} and our two hash functions are

h1(x) = x mod 10, and h2(x) = x mod 5 (these are simple

but very poor hash functions). Then, min{h1(x) | x

in X} = 3, and min{h2(x) | x in X} = 2. Therefore the

minhash signature of X is {3,2}.

A surprising property of the minhash signature

is its ability to determine the intersection of two sets.

Given two minhash signatures for sets A and B, the

number of hash functions with the same minimum

value divided by the number of hash functions is

an estimator for the resemblance of two sets, which

is the size of the intersection of A and B divided

by the union of A and B (r = |A∩B|/|AUB|). Given
knowledge of |A| and |B| (from the distributional

statistics), an estimate of the size of the intersection is

|A∩B| = r(|A| + |B|)/(1 + r).
If one extends the minhash signature to include

the number of times that the minimum value of a

hash function occurred, one can summarize the tail

of the inverse frequency distribution [3]. Augmenting

the minhash signature summary with the counts of

the most frequent values (from the distributional

statistics), which constitute the head, completes the

summary.

Substring summaries: Another type of textual sum-

mary determines if two fields have textually similar

information, i.e., many common substrings. As with

approximate string matching [6], these summaries rely

on q-grams – all consecutive q-letter sequences in the

field values. One type of approximate textual summary

collects the distribution of all q-grams within a field’s

values, and summarizes this distribution using a sketch

Data Profiling D 59

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

such as the minhash signature or the min-count sketch

[3]. Two fields are estimated to be textually similar if

their q-gram distributions, represented by the sketches,

are similar.

Structural Summaries

Some summaries represent patterns among fields in

a table. The two most common examples are keys and

functional dependencies (FDs). Since a table might be

corrupted by data quality problems, another type of

structural summary are approximate keys and approxi-

mate FDs [7], which hold for most (e.g., 98%) of the

records in a table.

Key and FD finding is a very expensive procedure.

Verifying whether or not a set X of fields is a key can be

performed using a count distinct query on X, which

returns the number of distinct values of X. Now, X is an

(approximate) key if the number of distinct values of X

is (approximately) equal to the size of the table. And,

an FD X ! Y (approximately) holds if the number of

distinct values of X is (approximately) equal to the

number of distinct values of (X U Y). An exhaustive

search of a d field table requires 2d expensive count-

distinct operations on the table. There are several ways

to reduce this cost. For one, keys and FDs with a small

number of fields are more interesting than ones with a

large number of fields (large keys and FDs are likely

spurious – because of the limited size of the table – and

likely do not indicate structural properties of the data).

If the maximum set of fields is k (e.g., k = 3), then the

search space is limited to O(dk). The search space can

be trimmed further by searching for minimal keys and

functional dependencies [7]. Finally, one can hash

string fields to reduce the cost of computing count

distinct queries over them (if exact keys and FD are

required, a candidate key or FD found using hashing

must be verified by a query over the actual table).

Samples

A random sample of table records also serves as sum-

mary of the contents of a table. A few sampled rows

of a table are surprisingly informative, and can be used

to estimate a variety of distributions, e.g., identifying

the most frequent values or patterns and their fre-

quencies in a field.

Sampling can be used to accelerate the expensive

computation of profile data. For example, when com-

puting keys and FDs on a large table (e.g., one with

many records), one can sample the table and compute

keys and FDs over the sample. If a key or FD is

(approximately) valid over the base table then it is

also valid on a sample. But, it is possible that a key or

FD which is valid on the sample may not be a valid on

the base table. Therefore, a random sample can be used

to identify candidate keys and FDs. If exact keys and

FDs are needed, candidates can be verified by queries

over the actual table.

A minhash signature can be computed over sam-

pled data. Suppose that F and G are again keys with

identical sets of strings and of size S, and that one

computes minhash signatures over F’ and G’, which

are sampled from F and G (respectively) at rate p.

Then, the resemblance of F’ and G’ is

r0 ¼ jF0 \ G0j=ðjF0j þ jG0j � jF0 \ G0jÞ
¼ p2S=ð2pS � p2SÞ ¼ p=ð2� pÞ � p=2

While the resemblance decreases linearly with

p (and experiences a larger decrease than the sample

intersection), minhash signatures have the advantage

of being small. A profiling system which collects min-

hash signatures might use a signature size of, e.g., 250

hashes – small enough that an exhaustive search for

matching fields can be performed in real time. Very

large tables are sampled to accelerate the computation

of the minhash signatures, say p = .1. When comparing

two fields which both represent identical key values,

there will be about 13 matches on average – enough to

provide a reliable signal. In contrast, small uniform

random samples of similar sizes drawn from the two

fields may not provide accurate estimates of the resem-

blance. For instance, collecting 250 samples from a

table with 1,000,000 rows requires a sampling rate of

p = 0.00025, meaning that the intersection of the

samples of F and G is very likely to be empty.

While random sampling is a common data synop-

sis used to estimate a wide variety of data properties, its

use as a database profile is limited. For one, a random

sample cannot always provide an accurate estimation

of the number of distinct values in a field, or of the

frequency distribution of a field. Table samples are also

ineffective for computing the size of the intersection of

fields. Suppose that fields F and G are keys and contain

the same set of strings, and suppose that they are

sampled at rate p. Then, the size of the intersection of

the sample is p2|F| = p2|G|. One can detect that F and G

are identical if the size of the intersected sample is

p times the size of the samples. However, if p is small

60 D Data Profiling

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

enough for exhaustive matching (e.g., p = 0.001), then

p2|F| is likely to be very small – and therefore an

unreliable indicator of a field match.

Implementation Considerations

Profiling a very large database can be a time-consuming

and computationally intensive procedure. A given

DBMS might have features, such as sampling, grouping

sets, stored procedures, user-defined aggregate func-

tions, etc., which can accelerate the computation of

various summaries. Many profile statistics are com-

puted by the DBMS for the query optimizer, and

might be made available to users.

However, database profiles are often used to com-

pare data from different databases. Each of these data-

bases likely belongs to its own administrative domain,

which will enable or disable features depending on the

DBA’s needs and preferences. Different databases often

reside in different DBMSs. Therefore, a profiling tool

which enables cross-database comparisons must in

general make use of generic DBMS facilities, making

use of DBMS-specific features as an optimization only.

Modes of Use

The types of activities supported by database profiles

can be roughly categorized into database exploration

and schema matching. Database exploration means to

help a user identify important database properties,

whether it is data of interest, data quality problems,

or properties that can be exploited to optimize data-

base performance. For example, the user might want to

know which are the important tables in a database, and

how do they relate (how can they be joined). The

number of records in a table is a good first indicator

of the importance of a table, and a sample of records is

a good first indicator of the kind of data in the table.

The most frequent values of a field will often indicate

the field’s default values (often there is more than one).

Other types of information, e.g., keys and field resem-

blance, help to identify join paths and intra-table

relationships.

By collecting a sequence of historical snapshots of

database profiles, one can extract information about

how the database is updated. A comparison of profiles

can indicate which tables are updated, which fields

tend to change values, and even reveal changes in

database maintenance procedures [3]. For example,

in the two large production databases studied in [3],

only 20–40% of the tables in the database changed at

all from week to week. Furthermore, most of the tables

which ever changed experienced only a small change.

Only 13 of the 800 + tables were found to be dynamic.

A schema matching activity asks the question, ‘‘do

these two instances represent the same thing?’’ – fields,

sets of fields, tables, etc. For example, textual summa-

ries are designed to help determine if two fields have

the same (or nearly the same) contents. However, any

single type of information (schema, textual, distribu-

tional) can fail or give misleading results in a large

number of cases. The best approach is to use all avail-

able information [11].

Key Applications

Data profiling techniques and tools have been devel-

oped for database exploration, data quality explora-

tion, database migration, and schema matching.

Systems and products include Bellman [4], Ascential

[8] and Informatica [9].

Cross-references
▶Count-Min Sketch

▶Data Sketch/Synopsis

▶Hash Functions

Recommended Reading
1. Broder A. On the resemblance and containment of documents.

In Proc. IEEE Conf. on Compression and Comparison of

Sequences, IEEE Computer Society, 1997, pp. 21–29.

2. Dasu T. and Johnson T. Exploratory Data Mining and Data

Cleaning. Wiley Interscience, New York, 2003.

3. Dasu T., Johnson T., and Marathe A. Database exploration using

database dynamics. IEEE Data Eng. Bull. 29(2):43–59, 2006.

4. Dasu T., Johnson T., Muthukrishnan S., and Shkapenyuk V.

Mining database structure; or, how to build a data quality

browser. In Proc. ACM SIGMOD Int. Conf. on Management

of data, 2002, pp. 240–251.

5. Evoke Software. Data Profiling and Mapping, The Essential First

Step in Data Migration and Integration Projects. Available at:

http://www.evokesoftware.com/pdf/wtpprDPM.pdf 2000.

6. Gravano L., Ipeirotis P.G., Jagadish H.V., Koudas N.,

Muthukrishnan S., and Srivastava D. Approximate String Joins

in a Database (Almost) for Free. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001, pp. 491–500.

7. Huhtala Y., Karkkainen J., Porkka P., and Toivonen H. TANE: an

efficient algorithm for discovering functional and approximate

dependencies. Comp. J., 42(2):100–111, 1999.

8. IBM Websphere Information Integration. Available at: http://

ibm.ascential.com

9. Informatica Data Explorer. Available at: http://www.informatica.

com/products_services/data_explorer

10. Kang J. and Naughton J.F. On schema matching with opaque

column names and data values. In Proc. ACM SIGMOD Int.

Data Profiling D 61

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

Conf. on Management of Data, San Diego, CA, 2003, pp. 205–

216.

11. Shen W., DeRose P., Vu L., Doan A.H., and Ramakrishnan R.

Source-aware entity matching: a compositional approach.

In Proc. 23rd Int. Conf. on Data Engineering, pp. 196–205.

Data Protection

▶Data Privacy and Patient Consent

▶ Storage Protection

Data Provenance

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Synonyms
Provenance metadata; Data lineage; Data tracking;

Data pedigree

Definition
The term ‘‘data provenance’’ refers to a record trail that

accounts for the origin of a piece of data (in a database,

document or repository) together with an explanation

of how and why it got to the present place.

Example: In an application like Molecular Biology,

a lot of data is derived from public databases, which in

turn might be derived from papers but after some

transformations (only the most significant data were

put in the public database), which are derived from

experimental observations. A provenance record will

keep this history for each piece of data.

Key Points
Databases today do not have a good way of managing

provenance data and the subject is an active research

area. One category of provenance research focuses on

the case where one database derives some of its data by

querying another database, and one may try to ‘‘invert’’

the query to determine which input data elements con-

tribute to this data element. A different approach is to

explicitly add annotations to data elements to capture

the provenance. A related issue is to keep process prov-

enance, especially in business applications, where an

instrumented business process capturing software is

used to track the data generation and transformation

life cycle. While keeping a trail of provenance data is

beneficial for many applications, storing, managing and

searching provenance data introduces an overhead.

Cross-references
▶Annotation

▶ Provenance

Recommended Reading
1. Bose R. and Frew J. Lineage retrieval for scientific data proces-

sing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

2. Buneman P., Khanna S., Tajima K., and Tan W.-C. Archiving

scientific data. In Proc. ACM SIGMOD Conf. on Management

of Data, 2002, pp. 1–12

3. Buneman P., Khanna S., and Tan W.C. On propagation of

deletions and annotations through views. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. Principles of Database Sys-

tems, 2002, pp. 150–158.

4. Simmhan Y.L., Plale B., and Gannon D. A Survey of Data

Provenance Techniques. Technical Report TR618, Department

of Computer Science, Indiana University, 2005.

5. Widom J. Trio: A System for Integrated Management of

Data, Accuracy, and Lineage. In Proc. Second Biennial Confer-

ence on Innovative Data Systems Research, 2005, pp. 262–276.

Data Quality

▶ Information Quality and Decision Making

▶ Information Quality Policy and Strategy

Data Quality Assessment

CARLO BATINI

University of Milano – Bicocca, Milan, Italy

Synonyms
Data quality measurement; Data quality benchmarking

Definition
The goal of the assessment activity in the area of data

quality methodologies is to provide a precise evaluation

and diagnosis of the state of databases and data flows of an

information system with regard to data quality issues. In

the assessment the evaluation is performedmeasuring the

quality of data collections along relevant quality dimen-

sions. The term (data quality) measurement is used to

address the issue of measuring the value of a set of data

quality dimensions. The term (data quality) assessment

62 D Data Protection

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

is used when such measurements are analyzed in order

to enable a diagnosis of the quality of the data collec-

tion. The term (data quality) benchmarking is used

when the output of the assessment is compared against

reference indices, representing average values or best

practices values in similar organizations. The term (data

quality) readiness aims at assessing the overall predis-

position of the organization in accepting and taking

advantages of data quality improvement programs.

The assessment activity may concern: (i) the sche-

ma of the data base (the intension), (ii) the values of

data (the extension), and (iii) the costs of poor data

quality to the organization. Therefore, the principal

outputs of assessment methodologies are: (i) measure-

ments of the quality of databases and data flows, both

schemas and values, (ii) costs to the organization due

to the present low data quality, and (iii) a comparison

with data quality levels considered acceptable from

experience, or else a benchmarking with best practices,

together with suggestions for improvements.

Historical Background
Ever since computer applications have been used to

automate more and more business and administrative

activities, it has become clear that available data often

result from inaccurate observations, imputation, and

elaborations, resulting in data quality problems. More

importantly, in the last decades, information systems

have been migrating from a hierarchical/monolithic to

a network-based structure; therefore, the potential

sources that organizations can use for the purpose of

their businesses are dramatically increased in size and

scope. Data quality problems have been further wors-

ened by this evolution, since the external sources are

created and updated at different times and by different

organizations or persons and are characterized by vari-

ous degrees of trustworthiness and accuracy, frequently

unknown a priori. As a consequence, the overall quality

of the data that flow between information systems may

rapidly degrade over time if both processes and their

inputs are not themselves subject to quality assessment.

Foundations
The typical steps to assess data quality are:

1. Data analysis, which examines data schemas and

performs interviews to reach a complete under-

standing of data and related architecture and man-

agement rules.

2. Requirements analysis, which surveys the opinion of

data users and administrators to identify quality

issues and set new quality targets.

3. Identification of critical areas, which selects the most

relevant databases and data flows to be assessed

quantitatively.

4. Process modeling, which provides a model of the

processes producing or updating data.

5. Measurement of quality, which selects relevant qual-

ity dimensions, defines corresponding metrics and

performs the actual measurement.

The usual process followed in the measurement of

quality step has two main activities: qualitative assess-

ment, based on subjective judgments of experts, and

objective assessment, based on measures of data quality

dimensions.

Qualitative assessment is performed through ques-

tionnaires and interviews with stakeholders and with

internal and external users, with the goal of under-

standing the consequences and impact of poor data

quality on the work of internal users and on products

and services provided to information consumers, and

the extent the needs of external users and customers

are currently satisfied.

Quantitative assessment is based on the selection of

quality dimensions and their measurement through

metrics. Over 50 quality dimensions have been pro-

posed in the literature (see the respective entry and [2]

for a thorough description of dimensions and pro-

posed classifications). The most frequently mentioned

concern the values of data, and are accuracy, complete-

ness, currency/timeliness, and inconsistency.

Examples of methodologies for the choice of

dimensions and measures and for the objective vs.

subjective evaluation are given in [3,7–9]. With regard

to dimension classification, dimensions are classified

in [7] into sound, useful, dependable, and usable,

according to their positioning in quadrants related

to ‘‘product quality/service quality’’ and ‘‘conforms to

specifications/meets or exceeds consumer expecta-

tions’’ coordinates. The goal of the classification is to

provide a context for each individual quality dimen-

sion and metric, and for consequent evaluation. In the

following the five phases of the methodology proposed

in [3] are described in more detail (see Fig. 1).

Phase 1, attribute selection, concerns the identifica-

tion, description, and classification of the main data

attributes to be assessed. Then, they are characterized

Data Quality Assessment D 63

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

according to their meaning and role. The possible

characterizations are qualitative/categorical, quantita-

tive/numerical, and date/time.

In Phase 2, analysis, data quality dimensions and

integrity constraints to be measured are identified.

Statistical techniques are used for the inspection of

data. Selection and inspection of dimensions is related

to process analysis, and has the final goal of discovering

the main causes of erroneous data, such as unstruc-

tured and uncontrolled data loading and data updating

processes. The result of the analysis on selected dimen-

sions leads to a report with the identification of

the errors.

In Phase 3, objective/quantitative assessment, appro-

priate indices are defined for the evaluation and quan-

tification of the global data quality level. The number of

low quality data items for the different dimensions and

the different data attributes is first evaluated with sta-

tistical and/or empirical methods, and, subsequently,

normalized and summarized.

Phase 4 deals with subjective/qualitative assessment.

The qualitative assessment is obtained by merging

independent evaluations from (i) business experts,

who analyze data from a business process point of

view, (ii) final users (e.g., for financial data, a trader),

and (iii) data quality experts, who have the role of

analyzing data and examining its quality.

Finally, in the comparison phase objective and sub-

jective assessments are compared. For each attribute

and quality dimension, the distance between the per-

centages of erroneous observations obtained from

quantitative analysis, mapped in a discrete domain,

and the quality level defined by the judgment of the

evaluations is calculated. Discrepancies are analyzed by

the data quality experts, to further detect causes of

errors and to find alternative solutions to correct them.

The above mentioned methodologies, although not

explicitly, refer to the assessment of structured data,

namely, data represented in terms of typed files or

relational tables and databases. Recently, the atten-

tion in data quality assessment has moved towards

semi-structured and un-structured data. Assessment

methodologies for evaluating specific qualities of web

sites are proposed in [1,6]. Atzeni et al. [1] is specifi-

cally focused on accessibility, evaluated on the basis of a

mixed quantitative/qualitative assessment. The quanti-

tative assessment activity checks the guidelines provided

by the World Wide Web Consortium in (W3C. http://

www.w3.org/WAI/). The qualitative assessment is

based on experiments performed with disabled users.

Fraternali et al. [6] focuses on the usability of the site

and proposes an approach based on the adoption of

conceptual logs, which are web usage logs enriched with

meta-data derived from the application of conceptual

specifications expressed by the conceptual schema of

the web site.

Since data and information are often the most

relevant resource consumed in administrative and

business processes, several authors consider the evalu-

ation of costs of poor data quality as part of the data

quality assessment problem. Figure 2 shows the classi-

fication proposed in [4], for which comments follow:

Data Quality Assessment. Figure 1. The main phases of the assessment methodology described in [2].

64 D Data Quality Assessment

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

� Process failure costs result when poor quality infor-

mation causes a process to not perform properly.

As an example, inaccurate mailing addresses cause

correspondence to be misdelivered.

� Information scrap and rework costs occur every time

data of poor quality requires several types of defect

management activities, such as reworking, cleaning,

or rejecting. Examples of this category are (i) redun-

dant data handling, if the poor quality of a source

makes it useless, time and money has to be spent

to collect and maintain data in another database,

(ii) business rework costs, due to re-performing

failed processes, such as resending correspondence,

(iii) data verification costs, e.g., when data users do

not trust the data, they perform their own quality

inspection.

� Loss and missed opportunity costs correspond to the

revenues and products not realized because of poor

information quality. For example, due to low accu-

racy of customer e-mail addresses, a percentage of

customers already acquired cannot be reached in

periodic advertising campaigns, resulting in lower

revenues, roughly proportional to the decrease of

accuracy in addresses.

Data quality assessment has been investigated also

under a managerial perspective. Following the results

of the assessment, a managerial activity might be the

analysis of the main barriers in the organization to the

quality management perspective in terms of resistance

to change processes, control establishment, informa-

tion sharing, and quality certification.

Key Applications
Quality assessment is used in a large set of business

and administrative activities, such as organization

assessment, strategic planning, supply chain, market-

ing, selling, demographic studies, health experiments,

management of health files, census applications, epi-

demiological analyses. The perception of the impor-

tance of quality assessment is increasing in the area of

risk management, such as operational risk manage-

ment related to the Basel II norms.

Future Directions
Open areas of research in data quality assessment con-

cern quality dimensions and the relationship between

data quality assessment and process quality assessment.

The first area concerns assessment of a wider set of

dimensions, such as performance, availability, security,

with concern also to risk management, and investigation

on dependencies among dimensions. For example, a de-

pendency among currency and accuracy is the rule ‘‘70%

of all outdated data is also inaccurate.’’ Knowledge about

dependencies can greatly aid in finding causes of low

data quality, and in conceiving improvement activities.

The relationship between data quality and process

quality is a wide area of investigation, due to the

relevance and diversity of characteristics of business

Data Quality Assessment. Figure 2. A comprehensive

classification of costs of poor data quality [4].

Data Quality Assessment D 65

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:13

processes in organizations. The different impacts of data

quality at the three typical organizational levels, namely

operations, the tactical level, and the strategic level,

are analyzed in [10] reporting interviews and the

outcomes of several proprietary studies. Data quality

and its relationship with the quality of services, pro-

ducts, business operations, and consumer behavior is

investigated in very general terms in [9,11]. The sym-

metric problem of investigating how to improve infor-

mation production processes positively influences data

quality is analyzed in [10].

Cross-references
▶Data Quality Dimensions

▶Design for Data Quality

▶ Information Quality Assessment

▶ Information Quality Policy and Strategy

▶Quality in Data Warehouses

Recommended Reading
1. Atzeni P., Merialdo P., and Sindoni G. Web site evaluation:

methodology and case study. In Proc. Int. Workshop on Data

Semantics in Web Information Systems, 2001.

2. Batini C. and Scannapieco M. Data Quality: Concepts, Meth-

odologies and Techniques. Springer, 2006.

3. De Amicis F. and Batini C. A methodology for data quality

assessment on financial data. Stud. Commn. Sci., 4(2):115–136,

2004.

4. English L.P. Improving Data Warehouse and Business Informa-

tion Quality. Wiley, 1999.

5. English L.P. Process management and information quality: how

improving information production processes improves informa-

tion (product) quality. In Proc. Seventh Int. Conf. on Information

Quality (IQ 2002). MIT Sloan School of Management, Cam-

bridge, MA, 2002, pp. 206–209.

6. Fraternali P., Lanzi P.L., Matera M., and Maurino A. Model-

driven web usage analysis for the evaluation of web application

quality. J. Web Eng., 3(2):124–152, 2004.

7. Kahn B., Strong D.M., and Wang R.Y. Information quality

benchmarks: product and service performance. Commn. ACM,

45(4):184–192, 2002.

8. Lee Y.W., Strong D.M., Kahn B.K., and Wang R.Y. AIMQ:

a methodology for information quality assessment. Inf. Manag.,

40(2):133–146, 2001.

9. Pipino L., Lee Y.W., and Wang R.Y. Data quality assessment.

Commn. ACM, 45(4):211–218, 2002.

10. Redman T.C. The impact of poor data quality on the typical

enterprise. Commn. ACM, 41(2):70–82, 1998.

11. Sheng Y.H. Exploring the mediating and moderating effects of

information quality on firms? Endeavor on information systems.

In Proc. Eighth Int. Conf. on Information Quality (IQ 2003).

MIT Sloan School of Management, Cambridge, MA, 2003, pp.

344–353.

Data Quality Attributes

▶Data Quality Dimensions

Data Quality Benchmarking

▶Data Quality Assessment

Data Quality Criteria

▶Data Quality Dimensions

Data Quality Dimensions

KAI-UWE SATTLER

Technical University of Ilmenau, llmenau, Germany

Synonyms
Data quality criteria; Data quality attributes; Data

quality measurement

Definition
Data quality (DQ) is usually understood as a multi-

dimensional concept. The dimensions represent the

views, criteria, or measurement attributes for data qua-

lity problems that can be assessed, interpreted, and pos-

sibly improved individually. By assigning scores to these

dimensions, the overall data quality can be determined

as an aggregated value of individual dimensions relevant

in the given application context.

Historical Background
Since the mid-1990s data quality issues have been

addressed by systematic research studies. In this context,

relevant dimensions of data quality have also been inves-

tigated. One of the first empirical studies by Wang and

Strong [6] has identified 15 relevant dimensions out of

179 gathered criteria. This list was later supplemented by

other researchers. Initially, there were proposed diver-

gent definitions of the same dimensions, mostly due to

different views, e.g., management perspectives versus

data-oriented perspectives as well as application-specific

views. In addition, several classifications for data quality

problems and criteria were proposed.

66 D Data Quality Attributes

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:14

Todate there is still a different understanding of several

dimensions, depending on the application scenario and

its requirements. However, there exists a set of agreed

upon dimensions that are relevant in most domains.

Foundations
The selection of dimensions relevant in a given sce-

nario is mostly application-dependent. In addition,

many dimensions are not independent and, therefore,

should not be used together. However, because quality

dimensions characterize potential data quality pro-

blems they can be classified according some important

characteristics. In the following, some representative

classifications are introduced followed by a discussion

of the most important dimensions:

Classifications

A first approach for classifying DQ dimensions pro-

posed by Redman [5] is based on DQ problems or

conflicts by considering the different levels where

they can occur:

� The intensional level comprises criteria concerning

the content of the conceptual schema relevance, clar-

ity of definition, the scope, the level of detail (e.g.,

granularity of attributes, the precision of the attribute

domains) as well as consistency and flexibility.

� The extensional level considers the data values

comprising criteria such as accuracy and correct-

ness of values, timeliness, and completeness of data.

� The level of data representation addresses problems

related to the data format, e.g., interpretability,

portability, adequateness.

In contrast to this data-oriented approach, the classi-

fication introduced by Naumann [4] is more compre-

hensive. Dimensions are classified into four sets:

1. Content-related dimensions consider the actual

data and therefore data-intrinsic properties such

as accuracy, completeness, and relevance.

2. Technical dimensionsaddressaspectsof thehard-and

software used for maintaining the data. Examples

are availability, latency, response time, but also price.

3. Intellectual dimensions represent subjective aspects,

such as trustworthiness or reputation.

4. Instantiation-related dimensions concern the pre-

sentation of data, e.g., the amount of data, under-

standability, and verifiability.

An alternative way of classifying DQ dimensions is to

look at the process of data evolution by analogy of data

with products. In [3] an approach is presented pro-

moting hierarchical views on data quality following the

steps of the data life cycle: collection, organization,

presentation, and application. Based on an analysis of

possible root causes for poor quality relevant dimen-

sions can be identified and assigned to the different

DQ views:

� Collection quality refers to problems during data

capturing, such as observation biases or measure-

ment errors. The relevant dimensions are, among

others, accuracy, completeness, and trustworthi-

ness of the collector.

� Organization quality deals with problems of data

preparation and manipulation for storing it in a

database. It comprises dimensions such as consis-

tency, storage, and retrieval efficiency. Further-

more, collection quality is also a component of

organization quality.

� Presentation quality addresses problems during

processing, re-interpretation, and presentation of

data. Dimensions are for example interpretability,

formality as well as the organization quality

component.

� Application quality concerns technical and social

constraints preventing an efficient utilization of

data and comprises dimensions like timeliness, pri-

vacy, and relevance in addition to the presentation

quality component.

Among all these dimensions the most important ones

in many application scenarios are completeness, accu-

racy, consistency, and timeliness that are now des-

cribed in detail.

Completeness

Missing or incomplete data is one of the most impor-

tant data quality problem in many applications. How-

ever, there are different meanings of completeness.

An obvious and often used definition is the absence

of null values or more exactly the ratio of non-null

values and the total number of values. This measure

can be easily assessed. Given a relation R(A1,. . .,An)

then NAi
denotes the set of all non-null values in Ai:

NAi
¼ ft 2 RjNotNullðt :AiÞg

Completeness QC(Ai) can be now defined as:

QCðAiÞ ¼
jNAi

j
jRj

Data Quality Dimensions D 67

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:14

This can be also extended to take tuples into account

instead of single values by determining the number of

tuples containing no null values:

QCðRÞ ¼
jNA1;...;An

j
jRj

Note that null can have different meanings which have

to be treated in a special way: it could represent a

missing value or simply a not-applicable case, e.g. a

customer without a special delivery address.

Sometimes, not all attributes are of equal impor-

tance, e.g. whereas a customer identifier is always

required, the customer’s email address is optional. In

this case, weights can be assigned to the individual

attributes or rules of the form ‘‘if A1 is not available

(null) then A2 is important, otherwise not’’ are used.

This notion of completeness concerns only the data

inside the database. An alternative definition for com-

pleteness is the portion of real-world objects stored in

the database. It addresses the case that for instance not

all customers are represented in the database and

therefore the data is incomplete. This is also known

as coverage. However, assessing this completeness is

often much more difficult because it requires either

additional metadata (e.g., it is known that the DBLP

digital library contains only computer science litera-

ture) or a (manual) checking with the real world,

possibly supported by sampling.

Besides these extensional views, completeness can

be also interpreted from an intensional point of view.

Here, completeness (or density) is defined as the num-

ber of attributes represented in the database compared

to the required real-world properties. Again, assessing

this kind of completeness requires manual inspection.

Improvement of completeness is generally achieved

by choosing better or additional data sources. In

some cases, null values can be replaced with the help

of dictionaries or reference sources (e.g., an address

database). Depending of the usage of data missing

numeric values can be sometimes also imputed based

on knowledge about data characteristics, such as value

distribution and variance.

Accuracy

A second data quality problem is often caused by

measurement errors, observation biases or simply im-

proper representation. Accuracy can be defined as the

extent to which data are correct, reliable, and certified

free of error. Note that the meaning of correctness is

application-dependent: it can specify the distance to

the actual real-world value or just the optimal degree

of detail of an attribute value. Assuming a table repre-

senting sales volumes for products a value $10,000

could be interpreted as inaccurate if the actual value,

e.g., obtained in a different way, is $10,500. However,

if the user is interested only in some sales categories

(low: � 20K, high: > 20K) the value is accurate.

In order to assess accuracy for a given value v

the real world value v or at least a reference value is

needed. Then, the distance can be easily computed for

numeric values as jv � vj or – for textual values – as

the syntactic distance using the edit distance measure.

However, particularly for textual attributes sometimes

the semantic distance has to be considered, e.g., the

strings ‘‘Munich’’ and ‘‘München’’ are syntactically

different but represent the same city. Solving this prob-

lem requires typically a dictionary or ontology.

Based on the distance of single attribute values,

the accuracy of tuples or the whole relation can be

computed as shown above for completeness, for exam-

ple by determining the fraction of tuples with only

correct values.

An improvement of accuracy is often possible only

by removing inexact values or preferably by applying

data cleaning techniques.

Consistency

Though modern database systems provide advanced

support for ensuring integrity and consistency of

data, there are many reasons why inconsistency is a

further important data quality problem. Thus, consis-

tency as a DQ dimension is defined as the degree to

which data managed in a system satisfy specified

constraints or business rules. Such rules can be classic

database integrity constraints, such as uniqueness of

customer identifiers or referential integrity (e.g., ‘‘for

each order, a customer record must exist,’’) or more

advanced business rules describing relationships be-

tween attributes (for instance ‘‘age = current-date �
data-of-birth,’’ ‘‘driver license number can only exist, if

age 16.’’) These rules have to be specified by the user or

can be derived automatically from training data by ap-

plying rule induction. Using a setB of such rules, the set

of tuples from a relation R satisfying these rules can be

determined:

W B ¼ ft 2 RjSatisfiesðt ;BÞg

68 D Data Quality Dimensions

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:14

Then, the consistency measure for relation R can

be computed as the fraction of tuples in WB as shown

above.

As for accuracy, an improvement of consistency

can be achieved by removing or replacing inconsistent

data.

Timeliness

Another reason for poor quality of data is outdated

data. This problem is captured by the dimension

timeliness describing the degree to which the

provided data is up-to-date. Depending on the appli-

cation this is not always the same as the ordinary age

(time between creation of data and now). For in-

stance, in a stock information system stock quotes

data from 2000 are outdated if the user is interested

in the current quotes. But if he asks for stock quotes

from the time of the dot-com bubble, it would be still

sufficient.

Therefore, both the age age(v) of a value v (as the

time between observation and now) and the update

frequency fu(v) (updates per time unit) have to be

considered, where fu(v) = 0 means the value is never

updated. Using this information, timeliness QT(v) of v

can be computed as

QT ðvÞ ¼
1

f uðvÞ � ageðvÞ þ 1

This takes into account that an object with a higher

update frequency ages faster and that objects that are

never updated have the same timeliness.

Further Dimensions

Finally, the following further dimensions are also im-

portant for many applications.

Relevance, also known from information retrieval,

is the degree to which the provided information satis-

fies the users need. The problem of relevance occurs

mainly if keyword-based search is used for querying

data or documents. In database systems using exact

queries, relevance is inherently high.

Response time measures the delay between the

submission of a request (e.g. a query) and the arrival

of the complete response. Though a technical criterion,

response time is particularly important for users, be-

cause they usually do not want to wait more than a

couple of seconds for an answer. Related to response

time is latency defining the delay to the arrival of the

first result data. Often, a small latency compensates a

larger response time in user satisfaction.

Believability, trustworthiness, and reputation are

dimensions which often depend on each other. Be-

lievability and trustworthiness can be understood as

the degree to which data is accepted by the user as

correct, accurate or complete. In contrast, reputation

describes the degree to which a data (source) has a

good standing by users. Reputation is based on the

memory and summary of behavior from past transac-

tions, whereas believability is more an subjective

expectation.

Key Applications
DQ dimensions are primarily used for quality assess-

ment. They define the criteria under which data quality

is measured and for which quality scores can be

derived. A further application are data quality models

for explicitly representing data quality scores that can

be used for annotating the data.

Cross-references
▶Data Conflicts

▶Data Quality Assessment

▶Data Quality Models

Recommended Reading
1. Batini C. and Scannapieco M. Data Quality – Concepts,

Methodologies and Techniques. Springer, 2006.

2. Gertz M., Özsu M.T., Saake G., and Sattler K. Report on

the Dagstuhl Seminar: data quality on the Web. SIGMOD Rec.,

33(1):127–132, 2004.

3. Liu L. and Chi L. Evolutional data quality: a theory-specific

view. In Proc. Int. Conf. on Information Quality (IQ 2002).

MIT, 2002, pp. 292–304.

4. Naumann F. Quality-Driven Query Answering for Integrated

Information Systems. LNCS 2261, Springer, Berlin, 2002.

5. Redman T. Data Quality for the Information Age. Artech House,

Norwood, MA, USA, 1996.

6. Wang R. and Strong D. Beyond Accuracy: What Data Quality

Means to Data Consumers. J. Inf. Syst., 12(4):5–34, 1996.

7. Wang R., Ziad M., and Lee Y. Data Quality. Kluwer, Boston, MA,

USA, 2001.

Data Quality Measurement

▶Data Quality Dimensions

▶Data Quality Assessment

Data Quality Measurement D 69

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:14

Data Quality Models

MONICA SCANNAPIECO

University of Rome, Rome, Italy

Synonyms
Data quality representations

Definition
Data quality models extend traditional models for data-

bases for the purpose of representing data quality

dimensions and the association of such dimensions to

data. Therefore, data quality models allow analysis of a

set of data quality requirements and their representation

in terms of a conceptual schema, as well as accessing and

querying data quality dimensions by means of a logical

schema. Data quality models also include process mod-

els tailored to analysis and design of quality improve-

ment actions. These models permit tracking data from

their source, through various manipulations that data

can undergo, to their final usage. In this way, they sup-

port the detection of causes of poor data quality and the

design of improvement actions.

Historical Background
Among the first data quality models, in 1990 the polygen

model [5] was proposed for explicitly tracing the ori-

gins of data and the intermediate sources used to arrive

at that data. The model is targeted to heterogeneous

distributed systems and is a first attempt to represent

and analyze the provenance of data, which has been

recently investigated in a more general context.

In the mid-1990’s, there was a first proposal of

extending the relational model with quality values

associated to each attribute value, resulting in the

quality attribute model [6]. An extension of the Entity

Relationship model was also proposed in the same

years ([4], and [7], Chapter 3), similarly focused on

associating quality dimensions, such as accuracy or

completeness, to attributes. More recently, models for

associating quality values to data-oriented XML docu-

ments have been investigated (e.g., [2]). Such models

are intended to be used in the context of distributed

and cooperative systems, in which the cooperating

organizations need to exchange data each other, and

it is therefore critical for them to be aware of the

quality of such data. These models are semi-structured,

thus allowing each organization to export the quality

of its data with a certain degree of flexibility; quality

dimensions can be associated to various elements of

the data model, ranging from the single data value

to the whole data source, in this way being different

from the previous attribute-based models.

The principal data quality models that are oriented

towards process representation are based on the prin-

ciple that data can be seen as a particular product of

a manufacturing activity, and so descriptive models

(and methodologies) for data quality can be based

on models conceived in the last two centuries for

manufacturing traditional products. The Information

Product Map (IP-MAP) [3] is a significant example of

such models and follows this view, being centered on

the concept of information product. The IP-MAP

model has been extended in several directions (see

[1], Chap. 3). Indeed, more powerful mechanisms

have been included, such as event process chain dia-

grams representing the business process overview, the

interaction model (how company units interact), the

organization model (who does what), the component

model (what happens), and the data model (what data

is needed). A further extension called IP-UML consists

of a UML profile for data quality based on IP-MAP.

Foundations
Data quality models can be distinguished in data-

oriented models, focused on the representation of

data quality dimensions, and process-oriented models

focused on the representation of the processes thatmani-

pulate data and on their impact on the data quality.

Data-oriented models include extensions of the

Entity Relationship model, of the relational model,

and of the XML data model.

When extending the Entity Relationship model for

representing data quality, one possibility is to intro-

duce two types of entities, explicitly defined to express

quality dimensions and their values: a data quality

dimension entity and a data quality measure entity.

The goal of the data quality dimension entity is to

represent possible pairs <DimensionName,

Rating> of dimensions and corresponding ratings

resulting from measurements. The data quality dimen-

sion entity characterizes the quality of an attribute

and the scale may obviously depend on the attribute.

In these cases, it is necessary to extend the properties

of the data quality dimension entity to include the

attribute, that is <DimensionName, Attribute,

Rating>.

70 D Data Quality Models

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:14

In order to represent metrics for dimensions, and

the relationship with entities, attributes, and dimen-

sions, the model introduces the data quality measure

entity; its attributes are Rating, the values of which

depend on the specific dimension modeled, and

DescriptionOfRating. The complete data qual-

ity schema, shown by means of the example in Fig. 1, is

made up of:

� The original data schema, in the example repre-

sented by the entity Class with the attribute

Attendance.

� The DQ Dimension entity with a pair of attri-

butes <DimensionName, Rating >.

� The relationship between the entity Class, the

related attribute Attendance, and the DQ

Dimension entity with a many-to-many rela-

tionship ClassAttendanceHas; a distinct re-

lationship has to be introduced for each attribute of

the entity Class.

� The relationship between the previous structure

and the DQ Measure entity with a new represen-

tation structure that extends the Entity Relation-

ship model, and relates entities and relationships.

An extension of the relational data model is provided

by the quality attribute model, explained in the follow-

ing by means of the example shown in Fig. 2.

The figure shows a relational schema Employee,

defined on attributes EmployeeId, Address,

DateofBirth, and others, and one of its tuples.

Relational schemas are extended adding an arbitrary

number of underlying levels of quality indicators (only

one level in the figure) to the attributes of the schema,

to which they are linked through a quality key. In the

example, the attribute EmployeeId is extended with

one quality attribute, namely accuracy, the attribute

Address with two quality attributes, namely accu-

racy and currency, while the attribute DateofBirth

is extended with accuracy and completeness. The

Data Quality Models. Figure 1. An example of IP-MAP.

Data Quality Models D 71

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:14

values of such quality attributes measure the quality

dimensions’ values associated with the whole relation

instance (top part of the figure). Therefore, complete-

ness equal to 0.8 for the attribute DateofBirth

means that the 80% of the tuples have a non-null

value for such an attribute. Similar structures are

used for the instances of quality indicator relations

(bottom part of the figure); if there are n attributes

of the relational schema, n quality tuples will be asso-

ciated to each tuple in the instance.

Data Quality Models. Figure 2. An extension of the entity relationship model.

Data Quality Models. Figure 3. An example of a D2Q schema.

72 D Data Quality Models

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

The model called Data and Data Quality (D2Q) is

among the first models for associating quality values to

data-oriented XML documents. D2Q can be used in

order to certify dimensions like accuracy, consistency,

completeness, and currency of data. The model is

semi-structured, thus allowing each organization to

export the quality of its data with a certain degree of

flexibility. More specifically, quality dimension values

can be associated with various elements of the data

model, ranging from the single data value to the

whole data source. The main features of the D2Q

model are summarized as follows:

� A data class and a data schema are introduced to

represent the business data portion of the D2Q

model.

� A quality class and a quality schema correspond to

the quality portion of the D2Q model.

� A quality association function that relates nodes of

the graph corresponding to the data schema to

nodes of the graph corresponding to the quality

schema. Quality associations represent biunivocal

functions among all nodes of a data schema and all

non-leaf nodes of a quality schema.

In Fig. 3, an example of a D2Q schema is depicted.

On the left-hand side of the figure, a data schema is

shown representing enterprises and their owners.

On the right-hand side, the associated quality

schema is represented. Specifically, two quality classes,

Enterprise_Quality and Owner_Quality

are associated with the Enterprise and Owner

data classes. Accuracy nodes are shown for both

data classes and related properties. For instance,

Code_accuracy is an accuracy node (of type

t-accuracy) associated with the Code property, while

Enterprise_accuracy is an accuracy node asso-

ciated with the data class Enterprise. The arcs

connecting the data schema and the quality schema

with the quality labels represent the quality association

functions. The D2Q model is intended to be easily

translated into the XML data model. This is important

for meeting the interoperability requirements that are

particularly stringent in cooperative systems.

Process-oriented models have their principal repre-

sentative in the Information Product Map (IP-MAP)

model. An information product map is a graphical

model designed to help people comprehend, evaluate,

and describe how an information product, such as an

invoice, a customer order, or a prescription, is assem-

bled in a business process. IP-MAPs are designed to

help analysts visualize the information production

process, identify ownership of process phases, under-

stand information and organizational boundaries, and

estimate time and quality metrics associated with the

current production process. There are eight types of

construct blocks that can be used to form the IP-MAP:

source, customer, data quality, processing, data stor-

age, decision, business boundary, and information sys-

tems boundary. An example of information product

map is shown in Fig. 4. Information products (IP in

the figure) are produced by means of processing activ-

ities and data quality checks on raw data (RD), and

semi-processed information called component data

(CD). In the example, it is assumed that high schools

and universities of a district have decided to cooperate

in order to improve their course offering to students,

avoiding overlap and being more effective in the edu-

cation value chain. To this end, they have to share

Data Quality Models. Figure 4. An extension of the relational model.

Data Quality Models D 73

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

historical data on students and their curricula. There-

fore, they perform a record linkage activity that

matches students in their education life cycle (‘‘Per-

form Record Linkage’’ block). To reach this objective,

high schools periodically supply relevant information

on students; in case it is in paper format, the informa-

tion has to be converted in electronic format. At this

point, invalid data are filtered and matched with the

database of university students. Unmatched students

are sent back to high schools for clerical checks, and

matched students are analyzed. The result of the anal-

ysis of curricula and course topics are sent to the

advisory panel of the universities.

Key Applications
Data-oriented and process-oriented data quality models

can be used to represent quality dimensions and quality

related activities thus supporting techniques for data

quality improvement. However, such techniques seldom

rely on the described model extensions, with the dis-

tinctive exception of the IP-MAP model. Indeed, only

a few prototypical DBMSs have experienced the

adoption of some of the approaches mentioned. This

is mainly due to the complexity of the representational

structures proposed in the different approaches. Indeed,

measuring data quality is not an easy task, hence models

that impose to associate data quality dimensions values

at attribute level have proven not very useful in practice.

A greater flexibility is more useful in real applications,

like for instance, in scenarios of e-Government or

e-Commerce. In these scenarios, which involve coopera-

tion between different organizations, a more successful

case is provided by XML data exchanged with associated

quality profiles, which are based on semi-structured data

quality models.

Future Directions
The future of research on models appears to be in

provenance and semi-structured data quality models.

In open information systems and in peer-to-peer ones,

knowing the provenance and having a flexible tool to

associate quality to data is crucial. Indeed, such sys-

tems have to be able to trace the history of data and to

certify the level of quality of the retrieved data.

Cross-references
▶Data Quality Dimension

▶ Entity Relationship Model

▶ Information Product Management

▶ Provenance

▶Relational Data Model

▶ Semi-Structured Data

▶XML

Recommended Reading
1. Batini C. and Scannapieco M. Data Quality: Concepts,

Methodologies, and Techniques. Springer, Berlin, 2006.

2. Scannapieco M., Virgillito A., Marchetti C., Mecella M., and

Baldoni R. The DaQuinCIS architecture: a platform for exchang-

ing and improving data quality in cooperative information

systems. Inf. Syst., 29(7):551–582, 2004.

3. Shankaranarayan G., Wang R.Y., and Ziad M. Modeling

the manufacture of an information product with IP-MAP.

In Proc. Fifth Int. Conf. on Information Quality (ICIQ 2000),

MIT, 2000, pp. 1–16.

4. Storey V.C. and Wang R.Y. An analysis of quality requirements

in database design. In Proc. Fourth Int. Conf. on Information

Quality (IQ 1998), MIT, 1998, pp. 64–87.

5. Wang R.Y. andMadnick S.E. A polygen model for heterogeneous

database systems: the source tagging perspective. In Proc. 16th

Int. Conf. on Very Large Data Bases, 1990, pp. 519–538.

6. Wang R.Y., Reddy M.P., and Kon H. Toward data quality:

an attribute-based approach. DSS, 13(3–4):349–372, 1995.

7. Wang R.Y., Ziad M., and Lee Y.W. Data Quality. Kluwer, Boston,

MA, USA, 2001.

Data Quality Problems

▶Data Conflicts

Data Quality Representations

▶Data Quality Models

Data Rank/Swapping

JOSEP DOMINGO-FERRER

The Public University of Tarragona, Tarragona, Spain

Synonyms
Data swapping; Rank swapping

Definition
Data swapping was originally designed by Dalenius

and Reiss [1] as a masking method for statistical disclo-

sure control of databases containing only categorical

74 D Data Quality Problems

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

attributes. The basic idea behind the method is to trans-

form a database by exchanging values of confidential

attributes among individual records. Records are ex-

changed in such a way that low-order frequency counts

or marginals are maintained.

Rank swapping is a variant of data swapping [2,3].

First, values of an attribute Xi are ranked in ascend-

ing order, then each ranked value of Xi is swapped

with another ranked value randomly chosen within a

restricted range (e.g. the rank of two swapped values

cannot differ by more than p% of the total number

of records, where p is an input parameter). This algo-

rithm is independently used on each original attribute

in the original data set.

Key Points
It is reasonable to expect that multivariate statistics

computed from data swapped with this algorithm will

be less distorted than those computed after an uncon-

strained swap. In empirical work on SDC scores, rank

swapping with small swapping range has been identified

as a particularly well-performing method in terms of

the trade-off between disclosure risk and information

loss. Consequently, it is one of the techniques that have

been implemented in the m � Argus package [3].

Cross-references
▶Data Rank/Swapping

▶Disclosure Risk

▶ Inference Control in Statistical Databases

▶ Information Loss Measures

▶K-anonymity

▶Microaggregation

▶Microdata

▶Microdata rounding

▶Noise Addition

▶Non-perturbative masking methods

▶ Pram

▶Record Linkage

▶ Synthetic Microdata

▶ SDC Score

▶Tabular Data

Recommended Reading
1. Dalenius T. and Reiss S.P. Data-swapping: a technique for

disclosure control (extended abstract). In Proc. ASA Section

on Survey Research Methods. American Statistical Association,

Washington DC, 1978, pp. 191–194.

2. Domingo-Ferrer J. and Torra V. A quantitative comparison

of disclosure control methods for microdata. In Confidentiality,

Disclosure and Data Access: Theory and Practical Applications

for Statistical Agencies. P. Doyle, J.I. Lane, J.J.M. Theeuwes, and

L. Zayatz (eds.). Amsterdam, North-Holland, 2001, pp. 111–134.

3. Hundepool A., Van de Wetering A., Ramaswamy R., Franconi F.,

Polettini S., Capobianchi A., De Wolf P.-P., Domingo-Ferrer J.,

Torra V., Brand R. and Giessing S. m-Argus User’s Manual

version 4.1, February 2007. http://neon.vb.cbs.nl/CASC

Data Reconciliation

▶Constraint-Driven Database Repair

Data Reduction

RUI ZHANG

University of Melbourne, Melbourne, VIC, Australia

Definition
Data reduction means the reduction on certain aspects

of data, typically the volume of data. The reduction can

also be on other aspects such as the dimensionality of

data when the data is multidimensional. Reduction on

any aspect of data usually implies reduction on the

volume of data.

Data reduction does not make sense by itself unless

it is associated with a certain purpose. The purpose in

turn dictates the requirements for the corresponding

data reduction techniques. A naive purpose for data

reduction is to reduce the storage space. This requires a

technique to compress the data into a more compact

format and also to restore the original data when the

data needs to be examined. Nowadays, storage space

may not be the primary concern and the needs for data

reduction come frequently from database applications.

In this case, the purpose for data reduction is to save

computational cost or disk access cost in query

processing.

Historical Background
The need for data reduction arises naturally. In early

years (pre-1990’s), storage was quite limited and ex-

pensive. It fostered the development of a class of tech-

niques called compression techniques to reduce the data

volume for lower consumption of resources such

as storage space or bandwidth in telecommunication

settings. Another requirement for a compression

Data Reduction D 75

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

technique is to reproduce the original data (from the

compressed data) for reading. Here ‘‘reading’’ has dif-

ferent meanings depending on the data contents. It

means ‘‘listening’’ for audio data, ‘‘viewing’’ for video

data, ‘‘file reading’’ for general contents, etc. Therefore

the reproduction of the data should be either exactly

the same as the original data or very close to the original

data by human perception. For example, MP3 is an

audio compression technique which makes a com-

pressed audio sound almost the same to the original

one. Until today, compression techniques is still a very

active research topic. But, instead of concerning data

size of kilobytes or megabytes as in the early years,

today’s compression techniques concern data size of

gigabytes or even terabytes.

As the rapid advances of hardware technologies,

storage limit is no longer the most critical issue in

many cases. Another huge force driving the need for

data reduction appears in database applications. Stor-

ing the data may not be a problem, but retrieving data

from the storage (typically hard disk) is still a quite

expensive operation due to the slow improvement in

disk seek time. Database queries commonly need to

retrieve large amount of data from the disk. Therefore

data reduction is compelling for providing high per-

formance in query processing. Different from data

compression, data reduction in database applications

usually do not need to generate a reproduction that is

exactly the same as the original data or sounds/looks

very close to the original data. Instead, an approxima-

tion of the intended answer suffices, which gives more

flexibility for data reduction.

Traditionally, data reduction techniques have been

used in database systems to obtain summary statistics,

mainly for estimating costs of query plans in a query

optimizer. Here, an approximation of the expected

cost suffices as an estimate. At the same time, highly

reduced data (summary statistics) is essential to make

evaluation of the query plans much cheaper than eval-

uation of the query.

In the last two decades, there has been enormous

interest in online analytic processing (OLAP), which is

characterized by complex queries involving group-by

and aggregation operators on extremely large volume

of data. OLAP is mainly performed in decision support

applications, which analyze data and generate summa-

ries from data. Organizations need these results to

support high-level decision making. The data typically

comprises of data consolidated from many sources of

an organization, forming a repository called a data

warehouse. In face of the high data volume, efficient

OLAP calls for data reduction techniques. Due to the

analytical and exploratory nature of the queries, ap-

proximate answers are usually acceptable and the error

tolerance can sometimes be quite high.

Foundations
Compression techniques and data reduction techni-

ques in databases are discussed separately below due

to the differences in their purposes and general char-

acteristics. Compression techniques are more often

studied in the information retrieval research commu-

nity while data reduction techniques in databases are

studied in the database research community. Compres-

sion techniques is a subcategory of data reduction

techniques, although sometimes the term compression

technique is used in a less strict way to refer to data

reduction in general.

Compression techniques involve the processes of

encoding and decoding. Encoding converts the original

data to a more compact format based on a mapping

from source messages into codewords. Decoding per-

forms the inverse operation to reproduce the original

data. If the reproduction is exactly the same as the

original data, the compression technique is lossless;

otherwise, it is lossy. Lossless compression techniques

are used for generally any data format without needing

to know the contents or semantics of the data. Popular

techniques include ZIP invented by Phil Katz in late

1980s and RAR invented by Eugene Roshal in early

1990s. If some domain knowledge on the data is avail-

able, usually lossy compression techniques yield better

compression rates. For example, JEPG, MP3 and MPEG

are popular compression techniques for audio, image

and video data, respectively. Lossy compression techni-

ques leave out the less important information and noise

to achieve higher compression. More concretely, the

MP3 audio encoding format removes the audio details

most human beings cannot hear tomake the compressed

audio sound like a faithful reproduction of the original

uncompressed one. Different compression techniques

mainly differ in the mapping from source messages

into codewords. A survey of compression techniques is

given in [6]. Readers interested in recent research results

in compression techniques are referred to the proceed-

ings of the Data Compression Conference [1].

Data reduction in databases can make use of various

techniques. Popular ones include histograms, clustering,

76 D Data Reduction

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

singular value decomposition (SVD), discrete wavelet

transform (DWT), etc. The techniques can be divided

intotwocategories,parametric and nonparametric tech-

niques, depending on whether the technique assumes

a certain model. Histograms and clustering are non-

parametric techniques while SVD and DWT are para-

metric techniques. A summary of data reduction

techniques for databases can be found in [3].

Histograms

A histogram is a data structure used to approximate

the distribution of values. The value domain is divided

into subranges called buckets. For each bucket, a count

of the data items whose values fall in the bucket is

maintained. Therefore a histogram basically contains

the information of the boundaries of the buckets and

the counts. The data distribution can be approximated

by the average values of the buckets and the counts.

Commonly, two types of histograms are used, equi-

width and equidepth histograms, distinguished by how

the buckets are determined. In an equiwidth histo-

gram, the length of every bucket is the same while in

an equidepth histogram, the count for every bucket is

the same (Sometimes, an exact same count cannot be

achieved and then the counts for the buckets are ap-

proximately the same.). Figure 1 shows an example

data distribution in the value domain [0,8] and the

equiwidth and equidepth histograms for the data as-

suming three buckets. A thick vertical line represents

the count for a value; a dashed line represent a bucket

range and the estimated count for the values in the

bucket. The estimated count of a certain value is simply

the average count in the bucket. In the equiwidth

histogram (Fig. 1a), each bucket has the range of

length 3. The estimated counts for most values are

quite close to the actual values. Equiwidth histograms

are simple and easy to maintain, but the estimate is less

accurate for skewed distribution such as the count of

value 3. This problem is alleviated in the equidepth

histogram (Fig. 1b). Each bucket has the count of

about 9. The estimate count for value 3 is very accu-

rate. The disadvantage of equidepth histograms is that

determining the boundaries of buckets is more diffi-

cult. There are other types of histograms such as com-

pressed histograms and v-optimal histograms. A

thorough classification on various histograms can be

found in [7].

Clustering

Clustering is a technique to partition objects into

groups called clusters such that the objects within a

group are similar to each other. After clustering,

operations can be performed on objects collectively

as groups. The information of data can be represented

at the cluster level and hence greatly reduced. The

data to perform clustering on usually contain multi-

ple attributes. Therefore each data object can be

represented by a multidimensional point in space.

The similarity is measured by a distance function.

Typically, a metric function, such as Euclidean

Data Reduction. Figure 1. Histograms.

Data Reduction D 77

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

distance, is used as the distance function. Given a

data set, there is no single universal answer for the

problem of clustering. The result of clustering

depends on the requirements or the algorithm used

to perform clustering. A classic algorithm is the k-

means algorithm, which partitions the data into k

clusters. Given a data set and a number k, the algo-

rithm first picks k points randomly or based on some

heuristics to serve as cluster centroids. Second, every

point (object) is assigned to its closest centroid.

Then the centroid for each cluster is recomputed

based on the current assignment of points. If the

newly computed centroids are different from the

previous ones, all the points are assigned to their

closest centroids again and then the centroids are

computed again. This process is repeated until the

centroids do not change. Figure 2 shows an example

where k = 3. The black dots are data points, squares are

initial centroids and the dashed circles show the resul-

tant clusters. In the beginning, the value of k is given by

the user in a very subjective manner, usually depending

on the application needs. Another algorithm called k-

medoid works in a very similar manner but with a

different way of choosing their cluster representatives,

called medoids, and with a different stop condition.

Recently, algorithms designed for large data sets were

proposed in the database research community such as

BIRCH [9] and CURE [4].

Singular Value Decomposition (SVD)

Any m � n real matrix A can be decomposed as

follows:

A ¼ USVt ð1Þ

where U is a column-orthonormal m � r matrix, r is

the rank of the matrix A, S is a diagonal r � r matrix

and V is a column-orthonormal n � r matrix (bold

symbols are used to represent matrices and vectors). It

can be further expressed in the spectral decomposition

[5] form:

A ¼ l1u1vt1 þ l2u2vt2 þ . . .þ lrurvtr ð2Þ

where ui and vi are column vectors of U and V, respec-

tively, and li are the diagonal elements of S. A can be

viewed as m n-dimensional points (each row being a

point). Because vi are orthogonal vectors, they form a

new basis of the space. li represents the importance of

the basis vector vi (dimension i) and ui represents the

coordinates of the m points in dimension i in this new

coordinate system. Assume that li are sorted in des-

cending order. Then, v1 is the direction (dimension)

with the largest dispersion (variance) of the points; v2
is the direction with the second largest dispersion of

the points, and so on. If the last few li values are small

and one omits them when calculating A, the resulted

error will be very small. Therefore SVD is widely used

in dimensionality reduction and matrix approxima-

tion. The following is an example, with A given as

A ¼

�2 1

�2 �1

1 1

2 3

4 4

5 2

2
6666664

3
7777775

The SVD of A is

A¼

�0:118 0:691
�0:250 0:125
0:158 0:079
0:383 0:441
0:633 0:316
0:593 �0:454

2
6666664

3
7777775

8:82 0

0 2:87

� �
0:811 0:585
�0:585 0:811

� �

Here, l1 ¼ 8:82; l2 ¼ 2:87; v1 ¼
0:811
0:585

� �
and

v2 ¼
�0:585
0:811

� �
: Figure 3 shows the data points, and

the directions of v1 and v2.Data Reduction. Figure 2. k-means clustering.

78 D Data Reduction

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:15

Discrete Wavelet Transform (DWT)

Wavelet Transform is a commonly used signal proces-

sing technique like other transforms such as Fourier

Transform or Cosine Transform. In databases, com-

monly used is the discrete version called Discrete

Wavelet Transform (DWT). After applying DWT, a

multi-resolution decomposition of the original signal

is obtained in the form of wavelet coefficients. The

wavelet coefficients are projections of the signal onto

a set of orthogonal basis vectors. The choice of the

basis vectors determines the type of DWT. The most

popular one is the Haar transform, which is easy to

implement and fast to compute. Some of the wavelet

coefficients obtained may be small, therefore they can

be replaced by zeros and hence the data is reduced.

Inverse DWT can be applied on the reduced wavelet

coefficients to get an approximation of the original sig-

nal. This is basically how DWT is used for compression.

DWT based compression provides better lossy compres-

sion than Discrete Fourier Transform and Discrete Co-

sine Transform.

In the Haar transform, elements of a signal

are processed pairwise. Specifically, the average and

difference of every two neighboring elements are

computed. The averages serve as a lower-resolution

approximation of the signal and the differences

(divided by 2) are the coefficients. For example, signal

S = {2, 4, 5, 5, 3, 1, 2, 2}. Computing the average of

every two neighboring elements results in a lower-

resolution signal S1 = {3, 5, 2, 2}. The coefficients are

obtained by computing the difference of every two

neighboring elements divided by 2, which is D1 =

{�1, 0, 1, 0}. S can be restored exactly by adding

(or subtracting) the coefficient to the corresponding

element in S1. For example, S(1) = S1(1) + D1(1) = 3 +

(�1) = 2; S(2) = S1(1) � D1(1) = 3 � (�1) = 4.

Similarly, a even lower-resolution signal S2 can be

obtained by applying the same process on S1. This

can be done recursively until the length of the signal

becomes 1. The full decomposition on S is shown in

Fig. 4. The Haar transform of S is given as the average

over all elements (3), and all the coefficients, S0 = {3, 1,

�1, 0, �1, 0, 1, 0}.

Key Applications

Data Storage and Transfer

Compression techniques are essential for data storage

and transfer in many applications.

Database Management Systems

Histograms is a popular technique for maintaining

summary information in database management sys-

tems. It is especially useful for a cost-based query

optimizer.

OLAP

Due to the huge volume of data in OLAP applications,

data reduction techniques such as sampling are com-

monly used to obtain quick approximate answers.

Multimedia Data

Multimedia data is characterized by large size. Therefore

data reduction techniques are usually applied on multi-

media data from storage to data processing. For example,

the MP3, JPEG, MPEG formats for audio, image and

video data, respectively, all use compression techniques.

The new JPEG digital image standard, JPEG-2000, uses

DWT for all its codecs [8]. Similarity search on multime-

dia data usually needs to deal with very high-dimensional

point representations. SVD can be used to reduce the

dimensionality to achieve better search performance. In a

recent paper [2], DWT is used to represent 3D objects to

obtain better data retrieval performance.

Data Reduction. Figure 3. SVD.

Data Reduction. Figure 4. Haar transform.

Data Reduction D 79

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

Taxonomy

Clustering is widely used in almost all taxonomy appli-

cations such as taxonomies of animals, plants, diseases

and celestial bodies. It can also help visualization

through a hierarchically clustered structure.

Cross-references
▶Clustering

▶Discrete Wavelet Transform

▶Histograms

▶Nonparametric Data Deduction

▶ Parametric Data Deduction

▶ Singular Value Decomposition

Recommended Reading
1. http://www.cs.brandeis.edu/�dcc/index.html.

2. Ali M.E., Zhang R., Tanin E., and Kulik L. A motion-aware

approach to continuous retrieval of 3D objects. In ICDE. 2008.

3. Barbará D., DuMouchel W., Faloutsos C., Haas P.J., Hellerstein

J.M., Ioannidis Y.E., Jagadish H.V., Johnson T., Ng R.T., Poosala

V., Ross K.A., and Sevcik K.C. The new jersey data reduction

report. IEEE Data Eng. Bull., 20(4):3–45, 1997.

4. Guha S., Rastogi R., and Shim K. CURE: an efficient clustering

algorithm for large databases. In SIGMOD Conference. 1998,

pp. 73–84.

5. Jolliffe I.T. Principal component analysis. Springer, Berlin, 1986.

6. Lelewer D.A. and Hirschberg D.S. Data compression. ACM

Comput. Surv., 19(3):261–296, 1987, http://doi.acm.org/

10.1145/45072.45074.

7. Poosala V., Ioannidis Y.E., Haas P.J., and Shekita E.J. Improved

histograms for selectivity estimation of range predicates. In

SIGMOD Conference. 1996, pp. 294–305.

8. The JPEG 2000 standard. http://www.jpeg.org/jpeg2000/index.

html.

9. Zhang T., Ramakrishnan R., and Livny M. BIRCH: an efficient

data clustering method for very large databases. In SIGMOD

Conference. 1996, pp. 103–114.

Data Replication

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Database replication; Replication

Definition
Using data replication, each logical data item of a data-

base has several physical copies, each of them located on

a different machine, also referred to as site or node.

Depending on the context and the type of replication

architecture, the term replica can refer to one of

the physical copies of a particular data item, or to

an entire site with all its data copies. Data replication

can serve different purposes. First, it can be used to

increase availability and provide fault-tolerance since

the data can, in principle, be accessed as long as one

replica is available. Second, it can provide good perfor-

mance. By storing replicas close to users that want to

access the data, replication allows fast local access.

Third, access requests can be distributed across the

replicas. By adding more replicas to the system a higher

incoming workload can be handled, and hence, a

higher throughput can be achieved. Thus, replication

is a means to achieve scalability. Finally, for some

applications, replication is a natural choice, e.g., if

mobile users have to access data while disconnected

from their corporate data server.

The main challenge of replication is that the repli-

cas have to be kept consistent when updates occur.

This is the task of replica control. It has to translate

the read and write operations that users submit on the

logical data items into operations on the physical cop-

ies. In the most common approach, read operations

are performed on one replica while write operations

have to be performed on all replicas (ROWA, or read-

one-write-all approach). Ideally, all copies of a data

item have the same value at all times. In reality, many

different consistency models have been developed that

reflect the needs for different application domains.

Additionally, replica allocation algorithms have the

task to decide where and when to install or remove

replicas. They have to find a trade-off between the

performance benefits for read operations and the over-

head of keeping the copies consistent.

Historical Background
Data replication has gained attention in two different

communities. The database community typically con-

siders the replication of data items of a database, e.g.,

records or tables of a relational database. It has to

consider that transactions and queries not only access

individual data items, but read and write a whole set of

related data items. In contrast, the distributed systems

community mainly focuses on replication techniques

for objects that are typically accessed individually,

such as distributed file systems and web-servers. Nev-

ertheless, in all the application types, similar issues

arise regarding replica control and allocation, and the

80 D Data Replication

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

associated coordination and communication over-

head. Thus, there has always been an active exchange

of research ideas, such as [1,5], and there exist several

publication venues where work from both commu-

nities appears.

Work on database replication had an early peak in

the 1980s, where it was first introduced for availability

purposes, and most approaches provided strong con-

sistency properties. A good overview is given in [2].

A seminal paper by Gray et al. in 1996 [6] revived

research in this area. It provided a first characterization

of replica control algorithms and presented an analyti-

cal model showing that existing strong consistency

solutions come with a large performance penalty.

Since then, replication has remained an active research

area. Emphasis has been put on reducing the high

communication and coordination overhead of the

early solutions. One research direction aims at reduc-

ing the costs by delaying the sending of updates to

remote replicas. However, in this case, replicas might

have stale or even inconsistent data. Solutions have

been proposed to avoid inconsistencies (e.g., [3]), to

provide limits on the staleness of the data (e.g., [8]),

and to detect and then reconcile inconsistencies [9].

Another research direction has developed techniques

to provide strong consistency guarantees at acceptable

costs, for example, by taking advantage of multicast

and group maintenance primitives provided by group

communication systems [14].

In the distributed systems community, early work

focused on replicated file systems (e.g., [10,13]). Later,

web-server replication [12] and file replication in

peer-2-peer systems, (e.g., [7]) have attained consider-

able attention. A wide range of consistency models has

been defined to accommodate application needs. Also,

a large body of literature exists regarding object repli-

cation for fault-tolerance purposes [4,11].

Foundations

Replica Control

Replica control, which has the task of keeping the

copies consistent despite updates, is the main issue to

be tackled by any replication solution. Replica control

has to decide which data copies read operations should

access, and when and how to update individual data

copies in case of write operations. Thus, most of the

work done in the area of database replication is to

some degree associated with replica control. The

entry Replica Control provides a detailed overview of

the main challenges.

Replica Control and Concurrency Control

In order to work properly with a database system

providing transactional semantics, replica control has

to be integrated with concurrency control. Even in a

nonreplicated and nondistributed system, as soon as

transactions are allowed to execute concurrently, con-

currency control mechanisms restrict how the read and

write operations of different transactions may interleave

in order to provide each transaction a certain level of

isolation. If data items are now replicated, the issue

becomesmore challenging. In particular, different trans-

actions might start their execution on different replicas

making it difficult to detect conflicts.

For a nonreplicated database system, the most

studied isolation level is serializability, which indicates

that the concurrent execution of transactions should

be equivalent to a serial execution of the same tran-

sactions. This is typically achieved via locking, optimis-

tic, or multi-version concurrency control. Thus, one of

the first steps in the research of replicated databases was

to define a corresponding correctness criterion 1-copy-

serializability, which requires that the concurrent exe-

cution of transactions over all replicas is equivalent

to a serial execution over a single logical copy of the

database. Many replica control algorithms have been

developed to provide this correctness criterion, often

extending the concurrency control algorithms of non-

replicated systems to work in a replicated environment.

In early solutions, replicas run some form of co-

ordination during transaction execution to guarantee

an appropriate serialization. This type of protocols is

often called eager or synchronous since all replicas co-

ordinate their operations before transaction commit.

Textbooks on distributed systems typically contain a

chapter on these replica control algorithms since they

serve as a nice example of how to design coordination

protocols in a distributed environment. A problem

with most of these traditional replication solutions is

that they induce a large increase in transaction re-

sponse times which is often not acceptable from an

application point of view.

More recent approaches addressed this issue and

designed replica control algorithms providing 1-copy-

serializability or other strong consistency levels that are

tuned for performance. Many envision a cluster archi-

tecture, where a set of database replicas is connected

Data Replication D 81

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

via a fast local area network. In such a network, eager

replication can be feasible since communication delays

are short. Replication is used to provide both scalabili-

ty and fault-tolerance. The entries Replication based on

Group Communication and Replication for Scalability

describe recent, efficient replica control algorithms

providing strong consistency levels for cluster

architectures.

Consistency Models and Conflict Resolution

By definition, eager replication incorporates coordina-

tion among replicas before transaction commit. Alter-

natively, lazy replication (also called asynchronous

or optimistic) allows a transaction to commit data

changes at one replica without coordination with

other replicas. For instance, all update transactions

could be executed and committed at a specific primary

replica which then propagates changes to other replicas

sometime after commit. Then, secondary replicas lag

behind the current state at the primary. Alternatively,

all replicas might accept and execute updates, and even-

tually propagate the changes to the rest of the replicas. In

this case, replicas can become inconsistent. Conflicting

updates are only detected after update propagation and

inconsistent data has to be reconciled. In this context, a

considerable body of research exists defining correctness

criteria weaker than 1-copy-serializability. In particular,

many formalisms exist that allow the defining of limits

to the allowed divergence between the copies of a data

item.

Availability

Replication can increase the availability of the system

since, in principle, a data item is available as long as

one replica is accessible. However, in practice, it is not

trivial to design a high-available replication solution.

As discussed before, most replication algorithms re-

quire all updates to be performed at all replicas

(ROWA, or read-one-write-all). If this is taken in the

strict sense, then, if one replica is update transactions

cannot execute, and the availability observed by update

transactions is actually lower than in a nonreplicated

system. To avoid this, most replica control algorithms

actually implement a read-one-write-all-available

(ROWAA) strategy that only updates replicas that are

actually accessible. When a replica recovers after a

crash, it first has to get the current state from the

available replicas. This can be a complex process. The

possibility of network partitions imposes an additional

challenge. Although a particular replica might be up

and running, it might not be accessible because of an

interruption in the network connectivity. Many com-

mercial database systems offer specialized high-avail-

ability replication solutions. Typically, a primary

database is replicated at a backup database system.

All transactions are executed at the primary that

sends updates to the backend. Only when the primary

crashes, the backup takes over.

Quorum systems are an alternative high-availability

replication approach. In quorum approaches both read

and write operations have to access a quorum of data

replicas. For example, a quorum could be a majority of

replicas. This guarantees that any two operations over-

lap in at least one replica. Thus, each read operation

reads at least one replica that has the most recent

update, and any two concurrent write operations are

serialized at least at one replica. There exist many ways

to define quorums differing in the structure and the

sizes of the quorums. Quorums are an elegant solution

to network partitions and are attractive for write inten-

sive applications since writes do not need to access

all replicas. However, they have worse performance

than ROWA for the more common read-intensive

applications.

Replica Allocation

Using full replication, every site has copies of all exist-

ing data items. This simplifies the execution of read

operations but has high update costs since all sites have

to perform the updates for all data items. In contrast,

in partial replication each site has only copies of some

of the data items. The advantage is that an update on a

data item does not lead to costs at all sites but only at

those that contain a replica of the data item. However,

read operations become more challenging. First, in a

wide-area setting, if no local replica is available, read

operations observe higher delays since they have to

access a remote replica. Furthermore, if a request has

to access several objects within a single query, the

query might have to access data items on different

sites, leading to distributed queries. Thus, replica allo-

cation algorithms have to decide on the placement of

replicas considering issues such as communication

and update costs.

Related to replica allocation is the task to adjust the

replication configuration automatically and dynami-

cally to the needs of the application. This is particula-

rily interesting in a cluster-based configuration where

82 D Data Replication

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

sites are located in a local area network and replication

is used for load distribution and fault-tolerance. In

here, configuration does not only relate to the number

of replicas needed, but also to the question of how to

distribute load across replicas, how to accomodate

different applications on the replicated data, and how

to optimally use all available resources. An important

issue is that advanced information systems do not only

have a database system but consist of a multi-tier

architecture with web-servers, application servers,

and database systems that interact with each other.

Materialized views are a special form of data repli-

cation, where the data retrieved by the most typical

database queries is stored in a pre-formatted form.

Typically, queries can be run over materialized views

as if they were base tables. Since the data is already in

the format needed by the query, query processing time

can be considerably reduced. However, updates on the

views are usually disallowed but have to be performed

directly on the base tables. Special refresh algorithms

then guarantee that materialized views are updated

when the base data changes.

Replication in Various Computing Environments

Replication is a fundamental technique for data man-

agement that can be applied in various computing

environments. The different purposes replication can

generally have in LANs (clusters) and in wide-area

environments have already been discussed above.

Peer-to-peer (P2P) networks are a special form of

wide-area environment. In here, each site is both client

and server. For instance, each peer can provide storage

space to store documents or data items that can be

queried by all peers in the system. Or it provides

processing capacity that can be used by other peers to

perform complex calculations. In turn, it can request

data items or processing capacity from other peers. A

large body of research has developed algorithms that

decide where to store data items and how to find

them in the P2P network. Replication plays an impor-

tant task for fault-tolerance, fast access, and load

distribution.

Replication also plays an important role in mobile

environments that differ in some fundamental ways

from wired networks. Firstly, communication between

mobile units and the servers on the standard network

is typically slow and unreliable. Secondly, mobile

devices are usually less powerful and have considerably

less storage space than standard machines leading to an

asymmetric architecture. Furthermore, mobile devices,

such as laptops, are often disconnected from the net-

work and only reconnect periodically. Thus, having

replicas locally on the mobile device provides increased

availability during disconnection periods.

Key Applications
Data replication is widely used in practice. Basically, all

database vendors offer a suite of replication solutions.

Additionally, replication is often implemented ad-hoc

at the application layer or as a middleware layer as the

need arises. Replication is used in many application

domains. Below some examples are listed.

� Companies use high-availability replication solu-

tions for their mission critical data that has to be

available 24/7. Examples are banking or trading

applications.

� Companies use cluster replication, ideally with au-

tonomic behavior, in order to provide a scalable

and fault-tolerant database backend for their busi-

ness applications. In particular companies that do

e-business with a large number of users resort to

database replication to be able to obtain the re-

quired throughput. This also includes techniques

such as materialized views.

� Globally operating companies often have databases

located at various sites. Parts of these databases are

replicated at the other locations for fast local access.

Examples are companies maintaining warehouses

at many locations.

� Replication of web-sites is a common technique to

achieve load-balancing and fast local access. As the

information shown on the web becomes more and

more dynamic (i.e., it is retrieved from the database

in real-time), database replication techniques need

to be applied.

� Companies that have employees working off-site,

such as consulting or insurance companies, use

mobile replication solutions. Data replicas are

downloaded to mobile units such as laptops in

order to work while disconnected. Upon reconnec-

tion to the network, the replicas are reconciled with

the master replica on the database server. Typically,

database vendors provide specialized software in

order to allow for such types of replication.

� There exist many P2P-based document sharing sys-

tems, e.g., to share music, video files. Entire file

systems can be built on P2P networks.

Data Replication D 83

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

� Data Warehouses can be seen as a special form of

replication where the transactional data is copied

and reformatted to be easily processed by data

analysis tools.

Future Directions
Being a fundamental data management technology,

data replication solutions will need to be adjusted and

revisited whenever new application domains and com-

puting environments are developed. Thus, data repli-

cation will likely be a topic that will be further explored

as our IT infrastructure and our demands change.

Cross-references
▶Autonomous Replication

▶Consistency Models for Replicated Data

▶ 1-Copy-Serializability Consistency

▶Data Broadcasting, Caching and Replication

▶Distributed Database Design

▶Middleware Support for Database Replication and

Caching

▶Optimistic Replication and Resolution

▶ Partial Replication

▶ P2P Storage

▶Quorum Systems

▶Replication

▶Replica Control

▶Replica Freshness

▶Replication based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Replication in Multi-Tier Architectures

▶ Strong Consistency Models for Replicated Data

▶Traditional Concurrency Control for Replicated

Database

▶WAN Data Replication

▶Weak Consistency Models for Replicated Data

Recommended Reading
1. Alonso G., Charron-Bost B., Pedone F., and Schiper A.

(eds.), A 30-year Perspective on Replication, Monte Verita,

Switzerland, 2007.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

Boston, MA, 1987.

3. Breitbart Y., Komondoor R., Rastogi R., Seshadri S., and

Silberschatz A. Update Propagation Protocols For Replicated

Databases. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1999, pp. 97–108.

4. Budhiraja N., Marzullo K., Schneider F.B., and Toueg S. The

primary-backup approach. In Distributed Systems (2nd edn.).

S. Mullender (ed.). AddisonWesley, New York, NY, pp. 199–216.

5. Cabrera L.F. and Pâris J.F. (eds.), Proceedings of the First Work-

shop on the Management of Replicated Data, IEEE Computer

Society Press, 1990.

6. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc, ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

7. Lv Q., Cao P., Cohen E., Li K., and Shenker S. Search and

replication in unstructured peer-to-peer networks. In Proceed-

ings of the 16th Annual International Conference on Super-

computing. New York, NY, 2002, pp. 84–95.

8. Röhm U., Böhm K., Schek H.J., and Schuldt H. FAS - a

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proc. Int. Conf. on Very Large Data

Bases (VLDB). Hong Kong, China, 2002, pp. 754–765.

9. Saito Y. and Shapiro M. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, 2005.

10. Satyanarayanan M., Kistler J.J., Kumar P., Okasaki M.E., Siegel

E.H., and Steere D.C. Coda: a highly available file system for a

distributed workstation environment. IEEE Trans. Comput., 39

(4):447–459, 1990.

11. Schneider F.B. Replication management using the state-machine

approach. In Distributed Systems (2nd edn.), S. Mullender (ed.).

Addison Wesley, New York, NY, 1993, pp. 169–198.

12. Sivasubramanian S., Szymaniak M., Pierre G., and van Steen M.

Replication for web hosting systems. ACM Comput. Surv., 36

(3):291–334, 2004.

13. Terry D.B., Theimer M., Petersen K., Demers A.J., Spreitzer M.,

and Hauser C. Managing update conflicts in Bayou, a weakly

connected replicated storage system. In Proc. 15th ACM Symp.

on Operating System Principles (SOSP). Copper Mountain Re-

sort, CO, 1995, pp. 172–183.

14. Wiesmann M. and Schiper A. Comparison of database replica-

tion techniques based on total order broadcast. IEEE Trans.

Knowl. Data Eng., 17(4):551–566, 2005.

Data Replication Protocols

▶Replica Control

Data Sampling

QING ZHANG

The Australian e-health Research Center, Brisbane,

QLD, Australia

Definition
Repeatedly choosing random numbers according to a

given distribution is generally referred to as sampling.

It is a popular technique for data reduction and

84 D Data Replication Protocols

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

approximate query processing. It allows a large set of

data to be summarized as a much smaller data set, the

sampling synopsis, which usually provides an estimate

of the original data with provable error guarantees.

One advantage of the sampling synopsis is easy and

efficient. The cost of constructing such a synopsis is

only proportional to the synopsis size, which makes the

sampling complexity potentially sublinear to the size

of the original data. The other advantage is that the

sampling synopsis represents parts of the original data.

Thus many query processing and data manipulation

techniques that are applicable to the original data, can

be directly applied on the synopsis.

Historical Background
The notion of representing large data sets through small

samples dates back to the end of nineteenth century

and has led to the development of many techniques [5].

Over the past twodecades, sampling techniques have been

greatly developed in various database areas, especially on

query optimization and approximate query processing.

� Query Optimization: Query optimizer identifies an

efficient execution plan for evaluating the query. The

optimizer generates alternative plans and chooses

the cheapest one. It uses the statistical information

stored in the system catalog to estimate the cost of a

plan. Sampling synopsis plays a critical role in the

query optimization of a RDBMS. Some commercial

products, such as DB2 and Oracle, have already

adopted sampling techniques to estimate several

catalog statistics. In the Heterogeneous DBMS, the

global query optimizer also employs sampling tech-

niques to estimate query plans when some local

statistical information is unavailable [6].

� Approximate Query Processing: Sampling is mainly

used to generate approximate numeric answers

for aggregate queries over a set of records, such as

COUNT, SUM, MAX, etc. Compared with other

approximate query processing techniques, such as

histogram and wavelet, sampling is easy to be imple-

mented and efficient to generate approximate an-

swers with error guarantees. Many prototypes on

approximate query processing have adopted sam-

pling approaches [2,3,4].

Foundations
A sampling estimation can be roughly divided into

two stages. The first stage is to find a suitable sampling

method to construct the sampling synopsis from

the original data set. The second stage is to analyze

the sampling estimator to find the characteristics

(bounds and parameters) of its distribution.

Sampling Method: Existing sampling methods can

be classified into two groups, the uniform random

sampling and biased sampling. The uniform random

sampling is a straightforward solution. Every tuple of

the original data has the same probability to be sam-

pled. Thus for aggregate queries, the estimation from

samples is the expected value of the answer. Due to the

usefulness of uniform random sampling, commercial

DBMSs have already supports operators to collect

uniform samples. However, there are some queries

for which the uniform random sampling are less effec-

tive on estimation. Given a simple group-by query

which intends to find the average value of different

groups, a smaller group is often as important to the

user as those larger groups. It is obvious that the

uniform random sampling will not have enough infor-

mation for the smaller group. That is why the biased

sampling methods are developed in these cases. Strati-

fied sampling, for example, is a typical biased sam-

pling, which will be explained in detail later. The four

basic sampling methods, two uniform sampling and

two biased sampling, are listed below. Figure 1 shows

corresponding sampling synopses generated by those

methods on the sample data.

1. Random sampling with replacement: This method

creates a synopsis by randomly drawing n of the N

original data records, where the probability of

drawing any record is 1
N
. In other words, the records

that have already been drawn are not to be remem-

bered. So the chance exists that a certain record will

be repeatedly drawn in several runs.

2. Random sampling without replacement: This is sim-

ilar to the random sampling with replacement

method except that in each run the drawn record

will be remembered. That is, the same record will

not be chosen on subsequent runs. Although sam-

pling without replacement appears to lead to better

approximation results, sampling with replacement

is significantly easier to be implemented and ana-

lyzed. Thus in practice the negligible difference

between these two methods’ effects makes the sam-

pling with replacement a desirable alternative.

3. Cluster sampling : The N original data records are

grouped into M mutually disjoint clusters. Then a

Data Sampling D 85

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

random sampling onM clusters is obtained to form

the cluster sampling synopsis. That is, the clusters

are treated as sampling units so statistical analysis is

done on a population of clusters.

4. Stratified sampling : Like the cluster sampling, the N

records are grouped into M mutually disjoin clus-

ters, called strata. A stratified sampling synopsis is

generated through running a random sampling on

each cluster. This method is especially useful when

the original data has skew distribution. In this way,

the cluster with smallest number of records will be

sure to be represented in the synopsis.

These basic sampling methods are straightforward

solutions although they usually can not satisfy the

error or space requirements. However, they are build-

ing blocks of more advanced methods that can either

be used in certain situations or guarantee the estima-

tion error with a confidence level.

Here is an example of a specially designed sampling

method, which extends the basic random sampling

method to be usable in the data stream environment.

Note that the basic unbiased random sampling method

requires a fixed data set with pre-defined data size. How-

ever, in a data stream environment, the size of the original

data set is unknown. Thus the dynamic samplingmethod

is required to get an unbiased sampling synopsis over the

whole data stream. For this purpose, reservoir based

sampling methods were originally proposed in [7].

Suppose constructing an unbiased sampling synop-

sis against a data stream T. A sample reservoir of n

records is maintained from the stream. That is the first

n records of T will be added to the reservoir for initi-

alization. Any t � th new coming record will be added

to the reservoir with probability n
t
. If a new record is

added to the reservoir, any existing records of

the reservoir will be discarded with probability 1
n
.

Figure 2 demonstrates the construction steps of the

reservoir. Finally, when all data of T has been pro-

cessed, the n records of the reservoir form an unbiased

random sampling synopsis of all the records of T.

Similar reservoir based sampling method can also be

developed for biased sampling [1].

Sampling Analysis : This stage analyzes the random

variable generated by sampling methods. More specifical-

ly, it analyzes the distribution of the random variable

through discovering its bound and distribution para-

meters. Given N records, assume that the function f(N)

represents an operation on the N records. Let S repre-

sent a sampling synopsis of N, and f ðSÞ is often closely

related to f ðNÞ for most common operations, such as

AVERAGE or MAX. Let X ¼ f ðSÞ. X is the random

variable that are going to be analyzed. If f ðNÞ repre-
sents some linear aggregation functions, such as AVER-

AGE, X can be approximated as a normal distribution,

according to the Central Limit Theorem. If however,

f ðNÞ represents other functions, such as MAX, proba-

bilistic bounds based on key distribution parameters,

such as expectation EðXÞ and variance Var½X �, need to

be found. This is often quite acceptable as an alterna-

tive to characterize the entire distribution of X.

There exist a number of inequalities to estimate the

probabilistic bound. These inequalities are collectively

Data Sampling. Figure 1. Sampling methods (sampling synopsis size = 3).

86 D Data Sampling

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:16

known as tail bounds. Given a random variable X, if

E½X � is known, Markov’s Inequality gives:

8 a > 0; PrðX aÞ � E½X �
a

The variance of X, Var½X � is defined as:

Var½X � ¼ E½ðX � E½X �Þ2�

A significantly stronger tail bound can be obtained by

Chebyshev’s Inequality if Var½X � is known:

8 a > 0; Prð X � E½X �j j aÞ � Var½X �
a2

The third inequality is an extremely powerful tool

called Chernoff bounds, which gives exponentially de-

creasing bounds on the tail distribution. These are

derived by applying Markov’s Inequality to etX for

some well-chosen value t. Bounds derived from this

approach are generally referred to collectively as Chern-

off bounds. The most commonly used version of the

Chernoff bound is for the tail distribution of a sum of

independent 0–1 random variable. Let X1; . . . ;Xn be

independent Poisson trials such that PrðXiÞ ¼ pi .

Let X ¼
Pn

i¼1 Xi and m ¼ E½X �. For 0 < d < 1,

Prð X � mj j mdÞ � 2e�md2=3

Finally, an example to illustrate the different tail

bounding abilities of the three inequalities is given

below. Suppose estimating the synopsis size generated

by a random sampling with replacement of N data

records. Each record has a same probability 1
2

to

be sampled. Let X denote the size of the sampling

synopsis. Then the size expectation is E½X � ¼ N
2
. The

probabilities of the synopsis size greater than 3
4
N ,

under estimations from different inequalities, are:

Markov’s Inequality : Pr X 3
4
N

� �
� 2

3

Chebyshev’s Inequality : Pr X 3
4
N

� �
� 4

N

Chernoff Bounds : Pr X 3
4
N

� �
� 2e�N=24

Key Applications

Query Optimization

Data sampling is one of the primary techniques used

by query optimizers. In some multi-dimensional cases,

it becomes the only easy and viable solution.

Approximate Query Processing

Data sampling is one of the three major data deduction

techniques (the other two are histogram and wavelet)

employed by approximate query processors.

Data Streaming

Sampling is a simple yet powerful method for synopsis

construction in data stream.

Data Sampling. Figure 2. Random sampling with a reservoir.

Data Sampling D 87

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

Cross-references
▶Approximate Query Processing

▶Data Reduction

▶Data Sketch/Synopsis

▶Histogram

▶Query Optimization

Recommended Reading
1. Aggarwal C.C. On biased reservoir sampling in the presence of

stream evolution. In Proc. 32nd Int. Conf. on Very Large Data

Bases, 2006.

2. Chaudhuri S. et al. Overcoming limitations of sampling for

aggregation queries. In Proc. 17th Int. Conf. on Data Engineer-

ing, 2001.

3. Ganti V., Lee M.-L., and Ramakrishnan R. ICICLES: Self-tuning

samples for approximate query answering. In Proc. 28th Int.

Conf. on Very Large Data Bases. 2000.

4. Gibbons P.B. and Matias Y. 1New sampling-based summary

statistics for improving approximate query answers. In Proc.

ACM SIGMOD int. conf. on Management of data, 1998.

5. Kish L. Survey Sampling. Wiley, New York, xvi, 643, 1965.

6. Speegle G.D. and Donahoo M.J. Using statistical sampling

for query optimization in heterogeneous library information

systems. In Proc. 20th ACM Annual Conference on Computer

science, 1993.

7. Vitter J.S. Random sampling with a reservoir. ACM Trans.

Math. Softw., 11(1):37–57, 1985.

Data Sketch/Synopsis

XUEMIN LIN

University of New South Wales, Sydney, NSW,

Australia

Synonyms
Summary

Definition
A synopsis of dataset D is an abstract of D. A sketch is

also referred to an abstract of dataset D but is usually

referred to an abstract in a sampling method.

Key Points
Sketch/synopsis techniques have many applications.

They are mainly used for statistics estimation in query

processing optimization and for supporting on-line

data analysis via approximate query processing. The

goal is to develop effective and efficient techniques

to build a small space synopsis while achieving high

precision. For instance, a key component in query

processing optimization is to estimate the result sizes

of queries. Many techniques [1,2] have been developed

for this purpose, including histograms, wavelets, and

join synopses.

In data stream applications, the space requirements

of synopses/sketches are critical to keep them in mem-

ory for on-line query processing. Streams are usually

massive in size and fast at arrival rates; consequently

it may be infeasible to keep a whole data stream in

memory. Many techniques [3] have been proposed

with the aim to minimize the space requirement for

a given precision guarantee. These [3] include heavy

hitter, quantiles, duplicate-insensitive aggregates, joins,

data distribution estimation, etc.

Cross-references
▶Approximate Query Processing

▶Histograms on Streams

▶Wavelets on Streams

Recommended Reading
1. Alon N., Gibbons P.B., Matias Y., and Szegedy M. Tracking

join and self-join sizes in limited storage. In Proc. 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Data-

base Systems, PODS, 1999.

2. Gibbons P.B. and Matias Y. Synopsis data structures for massive

data sets. In Proc. ACM-SIAM Symposium on Discrete Algo-

rithms, SODA, 1999.

3. Zhang Y., Lin X., Xu J., Korn F., and Wang W. Space-efficient

relative error order sketch over data streams. In Proc. 22nd Int.

Conf. on Data Engineering, ICDE, 2006.

Data Skew

LUC BOUGANIM

INRIA, Rocquencourt, Le Chesnay, France

Synonyms
Biased distribution; Non-uniform distribution

Definition
Data skew primarily refers to a non uniform distribu-

tion in a dataset. Skewed distribution can follow com-

mon distributions (e.g., Zipfian, Gaussian, Poisson),

but many studies consider Zipfian [3] distribution to

model skewed datasets. Using a real bibliographic da-

tabase, [1] provides real-world parameters for the Zipf

distribution model. The direct impact of data skew on

88 D Data Sketch/Synopsis

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

parallel execution of complex database queries is a

poor load balancing leading to high response time.

Key Points
Walton et al. [2] classify the effects of skewed data

distribution on a parallel execution, distinguishing

intrinsic skew from partition skew. Intrinsic skew is

skew inherent in the dataset (e.g., there are more citi-

zens in Paris than in Waterloo) and is thus called

Attribute value skew (AVS). Partition skew occurs on

parallel implementations when the workload is not

evenly distributed between nodes, even when input

data is uniformly distributed. Partition skew can fur-

ther be classified in four types of skew. Tuple placement

skew (TPS) is the skew introduced when the data

is initially partitioned (e.g., with range partitioning).

Selectivity skew (SS) is introduced when there is varia-

tion in the selectivity of select predicates on each node.

Redistribution skew (RS) occurs in the redistribution

step between two operators. It is similar to TPS. Finally

join product skew (JPS) occurs because the join selec-

tivity may vary between nodes.

Cross-references
▶Query Load Balancing in Parallel Database Systems

Recommended Reading
1. Lynch C. Selectivity estimation and query optimization in

large databases with highly skewed distributions of column

values. Proc. 14th Int. Conf. on Very Large Data Bases, 1988,

pp. 240–251.

2. Walton C.B., Dale A.G., and Jenevin R.M. A taxonomy and

performance model of data skew effects in parallel joins. Proc.

17th Int. Conf. on Very Large Data Bases, 1991, pp. 537–548.

3. Zipf G.K. Human Behavior and the Principle of Least Effort:

An Introduction to Human Ecology. Addison-Wesley, Reading,

MA, 1949.

Data Sorts

▶Data Types in Scientific Data Management

Data Standardization

▶Constraint-Driven Database Repair

Data Storage and Indexing in Sensor
Networks

PHILIP B. GIBBONS

Intel Research Pittsburgh, Pittsburgh, PA, USA

Definition
Sensor data can either be stored local to the sensor

node that collected the data (local storage), transmitted

to one or more collection points outside of the sensor

network (external storage), or transmitted and stored at

other nodes in the sensor network (in-network storage).

There are trade-offs with each of these approaches, as

discussed below, depending on the volume of data

collected at each sensor node, the query workload,

and the resource limitations of each node. Moreover,

the local and in-network storage scenarios often re-

quire in-network indexes in order to reduce the over-

heads of answering queries on data stored within the

sensor network. Such indexes can be classified as either

exact-match indexes or range indexes.

Historical Background
External storage is in some sense the default approach

for sensor networks, reflecting the common scenario in

which the application is interested in all the collected

sensor readings. Early work in local storage includes

Cougar [11] and Tined [8]; both push SQLS-style

queries out to data stored at the sensor nodes. In

Tined and in Directed Diffusion [6] (another early

work) the query workload dictates which sensors are

turned on. This functionality can be used for external,

local, or in-network storage, depending on where these

collected data get stored. Seminal work on in-network

storage includes the work on geographic hash tables

(GHATS) [10], which support exact-match indexing.

The authors advocate data-centric storage, a class of in-

network storage in which data are stored according to

named attribute values. Early work on supporting

range indexes for in-network storage includes DIFFS

[5] and DIM [7].

Foundations
External Storage, in which all the sensor readings are

transmitted to collection points outside of the sensor

network, has several important advantages. First, stor-

age is plentiful outside the sensor network, so that all

the data can be archived, as well as disseminated to any

Data Storage and Indexing in Sensor Networks D 89

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

interested party (e.g., posted on the web). Archiving all

the data is quite useful for testing out new theories

and models on these historical data, and for forensic

activities. Second, processing power, memory, and

energy are plentiful outside the sensor network, so

that queries and complex data analysis can be executed

quickly and without exhausting the sensors’ limited

energy reserves. Finally, such data processing can be

done using standard programming languages and tools

(such as Matlow) that are not available on sensor

nodes. On the other hand, external storage suffers the

disadvantage that it incurs the costs (primarily energy,

but also bandwidth and latency) of transmitting all the

data to outside the network.

Local storage, in which sensor readings are stored

local to the node that collected the data, avoids the

costs of transmitting all the data. Instead, it incurs

the costs of pushing queries into the network and

returning the query answers. Queries are often flooded

through the sensor network. A collection tree is con-

structed hop-by-hop from the query source (called the

root), as follows [8]. The root broadcasts the query, and

each sensor node that hears the broadcast makes the

root its parent in the tree. These nodes in turn broad-

cast the query, and any node that hears one or more

broadcasts (and is not yet in the tree) selects one of

these nodes as its parent, and so on. This tree is used to

collect query answers: Each leaf node sends its piece of

the answer to its parent, and each internal node collects

these partial answers from its children, combines them

with its own piece of the answer, and sends the result

to its parent. The process proceeds level-by-level up

the tree to the root. Thus, the cost of pushing the query

and gathering the answer can be high.

Nevertheless, the amount of data transmitted when

using local storage can often be far less than when

using external storage. First, queries are often long

running (continuous queries); for such queries, the

costs of query flooding and tree construction are in-

curred only once at the start of the query (although

maintaining the tree under failures can incur some

additional costs). Second, indexes can be used (as dis-

cussed below) to narrow the scope of the query to a

subset of the nodes. Third, queries can be highly selec-

tive (e.g., looking for rare events such as an intruder

sighting), so that most sensors transmit little or no real

data. In camera sensor networks (e.g., Irises [4]), local

filtering of images can result in query answers that are

orders of magnitude smaller than the raw images.

Fourth, many queries are amenable to efficient in-

network aggregation, in which partial answers received

from children can be combined into a single fixed-

sized packet. For example, in a Sum query each inter-

nal node can send to its parent a single value equal to

the sum of its value and the values received from its

children. Finally, in sensor networks supporting

queries of live data only (i.e., only the latest data are

of interest), the amount of data sensed can far exceed

the amount of data queried.

A key consideration when using local storage is that

the amount of such storage is limited. Thus, at some

point old data need to be discarded or summarized to

make room for new data [2]. Moreover, the local

storage is often flash memory, and hence flash-friendly

techniques are needed to minimize the costs for acces-

sing and updating locally stored data [9].

In-network storage, in which sensor readings are

transmitted and stored at other nodes in the sensor

network, falls in between the extremes of external storage

and local storage. Caching data that passes through a

sensor node during query processing is a simple form of

in-network storage. As cached data become stale over

time, caremust be taken to ensure that the datameets the

query’s freshness requirements [4]. In Tined [8], ‘‘stor-

age point’’ queries can be used to collect data satisfying a

query (e.g., all temperature readings in the past 8 sec-

onds, updated every second) at nodes within the net-

work. In data-centric storage [10], data are stored

according to named attribute values; all data with

the same general name (e.g., intruder sightings) are

stored at the same sensor node. Because data items

are stored according to their names, queries can re-

trieve all data items associated with a target name from

just a single ‘‘home’’ node for that name (as opposed

to potentially all the nodes when using local storage).

The approach relies on building and maintaining

indexes on the names, so that both sensor readings and

queries can be routed efficiently to the corresponding

home node.

In-network indexes, in which the index is main-

tained inside the sensor network, are useful for both

local storage and in-network storage. The goal is to

map named data to the sensor node(s) that hold such

data, in order to minimize the cost of answering queries.

Queries using the index are guided to the sensor nodes

holding the desired data. In Tined each internal node of a

collection tree maintains a lower and upper bound on

the attribute values in the subtree rooted at the node; this

90 D Data Storage and Indexing in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

index is used to restrict the query processing to only

subtrees containing the value(s) of interest. In Directed

Diffusion, queries expressing interests in some target

data are initially flooded out from the query node.

Paths leading to nodes that are sources of the target

data are reinforced, resulting in an ad hoc routing tree

from the sources back to the query node. This can be

viewed as an ad hoc query-specific index.

A geographic hash table (GHAT) [10] is an exact-

match in-network indexing scheme for data-centric

storage. A GHAT hashes a data name (called a key) to

a random geographic location within the sensor field.

The home node for a key is the sensor node that is

geographically closest to the location returned by the

hash of the key. (For fault tolerance and to mitigate hot

spots, the data are also replicated on nearby nodes.)

Geographic routing is used to route sensor readings and

queries to the home node. In geographic routing each

node knows its geographic coordinates and the coor-

dinates of its neighbors. Upon receiving a packet, a

node forwards the packet to the neighbor closest to the

home node. In this way, the packet attempts to take a

shortest path to the home node. The packet can get

stuck, however, in a local minimum node v such that

no neighbor of v is closer to the home node than v

itself. Different geographic routing schemes provide

different approaches for recovering from local minima,

so that the home node can always be reached.

Follow-on work on GHATS (e.g., [1]) has focused on

improving the practicality (efficiency, robustness, etc.)

of geographic routing and hence GHATS.

In-network storage based on a GHAT is less costly

than local storage whenever the savings in data trans-

mitted in querying exceed the additional costs of trans-

mitting sensor data to home nodes. In a square sensor

field of n sensors, routing to a home node takesOð ffiffiffi
n

p Þ
hops. Consider a workload where the transmitted sen-

sor data is limited to E interesting events and there are

Q queries each requesting all the events for a distinct

named event type. With in-network storage based on a

GHAT, the total hops is Oð ffiffiffi
n

p ðQ þ EÞÞ. With local

storage, the total hops is O(Qn), as it is dominated

by the cost to flood the query. Thus, roughly, the in-

network scheme is less costly when the number of

events is at most a factor of
ffiffiffi
n

p
larger than the number

of queries. However, this is in many respects a best case

scenario for in-network storage, and in general, local

or external storage can often be less costly than in-

network storage. For example, with a single continuous

query that aggregates data from all the sensor nodes

for t� 1 time periods (i.e., E = tn), in-network storage

based on a GHAT incurs O(tn1.5) total hops while

local storage with in-network aggregation incurs only

O(tn) total hops, as the cost is dominated by the

t rounds of hops up the collection tree.

Moreover, a GHAT is not well-suited to answering

range queries. To remedy this, a variety of data-centric

storage schemes have been proposed that provide

effective range indexes [5,7,3]. DIM [7], for example,

presents a technique (inspired by k-d trees) for con-

structing a locality-preserving geographic hash func-

tion. Combined with geographic routing, this extends

the favorable scenarios for in-network storage to in-

clude also multi-dimensional range queries.

In summary, which of the external, local, or in-

network storage schemes is preferred depends on the

volume of data collected at each sensor node, the query

workload, and the resource limitations of each node.

Key Applications
Sensor networks, Applications of sensor network data

management.

Cross-references
▶Ad-Hoc Queries in Sensor Networks

▶Applications of Sensor Network Data Management

▶Continuous Queries in Sensor Networks

▶Data Acquisition and Dissemination in Sensor

Networks

▶Data Aggregation in Sensor Networks

▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

▶ In-Network Query Processing

▶ Sensor Networks

Recommended Reading
1. Ee C.T., Ratnasamy S., and Shenker S. Practical data-centric

storage. In Proc. 3rd USENIX Symp. on Networked Systems

Design & Implementation, 2006, pp. 325–338.

2. Ganesan D., Greenstein B., Estrin D., Heidemann J., and

Govindan R. Multiresolution storage and search in sensor

networks. ACM Trans. Storage, 1(3):277–315, 2005.

3. Gao J., Guibas L.J., Hershberger J., and Zhang L. Fractionally

cascaded information in a sensor network. In Proc. 3rd Int.

Symp. Inf. Proc. in Sensor Networks, 2004, pp. 311–319.

4. Gibbons P.B., Karp B., Ke Y., Nath S., and Seshan S. IrisNet: An

architecture for a worldwide sensor web. IEEE Pervasive Com-

put, 2(4):22–33, 2003.

5. Greenstein B., Estrin D., Govindan R., Ratnasamy S., and

Shenker S. DIFS: A distributed index for features in sensor

Data Storage and Indexing in Sensor Networks D 91

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

networks. In Proc. First IEEE Int. Workshop on Sensor Network

Protocols and Applications, 2003, pp. 163–173.

6. Intanagonwiwat C., Govindan R., Estrin D., Heidemann J., and

Silva F. Directed diffusion for wireless sensor networking. IEEE/

ACM Trans. Network., 11(1):2–16, 2003.

7. Li X., Kim Y.J., Govindan R., and Hong W. Multi-dimensional

range queries in sensor networks. In Proc. 1st Int. Conf. on

Embedded Networked Sensor Systems, 2003, pp. 63–75.

8. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

TinyDB: An acquisitional query processing system for sensor

networks. ACM Trans Database Syst, 30(1):122–173, 2005.

9. Mathur G., Desnoyers P., Ganesan D., and Shenoy P. Capsule:

An energy-optimized object storage system for memory-

constrained sensor devices. In Proc. 4th Int. Conf. on Embedded

Networked Sensor Systems, 2006, pp. 195–208.

10. Ratnasamy S., Karp B., Shenker S., Estrin D., Govindan R.,

Yin L., and Yu F. Data-centric storage in sensornets with GHT,

a geographic hash table. Mobile Networks Appl., 8(4):427–442,

2003. Springer.

11. Yao Y. and Gehrke J. Query processing for sensor networks. In

Proc. First Biennial Conf. on Innovative Data Systems Research,

2003.

Data Stream

LUKASZ GOLAB

AT&T Labs-Research, Florham Park, NJ, USA

Synonyms
Continuous data feed

Definition
A data stream S is an ordered collection of data items,

s1, s2,. . ., having the following properties:

� Data items are continuously generated by one or

more sources and sent to one or more processing

entities.

� The arrival order of data items cannot be controlled

by the processing entities.

For instance, an Internet Service Provider (ISP) may be

interested in monitoring the traffic on one or more of

its links. In this case, the data stream consists of data

packets flowing through the network. The processing

entities, e.g., monitoring software, may be located di-

rectly on routers inside the ISP’s network or on remote

nodes.

Data streams may be classified into two types: based

and derived. A base stream arrives directly from the

source. A derived stream is a pre-processed base stream,

e.g., an intermediate result of a query or a sub-query over

one or more base streams. In the network monitoring

scenario, the base stream corresponds to the actual

IP packets, whereas a derived stream could contain

aggregate measurements of traffic between each source

and destination in a five-minute window.

Key Points
Depending upon the application, a data stream may

be composed of raw data packets, relational tuples,

events, pieces of text, or pieces of an XML document.

Furthermore, each data stream item may be asso-

ciated with two timestamps: generation time (assigned

by the source) and arrival time (assigned by the pro-

cessing entity). The order in which items arrive may be

different from their generation order, therefore these

two timestamps may produce different orderings of

the data stream.

A data stream may arrive at a very high speed (e.g.,

a router may process hundreds of thousands of packets

per second) and its arrival rate may vary over time.

Hence, a data stream may be unbounded in size. In

particular, the processing entity may not know if and

when the stream ‘‘ends.’’

Cross-references
▶ Stream-oriented query languages & operators

▶ Stream processing

▶One-pass algorithm

▶ Stream mining

▶ Synopsis structure

Recommended Reading
1. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data streams. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems. Madison, WI, 2002, pp. 1–16.

2. Golab L. and Özsu M.T. Issues in data stream management.

ACM SIGMOD Rec., 32(2):5–14, 2003.

3. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trends Theor. Comput. Sci., 1(2):1–67, 2005.

Data Stream Algorithm

▶One-Pass Algorithm

92 D Data Stream

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

Data Stream Management
Architectures and Prototypes

YANIF AHMAD, UĞUR ÇETINTEMEL

Brown University, Providence, RI, USA

Definition
Data stream processing architectures perform data-

base-style query processing on a set of continuously

arriving input streams. The core query executor in this

type of architecture is designed to process continuous

queries, rather than ad-hoc queries, by pushing inputs

through a series of operators functioning in a pipelined

and potentially non-blocking manner. Stream proces-

sing applications perform explicit read and write

operations to access storage via asynchronous disk

I/O operations. Other architectural components that

differ significantly from standard database designs

include the stream processor’s scheduler, storage

manager and queue manager.

Historical Background
Support database-style query processing for long-run-

ning applications that operate in high (data) volume

environments, and impose high throughput and low

latency requirements on the system. There have been

several efforts from both the academic and industrial

communities at developing functional prototypes of

stream processing engines, to demonstrate their useful-

ness and to better understand the challenges posed by

data stream applications. The first general purpose

relational stream processing architectures appeared

from the research community in 2001–2002, while the

initial industrial offerings began to appear in 2003–

2004. As a historical note, non-relational approaches

to stream or event processing have existed in many

forms prior to the early 2000s, especially in the embed-

ded systems and signal processing communities.

Foundations
An SPE has a radically different architecture than that

of a traditional database engine. Conceptually, the

architectural differences can be captured by the follow-

ing key characteristics:

1. Continuous query model

2. Inbound processing model

3. Single-process model

In the continuous query model, the queries execute

continuously as new input data becomes available.

This contrasts with the prevailing one-time query

model where users (or clients) issue queries that pro-

cess the available input data and produce one-time

results. In other words, in the continuous model, the

queries are persistent and input data is transient,

whereas in the traditional model, queries are transient

and input data is persistent, as illustrated in Fig. 1.

An SPE supports inbound processing, where in-

coming event streams immediately start to flow

through the query processing operators as they enter

the system. The operators process the events as they

move, continuously producing results, all in main

memory when possible. Read or write operations to

storage are optional and can be executed asynchronously

in many cases, when they are present. Inbound proces-

sing overcomes a fundamental limitation of the tradi-

tional outbound processing model, employed by all

conventional database management systems, where data

are always inserted into the database (usually as part of a

transaction) and indexed as a first step before any pro-

cessing can take place to produce results. By removing

the storage from the critical path of processing, an SPE

achieves significant performance gains compared to the

traditional outbound processing approach.

An SPE often adopts a single-process model, where

all time-critical operations (including data processing,

storage, and execution of custom application logic) are

run in a single process space. This integrated approach

eliminates high-overhead process context switches that

are present in solutions that use multiple software

systems to collectively provide the same set of capabil-

ities, yielding high throughput with low latency.

The SPE prototypes developed independently in

the academic community share core design principles

and architectural components to implement push-

based dataflows. At a high level, an SPE’s core includes

a query executor maintaining plans for users’ queries, a

queue manager and storage manager to govern mem-

ory resources and perform optional disk access and

persistence, a stream manager to handle stream I/O

with data sources and sinks, and a scheduler to deter-

mine an execution strategy. Figure 2 presents a dia-

grammatic overview of these core components.

SPEs implement continuous queries and inbound

processing inside the query executor, by instantiating

query plans with non-blocking operators that are ca-

pable of producing result tuples from each individual

Data Stream Management Architectures and Prototypes D 93

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:17

input tuple, or a window of tuples, depending on the

operator type. This is in contrast to traditional opera-

tors that wait for relations to be scanned from disk.

The query executor represents query plans as operators

connected together with queues that buffer continu-

ously-arriving inputs (as found in the Aurora and

Stream prototypes [2,5]), and any pending outputs

(for example Fjords in TelegraphCQ [8]), while each

Data Stream Management Architectures and Prototypes. Figure 1. Illustration of storage-oriented and

streaming-oriented architectures. The former requires outbound processing of data, whereas the latter enables

inbound (or straight-through) processing.

Data Stream Management Architectures and Prototypes. Figure 2. Architectural components of an SPE.

94 D Data Stream Management Architectures and Prototypes

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

operator performs its processing. A queue manager is

responsible for ensuring the availability of memory

resources to support buffering inputs and outputs,

and interacts with other system components to engage

alternative processing techniques when memory avail-

ability guarantees cannot be upheld [3].

Operators may choose to access inputs, or share state

with other operators, through persistent storage. Disk

access is provided through a storage manager that is

responsible for maintaining cursors on external tables,

and for performing asynchronous read and write opera-

tions while continuing to process data streams. Ad-

vanced storage manager features include the ability to

spill operator queues and state to disk under dwindling

memory availability, as well as the ability to maintain

approximations of streams, queues and states. SPEs typ-

ically include a stream manager component to handle

interaction with the network layer as data sources trans-

mit stream inputs typically over TCP or UDP sockets.

The stream manager is additionally responsible for any

data format conversions through built-in adaptors, and

to indicate the arrival of new inputs to the scheduler as

the new inputs are placed on the operators’ queues.

An operator scheduler [5,7] is responsible for devis-

ing an execution order based on various policies to

ensure efficient utilization of system resources. These

policies typically gather operator cost and selectivity

statistics in addition to resource utilization statistics to

determine a schedule that improves throughput and

latencies. While SPEs execute under a single-process

model, various scheduler threading designs have been

proposed to provide query processing parallelism.

Finally, SPEs also include query optimizers such as load

shedders [15] and adaptive plan optimizers [6], that also

monitor the state of the running query in terms

of statistics and other optimizer-specific monitors to

dynamically and adaptively determine advantageous

modifications to query plans and operator internals.

Prototypes

The key features in the architectural design of stream

processors primarily arose from academic prototypes,

before being extended by industrial-grade tools based

on the commercialization of the academic efforts.

These features are described for a subset of the proto-

types below.

Aurora/Borealis: The Aurora and Borealis [2,1]

projects are first- and second-generation stream

processing engines built in a collaboration by Brandeis,

Brown and MIT. The Aurora engine was implemented

from scratch in C++, and included the basic archi-

tectural components described above to produce a

single-site design. Aurora was a general-purpose en-

gine that provided a relational operator set to be used

to construct queries visually in an editor, as a work-

flow. This workflow-style programming paradigm

(sometimes referred to as ‘‘boxes-and-arrows’’) dif-

fered significantly from similar research projects

which focused more on providing stream-oriented

language extensions to SQL.

The Aurora architecture included a multi-threaded

scheduler capable of supporting tuple-trains and super-

box scheduling. Aurora also supported load shedding,

the concept of selectively processing inputs in the pres-

ence of excessive load due to high-rate data streams.

The Aurora engine also supported embedded tables to

enable operators to share state. The embedded tables

were implemented as BerkeleyDB stores and the core

operator set included operators capable of performing

a subset of SQL queries on these tables.

The Borealis project extended the Aurora architec-

ture for amulti-site deployment, and implemented com-

ponents to address the novel challenges exposed by

distributed execution. These included a decentralized

catalog structure maintaining metadata for the set of

deployed queries, and a distributed statistics collector

and optimizer. The optimizer targeted distributed

query optimizations such as spreading load across mul-

tiplemachines to achieve both a balanced allocation, and

resilience to changes in load, in addition to a distributed

load shedding mechanism that factored in the allocation

of operators to sites.

Stream: The Stream project at Stanford [5] devel-

oped a C++ implementation of a stream processing

engine with a similar high-level architecture to the

design described above. The novel features of the

Stream architecture included its use of the Continuous

Query Language (CQL) which extended SQL with

DDL statements to define data streams and subse-

quently provided DML clauses for several types of

windowing operations on these streams.

The core engine included a single-threaded sched-

uler that continuously executes operators based on a

scheduling policy, while the operators implement non-

blocking query execution through the use of queues.

In addition to this basic query executor, the Stream

project studied various resource management, query

approximation and adaptive query processing

Data Stream Management Architectures and Prototypes D 95

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

techniques. These included memory management

techniques implemented by both a scheduling policy

that executes groups of operators to minimize queue

sizes, and by exploiting shared synopses (window

implementations) and constraints in the arrival pat-

terns of data streams (such as bounding the arrival

delay between interacting inputs). In terms of query

approximation, Stream provided both a load-shedding

algorithm that approximates query results to reduce

CPU load, in addition to synopsis compaction techni-

ques that reduced memory requirements at operators.

Finally, Stream is capable of adapting the running

query through the aid of two components, a profiler

that continuously collects statistics during query exe-

cution, and a reoptimizer component that maintains

both filter and join orderings based on changing

selectivities.

TelegraphCQ: In contrast to the ground up design of

Aurora and Stream, the TelegraphCQ project [8] at UC

Berkeley developed a stream processing engine on top of

the PostgreSQL open-source database. This approach

allowed the reuse of several PostgreSQL components,

such as the system catalogs, parser and optimizer.

TelegraphCQ is divided into two high-level com-

ponents, a frontend and a backend. The frontend is

responsible for client interaction such as parsing and

planning queries, in addition to returning query

results. The TelegraphCQ backend is a continually

executing process that performs the actual query

processing, and adds query plans submitted by the

frontend to the set of executable objects. The backend

is implemented in a multi-threaded fashion enabling

processing parallelism. The query executor in the Tele-

graphCQ backend is principally designed to support

adaptive query processing through the use of Eddies to

dynamically route tuples between a set of commutative

operators (thus performing run-time reordering). The

executor also leans heavily on exploiting opportunities

for shared processing, both in terms of the state main-

tained internally within operators (such as aggregates),

and in terms of common expressions used by selec-

tions through grouped filters. Finally, as a result of

its PostgreSQL base, TelegraphCQ investigated query

processing strategies combining the use of streamed

data and historical data from a persistent source.

Gigascope: The Gigascope data stream engine [10]

was developed at AT&T Labs-Research to primarily

study network monitoring applications, for example

involving complex network and protocol analyses of

BGP updates and IP packets. Gigascope supports

textual queries through GSQL, a pure stream query

language that is a simplified form of standard SQL.

GSQL queries are internally viewed as having a two-

level structure, where queries consist of high-level and

low-level operators comprising a graph-structured pro-

gram, depending on the optimization opportunities

determined by a query optimizer. Low-level operators

are extremely lightweight computations to perform pre-

liminary filtering and aggregation prior to processing

high-level operators, and in some cases these low-level

operatorsmay be performed on the network cards of the

machines present in the network monitoring applica-

tion. Gigascope queries are thus compiled into C and

C++ modules and linked into a run-time system for

highly-efficient execution. Gigascope also investigated

the blocking properties of both high- and low-level

operators and developed a heartbeat mechanism to

effectively alleviate operators’ memory requirements.

Nile: The Nile stream processing engine was devel-

oped at Purdue on top of the Predator [14] object-

relational DBMS. Nile implements data streams as an

enhanced datatype in Predator and performs stream

processing with the aid of a stream manager compo-

nent. This stream manager is responsible for buffering

input streams and handing data to the execution en-

gine for query processing. Nile uses a separate thread

for its stream manager, and performs round-robin

scheduling for processing new inputs on streams.

In addition to the basic stream processing engine

design, the Nile project investigated various query cor-

rectness issues and optimization opportunities arising

in the stream processing context. This included study-

ing scheduling strategies to exploit resource sharing

amongst queries, for example sharing windowed join

operators between multiple queries, and pipelining

mechanisms based on strategies to expire tuples in

multiple windows.

System S: The System S [12] project is a recent en-

deavor at IBM Research investigating large-scale

distributed stream processing systems focusing primarily

on analytical streaming applications through the use of

data mining techniques. System S processes data streams

with a dataflow-oriented operator network consisting of

processing elements (PEs) that are distributed across a set

of processing nodes (PNs) and communicate through a

transport component known as the data fabric. Some of

the prominent architectural features of System S include

the design and implementation of streaming analytic

96 D Data Stream Management Architectures and Prototypes

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

operators, including clustering and decision-tree based

algorithms, and appropriate resource management algo-

rithms to support these types of operators, such as a

variety of load shedding and diffusion algorithms. System

S also leverages data-parallelism through a content-based

load partitioning mechanism that spreads the processing

of an input or intermediate streamacrossmultiple down-

stream PEs.

Key Applications
Stream processing architectures have been motivated

by, and used in, several domains, including:

� Financial services: automated trading, market feed

processing (cleaning, smoothing, and translation),

smart order routing, real-time risk management

and compliance (MiFID, RegNMS)

� Government and Military: surveillance, intrusion

detection and infrastructure monitoring, battlefield

command and control

� Telecommunications: network management, quali-

ty of service (QoS)/service level agreement (SLA)

management, fraud detection

� Web/E-business: click-stream analysis, real-time

customer experience management (CEM)

URL to Code
Borealis: http://www.cs.brown.edu/research/borealis/

public/

Stream: http://infolab.stanford.edu/stream/code/

Cross-references
▶Continuous Query

▶Data Stream

▶ Stream-oriented Query Languages and Operators

▶ Stream Processing

▶ Streaming Applications

▶Windows

Recommended Reading
1. Abadi D., Ahmad Y., Balazinska M., Çetintemel U., Cherniack M.,

Hwang J.-H., Lindner W., Maskey A.S., Rasin A., Ryvkina E.,

Tatbul N., Xing Y., and Zdonik S. The design of the Borealis stream

processing engine. In Proc. 2nd Biennial Conf. on Innovative Data

Systems Research, 2005.

2. Abadi D.J., Carney D., Çetintemel U., Cherniack M., Convey C.,

Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: A new

model and architecture for data stream management. The VLDB

J., 2003.

3. Arasu A., Babcock B., Babu S., McAlister J., and Widom J.

Characterizing memory requirements for queries over

continuous data streams. ACM Trans. Database Syst., 29

(1):162–194, 2004.

4. Babcock B., Babu S., Datar M., Motwani R., and Thomas D.

Operator scheduling in data stream systems. VLDB J., 13

(4):333–353, 2004.

5. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002.

6. Babu S., Motwani R., Munagala K., Nishizawa I., and Widom J.

Adaptive ordering of pipelined stream filters. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004, pp. 407–418.

7. Carney D., Çetintemel U., Rasin A., Zdonik S.B., Cherniack M.,

and Stonebraker M. Operator scheduling in a data stream man-

ager. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003,

pp. 838–849.

8. Chandrasekaran S., DeshpandeA., FranklinM., andHellerstein J.

TelegraphCQ: Continuous dataflow processing for an uncertain

world. In Proc. 1st Biennial Conf. on Innovative Data Systems

Research, 2003.

9. Chen J., DeWitt D.J., Tian F., and Wang Y. Niagaracq: A scalable

continuous query system for internet databases. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2000, pp. 379–

390.

10. Cranor C.D., Johnson T., Spatscheck O., and Shkapenyuk V.

Gigascope: a stream database for network applications. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

2003, pp. 647–651.

11. Data stream processing (Johannes Gehrke, ed.). IEEE Data Eng.

Bull., 26(1), 2003.

12. Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu,

and MyungCheol Doo. SPADE: The Systems S Declarative

Stream Processing Engine. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2008.

13. Golab L. and Özsu M.T. Issues in data stream management.

SIGMOD Rec., 32(2):5–14, 2003.

14. Hammad M.A., Mokbel M.F., Ali M.H., Aref W.G., Catlin A.C.,

Elmagarmid A.K, Eltabakh M.Y., Elfeky M.G., Ghanem T.M.,

Gwadera R., Ilyas I.F., Marzouk M.S., and Xiong X. Nile: a query

processing engine for data streams. In Proc. 20th Int. Conf. on

Data Engineering, 2004, p. 851.

15. Tatbul N., Çetintemel U., Zdonik S.B., Cherniack M., and Stone-

braker M. Load shedding in a data streammanager. In Proc. 29th

Int. Conf. on Very Large Data Bases, 2003, pp. 309–320.

Data Stream Processing

▶ Stream Processing

Data Suppression

▶Data Compression in Sensor Networks

Data Suppression D 97

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

Data Swapping

▶Data/Rank Swapping

Data Time

▶Valid Time

Data Tracking

▶Data Provenance

Data Transformation

▶Data Exchange

Data Translation

▶Data Exchange

Data Types for Moving Objects

▶ Spatio-Temporal Data Types

Data Types in Scientific Data
Management

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Synonyms
Data sorts; Many sorted algebra; Type theory

Definition
In mathematics, logic and computer science, the term

‘‘type’’ has a formal connotation. By assigning a vari-

able to a type in a programming language, one implic-

itly defines constraints on the domains and operations

on the variable. The term ‘‘data type’’ as used in data

management derives from the same basic idea. A data

type is a specification that concretely defines the

‘‘structure’’ of a data variable of that type, the opera-

tions that can be performed on that variable, and any

constraints that might apply to them. For example, a

‘‘tuple’’ is a data type defined as a finite sequence (i.e.,

an ordered list) of objects, each of a specified type; it

allows operations like ‘‘projection’’ popularly used in

relational algebra.

In science, the term ‘‘data type’’ is sometimes used

less formally to refer to a kind of scientific data. For

example, one would say ‘‘gene expression’’ or ‘‘4D

surface mesh of a beating heart’’ is a data type.

Foundations

Commonly Used Data Types in Science Applications

There is a very large variety of data types used in

scientific domains. The following data types are com-

monly used in several different scientific disciplines.

Arrays Multidimensional arrays are heavily used in

many scientific applications; they not only serve as

natural representation for many kinds of scientific

data, but they are supported by programming lan-

guages, object relational databases, many computa-

tional software libraries, as well as data visualization

routines. The most common operation on arrays is

index-based access to data values. However, more com-

plex (and useful) operations can be defined on arrays.

Marathe and Salem [6,7] defined an algebra on multi-

dimensional arrays where a cell may contain a vector of

values. The algebra derives from nested relational alge-

bra, and allows one to perform value-based relational

queries on arrays. Arrays are a very general data

type and can be specialized with additional semantics.

Baumann [1] defined a somewhat different array alge-

bra for modeling spatiotemporal data for a system

called RasDaMan. Reiner et al. [10] present a storage

model for large scale arrays.

Time-Series Temporal data is a very important class

of information for many scientific applications. Time-

series data is a class of temporal data where the value of

a variable may change with a roughly regular interval.

On the other hand, the salary history of an employee is

temporal data but not necessarily time-series data be-

cause the change in salary can happen at arbitrary

frequencies. Data from any sensors (temperature,

98 D Data Swapping

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

seismic, strain gages, electrocardiograms and so on)

come in the form of a stream of explicitly or implicitly

time-stamped sequence numbers (or characters). Time

series data collection and storage is based on granulari-

ty, and often different data are collected at different

granularity that need to be queries together [8]. All

database management systems assume a discrete time

line of various granularities. Granularity is a partition

of a time line, for instance, years, days, hours, micro-

seconds and so forth. Bettini et al have illustrated a

formal notion of time granularities [2]. An interesting

class of operations on time-series data is similarity

between two time-series data. This operation can be-

come complicated because one time series data can be

recorded at a different time resolution than another

and may show local variations, but still have overall

similarity in the shape of the data envelope. This has

prompted the investigation of efficient operators to

perform this similarity. Popivanov and Miller [9] for

example, has developed a measure of time-series simi-

larity based on wavelet decomposition.

Finite Element Meshes Numerical modeling of a

physical system is fundamental to many branches of

science. A well known technique in this domain is

called finite element analysis where a continuous do-

main (e.g., a 3D terrain) is partitioned into a mesh,

and variables are recorded over the nodes of this mesh

or regions covering multiple cells of the mesh. Assume

that Fig. 1 shows the distribution of electric potential

over a continuous surface. Every node of the mesh will

have a (positive or negative) charge value, while a

variable like ‘‘zero charge region’’ will be defined over

regions of the mesh. Figure 1 also illustrates that mesh

is not always regular – a region with a higher variation

of data values will be partitioned into a finer mesh than

a region will less variation.

Finite element meshes are used in many modeling

as well as visualization software. In cases, where the size

of the mesh is very large, and complex manipulation of

data (like repartitioning based on some conditions) is

needed over the elements of the mesh, the existing

software do not offer robust and scalable solutions.

Recently, the CORIE system [5] has developed a sys-

tematic approach to modeling a general data structure

they call a gridfield to handle finite element meshes,

and an algebra for manipulating arbitrary gridded

datasets together with algebraic optimization techni-

ques to improve efficiency of operations.

Graphs Like arrays, graphs form a ubiquitous data

type used in many scientific applications. Eckman

and Brown [4] describes the use of graphs in molecular

and cell biology. In their case, graphs denote relation-

ships between biomolecular entities (A and B) that

constitute molecular interaction networks, represent-

ing information like A is similar to B, A interacts with

B, A regulates the expression of B, A inhibits the

activity of B, A stimulates the activity of B, A binds to

B and so forth. Operators on the graph data type

include those that extract a subgraph from a large

graph, compare one graph to another, transform one

graph to another, decompose a graph into its nodes

and edges, compute the intersection, union, or dis-

junction of two graphs, compute structural derivatives

such as transitive closure and connected components

and so on. In chemistry, data mining techniques are

used to find most frequent subgraphs of a large num-

ber of graphs. Graphs play a dominant role in social

sciences where social network analysts are interested in

the analysis of the connectivity structure of the graphs.

A class of operations of interest centers around the

notion of aggregate properties of the graph structure.

One such property is centrality, a quantity that mea-

sures for each node in a graph a value that denotes how

well the node is connected to the rest of the nodes in

the graph. This class of measures have been investi-

gated in the context of data mining [11] where the task

was to find the most likely subgraph ‘‘lying between’’ a

Data Types in Scientific Data Management. Figure 1.

A finite element mesh.

Data Types in Scientific Data Management D 99

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

set of query-defined nodes in the graph. While there

are many alternate definitions of centrality, it should be

clear that computing these aggregate values on the fly

requires a different kind of data representation and

operators than the previous case, where traversal and

subgraph operations were dominant.

Some Basic Issues about Scientific Data Types

While database systems do not offer extensive support

for scientific data types, there are many specialized

software libraries that do, and hence are widely used

by the scientific community. This leads to a fundamen-

tal problem as observed by the authors of [5]. On the

one hand, the performance of SQL queries for manip-

ulating large numeric datasets is not competitive with

specialized tools. For example, database extensions for

processing multidimensional discrete data can only

model regular, rectilinear grids (i.e., arrays). On the

other hand, specialized software products such as vi-

sualization software libraries are designed to process

arbitrary gridded datasets efficiently. However, no al-

gebra has been developed to simplify their use and

afford optimization. In almost all cases, these libraries

are data dependent – physical changes to data repre-

sentation or organization break user programs. This

basic observation about type specific scientific software

holds for almost all of scientific data types. This calls

for future research in developing storage and an alge-

braic manipulation for scientific data type as well as for

an effort to incorporate in these techniques in scientific

data management systems.

A second basic problem regarding scientific data

types arises from the fact that the same data can be

viewed differently for different forms of analysis and

thus need to support multiple representations and stor-

age or indexes. Consider the data type of character

sequences often used in genomic studies. If S is a se-

quence, it is common to determine is S is ‘‘similar to’’

another sequence T, where Tmay have additional char-

acters and missing characters with respect to S. It has

been shown that a suffix tree like representation of

sequences is suitable for operations of this category.

However, in biology, scientists are also interested in an

arbitrary number of subsequences of on the same

sequences like S to which they would assign an arbitrary

number of properties (called ‘‘annotations’’ in biology)

to each subsequence. Finding similar subsequences is not

a very common operation in this case. The focus is rather

on interval operations like finding all subsequences

overlapping a given interval that satisfies some condi-

tions on their properties, and on finding the 1D spatial

relationships among subsequences that satisfy some

given properties. These operations possibly require a

different storage and access structure such as an interval

tree. Since a scientific application both kinds of opera-

tions would be necessary, it becomes important for the

data management system to handle the multiplicity of

representations and operations so that the right repre-

sentations can be chosen as run time for efficient access.

Key Applications
Bioinformatics, cheminformatics, engineering databases.

Cross-references
▶Graph Data Management in Scientific Applications

▶Mining of Chemical Data

▶ Storage of Large Scale Data for Multidimensional

Data

Recommended Reading
1. Baumann P. A database array algebra for spatio-temporal data and

beyond. In Proc. Fourth Int. Workshop on Next Generation Infor-

mation Technologies and Systems (NGITS 1999). 1999, pp. 76–93.

2. Bettini C., Jajodia S., and Wang S.X. Time Granularities in

Database, Data Mining, and Temporal Reasoning. Springer,

2000.

3. Borgatti S.P. and Everett M.G. A graph-theoretic perspective on

centrality. Soc. Netw., 28(4):466–484, 2006.

4. Eckman B.A. and Brown P.G. Graph data management for mo-

lecular and cell biology. IBM J. Res. Dev., 50(6):545–560, 2006.

5. Howe B. and Maier D. Algebraic manipulation of scientific data

sets. VLDB J., 14(4):397–416, 2005.

6. Marathe A.P. and Salem K. A language for manipulating

arrays. In Proc. 23th Int. Conf. on Very Large Data Bases,

1997, pp. 46–55.

7. Marathe A.P. and Salem K. Query processing techniques

for arrays. SIGMOD Rec., 28(2):323–334, 1999.

8. Merlo I., Bertino E., Ferrari E., Gadia S., and Guerrini G.

Querying multiple temporal granularity data. In Proc. Seventh

Int. Conf. on Temporal Representation and Reasoning (TIME

2000), 2000, pp. 103–114.

9. Popivanov I. andMiller R.J. Similarity search over time-series data

usingwavelets. In Proc. 18th Int. Conf. onData Engineering, 2002,

pp. 212–221.

10. Reiner B., Hahn K., Höfling G., and Baumann P. Hierarchical

storage support and management for large-scale multidimen-

sional array database management systems. In Proc. 13th Int.

Conf. Database and Expert Syst. Appl., 2002, pp. 689 –700.

11. Tong H. and Faloutsos C. Center-piece subgraphs: problem

definition and fast solutions. In Proc. 12th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2006,

pp. 404–413.

100D Data Types in Scientific Data Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

Data Types: Image, Video, Pixel,
Voxel, Frame

▶Biomedical Image Data Types and Processing

Data Uncertainty Management in
Sensor Networks

SUNIL PRABHAKAR
1, REYNOLD CHENG

2

1Purdue University, West Lafayette, IN, USA
2The University of Hong Kong, Hong Kong, China

Synonyms
Imprecise data; Probabilistic data; Probabilistic

querying

Definition
Data readings collected from sensors are often impre-

cise. The uncertainty in the data can arise frommultiple

sources, including measurement errors due to the sens-

ing instrument and discrete sampling of the measure-

ments. For some applications, ignoring the imprecision

in the data is acceptable, since the range of the possible

values is small enough not to significantly affect the

results. However, for others it is necessary for the sensor

database to record the imprecision and also to take

it into account when processing the sensor data.

This is a relatively new area for sensor data manage-

ment. Handling the uncertainty in the data raises chal-

lenges in almost all aspects of data management. This

includes modeling, semantics, query operators and

types, efficient execution, and user interfaces. Probabi-

listic models have been proposed for handling the un-

certainty. Under these models, data values that would

normally be single values are transformed into groups of

data values or even intervals of possible values.

Historical Background
The management of uncertain data in database manage-

ment systems is a relatively new topic of research, espe-

cially for attribute-level uncertainty. Earlier work has

addressed the case of tuple-level uncertainty and also

node-level uncertainty for XML data. The earliest work

on attribute-level uncertainty is in the area of moving

object databases. In order to reduce the need for very

frequent updates from moving objects, the frequency

of the updates is reduced at the expense of uncertainty

in the location of the object (in the database). For

example, the notion of a dead-reckoning update policy

allows an object to not report updates as long as it has

not moved by more than a certain threshold from its last

update.

In most of the earlier works, the use of probability

distributions of values inside an uncertainty interval as

a tool for quantifying uncertainty was not considered.

Further, discussions of queries on uncertain data were

often limited to the scope of aggregate functions or

range queries. A model for probabilistic uncertainty

was proposed for moving-objects and later extended

to general numeric data for sensors in [2]. A probabi-

listic data model for data obtained from a sensor net-

work was described in [6]. Past data are used to train

the model through machine-learning techniques, and

obtain information such as data correlation, time-

varying functions of probability distributions, as well

as how probability distributions are updated when new

sensor values are acquired. Recently, new relational

models have been proposed to manage uncertain

data. These projects include MauveDB [9], Mystiq

[6], Orion [15], and Trio [1]. Each of these projects

aims to develop novel database systems for handling

uncertain data.

Foundations

Modeling Uncertainty

Uncertainty in sensor data is often the result of either

inherent limitations in the accuracy with which the

sensed data is acquired or limitations imposed by

concerns such as efficiency and battery life. Consider

for example, a moving object application that uses GPS

devices to determine the locations of people as they

move about. Although GPS accuracy has improved

significantly, it is well known that the location reported

by a GPS sensor is really an approximation – in fact,

the actual location is likely to be distributed with a

Gaussian probability distribution around the reported

location. This is an example of uncertainty due to the

limitation of the measurement instrument.

Since most sensors are powered by batteries that

can be quickly depleted, most sensor applications take

great pains to conserve battery power. A common

optimization is to not measure and transmit readings

continuously. Instead, the data are sampled at some

reasonable rate. In this case the exact values are only

known at the time instances when samples are taken.

Data Uncertainty Management in Sensor Networks D 101

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:18

Between samples, the application can only estimate

(based on the earlier samples) the values. For certain

sensors, the battery overhead for taking certain types of

measurements is much lower than that for others. Fur-

thermore, the cheaper readings are correlated with more

expensive reading. This allows the sensor to estimate the

costlier reading by taking a cheaper reading and exploit-

ing the correlation. However the estimate is not exact,

which introduces some uncertainty.

Even when sensor readings are precise and fre-

quently sampled, uncertainty can creep in. For exam-

ple, if a given sensor is suspected of being faulty or

compromised, the application may only partially trust

the data provided by the sensor. In these cases, the data

are not completely ignored but their reliability can be

reduced. Alternatively, sensor input may be processed

to generate other information – e.g. face detection on

video data from a sensor. Post processing methods may

not yield certain matches – the face detection algo-

rithm may have a known degree of error or may give a

degree of confidence with which it has detected a face

(or a given person). In these cases, the unreliability of

the raw or processed sensor data can be captured as

uncertain data.

Each of these examples shows that sensor readings

are not precise. Instead of data having a definite dis-

crete value, data has numerous alternative values, pos-

sibly with associated likelihood (probabilities). The

types of uncertainty in sensor data can be divided

into two categories:

� Discrete uncertainty. Instead of a single value, a data

item could take on one out of a set of alternative

values. Each value in this set may further be asso-

ciated with a probability indicating the likelihood

of that particular value being the actual value.

� Continuous uncertainty. Instead of a single value, a

data item can take on any one value within an

interval. In addition, there may be an associated

probability density function (pdf) indicating the

distribution of probabilities over this interval.

In each of these cases, the total probability may or may

not total to 1 for each data item. Several models for

handling probabilistic data based upon the relational

data model have been proposed in the literature. Most

of these models can only handle discrete data wherein

each alternative value for a given data time is stored in

the database along with its associated probability. Extra

rules are imposed over these records to indicate that

only one of the alternative values for a given data time

will actually occur. The Orion model is explicitly

designed for handling continuous uncertainty. Under

this model, uncertain attributes can be expressed as

intervals with associated pdfs or as a discrete set.

Representing probabilities symbolically as pdfs instead

of enumerating every single alternative allows the

model to handle continuous distributions.

Queries

As data becomes imprecise, there is a direct impact on

the nature of query results. Figure 1 shows an example

of points in two-dimensional space, a range query (Q),

and a nearest-neighbor query (q) with two cases:

(i) with no uncertainty; and (ii) with different types

of uncertainty for different objects. Consider the two-

dimensional range query Q shown in Fig. 1a. The

result of the query are the identities of those points

that fall within the range of the query – Points b and d

in this example. If the data is imprecise (as in Fig. 1b),

the data consist of regions of space (and possibly with

associated probability distributions). Some of these

Data Uncertainty Management in Sensor Networks. Figure 1. A two-dimensional example: (a) exact points with no

uncertainty; (b) points with uncertainty.

102D Data Uncertainty Management in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

regions may clearly lie outside the query region and the

corresponding moving objects are thus excluded from

the answer (e.g. Point a). Those that lie completely

within the query region are included in the answer, as

in the case of precise point data (e.g. Point b). However,

those objects that partially overlap the query region

represent points that may or may not actually be part

of the query answer (Points d and e). These points may

be reported as a special subset of the answer. In [14]

Future Temporal Logic (FTL) was proposed for proces-

sing location-based queries over uncertain data with no

probability information. Thus an object is known to be

located somewhere within a given spatial region. Queries

are augmentedwith eitherMUST orMAY keywords.With

the MUST keyword, objects that have even a small

chance of not satisfying a query are not included in the

results. On the other hand, with the MAY keyword, all

objects that have even a remote chance of satisfying a

query are included. FTL therefore provides some quali-

tative treatment for queries over uncertain data.

With the use of probability distributions, it is pos-

sible to give a more quantitative treatment to queries

over uncertain data. In addition to returning the query

answers, probability of each object satisfying the

query can be computed and reported. In order to

avoid reporting numerous low probability results,

queries can be augmented with a probability threshold,

t. Only those objects that have a probability greater

than t of satisfying the query are reported. This notion
of probabilistic queries was introduced in [2]. Most

work on uncertain data management gives a quantita-

tive treatment to queries. It should be noted that the

MUST and MAY semantics can be achieved by choos-

ing the threshold to be 1 or 0, respectively.

An important issue with regards to queries over

uncertain data is the semantics of the query. What

exactly does it mean to execute an arbitrary query

over uncertain data? Most researchers have adopted

the well-established possible worlds semantics (PWS)

[10]. Under PWS, a database with uncertain (probabi-

listic) data consists of numerous probabilistic events.

Depending upon the outcome of each of these events,

the actual database is one out of an exponential num-

ber of possible worlds. For example, consider a single

relation with two attributes: Sensor_id and

reading. Assume there is a single tuple in this

table, with Sensor_id S1, and an uncertain reading

which could be 1 with probability 0.3 and 2 with

probability 0.7. This uncertain database consists of a

single event, and there are two possible worlds: in

one world (W1), the relation consists of the single

tuple <S1, 1>; in world W2, the relation consists of

the single tuple <S1, 2>. Furthermore, the probability

of W1 is 0.3 and that of W2 is 0.7. In general, with

multiple uncertain events, each world corresponds to a

given outcome of each event and the probability of the

world is given by the product of the probabilities of

each event that appears in the world. It should be noted

that there is no uncertainty in a given world. Each

world looks like a regular database relation.

Under PWS, the semantics of a query are as

follows. Executing a query over an uncertain data is

conceptually composed of three steps: (i) Generate all

possible worlds for the given data with associated

probabilities; (ii) execute the query over each world

(which has no uncertainty); and (iii) Collapse the

results from all possible worlds to obtain the uncertain

result to the original query. While PWS provides very

clean semantics for any query over an uncertain data-

base, it introduces challenges for efficient evaluation.

First, if there is continuous uncertainty in the data,

then there are an infinite number of possible worlds.

Even when there are a finite number of possible worlds,

the total number is exponential in the number of events.

Thus it is impractical to enumerate all worlds and

execute the query over each one. Techniques to avoid

enumerating all worlds while computing the query cor-

rectly were proposed in [6]. They showed that there is a

class of safe queries over uncertain data which can be

computed using query plans similar to those for cer-

tain data.

Implementation

With the goal of supporting PWS over uncertain data,

systems that support uncertainty need to define prob-

abilistic versions of database operators such as selec-

tion, projection, cross products, and comparison

operators. Typically this involves operations over the

probability distributions of the data, and tracking

dependencies that are generated as a result of proces-

sing. Efficient management of dependencies between

derived data is among the greatest challenges for un-

certain data management. The base data in an uncer-

tain database are assumed to be independent (with the

exception of explicit dependencies that are expressed in

the base data). However, as these data are used to

produce other data, the derived data may no longer

be independent of each other [6]. These dependencies

Data Uncertainty Management in Sensor Networks D 103

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

affect the correct evaluation of query operators. To

correctly handle dependencies, it is necessary to track

them. Thus the model has to be augmented to store

not only the data, but also dependencies among them.

In the Trio system this information is called Lineage,

the Orion model calls it History, and the MauveDB

model handles dependencies using factor tables. As

data is processed multiple times, the size and complex-

ity of this dependency information can grow signifi-

cantly. Efficient handling of this information is

currently an active area of research.

Query processing algorithms over uncertain data

have been developed for range queries [13], nearest-

neighbor queries [2,11], and skyline queries [12]. Effi-

cient join algorithms over uncertain data have been

proposed in [3]. Despande et al. [7] studied the problem

of answering probabilistic queries over data streams.

They proposed algorithms to return results with mini-

mum resource consumption. In [5], Cormode et al.

proposed space- and time-efficient algorithms for

approximating complex aggregate queries over probabi-

listic data streams. For queries that cannot be correctly

processed using these modified operators and safe query

plans, one alternative is to use approximation techniques

based upon sampling. Samples of possible worlds can be

drawn using the probabilities of the various events that

make up the uncertain database. The query is then

executed on these sample worlds and the results are

aggregated to obtain an approximation of the true

answer.

Indexing Indexing is a well known technique for im-

proving query performance. Indexing uncertain data

presents some novel challenges. First, uncertain data

do not have a single value as is the case for traditional

data. Consequently indexes such as B+-trees (and also

hash indexes, since hashing requires exact matches)

are inapplicable. By treating the uncertain intervals

(regions) as spatial data, it is possible to use spatial

indexes, such as R-trees or interval indexes, over uncer-

tain attributes. These indexes can provide pruning based

upon the extent and location of the uncertainty intervals

alone. However, these index structures do not consider

probability information, and are therefore incapable

of exploiting probability for better evaluation. This is

especially true in the case for probabilistic threshold

queries.

There has been some recent work on developing index

structures for uncertain data [4,11,13]. These index struc-

tures take the probability distribution of the underlying

data into account. In particular, the Probability Thresh-

old Index (PTI), is based on the modification of a

one-dimensional R-tree. Each entry in this R-tree vari-

ant is augmented with multiple Minimum Bounding

Rectangles (MBRs) to facilitate pruning. The extra

MBRsarecalledx-bounds. Consider a one-dimensional

data set. An MBR can been viewed as a pair of

bounds: a left bound that is the right-most line that

lies to the left of every object in the given node; and a

right bound that is the left-most line that lies to the

right of every object in the given node. The notion of

x-bounds is similar, except that a left-x-bound is the

right-most line that ensures that no object in the given

node has a probability greater than x of lying to the left

of this bound. The right-x-bound is similarly defined.

Figure 2 shows an example of these bounds. Using these

Data Uncertainty Management in Sensor Networks. Figure 2. An example of X-Bounds for PTI.

104D Data Uncertainty Management in Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

bounds it is possible to achieve greater pruning as shown

by the range query in the figure. This query has a thresh-

old bound of 0.4. Even though the query intersects

with overall MBR, using the right-0.4-bound it is clear

that there is no need to visit this subtree for this query.

Since the query does not cross the right-0.4-bound, there

can be no objects under this node that have a probability

greater than 0.4 of overlapping with the query.

Key Applications
Uncertainty in sensor data is found in virtually all

applications of sensors. For many applications, how-

ever, it may be acceptable to ignore the uncertainty and

treat a given value as a reasonable approximation of the

sensor reading. For others, such approximations and

the resulting errors in query answers are unacceptable.

In order to provide correct answers for these applica-

tions it is necessary to handle the uncertainty in the

data. Examples include location-based services and

applications that introduce uncertainty in order to

provide some degree of privacy.

Future Directions
Work on the problem of handling uncertain data in

sensor databases has only just begun. Much remains to

be done. A long-term goal of several current projects is

the development of a full-fledged database manage-

ment system with native support for uncertain data as

first-class citizens. Examples of current systems include

Orion, MauveDB, Mystiq, and Trio. Immediate steps in

building such systems include the development of

query optimization techniques. This includes cost esti-

mation methods, query plan enumeration techniques,

and approximate query evaluation methods. In addi-

tion, an important facet of system development is the

user interface. Interesting issues for user interfaces in-

clude: How do users make sense of the probabilistic

answers? How do they input probabilistic data and pose

queries? Are new query language constructs needed?

Should the probabilistic nature of the data be hidden

from the user or not?

Cross-references
▶Data Storage and Indexing in Sensor Networks

▶ Location-Based Services

▶Moving Objects Databases and Tracking

▶ Probabilistic Databases

▶R-Tree (and family)

Recommended Reading
1. Benjelloun O., Sarma A.D., Halevy A., and Widom J. ULDBs:

databases with uncertainty and lineage. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006, pp. 953–964.

2. Cheng R., Kalashnikov D., and Prabhakar S. Evaluating proba-

bilistic queries over uncertain data. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003.

3. Cheng R., Singh S., Prabhakar S., Shah R., Vitter J., and Xia Y.

Efficient join processing over uncertain data. In Proc. ACM 15th

Conf. on Information and Knowledge Management, 2006.

4. Cheng R., Xia Y., Prabhakar S., Shah R., and Vitter J. Efficient

indexing methods for probabilistic threshold queries over un-

certain data. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004.

5. Cormode G. and Garofalakis M. Sketching probabilistic data

streams. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2005, pp. 143–154.

6. Dalvi N. and Suciu D. Efficient query evaluation on probabilistic

databases. In Proc. 30th Int. Conf. on Very Large Data Bases.

2004.

7. Despande A., Guestrin C., Hong W., and Madden S. Exploiting

correlated attributes in acquisitional query processing. In Proc.

21st Int. Conf. on Data Engineering, 2005.

8. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-driven data acquisition in sensor networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

9. Deshpande A. and Madden S. MauveDB: supporting model-

based user views in database systems. In Proc. ACM SIGMOD

Int. Conf. Management of Data. 2006, pp. 73–84.

10. Halpern J.Y. Reasoning about uncertainty. MIT, Cambridge,

USA, 2003.

11. Ljosa V. and Singh A. ALPA: indexing arbitrary probability dis-

tributions. In Proc. 23rd Int. Conf. on Data Engineering, 2007.

12. Pei J., Jiang B., Lin X., and Yuan Y. Probabilistic skylines on

uncertain data. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

13. Singh S., Mayfield C., Prabhakar S., Shah R., and Hambrusch S.,

Indexing uncertain categorical data. In Proc. 23rd Int. Conf. on

Data Engineering, 2007.

14. Sistla P.A., Wolfson O., Chamberlain S., and Dao S. Querying the

uncertain positions of moving objects. Temporal databases: re-

search and practice 1998.

15. The Orion Uncertain Database Management System. Available

at: http://orion.cs.purdue.edu/

Data Utility Measures

▶ Information Loss Measures

Data Visualiyations

▶Dense Pixel Displays

Data Visualiyations D 105

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

Data Visualization

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Graphic representation of data; Information

visualization

Definition
Data Visualization: (i). Interpreting information in

visual terms by forming a mental picture based on

data. (ii). Applying suitable methods to put data into

visible form.

This definition is consistent with the Oxford

English Dictionary definitions of ‘data’: Facts, esp.

numerical facts, collected together for reference or infor-

mation and of ‘visualization’: (i) The action or fact of

visualizing; the power or process of forming a mental

picture or vision of something not actually present to

the sight; a picture thus formed. (ii) The action or pro-

cess of rendering visible.

The first part of the definition refers to the human

cognitive activity of forming a mental picture, inde-

pendent of how something is represented. If this

is the only activity of interest, then the term ‘infor-

mation visualization’ is more commonly used. Simi-

larly, ‘data visualization’ is often reduced to the second

part of the definition.

Some authors explicitly include the computer and

cognition in their definition of visualization: The use of

computer supported, interactive, visual representations of

data to amplify cognition [1]. Others emphasize how

data visualization differs from information visualiza-

tion: data visualization is for exploration, for uncovering

information, as well as for presenting information. It is

certainly a goal of data visualization to present any

information in the data, but another goal is to display

the raw data themselves, revealing the inherent variabil-

ity and uncertainty [16].

Historical Background
Up to the 15th Century. Over eight thousand year old

maps, carved in stone, suggest that the visualization of

information is as old as civilization (Fig. 1). The ear-

liest known data visualization, a time series plot,

depicting the changing values of several planets’ posi-

tions, is estimated to have appeared in the tenth

century (Fig. 2). In the middle of the fourteenth cen-

tury, Nicole Oresme introduced an early form of coor-

dinate graphing. He marked points in time along a

horizontal line and for each of these points he drew a

bar whose length represented the object’s velocity at

that moment.

1500–1800. Meteorological maps, showing the

prevalence of winds on a geographical map, date back

to 1686. In 1782, Marcellin du Carla-Boniface issues

the first modern topographical maps (Fig. 3) and

August Crome prints the first thematic map, showing

economic production data across Europe. Also in this

time period appear the first graphics used for descrip-

tive statistics, for example Christian Huygens’ plot of a

function to graphically determine the years of life

remaining given the current age, published in 1669.

William Playfair, an English political economist, laid

the ground for business graphics in 1786 with his Com-

mercial and Political Atlas in which he documented

commercial and political time series using curves, bar

charts and column charts (Fig. 4). Playfair is also

Data Visualization. Figure 1. Ca. 6200 BC. The oldest

known map, from a museum at Konya, Turkey.

Data Visualization. Figure 2. Ca. 950. First known

graphic of a time series visualizing data of planetary orbits.

106D Data Visualization

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

arguably the inventor of the pie chart (Statistical Bre-

viary, 1801).

1800–1949. Scientists and civil servants are begin-

ning to use thematic maps and statistical graphics to

support their arguments. Famous examples are the dot

map that Dr. John Snow drew by plotting the locations

of deaths from cholera in central London during the

1854 epidemic (Fig. 5) and Florence Nightingale’s

comparison of deaths due to injuries in combat and

deaths due to illness in an army hospital for which she

invented her own graphic, the Polar-Area Diagram

(Fig. 6). The second half of the nineteenth century

saw a 50 year long debate on the standardization of

statistical maps and diagrams which failed to produce

concrete results. Early in the twentieth century there

followed a 50 year period of consolidation where the

accomplishments of the previous one hundred years

became widely accepted.

1950–1975. Researchers started to face enormous

challenges when analyzing the deluge of data produced

by electronic equipment that was put in use after the

Second World War. In this environment, John Tukey

led the way, established the field of Exploratory Data

Analysis [15] (Fig. 8) and sparked a flurry of activities

that have and still are producing many novel graphical

methods [5,8], including techniques that marked the

beginning of dynamic statistical graphics. In the 1960s,

when signals from remote sensing satellites needed to

be processed graphically, geographers started to com-

bine spatially referenced data, spatial models and map

based visualizations in geographic information sys-

tems. The French cartographer Jacques Bertin worked

on a theory of graphics [3] and introduced with his

reorderable matrix an elegant technique to graphically

process quantitative data [2] (Fig. 7).

From 1975–present. Fast, interactive computers

connected to a high resolution color graphic display

created almost unlimited possibilities for scientific

visualizations of data generated by imaging techniques,

computational geometry or physics based models [10].

Event oriented programming made it easy to link dif-

ferent data displays, encouraging new techniques such

as brushing [5]. Statisticians started to tackle high

dimensional data by interactively ‘touring’ low dimen-

sional projections. Large display areas encouraged

graphic methods based on multiple plots [5], space

filling techniques (e.g. mosaic plots) and graphics

with high data densities. For an overview the reader

is referred to [1,5,16]. In the early 1990s, virtual

Data Visualization. Figure 3. 1782. Detail of Marcellin du

Carla-Boniface’s topological map.

Data Visualization. Figure 4. 1786. William Playfair’ chart, depicting prices, wages, and the reigns of British kings and

queens.

Data Visualization D 107

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

environments were introduced as methods to immer-

sively investigate scientific data [4]. (Fig. 10) Another

way to overcome the restrictions of two dimensional

displays was shown by Alfred Inselberg with his con-

cept of parallel coordinates [9], today a ubiquitous

method to visualize multidimensional data (Fig. 9).

To further explore the history of data visualization

the reader is referred to [7,14].

Foundations
The literature on scientific fundamentals of data visua-

lizations fall into three independent but related fields:

(i) computer graphics, (ii) presentation techniques,

(iii) cognition.

Computer graphics, primarily the domain of

computer scientists and mathematicians, builds on

elementary principles in the following broad areas:

visualization algorithms and data structures, modeling

and (numerical) simulation, (volume) rendering, par-

ticle tracing, grid generation, wavelet transforms, mul-

tiscale and multiresolution methods as well as optics

and color theory. A more exhaustive treatment of

computer graphics fundamentals related to data visu-

alization can be found in [10,12,17].

Most of the literature on presentation techniques

can be found in statistics and computer science al-

though economists and cartographers also made sub-

stantial contributions. The publications of John Tukey

[15] and Andrew Ehrenberg [6] show how tables can

be used as simple but effective presentation technique

to organize data and demonstrate the method’s useful-

ness for statistics and data analysis. In 1967 Jacques

Bertin formulated a comprehensive theory for a graph-

ical system [3] and subsequently applied parts of it to

graphic information processing [2]. Other classics were

published in 1983 when William Cleveland wrote an

excellent methodological resource for the design of

plots and Edward Tufte published his review on the

graphical practice to visualize quantitative data. A ref-

erence, featuring perhaps the most complete listing

of graphs, maps, tables, diagrams, and charts has

been compiled by Robert Harris [8]. Parallel coordi-

nates is one of the leading methodologies for multidi-

mensional visualization [9]. Starting from geometric

foundations, Al Inselberg explains how n-dimensional

lines and planes can be represented in 2D through

parallel coordinates. The most recent publications ex-

plain mostly dynamic, interactive methods. Antony

Unwin concentrates on graphics for large datasets

[16] while Robert Spence favors techniques that allow

user interaction [13].

Ultimately, to be of any use, data visualization must

support human cognition. The challenges this raises

are of interest to cognitive scientists, psychologists, and

computer scientists specializing in human-computer

interaction. Rudolf Arnheim investigated the role of

visual perception as a crucial cognitive activity of

reasoning [1]. Also in the domain of ‘visual thinking’

Data Visualization. Figure 5. 1854. Detail of the

pioneering statistical map drawn by John Snow to

illustrate patterns of disease.

Data Visualization. Figure 6. 1858. Polar-Area diagram,

invented by Florence Nightingale to convince authorities

of the need to improve sanitary conditions in hospitals.

108D Data Visualization

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:19

is the work of Colin Ware [17] as he, among other

contributions, proposes a foundation for a science of

data visualization based on human visual and cognitive

processing. Card et al. discuss topics of computer

graphics as well as presentation techniques with a

focus on how different methods support cognition. A

more general approach worth mentioning is taken by

Donald Norman when he argues that people deserve

information appliances that fit their needs and

lives [11].

To summarize, most of the literature on data visu-

alization describes the efforts of computer scientists

and cognitive scientists to develop new techniques for

people to interact with data, from small statistical

datasets to large information environments.

Key Applications
There are few – if any – application areas that do not

benefit from data visualization simply because graphi-

cal methods assist the fundamental human activity of

cognition and because in an increasingly digital world

people are flooded with data. In the following four

areas, data visualization plays a key role:

Statistics

Descriptive statistics has traditionally been the stron-

gest customer for data visualization, primarily through

its application to support exploratory data analysis.

The use of data visualization as part of descriptive

statistics has become a matter of fact wherever data

are being collected.

Information Systems

Data visualization has become an important compo-

nent in the interface to information systems simply

Data Visualization. Figure 7. 1967. Bertin’s reorderable matrix, a visualization method embedded in a comprehensive

theory of graphics.

Data Visualization. Figure 8. 1977. Tukey’s

box-and-whisker plot graphically summarizes effectively

key characteristics of the data’s distribution.

Data Visualization D 109

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:20

because information is stored as data. The process of

recovering information from large and complex

databases often depends on data mining techniques.

Visual data mining – a new and rapidly growing field –

supports people in their data exploration activity with

graphical methods. Geographic information systems

have traditionally been key applications, particularly

for map-based visualizations.

Documentation

Ever since thematic maps and statistics graphics be-

came popular with commerce, government agencies

and the sciences, data visualization methods are being

used routinely to illustrate that part of documents

which deal with data.

Computational Science

Progress in solving scientific and engineering problems

increasingly depends on powerful software for model-

ing and simulation. Nevertheless, success in the end

often only comes with effective scientific visualizations.

Data Visualization. Figure 9. 1999. A continued mathematical development of parallel coordinates led to software for

‘visual data mining’ in high dimensional data sets.

Data Visualization. Figure 10. 2006. Immersive

Geovisualization at West Virginia University.

110D Data Visualization

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:20

Computational science as a key application for data

visualization is a strong driving force behind the devel-

opment of graphical methods for huge amounts of

high dimensional data.

Cross-references
▶Chart

▶Comparative Visualization

▶Dynamic Graphics

▶ Exploratory Data Analysis

▶Graph

▶Methods

▶Multivariate Visualization

▶ Parallel Coordinates

▶Result Display

▶ Symbolic Representation

Recommended Reading
1. Arnheim R. Visual Thinking. University of California Press,

Berkeley, CA, 1969.

2. Bertin J. Graphics and Graphic Information-Processing. Walter

de Gruyter, Berlin/New York, 1981.

3. Bertin J. Semiology of Graphics (translation by W.J. Berg).

University of Wisconsin Press, USA, 1983.

4. Card S.K., MacKinlay J.D., and Shneiderman B. Readings in

Information Visualization: Using Vision to Think. Morgan

Kaufmann, San Francisco, CA, 1999.

5. Cleveland W.S. The Elements of Graphing Data (Revised Edi-

tion). Hobart Press, Summit, NJ, 1994.

6. Ehrenberg A.S.C. A Primer in Data Reduction. Wiley, Chichester,

UK, 1982.

7. Friendly M. The History of Thematic Cartography, Statistical

Graphics, and Data Visualization.

8. Harris R.L. Information Graphics: A Comprehensive Illustrated

Reference. Oxford University Press, New York, 1999.

9. Inselberg A. The plane with parallel coordinates. The Visual

Comput., 1(2):69–91, 1985.

10. Nielson G.M., Hagen H., and Müller H. Scientific Visualization:

Overviews, Methodologies, Techniques. IEEE Computer Society

Press, USA, 1997.

11. Norman D.A. The Invisible Computer. The MIT Press, 1998.

12. Post F.H., Nielson G.M., and Bonneau, G.-P. (eds.). Data Visu-

alization: The State of the Art. Kluwer Academic, 2002.

13. Spence R. Information Visualization: Design for Interaction

(2nd edn.). Pearson Education, 2007.

14. Tufte E.R. The Visual Display of Quantitative Information. Gra-

phics Press, 1983.

15. Tukey J.W. Exploratory Data Analysis. Addison-Wesley, Reading,

MA, 1977.

16. Unwin A., Theus M., and Hofmann H. Graphics of Large Data-

sets: Visualizing a Million. Springer Series in Statistics and

Computing, Berlin, 2006.

17. Ware C. Information Visualization: Perception for Design (2nd

edn.). Morgan Kaufmann, 2004.

Data Warehouse

IL-YEOL SONG

Drexel University, Philadelphia, PA, USA

Synonyms
Information repository

DW

Definition
A data warehouse (DW) is an integrated repository of

data put into a form that can be easily understood,

interpreted, and analyzed by the people who need to

use it to make decisions. The most widely cited defini-

tion of a DW is from Inmon [2] who states that ‘‘a data

warehouse is a subject-oriented, integrated, nonvola-

tile, and time-variant collection of data in support of

management’s decisions.’’

The subject-oriented property means that the data

in a DW are organized around major entities of

interests of an organization. Examples of subjects are

customers, products, sales, and vendors. This property

allows users of a DW to analyze each subject in depth

for tactical and strategic decision-making.

The integrated property means that the data in a

DW are integrated not only from all operational data-

base systems but also some meta-data and other

related external data. When data are moved from

operational databases to a DW, they are extracted,

cleansed, transformed, and then loaded. This makes a

DW a centralized repository of all the business data

with common semantics and formats.

The nonvolatile property means that the data in a

DWare not usually updated. Once the data are loaded

into a DW, they are not deleted. Any change to the data

that were already moved to a DW is recorded in the

form of a snapshot. This allows a DW to keep track of

the history of the data.

The time-variant property means that a DWusually

contains multiple years of data. It is not uncommon

for a DW to contain data for more than ten years.

This allows users of a DW to analyze trends, patterns,

correlations, rules, and exceptions from a historical

perspective.

Key Points
DWs have become popular for addressing the needs

of a centralized repository of business data in decision-

Data Warehouse D 111

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:20

making. An operational database system, also known as

an online transaction processing (OLTP) system, sup-

ports daily business processing. On the other hand, a

DW usually supports tactical or strategic business pro-

cessing for business intelligence. While an OLTP system

is optimized for short transactions, a DW system is

optimized for complex decision-support queries. Thus,

a data warehouse system is usually maintained separate-

ly from operational database systems. This distinction

makes DW systems different from OLTP systems in

many aspects.

The data in a DW are usually organized in formats

for easy access and analysis in decision-making. The

most widely used data model for DWs is called the

dimensional model or the star schema [3]. A dimen-

sional model consists of two types of entities – a fact

table and many dimensions. A fact table stores transac-

tional or factual data called measures that are analyzed.

Examples of fact tables are order, sale, return, and claim.

A dimension represents an axis that analyzes the fact

data. Examples of dimensions are time, customer, prod-

uct, promotion, store, and market. The dimensional

model allows users of a data warehouse to analyze the

fact data from any combination of dimensions. Thus, a

dimensional model simplifies end-user query proces-

sing and provides a multidimensional analysis space

within a relational database.

The different goals and data models of DWs need

special access, implementation methods, maintenance,

and analysis methods, different from those of OLTP

systems [1]. Therefore, a data warehouse requires an

environment that uses a blend of technologies.

Cross-references
▶Active and Real-Time Data Warehousing

▶Business Intelligence

▶Data Mart

▶Data Mining

▶Data Warehouse Life-cycle and Design

▶Data Warehouse Maintenance

▶Data Warehouse Metadata

▶Data Warehouse Security

▶Data Warehousing and Quality Data Management

for Clinical Practice

▶Data Warehousing for Clinical Research

▶Data Warehousing Systems: Foundations and

Architectures

▶Dimension

▶ Evolution and versioning

▶Multidimensional Modeling

▶On-Line Analytical Processing

Recommended Reading
1. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology, SIGMOD Rec., 26(1):65–74, 1997.

2. Inmon W.H. Building the Data Warehouse, 3rd edn. Wiley, New

York, 2002.

3. Kimball R. and Ross M. The Data Warehouse Toolkit, 2nd edn.

Wiley, New York, 2002.

Data Warehouse Back Stage

▶ Extraction, Transformation and Loading

Data Warehouse Design
Methodology

▶Data Warehouse Life-Cycle and Design

Data Warehouse Life-Cycle and
Design

MATTEO GOLFARELLI

University of Bologna, Bologna, Italy

Synonyms
Data Warehouse design methodology

Definition
The term data warehouse life-cycle is used to indicate

the phases (and their relationships) a data warehouse

system goes through between when it is conceived and

when it is no longer available for use. Apart from the

type of software, life cycles typically include the follow-

ing phases: requirement analysis, design (including

modeling), construction, testing, deployment, opera-

tion, maintenance, and retirement. On the other hand,

different life cycles differ in the relevance and priority

with which the phases are carried out, which can vary

according to the implementation constraints (i.e., eco-

nomic constraints, time constraints, etc.) and the soft-

ware specificities and complexity. In particular, the

specificities in the data warehouse life-cycle derive

from the presence of the operational database that

112D Data Warehouse Back Stage

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:20

feeds the system and by the extent of this kind of system

that must be considered in order to keep the cost and

the complexity of the project under control.

Although the design phase is only a step within the

overall life cycle, the identification of a proper life-cycle

model and the adoption of a correct design methodology

are strictly related since each one influences the other.

Historical Background
The data warehouse (DW) is acknowledged as one of

the most complex information system modules, and its

design andmaintenance is characterized by several com-

plexity factors, which determined, in the early stages of

this discipline, a high percentage of project failures. A

clear classification of the critical factors of Data Ware-

housing projects was already available in 1997 when

three different risk categories were identified [1]:

� Socio-technical: DW projects have deep impact on

the decisional processes and political equilibriums,

thus reducing the power of some stakeholders

who will be willing to interfere with the project.

For example, data ownership is power within an

organization. Any attempt to share or take control

over somebody else’s data is equivalent to a loss of

power of this particular stakeholder. Furthermore,

no division or department can claim to possess

100% clean, error-free data. The possibility of re-

vealing the quality problems of data within the

information system of the department is definitely

frustrating for the stakeholders affected.

� Technological: DW technologies are continuously

evolving and their features are hard to test. As a

consequence, problems related to the limited scal-

ability of the architecture, difficulty in sharing

meta-data between different components and the

inadequate expertise of the programmers may

hamper the projects.

� Design: designing a DW requires a deep knowledge

of the business domain. Some recurrent errors are

related to limited involvement of the user commu-

nities in the design as well as the lack of a deep

analysis of the quality of the source data. In both

these cases, the information extracted from the DW

will have a limited value for the stakeholders since

they will turn out to be unreliable and outside the

user focus.

The awareness of the critical nature of the problems

and the experience accumulated by practitioners

determined the development of different design meth-

odologies and the adoption of proper life cycles that

can increase the probability of completing the project

and fulfill the user requirements.

Foundations
The choice of a correct life cycle for the DWmust take

into account the specificities of this kind of systems,

which according to [2], are summarized as follows:

1. DWs rely on operational databases that represent

the sources of the data.

2. User requirements are difficult to collect and usu-

ally change during the project.

3. DW projects are usually huge projects: the average

time for their construction is 12–36 months and

their average cost ranges from 0.5 to 10 million

dollars.

4. Managers are demanding users that require reliable

results in a time compatible with business needs.

While there is no consensus on how to address points

(i) and (ii), the DW community has agreed on an

approach that cuts down cost and time to make a

satisfactory solution available to the final users. Instead

of approaching the DW development as a whole in a

top-down fashion, it is more convenient to build it

bottom-up working on single data marts [3]. A data

mart is part of a DW with a restricted scope of content

and support for analytical processing, serving a single

department, part of an organization, and/or a particu-

lar data analysis problem domain. By adopting a bot-

tom-up approach, the DW will turn out to be the

union of all the data marts.

This iterative approach promises to fulfill require-

ment (iii) since it cuts down development costs and

time by limiting the design and implementation efforts

to get the first results. On the other hand, requirement

(iv) will be fulfilled if the designer is able to implement

first those data marts that are more relevant to the

stakeholders.

As stated by many authors, adopting a pure

bottom-up approach presents many risks originating

from the partial vision of the business domain that will

be available at each design phase. This risk can be

limited by first developing the data mart that plays a

central role within the DW, so that the following can be

easily integrated into the existing backbone; this kind

of solution is also called bus architecture. The basis for

designing coherent data marts and for achieving an

Data Warehouse Life-Cycle and Design D 113

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:20

integrated DW is the agreement of all the design teams

on the classes of analysis that are relevant for the

business. This is primarily obtained by the adoption

of conformed dimensions of analysis [4]. A dimension is

conformed when two copies of the dimensions are

either exactly the same (including the values of the

keys and all the attributes), or else one dimension is a

proper subset of the other. Therefore, using the same

time dimension in all the data marts implies that

the data mart teams agree on a corporate calendar.

All the data mart teams must use this calendar and

agree on fiscal periods, holidays, and workdays. When

choosing the first data mart to be implemented the

designer will probably cope with the fact that the most

central data mart (from a technical point of view) is

not the most relevant to the user. In that case, the

designer choice must be a trade-off between technical

and political requirements.

Based on these considerations the main phases

for the DW life-cycle can be summarized as follows:

1. DW planning: this phase is aimed at determin-

ing the scope and the goals of the DW, and deter-

mines the number and the order in which the data

marts are to be implemented according to the busi-

ness priorities and the technical constraints [5]. At

this stage the physical architecture of the system

must be defined too: the designer carries out the

sizing of the system in order to identify appropriate

hardware and software platforms and evaluates the

need for a reconciled data level aimed at improving

data quality. Finally, during the project planning

phase the staffing of the project is carried out.

2. Data mart design and implementation: this macro-

phase will be repeated for each data mart to be

implemented and will be discussed in more detail

in the following. At every iteration, a new data mart

is designed and deployed. Multidimensional model-

ing of each data mart must be carried out

considering the available conformed dimensions

and the constraints derived from previous

implementations.

3. DW maintenance and evolution: DW maintenance

mainly concerns performance optimization that

must be periodically carried out due to user re-

quirements that change according to the problems

and the opportunities the managers run into. On

the other hand, DWevolution concerns keeping the

DW schema up-to-date with respect to the business

domain and the business requirement changes: a

manager requiring a new dimension of analysis for

an existing fact schema or the inclusion of a new

level of classification due to a change in a busi-

ness process may cause the early obsolescence of

the system (Fig. 1).

DW design methodologies proposed in the literature

mainly concern phase 2 and thus should be better

referred to as data mart design methodologies. Though

a lot has been written about how a DW should be

designed, there is no consensus on a design method

yet. Most methods agree on the opportunity of distin-

guishing between the following phases:

� Requirement analysis: identifies which information

is relevant to the decisional process by either con-

sidering the user needs or the actual availability of

data in the operational sources.

� Conceptual design: aims at deriving an implemen-

tation-independent and expressive conceptual

schema for the DW, according to the conceptual

model chosen (see Fig. 2).

� Logical design: takes the conceptual schema and cre-

ates a corresponding logical schema on the chosen

logical model. While nowadays most of the DW

systems are based on the relational logical model

(ROLAP), an increasing number of software vendors

are proposing also pure or mixed multidimensional

Data Warehouse Life-Cycle and Design. Figure 1. The main phases for the DW life-cycle.

114D Data Warehouse Life-Cycle and Design

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

solutions (MOLAP/HOLAP). Figure 3 reports the

relational implementation of the SALE fact based

on the well-known star schema [4].

� ETL process design: designs the mappings and the

data transformations necessary to load into the

logical schema of the DW the data available at

the operational data source level.

� Physical design: addresses all the issues specif-

ically related to the suite of tools chosen for

implementation – such as indexing and allocation.

Requirement analysis and conceptual design play a cru-

cial role in handling DW peculiarities (i) and (ii) des-

cribed at the beginning of the present section. The lack of

settled user requirements and the existence of operation-

al data sources that fix the set of available information

make it hard to develop appropriate multidimensional

schemata that on the one hand fulfill user requirements

and on the other can be fed from the operational data

sources. Two different design principles can be identi-

fied: supply-driven and demand-driven [5].

� Supply-driven approaches [3,6] (also called data-

driven) start with an analysis of operational data

sources in order to reengineer their schemata and

identify all the available data. Here user involve-

ment is limited to select which chunks of the avail-

able data are relevant for the decision-making

process. While supply-driven approaches simplify

the design of the ETL because each piece of data

in the DW corresponds to one or more attributes

of the sources, they give user requirements a sec-

ondary role in determining the information con-

tents for analysis as well as giving the designer little

support in identifying facts, dimensions, and mea-

sures. Supply-driven approaches are feasible when

all of the following are true: (i) detailed knowledge

of data sources is available a priori or easily achiev-

able; (ii) the source schemata exhibit a good degree

of normalization; and (iii) the complexity of source

schemata is not too high.

� Demand-driven approaches [7,8] start from deter-

mining the information requirements of busi-

ness users. The emphasis is on the requirement

analysis process and on the approaches for facili-

tating user participations. The problem of mapping

these requirements onto the available data sources

is faced only a posteriori, and may fail thus deter-

mining the users’ disappointment as well as a waste

of the designer’s time.

Based on the previous approaches some mixed model-

ing solutions have been proposed in the last few years

in order to overcome the weakness of each pure

solution.

Data Warehouse Life-Cycle and Design. Figure 2. A conceptual representation for the SALES fact based on the DFM

model [6].

Data Warehouse Life-Cycle and Design D 115

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

Conceptual design is widely recognized to be the

necessary foundation for building a DW that is well-

documented and fully satisfies the user requirements.

The goal of this phase is to provide the designer with a

high level description of the data mart possibly at

different levels of detail. In particular, at the DW level

it is aimed at locating the data mart within the overall

DW picture, basically characterizing the class of infor-

mation captured, its users, and its data sources. At

the data mart level, a conceptual design should identify

the set of facts to be built and their conformed dimen-

sions. Finally, at the fact level a nonambiguous

and implementation-independent representation of

each fact should be provided. If a supply driven ap-

proach has been followed for requirement analysis, the

conceptual model at the schema level can be semi-

automatically derived from the source schemata by

identifying the many-to-one relationship [3,6].

Concerning the formalism to be adopted for represent-

ing information at this level, researchers and practi-

tioners agreed that, although the E/R model has

enough expressivity to represent most necessary con-

cepts, in its basic form, it is not able to properly

emphasize the key aspects of the multidimensional

model. As a consequence many ad-hoc formalisms has

been proposed in the last years (e.g. [6,9]) and a com-

parison of the different models done by [10] pointed

out that, abstracting from their graphical form, the core

expressivity is similar, thus proving that the academic

community reached an informal agreement on the re-

quired expressivity.

Logical design is the phase that most attracted the

interest of researchers in the early stage of Data

Warehousing since it strongly impacts the system per-

formance. It is aimed at deriving out of the conceptual

schemata the data structure that will actually implement

the data mart by considering some sets of constraints

(e.g., concerning disk space or query answering time) [11].

Logical design ismore relevant when a relational DBMS

is adopted (ROLAP) while in the presence of a native

multidimensional DBMS (MOLAP) the logical model

derivation is straightforward. On the other hand, in

ROLAP system, the choices concern, for example the

type of schema to be adopted (i.e., star o snowflake), the

specific solution for historicization of data (i.e., slowly

changing dimensions) and schema.

ETL process design is considered to be the most

complex design phase and usually takes up to 70%

of the overall design time. Complexity arises from

the need of integrating and transforming heterogeneous

and inconsistent data coming from different data

sources. This phase also includes the choice of the

strategy for handling wrong and incomplete data (e.g.

discard, complete). Obviously, the success of this phase

impacts the overall quality of DW data. Different from

other design phases little efforts have been made in the

literature to organize and standardize this phase [12,13],

and actually none of the formalisms proposed have been

widely adopted in real projects that usually rely on the

graphical representation obtained from the ETL tool for

documentation purposes.

Finally, during physical design, the logical structure is

optimized based on the means made available by

the adopted suite of tools. Specialized DBMSs usually

include ad hoc index types (e.g., bitmap index

and join index) and can store the meta-knowledge

Data Warehouse Life-Cycle and Design. Figure 3. A relational implementation of the SALE fact using the well-known

star schema.

116D Data Warehouse Life-Cycle and Design

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

necessary to automatically rewrite a given query on

the appropriate materialized view. In DW systems, a

large part of the available disk space is devoted to opti-

mization purposes and it is a designer task to find out its

assignment to the different optimization data structures

in order to maximize the overall performance [14].

Despite the basic role played by a well-structured

methodological framework in ensuring that the DW

designed fully meets the user expectations, only a few

of the cited papers cover all the design phases [6,13].

In addition, an influential book, particularly from the

practitioners’ viewpoint, is the one by Kimball [4],

which discusses the major issues arising in the design

and implementation of data warehouses. The book

presents a case-based approach to data mart design

that is bottom-up oriented and adopts a mixed ap-

proach for collecting user requirements.

Finally it should be noted that, though most ven-

dors of DW technology propose their own CASE solu-

tions (that are very often just wizards capable of

supporting the designer during the most tedious and

repetitive phases of design), the only tools that cur-

rently promise to effectively automate some phases of

design are research prototypes. In particular, [3,15],

embracing the supply-driven philosophy, propose

two approaches for automatically deriving the concep-

tual multidimensional schema from the relational data

sources. On the contrary the CASE tool proposed

in [12] follows the demand-driven approach and

allows the multidimensional conceptual schemata to

be drawn from scratch and to be semi-automatically

translated into the target commercial tool.

Key Applications
The adoption of an appropriate methodological app-

roach during design phases is crucial to ensure the

project success. People involved in the design must be

skilled on this topic, in particular.

Designers

Designers should have a deep knowledge of the pros

and cons of different methodologies in order to adopt

the one that best fits the project characteristics.

Business Users

Users should be aware of the design methodology

adopted and their role within it in order to properly

support the designer’s work and to provide the correct

information at the right time.

Future Directions
Research on this topic should be directed to general-

izing the methodologies discussed so far in order to

derive a consensus approach that, depending on the

characteristics of the project, will be made up of diffe-

rent phases. Besides, more generally, mechanisms

should appear to coordinate all DW design phases

allowing the analysis, control, and traceability of data

and metadata along the project life-cycle. An interest-

ing approach in this direction consists in applying the

Model Driven Architecture to automate the inter sche-

ma transformations from requirement analysis to im-

plementation [16]. Finally, the emergence of new

applications for DW such as spatial DW [17],

web DW, real-time DW [18], and business perfor-

mance management [19] will have their side-effects

on the DW life-cycle and inevitably more general

design methodologies will be devised in order to

allow their correct handling.

Cross-references
▶Cube Implementations

▶Data Mart

▶Data Warehouse Maintenance evolution and ver-

sioning

▶Data Warehousing Systems: Foundations and

Architectures

▶Multidimensional Modeling

▶Optimization and Tuning in Data Warehouse

▶ Snowflake Schema

▶ Star Schema

Recommended Reading
1. Abello A., Samos J., and Saltor F.YAM2: a multidimensional con-

ceptual model extending UML. Infor. Syst., 31(6):541–567, 2006.

2. Bimonte S., Towards S., and Miquel M.Towards a Spatial Multi-

dimensional Model. In Proc. ACM 8th Int. Workshop on Data

Warehousing and OLAP, 2005.

3. Demarest, M. The politics of data warehousing. Retrieved June

2007 from http://www.noumenal.com/marc/dwpoly.html.

4. Giorgini P., Rizzi S., and Garzetti M. GRAnD: A goal-oriented

approach to requirement analysis in data warehouses. Decision

Support System, 2008, 45(1):4–21.

5. Golfarelli M., Maio D., and Rizzi S. The dimensional fact

model: a conceptual model for data warehouses. IJCIS 7(2–3):

215–247, 1998.

6. Golfarelli M. and Rizzi S. WAND: A CASE tool for data ware-

house design. In Proceedings of ICDE, Bremen, Germany, 2001.

7. Golfarelli M., Rizzi S., and Cella I. Beyond data warehousing:

What’s next in business intelligence? In Proc. ACM 7th Int. Work-

shop on Data Warehousing and OLAP, 2004.

Data Warehouse Life-Cycle and Design D 117

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

8. Golfarelli M., Rizzi S., and Saltarelli E. Index selection for data

warehousing. In Proc. 4th Int. Workshop on Design and Man-

agement of Data Warehouses, 2002.

9. Hüsemann B., Lechtenbörger J., and Vossen G. Conceptual data

warehouse design, Proc. 2nd Int. Workshop on Design and

Management of Data Warehouses, 2000.

10. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. Funda-

mentals of Data Warehouses. Springer, 2000.

11. Jensen M., Holmgren T., and Pedersen T. Discovering Multidi-

mensional Structure in Relational Data. In Proc. 6th Int. Conf.

Data Warehousing and Knowledge Discovery, 2004.

12. Kimbal R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit. Wiley, New York, 1998.

13. Laender A., Freitas G., and Campos M. MD2 – Getting users

involved in the development of data warehouse applications.

In Proc. 14th Int. Conf. on Advanced Information Systems

Eng., 2002.

14. Mazon J., Trujillo J., Serrano M., and Piattini M. Applying MDA

to the development of data warehouses. In Proc. ACM 8th Int.

Workshop on Data Warehousing and OLAP, 2005.

15. Theodoratos D. and Sellis T. Designing data Data warehouses.

DKE, 31(3):279–301, 1999.

16. Tho N. and Tjoa A. Grid-Based Zero-Latency DataWarehousing

for continuous data streams processing. In Proc. IIWAS2004,

2004.

17. Trujillo J. and Luján-Mora S.A. UML Based Approach for

Modeling ETL Processes in Data Warehouses. In Proc. 22nd

Int. Conf. on Conceptual Modeling, 2003.

18. Trujillo J., Luján-Mora S., and Medina E. The Gold model case

tool: An environment for designing OLAP applications. In Proc.

ACM 5th Int. Workshop on Data Warehousing and OLAP, 2002.

19. Vassiliadis P., Simitsis A., and Skiadopoulos S. Conceptual mod-

eling for ETL processes. In Proc. ACM 5th Int. Workshop on

Data Warehousing and OLAP, 2002.

20. Winter R. and Strauch B. A method for demand-driven infor-

mation requirements analysis in data warehousing. In Proc.

HICSS, Ciutad Real, Spain, 2003.

Data Warehouse Maintenance,
Evolution and Versioning

JOHANN EDER
1, KARL WIGGISSER

2

1University of Vienna, Vienna, Austria
2University of Klagenfurt, Klagenfurt, Austria

Synonyms
Temporal data warehousing

Definition
A multidimensional data warehouse consists of three

different levels: The schema level (dimensions, cate-

gories), the instance level (dimension members, master

data) and the data level (data cells, transaction data).

The process and methodology of performing changes

on the schema and instance level to represent changes

in the data warehouse’s application domain or require-

ments is called Data Warehouse Maintenance. Data

Warehouse Evolution is a form of data warehouse main-

tenance where only the newest data warehouse state

is available. Data Warehouse Versioning is a form of

data warehouse maintenance where all past versions of

the data warehouse are kept available. Dealing with

changes on the data level, mostly insertion of new

data, is not part of data warehouse maintenance, but

part of a data warehouse’s normal operation.

Historical Background
Data warehouses are supposed to provide func-

tionality for storing and analyzing data over a long

period of time. Since the world is changing, the need

for applying changes to data warehouse structures

arose. Kimball [8] was probably the first to describe

the problem and propose solutions. Several more

sophisticated proposals followed (see below).

Foundations
A multidimensional data warehouse consists of three

different levels: The schema level, the instance level, and

the data level. On the schema level a data warehouse

is defined by a set of dimensions and corresponding

dimension categories, which build up a category hier-

archy. On the instance level a data warehouse is de-

fined by a set of dimension members for each

dimension. Dimension members build up a member

hierarchy which corresponds to the category hierarchy

of the respective dimension. Schema and instance

level together define the structure of a data ware-

house. Different multidimensional models deal with

measures in different ways. If no particular measure

dimension is defined, measures are modeled as attri-

butes of the fact table, thus are seen as part of the

schema. If there is a measure dimension existing,

measures are members of this particular dimension

and therefore seen as instances. On the data level, a

data warehouse consists of a set of data cells, which

hold the actual values to analyze. A data cell is defined

by selecting one dimension member from each

dimension.

Whereas changes on the data level, most of the time

data inserts, are part of the daily business in data

warehouse systems, modifications of the data ware-

house structure need additional effort. Structural

118D Data Warehouse Maintenance, Evolution and Versioning

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

modifications can be implied by changes in the appli-

cation domain of a data warehouse system or by

changes in the requirements.

Levels of the Maintenance Problem

Data warehouse maintenance systems must provide

means to keep track of schema modifications as well

as of instance modifications. On the schema level one

needs operations for the Insertion,Deletion and Change

of dimensions and categories. Category changes are for

instance adding or deleting user defined attributes.

Also the hierarchical relations between categories may

be modified. On the instance level operations for the

Insertion, Deletion and Change of dimension members

are needed, as well as operations for changing the hierar-

chical relations between dimension members. Whether

changing measures is a schema or instance change

depends on the underlying multidimensional model.

Typically, schema changes happen rarely but need much

effort to be dealt with, whereas modifications of instances

may happen quite often, but need fewer effort.

Keeping track of the data warehouse structure is

only one aspect of data warehouse maintenance. The

structure of the cell data contained in a data warehouse

is determined by the data warehouse’s structure. Thus,

if this structure changes, existing cell data may have to

be adjusted to be consistent with the new structure.

Such adjustments can range from simple reaggregation

to complex data transformations because for instance

some unit of a measure is changed. These data adapta-

tions must not be mistaken for data change operations

as mentioned above, for instance loading new data into

the data warehouse.

Figure 1 shows an example for instance and schema

changes. It contains three subsequent versions of one

dimension of a car dealer’s data warehouse structure

together with the categories for this dimension. On

top, the initial version is shown. The dealer sells differ-

ent car models of different brands. Each model has an

attribute which denotes the engine power. For tradi-

tional German models this is given in horsepower, for

English models it is given in kilowatt. The outline in

the middle shows the subsequent version, where two

instance changes can be seen: a new model (BMW 1) is

introduced, and one model (Phantom V) is discontin-

ued. The bottom outline shows the current structure

version. Here one can see a schema change: a new

category (Company) is inserted into the category hier-

archy. On the instance level there are a number of

changes: one brand (Puch) is removed from the prod-

uct portfolio. The model (Modell G) attached to this

brand is now sold under another brand (Mercedes).

Furthermore a new brand (Chrysler) was added to

the product portfolio, together with one model

assigned to it. For the newly introduced category two

dimension members (BMW&Rolls-Royce and Daimler-

Chrysler) are added and the brands are connected to

the respective company. The attribute denoting the

power of a model is unified for all models to kilowatt.

All the mentioned structure modifications are due to

changes in the application domain. A requirements

change leading to structure updates could for instance

be that besides analyzing the number of car sells, the

car dealer also wants to keep track of the resulting

profit (insert measure).

A data adjustment for this example would be the

reaggregation to express that Modell G is now sold

under the brand of Mercedes. Data transformation

could for instance result from changing the currency

from ATS to EUR, where every money-related value

has to be divided by 13.7603.

Data Warehouse Versioning Versus Data Warehouse

Evolution

In principle two methods of maintenance can be

distinguished: Evolution and Versioning. Both of these

techniques rely on the defined operations for structure

changes but significantly vary in terms of query flexibil-

ity, query costs and data management effort. This dis-

tinction between versioning and evolution can be

applied for both the schema and the instance level.

With Data Warehouse Evolution, every applied

operation changes the structure of the data warehouse

and the old structure is lost. The respective cell data

is transformed to fit the new structure. As the old struc-

ture is lost, queries can only be done against the current

structure. Queries spanning different structure versions

are not possible. As the data follows one single structure,

no adaptations have to be done during query runtime,

which results in a better query performance compared to

the versioning approach. Furthermore, no information

about former versions has to be kept, which reduces the

effort for data management.

With Data Warehouse Versioning every applied

operation again leads to a new structure version. But in

contrast to the evolutionary approach the old version

is also kept available. Existing cell data does not need

to be adapted, but can be stored further on following

Data Warehouse Maintenance, Evolution and Versioning D 119

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

the respective structure version. This facilitates queries

spanning multiple structure versions. When running

such multiversion queries, data has to be either adapted

in runtime, which reduces query performance, or pre-

calculated and stored, which increases the required space

and maintenance effort. Keeping track of structure ver-

sion history is mandatory, which results in a con-

siderable effort for the data management.

Approaches Addressing the Maintenance Problem

There are a set of approaches addressing the data ware-

house maintenance problem. Kimball [8] is one of the

first, discovering the need for evolving data warehouses

and introducing three methods for dealing with ‘‘slowly

changing dimensions’’. The first method proposes sim-

ply overwriting old instances with their new values.

Tracking a change history is not possible. The second

method consists in creating a new instance for each

change. This will create a change history, but needs

additional effort in data management. One has to intro-

duce a surrogate key, because the natural primary keys

may not be unique any longer. For relating the various

instances for an object to each other, creating a time

stamp for the validity of each version is proposed.

The third method proposes creating a new attribute

for the instance, such that the original and the current

attribute value can be saved. This method can of course

only handle two versions of an instance. All three

methods are quite straightforward and only allow very

basic modifications on the instance level.

With FIESTA [2] Blaschka, Sapia and Höfling pres-

ent a schema design technique supporting schema

evolution. Evolution for instances is not supported,

but FIESTA provides an automatism to adapt existing

instances after schema modification. For this adapta-

tion two alternatives are proposed: adaption on the

physical level (i.e., database changes) and adaption on

the logical level (i.e., create a filter for accessing the

instances). The authors define a rich set of schema

changing operations, including the creation and dele-

tion of dimensions, categories and attributes.

In [11] Ravat and Teste present their approach for

dealing with changing instances. The authors define an

object-oriented approach for data warehouse modeling,

based on the class concept proposed by the Object Data-

baseManagement Group. Awarehouse object (instance)

Data Warehouse Maintenance, Evolution and Versioning. Figure 1. Changes in Data Warehouse Structure.

120D Data Warehouse Maintenance, Evolution and Versioning

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:21

is defined by its current state and a set of historical and

archived states. The difference between historical

and archived states is that historical states can be exactly

reestablished, whereas for archived states only aggrega-

tions are kept, for reducing data size. Mapping functions

describe the building process fromwhich the data ware-

house classes are generated.

The approach of Hurtado, Mendelzon and Vaisman

[14] allows data warehouse evolution on the schema

and the instance level. Both schema and instances are

modeled using a directed acyclic graph where the nodes

represent levels and instances, respectively. The edges

are labeled with their valid time intervals. Nodes

connected to edges are only valid in the time interval

where the edge is valid. Operations for inserting and

deleting categories and instances are provided. Evolution

of instances is not supported.Definingwhether a specific

instance is part of the current schema happens by time-

stamping the edgewhich connects the node to the graph.

Additionally the temporal query language TOLAP is

defined to enable queries over a set of temporal dimen-

sions and temporal fact tables.

In [4,5] Eder and Koncilia present their COMET

Metamodel for temporal data warehousing. Based on

the principles of temporal databases, they introduce a

system that supports data warehouse versioning on the

schema and the instance level. COMET provides a rich

set of maintenance operations, which comprise inser-

tion, deletion, and update of schema elements and

instances. Also the complex operations split member

and merge members are defined. In contrast to other

approaches these operations can also be applied on the

time and fact dimensions. COMET furthermore

defines so called transformation functions, which

allow to transform the cell data between arbitrary ver-

sions of the data warehouse. This provides the func-

tionality of queries spanning several structure versions.

In [6] Golfarelli et al. present their approach for

schema versioning in data warehouse. Based on a graph

model of the data warehouse schema they present their

algebra for schema modifications. This approach sup-

ports versioning, therefore past versions are not lost.

Based on those schema versions the authors describe

a mechanism to execute cross-version queries, with

the help of so called augmented schemas. For creating

such an augmented schema, an old schema version is

enriched with structure elements from a subsequent

version, such that the data belonging to the old schema

version can be queried as if it follows the new version.

Besides these research proposals there are also two

commercial products which introduce basic means for

data warehouse maintenance. SAP Inc. describes in a

white paper [9] how to produces different types of

reports over existing data. This can be a report using

the current constellation, a report using an old con-

stellation, a report showing the historical truth, and a

report showing comparable results. This approach

supports only basic operations on dimension data.

The KALIDO Dynamic Information Warehouse

[7] also realizes some aspects of data warehouse main-

tenance. Their support for change is based on the so

called generic data modeling. The data warehouse

model consists of three categories of data, the transac-

tion data (which describes the activities of the business

and the measures associated with them), the busi-

ness context data (which is the analog to the instances),

and the metadata (which comprises among others,

parts the schema). With evolving the business context

data, instance evolution is supported.

There are a set of alternative approaches which

have not been mentioned yet. The different techniques

addressing the data warehouse maintenance problem

can be classified by two features: First, by whether they

support structure versioning or structure evolution,

and second by the level of modifications they can

handle. Table 1 shows this classification for some of

the best known approaches in this area. So each of the

mentioned approaches provides the features naming

the respective row and column.

Besides the classical maintenance requirements of

keeping track of changes in data warehouse, mainte-

nance methodologies can also be used to facilitate so

called what–if-analysis. In [1] Bebel et al. present their

approach for the management of multiversion data

warehouses. They differentiate between real versions

and alternative versions. Real versions are used to histor-

icize data warehouse modifications resulting from

real world changes. Alternative versions provide the

Data Warehouse Maintenance, Evolution and

Versioning. Table 1. Classification of data warehouse

maintenance approaches

Versioning Evolution

Schema and instance
maintenance

[4] [14]

Schema maintenance only [6] [2,10]

Instance maintenance only [9,11,13] [7,3,8,15]

Data Warehouse Maintenance, Evolution and Versioning D 121

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:22

functionality to create several versions, each of them

representing a possible future situation and then apply

what–if-analysis on them. Additionally, alternative

versions can be used to simulate datawarehouse changes

for optimization purposes.

Another instance of data warehouse maintenance

is the so called view maintenance. Whereas the app-

roaches presented above assume a data warehouse struc-

ture which is defined somehow independent from

underlying data sources and is populated with data by

ETL-processes, a data warehouse can also be seen as

materialized view over a set of data sources. Such amate-

rialized view is of course directly affected by changes

in the sources. For instance, in [16] Zhuge et al. present

their approach for view maintenance. But as these

approaches most times only deal with data updates,

they are out of scope for data warehouse maintenance.

Rundensteiner et al. [12] present a view mainte-

nance approachwhich can also deal with changing struc-

tures. Their evolvable view management is realized as

middleware between the data sources and the data ware-

house. A core feature is the so called evolvable SQLwhich

allows to define preferences for view evolution. With

these preferences it is possible to redefine the view after

some source changes, such that the resulting view is

possibly not equivalent the to original view any more,

but still fulfills the user’s needs.

Key Applications
Data warehouses are often used to efficiently support

the decision making process in companies and public

authorities. To fulfil this task they have to represent the

application domain and users’ requirements. To keep

the analysis results accurate and correct over the time,

data warehouse maintenance is a crucial issue. Appli-

cation domains which are typically vulnerable to

changing structures are among others statistic and

geographic applications (for instance statistical data

in the European Union), health care (for instance

switching from International Classification of Deceases

Version 9 to Version 10), or stock market (for instance

splitting stocks). In each of these domains, traceability

and comparability of data over long periods of time are

very important, thus effective and efficient means to

provide these capabilities have to be defined.

Future Directions
Current commercial systems assume the data warehouse

structure to be constant, therefore their support for

modifications is rather limited. On the other hand, in

real-world applications the demand for changing struc-

tures is rather high, as the data warehouse has to be

consistent with the application domain and the require-

ments. Despite the fact that more effort is put into

integrating maintenance capabilities into commercial

data warehouse systems [9,7], current products are still

not well prepared for this challenge.

Whereas schema and instance maintenance is quite

elaborated in current research papers, the efficient

transformation of cell data between different versions

is still subject to research. The main problems with

data transformation are first of all defining semantically

correct transformation functions, and second the

oftentimes huge amount of cell data which has to be

handled in an efficient way.

Related to data transformation is the problem of

multiversion queries. The problem with such queries

is defining the desired semantics and structure of

the outcome, i.e., whether and how elements and cell

values, which are not valid for all affected versions

should be included in the result.

Cross-references
▶Data Warehousing Systems: Foundations and

Architectures

▶On-line Analytical Processing

▶Optimization and Tuning in Data Warehouses

▶Quality of Data Warehouses

▶ Schema Versioning

▶Temporal Database

▶What–If Analysis

Recommended Reading
1. Bȩbel B., Eder J., Koncilia C., Morzy T., and Wrembel R. Crea-

tion and management of versions in multiversion data ware-

house. In Proc. 2004 ACM Symp. on Applied computing, 2004,

pp. 717–723.

2. Blaschka M., Sapia C., and Höfling G. On schema evolution in

multidimensional databases. In Proc. Int. Conf. on Data Ware-

housing and Knowledge Discovery, 1999, pp. 153–164.

3. Chamoni P. and Stock S. Temporal structures in data

warehousing. In Proc. Int. Conf. on Data Warehousing and

Knowledge Discovery, 1999, pp. 353–358.

4. Eder J., Koncilia C., and Morzy T. The COMET Metamodel for

Temporal Data Warehouses. In Proc. Int. Conf. on Advanced

Information Systems Engineering, 2002, pp. 83–99.

5. Eder J., Koncilia C., and Wiggisser K. Maintaining temporal

warehouse models. In Proc. Int. Conf. on Research and Practical

Issues of Enterprise Information Systems, 2006, pp. 21–30.

122D Data Warehouse Maintenance, Evolution and Versioning

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:22

6. Golfarelli M., Lechtenbörger J., Rizzi S., and Vossen G. Schema

versioning in data warehouses: Enabling cross-version querying

via schema augmentation. Data & Knowledge Engineering,

59:435–459, 2006.

7. KALIDO Dynamic Information Warehouse: A Technical Over-

view. Tech. rep., Kalido, 2004.

8. Kimball R. Slowly Changing Dimensions. DBMS Magazine,

9(4):14, 1996.

9. Multi-Dimensional Modeling with BW: ASAP for BWAccelera-

tor. Tech. rep., SAP Inc., 2000.

10. Quix C. Repository Support for Data Warehouse Evolution. In

Proc. Int. Workshop on Design and Management of Data Ware-

houses, 1999.

11. Ravat F. and Teste O. A Temporal Object-Oriented Data Ware-

house Model. In Proc. Int. Conf. on Database and Expert Sys-

tems Applications, 2000, pp. 583–592.

12. Rundensteiner E.A., Koeller A., and Zhang X. Maintaining data

warehouses over changing information sources. Commun.

ACM, 43(6):57–62, 2000.

13. Sarda N.L. Temporal Issues in Data Warehouse Systems. In Proc.

Int. Symp. on Database Applications in Non-Traditional Envir-

onments, 1999.

14. Vaisman A. and Mendelzon A. A Temporal Query Language for

OLAP: Implementation and a Case Study. In Proc. Int. Work-

shop on Database Programming Languages, 2001, pp. 78–96.

15. Yang J. and Widom J. Maintaining temporal views over non-

temporal information sources for data warehousing. In Proc.

Int. Conf. on Extending Database Technology. 1998, pp. 389–

403.

16. Zhuge Y., Garcia-Molina H., Hammer J., and Widom J. View

Maintenance in a Warehousing Environment. In Proc. ACM

SIGMOD Int Conf. on Management of Data, 1995, pp. 316–327.

Data Warehouse Indexing

▶ Indexing of Data Warehouses

Data Warehouse Integration

▶ Interoperability in Data Warehouses

Data Warehouse Metadata

PANOS VASSILIADIS

University of Ioannina, Ioannina, Greece

Definition
Data warehouse metadata are pieces of information

stored in one or more special-purpose metadata

repositories that include (i) information on the con-

tents of the data warehouse, their location and their

structure, (ii) information on the processes that take

place in the data warehouse back-stage, concerning the

refreshment of the warehouse with clean, up-to-date,

semantically and structurally reconciled data, (iii) in-

formation on the implicit semantics of data (with

respect to a common enterprise model), along with

any other kind of data that aids the end-user exploit

the information of the warehouse, (iv) information on

the infrastructure and physical characteristics of com-

ponents and the sources of the data warehouse, and,

(v) information including security, authentication, and

usage statistics that aids the administrator tune the

operation of the data warehouse as appropriate.

Historical Background
Data warehouses are systems with significant complex-

ity in their architecture and operation. Apart from the

central data warehouse itself, which typically involves

an elaborate hardware architecture, several sources

of data, in different operational environments are

involved, along with many clients that access the data

warehouse in various ways. The infrastructure com-

plexity is only one part of the problem; the largest part

of the problem lies in the management of the data that

are involved in the warehouse environment. Source

data with different formats, structure, and hidden se-

mantics are integrated in a central warehouse and then,

these consolidated data are further propagated to dif-

ferent end-users, each with a completely different

perception of the terminology and semantics behind

the structure and content of the data offered to them.

Thus, the administrators, designers, and application

developers that cooperate towards bringing clean, up-

to-date, consolidated and unambiguous data from the

sources to the end-users need to have a clear under-

standing of the following issues (see more in the fol-

lowing section):

1. The location of the data

2. The structure of each involved data source

3. The operations that take place towards the propa-

gation, cleaning, transformation and consolidation

of the data towards the central warehouse

4. Any audit information concerning who has been

using the warehouse and in what ways, so that its

performance can be tuned

Data Warehouse Metadata D 123

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:22

5. The way the structure (e.g., relational attributes) of

each data repository is related to a common model

that characterizes each module of information

Data warehouse metadata repositories store large

parts (if not all) of this kind of data warehouse meta-

data and provide a central point of reference for all the

stakeholders that are involved in a data warehouse

environment.

What happened was that all areas of data ware-

housing, ad-hoc solutions by industrial vendors and

consultants were in place before the academic world

provided a principled solution for the problem of the

structure and management of data warehouse metadata.

Early attempts of academic projects that related to

wrapper-mediator schemes of information integration

(Information Manifold, WHIPS, Squirrel, TSIMMIS –

see [9] for a detailed discussion of the related litera-

ture), did not treat metadata as first-class concepts in

their deliberations. At the same time, early standardi-

zation efforts from the industrial world (e.g., the MDIS

standard [13]) were also poor in their treatment of the

problem.

The first focused attempt towards the problem of

data warehouse metadata management was made in

the context of the European Project ‘‘Foundations of

Data Warehouse Quality (DWQ)’’ [7,5]. In Fig. 1, the

vertical links represent levels of abstraction: the data

warehouse metadata repository, depicted in the middle

layer, is an abstraction of the way the warehouse envi-

ronment is structured in real life (depicted in the

lowest layer of Fig. 1). At the same time, coming up

with the appropriate formalism for expressing the con-

tents of the repository (depicted in the upper layer of

Fig. 1), provided an extra challenge that was tackled

by [7] through the usage of the Telos language.

Foundations
Structure of the data warehouse metadata repository.

A principled approach towards organizing the struc-

ture of the data warehouse metadata repository was

Data Warehouse Metadata. Figure 1. Role and structure of a data warehouse metadata repository [12].

124D Data Warehouse Metadata

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:22

first offered by [7,8]. The ideas of these papers were

subsequently refined in [9] and formed the basis of the

DWQ methodology for the management of data ware-

house metadata. The specifics of the DWQ approach

are fundamentally based on the separation of data and

processes and their classification in a grid which is

organized in three perspectives, specifically the concep-

tual, the logical and the physical one and three location

levels, specifically, the source, warehouse and client

levels (thus the 3 � 3 contents of the middle layer of

Fig. 1 and also the structure of Fig. 2). The proposal

was subsequently extended to incorporate a program

versus data classification (Fig. 1) that discriminates

static architectural elements of the warehouse environ-

ment (i.e., stored data) from process models (i.e.,

software modules).

The location axis is straightforward and classifies

elements as source, data warehouse and client ele-

ments. The data warehouse elements incorporate

both the officially published data, contained in fact

and dimension tables as well as any auxiliary data

structures, concerning the Operational Data Store

and the Data Staging Area. Similarly, any back-stage

Extract-Transform-Clean (ETL) processes that popu-

late the warehouse and the data marts with data are

also classified according to the server in which they

execute. The most interesting part of the DWQmethod

has to do with the management of the various models

(a.k.a. perspectives in the DWQ terminology) of the

system. Typically, in all DBMS’s –and, thus, all

deployed data warehouses- the system catalog includes

both a logical model of the data structure (i.e., the

database schema) as well as a physical schema, indicat-

ing the physical properties of the data (tablespaces,

internal representation, indexing, statistics, etc) that

are useful to the database administrator to perform

his everyday maintenance and tuning tasks. The

DWQ approach claimed that in a complicated and

large environment like a data warehouse it is absolutely

necessary to add a conceptual modeling perspective to

the system that explains the role of each module of the

system (be it a data or a software module). Clearly, due

to the vast number of the involved information sys-

tems, each of them is accompanied by its own model,

which is close enough to the perception of its users.

Still, to master the complexity of all these submodels, it

is possible to come up with a centralized, reference

model of all the collected information (a.k.a., enterprise

model) – exploiting, thus, the centralized nature of

data warehouses. The interesting part of the method

is the idea of expressing every other submodel of the

warehouse as a ‘‘view’’ over this enterprise model.

Thus, once an interested user understands the enter-

prise model, he/she can ultimately understand the

Data Warehouse Metadata. Figure 2. The DWQ proposal for the internal structure of the data warehouse metadata

repository [4].

Data Warehouse Metadata D 125

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:22

particularities of each submodel, independently of

whether it concerns a source or client piece of data or

software.

In [15], the authors discuss a coherent frame-

work for the structuring of data warehouse metadata.

The authors discriminate between back-stage technical

metadata, concerning the structure and population of

the warehouse and semantic metadata, concerning the

front-end of the warehouse, which are used for query-

ing purposes. Concerning the technical metadata, the

proposed structure is based on (i) entities, comprising

attributes as their structural components and (ii)

an early form of schema mappings, also called map-

pings in the paper’s terminology, that try to capture

the semantics of the back-stage ETL process by appro-

priately relating the involved data stores through

aggregations, joins etc. Concerning the semantic meta-

data, the authors treat the enterprise model as a

set of business concepts, related to the typical OLAP

metadata concerning cubes, dimensions, dimension

levels and hierarchies. The overall approach is a coher-

ent, UML-based framework for data warehouse meta-

data, defined at a high-level of abstraction. Specialized

approaches for specific parts (like definitions of OLAP

models, or ETLworkflows) can easily be employed in a

complementary fashion to the framework of [6] (pos-

sibly through some kind of specialization) to add more

detail to the metadata representation of the warehouse.

It is also noteworthy to mention that the fundamental

distinction between technical and business metadata

has also deeply influenced the popular, industrially

related literature [11].

Contents of the data warehouse metadata repository

(data warehouse metadata in detail). The variety and

complexity of metadata information in a data warehouse

environment are so large that giving a detailed list of all

metadata classes that can be recorded is mundane. The

reader who is interested in a detailed list is referred to

[12] for a broader discussion of all these possibilities, and

to [11] for an in depth discussion with a particular

emphasis on ETL aspects (with the note that the ETL

process is indeed the main provider of entries in the

metadata repository concerning the technical parts of

the warehouse). In the sequel, the discussion is classified

in terms of data and processes.

Data. Figure 3 presents a summarized view of rele-

vant metadata concerning the static parts of the ware-

house architecture. The physical-perspective metadata

are mostly related to (i) the location and naming of the

information wherever data files are used and (ii)

DBMS catalog metadata wherever DBMS’s are used.

Observe the need for efficiently supporting the end-

user in his navigation through the various reports,

spreadsheets and web pages (i.e., answering the ques-

tion ‘‘where can I find the information I am looking

for?’’) also observe the need to support the questions

‘‘what information is available to me anyway?’’ which

is supported at the logical perspective for the client

level. The rest of the logical perspective is also straight-

forward and mostly concerns the schema of data; nev-

ertheless business rules are also part of any schema and

thus data cleaning requirements and the related busi-

ness rules can also be recorded at this level. The con-

ceptual perspective involves a clear recording of the

involved concepts and their intra-level mappings

(source-to-DW, client-to-DW). As expected, academic

efforts adopt rigorous approaches at this level [9],

whereas industrial literature suggests informal, but

simpler methods (e.g., see the discussion on ‘‘Business

metadata’’ at [11]).

It is important to stress the need of tracing the map-

pings between the different levels and perspectives in the

Data Warehouse Metadata. Figure 3. Metadata concerning the data of the warehouse.

126D Data Warehouse Metadata

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:22

warehouse. The physical-to-logical mapping is typically

performed by the DBMS’s and their administra-

tive facilities; nevertheless, the logical-to-conceptual

mapping is not. Two examples are appropriate in this

place: (i) the developer who constructs (or worse,

maintains) a module that processes a source file

of facts, has to translate cryptic code-and-value pairs

(e.g., CDS_X1 = 145) to data that will be stored in the

warehouse and (ii) an end-user who should see data

presented with names that relate to the concepts he is

familiar with (e.g., see a description ‘‘Customer name’’

instead of the attribute name CSTR_NAME of a dimen-

sion table). In both cases, the logical-to-conceptual

mappings are of extreme importance for the appropri-

ate construction and maintenance of code and reports.

This is also the place to stress the importance of

naming conventions in the schema of databases and

the signatures of software modules: the huge numbers

of involved attributes and software modules practically

enforce the necessity of appropriately naming all data

and software modules in order to facilitate the mainte-

nance process (see [11] for detailed instructions).

Processes. When the discussion comes to the meta-

data that concern processes, things are not very com-

plicated again, at the high level (Fig. 4). There is a set of

ETLworkflows that operate at the warehouse level, and

populate the warehouse along with any pre-canned

reports or data marts on a regular basis. The structure

of the workflow, the semantics of the activities and the

regular scheduling of the process form the conceptual

and logical parts of the metadata. The physical loca-

tions and names of any module, along with the man-

agement of failures form the physical part of the

metadata, concerning the design level of the software.

Still, it is worth noting that the physical metadata can

be enriched with information concerning the execu-

tion of the back-stage processes, the failures, the

volumes of processed data, clean data, cleansed or

impossible-to-clean data, the error codes returned by

the DBMS and the time that the different parts of the

process took. This kind of metadata is of statistical

importance for the tuning and maintenance of the

warehouse back-stage by the administration team. At

the same time, the audit information is of considerable

value, since the data lineage is recorded as every step

(i.e., transformation or cleaning) in the path that the

data follow from the sources to their final destination

can be traced.

Standards. The development of standards for data

warehouse metadata has been one of the holy grails

in the area of data warehousing. The standardization of

data warehouse metadata allows the vendors of all

kinds of warehouse-related tools to extract and retrieve

metadata in a standard format. At the same time,

metadata interchange among different sources and

platforms –and even migration from one software

configuration to another – is served by being able to

export metadata from one configuration and loading it

to another.

The first standardization effort came from

the MetaData Coalition (MDC), an industrial, non-

profitable consortium. The standard was namedMeta-

Data Interchange Specification (MDIS) [13] and its

structure was elementary, comprising descriptions for

databases, records, dimensions and their hierarchies

and relationships among them. Some years after

MDIS, the Open Information Model (OIM) [14] fol-

lowed. OIM was also developed in the context of the

MetaData Coalition and significantly extends MDIS by

capturing core metadata types found in the operational

Data Warehouse Metadata. Figure 4. Metadata concerning the process of the warehouse.

Data Warehouse Metadata D 127

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

and data warehousing environment of enterprises. The

MDCOIMuses UML both as a modeling language and

as the basis for its core model. The OIM is divided into

sub-models, or packages, which extend UML in order

to address different areas of information management,

including database schema elements, data transforma-

tions, OLAP schema elements and data types. Some

years later, in 2001, the Object Management Group

(OMG) initiated its own standard, named Common

Warehouse Metamodel (CWM) [4]. CWM is built on

top of other standard OMG notations (UML, MOF,

XMI) also with the aim to facilitate the interchange of

metadata between different tools and platforms. As of

2007, CWM appears to be very popular, both due to its

OMG origin and as it is quite close to the parts

concerning data warehouse structure and operation.

Much like OIM, CWM is built around packages, each

covering a different part of the data warehouse life-

cycle. Specifically, the packages defined by CWM cover

metadata concerning (i) static parts of the warehouse

architecture like relational, multidimensional and

XML data sources, (ii) back-stage operations like data

warehouse processes and operations, as well as data

transformations and (iii) front-end, user-oriented con-

cepts like business concepts, OLAP hierarchies, data

mining and information visualization tasks. A detailed

comparison of earlier versions of OIM and CWM can

be found in [19].

Key Applications
Data Warehouse Design. Typically, the data warehouse

designers both populate the repository with data and

benefit from the fact that the internal structure and

architecture of the warehouse is documented in the

metadata repository in a principled way. [17] implements

a generic graphical modeling tool operating on top of a

metadata repository management system that uses the

IRDS standard. Similar results can be found in [3,18].

Data Warehouse Maintenance. The same reasons

with data warehouse design explain why the data ware-

house administrators can effectively use the metadata

repository for tuning the operation of the warehouse.

In [16], there is a first proposal for the extension of the

data warehouse metadata with operators characterizing

the evolution of the warehouse’s structure over time. A

more formal approach on the problem is given by [6].

Data Warehouse Usage. Developers constructing or

maintaining applications, as well as the end-users in-

teractively exploring the contents of the warehouse can

benefit from the documentation facilities that data

warehouse metadata offer (refer to [11] for an example

where metadata clarify semantic discrepancies for

synonyms).

Data Warehouse Quality. The research on the an-

notation of data warehouse metadata with annotations

concerning the quality of the collected data (a.k.a.

quality indicators) is quite large. The interested reader

is referred to [10,9] for detailed discussions.

Model Management. Model management was

built upon the results of having a principled structure

of data warehouse metadata. The early attempts in

the area [1,2] were largely based on the idea of mapping

source and client schemata to the data warehouse schema

and tracing their attribute inter-dependencies.

Design of large Information Systems. The mental

tools developed for the management of large, intra-

organizational environments like data warehouses can

possibly benefit other areas –even as a starting point.

The most obvious candidate concerns any kind of open

agoras of information systems (e.g., digital libraries)

that clearly need a common agreement in the hidden

semantics of exported information, before they can

interchange data or services.

Cross-references
▶CWM

▶Data Quality

▶Data Warehouse Life-Cycle and Design

▶Data Warehouses

▶MDC

▶Metadata

▶Metadata Repository

▶Model Management

▶OIM

Recommended Reading
1. Bernstein P., Levy A., and Pottinger R. AVision for management

of complex models. SIGMOD Rec. 29(4):55–63, 2000.

2. Bernstein P.A. and Rahm E. Data warehouse scenarios for model

management. In Proc. 19th Int. Conf. on Conceptual Modeling,

2000, pp. 1–15.

3. Carneiro L., and Brayner A. X-META: A methodology for data

warehouse design with metadata management. In Proc. 4th Int.

Workshop on Design and Management of Data Warehouses,

2002, pp. 13–22.

4. Common Warehouse Metamodel (CWM) Specification, version

1.1. OMG, March 2003.

5. Foundations of Data Warehouse Quality (DWQ) homepage.

http://www.dblab.ece.ntua.gr/�dwq/.

128D Data Warehouse Metadata

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

6. Golfarelli M., Lechtenbörger J., Rizzi S., and Vossen G. Schema

versioning in data warehouses: enabling cross-version querying

via schema augmentation. Data Knowl. Eng., 59(2):435–459,

2006.

7. Jarke M., Jeusfeld M.A., Quix C., and Vassiliadis P. 1998, Archi-

tecture and quality in data warehouses. In Proc. Tenth Conf. on

Advanced Information Systems Engineering (CAiSE’ 98), 1998.

Lecture Notes in Computer Science, vol. 1413, Springer, 1998,

pp. 93–113.

8. Jarke M., Jeusfeld M.A., Quix C., and Vassiliadis P. Architecture

and quality in data warehouses. Inf. Syst., 24(3):229–253, 1999.

9. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. (eds.).

Fundamentals of Data Warehouses (2nd edn.). Springer, 2003,

p. 207.

10. Jeusfeld M.A., Quix C., and Jarke M. Design and analysis of

quality information for data warehouses. In Proc. 17th Int. Conf.

on Conceptual Modeling, 1998, pp. 349–362.

11. Kimball R. and Caserta J. The Data Warehouse ETL Toolkit.

Wiley, New York, NY, 2004.

12. Kimbal R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit: Expert Methods for Designing,

Developing, and Deploying Data Warehouses. Wiley, 1998.

13. Metadata Coalition: Proposal for version 1.0 metadata

interchange specification, 1996.

14. MetaData Coalition. Open Information Model, version 1.0

(1999).

15. Müller R., Stöhr T., and Rahm E. An integrative and uniform

model for metadata management in data warehousing environ-

ments. In Proc. Int. Workshop on Design and Management of

Data Warehouses, DMDW’99, 1999.

16. Quix C. Repository support for data warehouse evolution.

In Proc. Int. Workshop on Design and Management of Data

Warehouses, 1999.

17. Sapia C., Blaschka M., and Höfling G. GraMMi: Using a stan-

dard repository management system to build a generic graphical

modeling tool. In 33rd Annual Hawaii Int. Conf. on System

Sciences (HICSS-33), Track 8: Software Technology, Maui,

Hawaii, 2000.

18. Vaduva A, Kietz J-U, Zücker R. M4 - A metamodel for data

preprocessing. In Proc. ACM 4th Int. Workshop on Data Ware-

housing and OLAP, 2001.

19. Vetterli T, Vaduva A, and Staudt M. Metadata standards for data

warehousing: open information Model vs. Common warehouse

metamodel. SIGMOD Rec., 29(3):68–75, 2000.

Data Warehouse Query Processing

▶Query Processing in Data Warehouses

Data Warehouse Refreshment

▶ Extraction, Transformation and Loading

Data Warehouse Security

CARLOS BLANCO
1, EDUARDO FERNÁNDEZ-MEDINA

1,

JUAN TRUJILLO
2, MARIO PIATTINI

1

1University of Castilla-La Mancha, Ciudad Real, Spain
2University of Alicante, Alicante, Spain

Synonyms
Secure datawarehouses; Datawarehouses confidentiality

Definition
Security, as is stated in the ISO/IEC 9126 International

Standard, is one of the components of software quality.

Information Security can be defined as the preser-

vation of confidentiality, integrity and availability of

information [5], in which confidentiality ensures that

information is accessible only to those users with au-

thorization privileges. Integrity safeguards the accu-

racy and completeness of information and process

methods, and availability ensures that authorized

users have access to information and associated assets

when required. Other modern definitions of Informa-

tion Security also consider properties such as authen-

ticity, accountability, non-repudiation, and reliability.

Therefore, Data Warehouse (DW) Security is defined

as the mechanisms which ensure the confidentiality,

integrity and availability of the data warehouse and its

components. Confidentiality is especially important

once the Data Warehouse has been deployed, since

the most frequent operations that users perform are

SQL and OLAP queries, and therefore the most fre-

quent security attack is against the confidentiality of

data stored in the data warehouse.

Historical Background
Considering that DWs are the basis of companies’ deci-

sion making processes, and due to the fact that they

frequently contain crucial and sensitive internal infor-

mation, and that DWs are usually managed by OLAP

tools, most of the initial approaches to data warehouse

security were focused on the definition and enforcement

of access control policies for OLAP tools [6,10], taking

into consideration one of the most traditional access

control models (Discretional Access Control) and also

managing the concept of role defined as subject. Other

approaches dealt with real implementation in specific

commercial tools by using multidimensional elements

[10]. Indirect access and cover channel problems have

Data Warehouse Security D 129

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

also been detected in Statistical Databases but an entirely

satisfactory solution has not yet been found.

Moreover, data stores in DWs come from hetero-

geneous data sources, which must be integrated, thus

provoking various security problems. However, few

works dealing with the security defined in data sources

(which tackle the problem of merging different secu-

rity measures established in each source) appear to

exist. This problem has, nevertheless, been addressed

in the field of Federated Databases, and some authors

have used this parallelism to propose an architecture

for developing Data Warehouses through the integra-

tion of Multilevel Access Control (MAC) policies de-

fined in data sources [12]. Furthermore, ETL processes

have to load the information extracted and trans-

formed from the data sources into the Data Ware-

house, but these processes do not consider security

issues and must use the security defined in the data

source and add new security measures for the detected

lacks of security. In this field, the proposed works focus

solely upon ETL model processes, and do not consider

security issues.

In recent decades, the development of DWs has

evolved from being a handmade method, to being a

more engineering-based method, and several approaches

have been defined for the conceptual modeling of DWs,

e.g., [4,8]. Unfortunately none of these proposals has

considered security issues. However, one of these

approaches has recently been extended to propose a

Model Driven Multidimensional approach for

developing secure DWs [1]. This approach permits the

inclusion of security requirements (audit and access con-

trol) from the first stages of the DWs life cycle, and it is

possible to automatically generate code for different tar-

get platforms through the use of model transformation.

The scientific community demands the integration of

security engineering and software engineering in order

to ensure the quality and robustness of the final applica-

tions [9], and this approach fulfills this demand.

Foundations
The DWdevelopment process follows the scheme pre-

sented in Fig. 1. Therefore, security should be considered

in all stages of this process by integrating the existing

security measures defined in data sources, considering

these measures in ETL processes, defining models that

represent security constraints at a high level of abstraction

and finally, enforcing these security constraints in the

OLAP tools in which the DW is deployed.

Security in Data Sources

In DWs architecture, data coming from heterogeneous

data sources are extracted, cleaned, debugged, and

stored. Once this process is completed, the DW will

be composed of these stored and integrated data, with

which users will be able to discover information in

strategic decision making processes. Data sources are

heterogeneous, can use different representation models

(relational databases, object-orientated databases,

XML files, etc.), and may or may not have associated

Data Warehouse Security. Figure 1. Data warehouse architecture.

130D Data Warehouse Security

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

security policies. Although DW users will be different

from data sources, these security policies should be

considered and integrated into the DW security design.

Data source security can be defined by using vari-

ous security policies such as Discretional Access Con-

trol (DAC) which restricts access to objects based on

the identity of subjects with a certain access permis-

sion: Mandatory Access Control (MAC), which restricts

access to objects based on the sensitivity of the infor-

mation contained in the objects and the formal autho-

rization of subjects to access information of such

sensitivity; or Role-Based Access Control (RBAC), an

approach which restricts system access to authorized

users by assigning permissions to perform certain

operations to specific roles. The integration of these

policies presents a problem which has been studied in

Federated Databases [12]. Some research efforts have

been made to integrate different multilevel policies in a

semi-automatic manner by using a schema integration

process which obtains the ordered set and the transla-

tion functions between each ordered set belonging to

each component database and the federated ordered

set. In addition, the integration of different role-based

policies has been dealt with by representing role con-

figurations as role graphs and by applying techniques

of graph integration to obtain the final role configura-

tion. Other authors, such as Rosenthal and Sciore [11],

have applied inference mechanisms to data sources in

order to obtain access control policies and have used

them to set up DW security.

After considering the parallelism between DW and

Federated Information Systems (FIS), Saltor et al. [12]

propose a seven layered architecture for preserving

and integrating the multilevel security established in

data sources. This architecture extends the five laye-

red architecture developed for FIS, including two

schemas: ‘‘authorization schemas’’ for each authoriza-

tion level and ‘‘external schemas’’ with which to repre-

sent multilevel security information of the data sources

in a Canonical Data Model (CDM). These ‘‘external

schemas’’ with security information will later be used

to obtain DW and Data Marts (DM) schemas.

Security in ETL Processes

ETL (Extraction-Transformation-Loading) processes

participate in the first stage of acquisition and extract

information from heterogeneous data sources, debug

it, integrate it and finally, load it into data warehouses

following their previously defined design.

It is necessary to define security measures in ETL

processes, in order to both use, adapt and integrate the

security measures defined in the data sources and to

add new security measures for the possibly detected

lacks of security. At present, despite the existence of

proposals with which to model ETL processes which

can be extended to include security issues, none of the

said proposals include the aforementioned concepts.

Some interesting works on the modeling of ETL

processes exist, but they do not deal with security

issues. Vassiliadis and Simitsis use their own graphic

notation for modeling ETL processes at a conceptual

level, propose how to transform these conceptual

designs into logical designs [13], and define a frame-

work for designing and maintaining ETL processes

(ARKTOS). Trujillo and Luján-Mora [15] model ETL

processes by using the UML notation and OCL to

establish constraints. Their proposal does not take

attributes into consideration but simplifies the design

and maintenance processes, and the use of UML and

OCL provides one with possibilities which greatly sim-

plify the extension of this model with security.

Security in Data Warehouses Modeling

Multidimensional modeling is the foundation of DWs,

Multidimensional Databases and On-Line Analytical

Processing Applications (OLAP) and is different from

traditional database modeling in that it is adapted to

the characteristics of these approaches. Despite the

quantity of interesting background on security mea-

sures and access control models specified for relational

databases which is available, it cannot be directly ap-

plied as it is not appropriate for DWs. Both are models

but they are based on different concepts. Relational

security measures use terms of database tables, rows

and columns, and DW security uses multidimensional

terms of facts, dimensions or classification hierarchy.

Several modeling proposals specifically created for

DWs consider their properties, but none use standard

notations or include security issues, e.g., [4,8].

A model driven multidimensional modeling ap-

proach for developing secure DWs has been proposed

by Fernández-Medina et al. [1]. This approach pro-

poses a Query/Views/Transformations (QVT) and

Model-Driven Architecture (MDA) based approach

(see Fig. 2). This aligns MDA with the DWs develop-

ment process, considering multidimensional models as

being PIM, logical models (such as ROLAP, MOLAP

and HOLAP) as being Platform-Specific Model (PSM),

Data Warehouse Security D 131

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

and the DBMS and OLAP tools as being the target

platforms. This proposal is made up of a security

model (access control and audit model) for DW [2],

an extension of UML for modeling secure multidimen-

sional models [3] as Platform-Independent Models

(PIM), and an extension of the Common Warehouse

Metamodel (CWM) [14] as a Platform-Specific Model

(PSM). This proposal is currently being extended within

the extremes of MDA architecture: the Computational-

Independent Model (CIM) level is being defined

through an extension of i* which defines security goals

and subgoals, and the code generation is being carried

out by considering Oracle, SQL Server Analysis Services,

and Pentaho as target platforms of the architecture.

Security in OLAP Tools

OLAP systems are mechanisms with which to discover

business information and use a multidimensional

analysis of data to make strategic decisions. This infor-

mation is organized according to the business para-

meters, and users can discover unauthorized data by

applying a set of OLAP operations to the multidimen-

sional view. Therefore, it is of vital importance for the

organization to protect its data from unauthorized

accesses including security constraints in OLAP sys-

tems which take these OLAP operations (roll-up,

drill-down, slice-dice and pivoting) into account, and

from indirect accesses (inferences) which use parallel

navigation, tracker queries, etc. The inference problem

is an important security problem in OLAP which has

yet to be solved and which can be studied by using the

existing parallelism with Statistical Databases. Several

solutions to the inference problem have been applied.

Various solutions to the problem of controlling infer-

ence exist, such as the perturbation of data or the

limitation of queries, but these imply a large amount

of computational effort. On the other hand the estab-

lishment of security constraints at cell level allows one

to control inferences without this lack of efficiency.

Several works attempting to include security issues

in OLAP tools by implementing the previously defined

security rules at a conceptual level have been proposed,

but these works focus solely upon Discretional Access

Control (DAC) and use a simplified role concept

implemented as a subject. For instance, Katic et al.

[6] proposed a DWs security model based on meta-

models which provides one with views for each user

group and uses Discretional Access Control (DAC)

with classification and access rules for security objects

and subjects. However, this model does not allow

one to define complex confidentiality constraints.

Kirkgöze et al. [7] defined a role-based security con-

cept for OLAP by using a ‘‘constraints list’’ for each

role, and this concept is implemented through the

use of a discretional system in which roles are defined

as subjects.

Priebe and Pernul later proposed a security des-

ign methodology, analyzed security requirements, clas-

sifying them into basic and advanced, and dealt with

their implementation in commercial tools. First, in

[10] they used adapted UML to define a Discretio-

nal Access Control (DAC) system with roles defined

Data Warehouse Security. Figure 2. Model driven architecture.

132D Data Warehouse Security

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

as subjects at a conceptual level. They then went on

to implement this in Microsoft Analysis Services

(SQL Server 2000) by using Multidimensional Expres-

sions (MDX). They created a Multidimensional Secu-

rity Constraint Language (MDSCL) based on MDX

and put forward HIDE statements with which to

represent negative authorization constraints on cert-

ain multidimensional elements: cube, measure, slice,

and level.

Key Applications
DWs security is a highly important quality aspect of

a DW, which must be taken into account at all stages

of the development process. If security measures are

not established, then unauthorized users may obtain

the business information used for making strate-

gic decisions which is vital to the survival of the orga-

nization. DWs security has to be considered in all

the fields involved. These are, principally, the follow-

ing: the application of techniques through which to

integrate different kinds of security policies detected in

the data sources; the definition of models, which per-

mit the establishment of security constraints at upper

abstraction levels; and the study of the final implemen-

tation of the defined security measures in OLAP tools

in order to protect information from malicious opera-

tions such as navigations or inferences.

Cross-references
▶Data Warehousing Systems: Foundations and

Architectures

▶ Extraction

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Transformation and Loading

Recommended Reading
1. Fernández-Medina E., Trujillo J., and Piattini M. Model driven

multidimensional modeling of secure data warehouses. Eur. J.

Inf. Syst., 16:374–389, 2007.

2. Fernandez-Medina E., Trujillo J., Villarroel R., and Piattini M.

Access control and audit model for the multidimensional mod-

eling of data warehouses. Decis. Support Syst., 42(3):1270–1289,

2006.

3. Fernandez-Medina E., Trujillo J., Villarroel R., and Piattini M.

Developing secure data warehouses with a UML extension. Inf.

Syst., 32(6):826–856, 2007.

4. Golfarelli M., Maio D., and Stefano R. The dimensional fact

model: a conceptual model for data warehouses. Int. J. Coop.

Inf. Syst. (IJCIS), 7(2–3):215–247, 1998.

5. ISO27001, ISO/IEC 27001 Information technology – Security

techniques – Information security management systems –

Requirements, 2005.

6. Katic N., Quirchmayr G., Schiefer J., Stolba M., and Tjoa A. 1A

prototype model for DW security based on metadata. In Proc.

Ninth Int. Workshop on Database and Expert Systems Applica-

tions (DEXA), 1998, p. 300.

7. Kirkgöze R., Katic N., Stolda M., and Tjoa A. A security concept

for OLAP. In Proc. Eighth Int. Workshop on Database and

Expert System Applications, 1997, p. 0619.

8. Lujan-Mora S., Trujillo J., and Song I.-Y. A UML profile for

multidimensional modeling in data warehouses. Data Knowl.

Eng., 59(3):725–769, 2006.

9. Mouratidis H. and Giorgini P. Integrating Security and Software

Engineering: Advances and Future Visions. Idea Group, Hershey,

PA, 2006.

10. Priebe T. and Pernul G. A pragmatic approach to conceptual

modeling of OLAP security. In Proc. 20th Int. Conf. on Concep-

tual Modeling, 2001, pp. 311–324.

11. Rosenthal A. and Sciore E. View security as the basis for data

warehouse security. In Proc. Second Int.Workshop onDesign and

Management of Data Warehouses (DMDW 2000), 2000, p. 8.

12. Saltor F., Oliva M., Abelló A., and Samos J. Building secure data

warehouse schemas from federated information systems. In

Heterogeneous Information Exchange and Organizational

Hubs, D.T. Bestougeff (ed.). Kluwer Academic, 2002.

13. Simitsis A. and Vassiliadis P. A method for the mapping of

conceptual designs to logical blueprints for ETL processes.

Decis. Support Syst., 45(1):22–40, 2007.

14. Soler E, Trujillo J., Fernández-Medina E., and Piattini M.

SECRDW: an extension of the relational package from

CWM for representing secure data warehouses at the logical

level. In Proc. Fifth Int. Workshop on Security in Information

Systems. 2007, pp. 245–256.

15. Trujillo J. and Luján-Mora S. A UML based approach for mod-

eling ETL processes in data warehouses. In Proc. 22nd Int. Conf.

on Conceptual Modeling, 2003, pp. 307–320.

Data Warehousing for Clinical
Research

SHAWN MURPHY

Massachusetts General Hospital, Boston, MA, USA

Synonyms
Clinical research chart

Definition
The clinical data warehouse allows rapid querying

and reporting across patients. It is used to support

the discovery of new relationships between the cause

and effects of diseases, and to find specific patients that

qualify for research studies.

Data Warehousing for Clinical Research D 133

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

Historical Background
In healthcare, the term ‘‘data warehouse’’ is generally

reserved for those databases optimized for analysis and

integrated queries across patient populations. This is

as opposed to the transactional database, which is

optimized for rapid updating and highly specific

kinds of retrieval (like those based upon a specific

patient identifier).

There appear to be three fundamentally different

approaches to organizing the healthcare data ware-

house. The first is to extract tables from the transaction

systems of the healthcare organization and load them

into the database platform of the data warehouse with

minimal transformation of the data model. The codes

present in the columns are usually transformed to

make them compatible with codes from other systems.

For example, an ICD9 diagnosis code stored as ‘‘27.60’’

in one system may be transformed to a common for-

mat of 02760. However, the tables are left in essentially

the same schema as the transaction system [2].

The second approach is more ambitious, where

not just the codes from different systems are trans-

formed to look the same, but the data is transformed

to look the same as well. The diverse data coming from

different systems must be made to fit into new tables.

This involves a considerable amount of data transfor-

mation, but queries against the warehouse are then

much less complex [1]. This is the approach that will

be described.

The third approach is to keep the data located at

its source in a ‘‘distributed’’ data warehouse. Queries

are distributed to the local databases across a network.

This strategy can be successful when patients have all of

their data contained within one of the local systems

(such as when systems exist in distant cities). However,

if a single patient’s data is distributed across many

of these local databases, detailed data would need to

travel across the network to be accumulated in the inter-

nal processing structures of a central CPU to allow the

execution of query plans. This will have a severe negative

impact on the performance of these types of systems.

Foundations

Database Design for Clinical Research Data Warehouse

The clinical data warehouse allows rapid querying and

reporting across patients, which unexpectedly is not

available in most clinical transaction systems. Rather,

transaction systems are optimized for lookups, inserts,

updates, and deletes to a single patient in the database.

Transactions usually occur in small packets during the

day, such as when a patient’s lab test is sent to the

database. Transaction systems are usually updated by

small bits of data at a time, but these bits come in at

the rate of thousands per second. Therefore the typical

clinical database used for patient care must be optimized

to handle these transactions [2].

Because the clinical data warehouse does not need

to handle high volumes of transactions all day long,

the data warehouse can be optimized for rapid, cross

patient searching. For optimal searching of a database

it is best to have very large tables. These can be indexed

such that a single index allows a global search. So when

one designs a clinical data warehouse, one adopts a

few tables that can hold nearly all the available data.

The way to hold many forms of healthcare data in the

same table is by the classical entity-attribute-value

schema (or EAV for short) [4,5].

The EAV schema forces one to define the funda-

mental fact of healthcare [2]. The fundamental fact of

healthcare will be the most detailed rendition possible

of any healthcare observation as reported from the data

warehouse. This can be defined as an observation on a

patient, made at a specific time, by a specific observer,

during a specific event. The fact may be accompanied

by any number of values or modifiers. Each observa-

tion is tagged with a specific concept code, and each

observation is entered as a row in a ‘‘fact table.’’ This

fact table can grow to billions of rows, each represent-

ing an observation on a patient. The fact table is

complimented by a least an event table, a patient

table, a concept table, and an observer table [4].

The Patient table is straightforward. Each row

in the table represents a patient in the database.

The table includes common fields such as gender,

age, race, etc. Most attributes of the patient dimension

table are discrete (i.e., Male/Female, Zip code, etc.) or

relevant dates.

The Event table represents a ‘‘session’’ where obser-

vations were made. This ‘‘session’’ can involve a patient

directly such as a visit to a doctor’s office, or it can

involve the patient indirectly such as running several

tests on a tube of the patient’s blood. Several observa-

tions can be made during a visit. Visits have a start and

end date-time. The visit record also contains specifics

about the location of the session, like which hospital

or clinic the session occurred, and whether the patient

was an inpatient or outpatient at the time of the visit.

134D Data Warehousing for Clinical Research

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:23

The Observer table is a list of observers. Generally,

each row in the observer dimension represents a pro-

vider at an institution, but more abstractly, it may

be an observing machine, such as an Intensive Care

Unit continuous blood pressure monitor.

The Concept table is the key to understanding

how to search the fact table. A concept specifies exactly

what observation was made on the patient and is being

represented in a particular row of the fact table. A code

is used to represent the concept in the fact table, and

the concept table links if to a human-readable descrip-

tion of the code (Fig. 1).

Metadata Management in Clinical Research Data

Warehouse

When looking at rows in the concept table, one is

introduced to Metadata. Metadata is everywhere in a

data warehouse. It represents data about the data, and

is where medical knowledge is represented in the clini-

cal data warehouse. The primary form of representa-

tion is in the groupings of terms so they can be queried

as groups of similar concepts. The terms are grouped

into hierarchies, each level up usually expressing a

more general medical concept.

Many diverse concepts about a patient can exist

in the fact table. In a clinical data warehouse, typically

100–500 thousand different concepts exist. All sorts of

concepts including ICD-9 codes (International Classifi-

cation ofDiseases 9th Edition,most common codes used

in hospitals to classify diagnoses), CPT codes (Current

Procedural Terminology, most common codes used in

hospitals to classify procedures), NDC codes (National

Drug Codes, most common codes used in hospitals to

classify medication), and LOINC codes (Logical Obser-

vation Identifiers Names and Codes, most common

codes used in hospitals to classify laboratory tests) as

well as numerous local coding systems are used to de-

scribe the patient. The challenge is maintaining and

updating the classification of the concepts. This classifi-

cation needs to seamlessly absorb new codes, and be

back-compatible to old coding and classification

systems.

The organization of concepts hierarchically allows

the user to navigate and use the concepts in a query.

Like a file path in the Windows Explorer, the path of the

hierarchy indicates inwhich groups the concept belongs,

with the most general group being listed on the far left

and each group to the right of that growing more and

more specific.

An interface to present this concept representation

is shown below (Fig. 2). The use of this interface has

been described in detail [3], but is essentially a way of

building queries using concepts represented in the

concept and provider dimension tables.

Privacy Management in the Clinical Research Data

Warehouse

The clinical data warehouse should be built with patient

privacy in mind. The most common strategy is to sepa-

rate the data warehouse into two databases. The clinical

Data Warehousing for Clinical Research. Figure 1. Optimal star schema database design for healthcare data warehouse.

Data Warehousing for Clinical Research D 135

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:24

data goes into one database, and the identifiers of the

patients go into a second database. Access to the second,

identified, database is strictly controlled, and only acces-

sed during data loading and the building of the data

marts. The patients are given codes in the clinical data-

base and these codes can only be looked up in the

identified database. In this way, customers can use the

clinical database and not have access to the patient

identifiers.

Data Flow in Clinical Research Data Warehouse

Data generally flows into the data warehouse by loading

it from the transaction systems, or by receiving

a duplicate feed of data that are going into the transac-

tion systems. Data are usually loaded from the transac-

tion systems once it is provided as large ‘‘data dumps,’’ or

downloads. Transaction systems may contain many

millions of records, but with current technology they

can usually be written out in their entirety in just hours.

Reloading all this data into the data warehouse similarly

takes only a few hours, and the simplicity of this model,

as opposed to the complexity of update models, often

makes this a muchmore desirable process. The risk of an

update process is that errors in update flagswill cause the

data warehouse to become desynchronized with the

transaction system. To note many transaction systems

do not have a way to provide updates and a full ‘‘data

dump’’ is all that is possible from the transaction system.

When the data is loaded from the transaction sys-

tems, it is usually first loaded to a ‘‘staging area.’’ As

previously discussed, the data structure usually differs

considerably between the transaction system and the

data warehouse. Loading the transaction data into a

staging area allows the data to be studied and quality

assured before introducing the complexity of trans-

forming the data into the format of the data warehouse.

Because the teams from the transaction systems are

usually very familiar with the data in this form, it is

desirable to have the transaction team responsible for

their corresponding staging area, and allow them to

transfer and load the data into this area.

The data warehouse will usually distribute data

back to the data consumers as a ‘‘data mart.’’ These

are subsets of the data from the data warehouse.

The advantage of this approach is that the data can

be prepared per request in a consumer-friendly format.

Data Warehousing for Clinical Research. Figure 2. Construction of query using the metadata from a healthcare data

warehouse.

136D Data Warehousing for Clinical Research

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:24

Attempting to allow customers to query the clinical

data warehouse using Structured Query Language

(SQL) is rarely successful. The EAV scheme is notori-

ously unfriendly to the causal user of data [5]. Further-

more, the metadata exists in tables that are not

obviously connected to the patient data, so that tables

in the data warehouse often contain no humanly read-

able content. Finally, the data in the data warehouse is

often updated once every day and so analysis would

need to go against constantly shifting data. The result is

that the data is often exported into a user friendly data

mart. This also limits the set of patients that a custo-

mer can view, which is important from the patient

privacy point-of-view.

Key Applications
This clinical research data warehouse allows research-

ers to quickly obtain information that can be critical

for winning corporate and government sponsored re-

search grants, and easily gather data on patients iden-

tified for research studies. It allows clinical data to be

available for research analysis where security and con-

fidentiality are an integral part of the design, bringing

clinical information to researchers’ fingertips while

controlling and auditing the distribution of patient

data within the guidelines of the Institutional Review

Boards. It also serves as a ‘‘building-block’’ that enables

high-throughput use of patient data in some of the

following applications:

1. Bayesian inference engines. Bayesian inference

can be used to synthesize many diverse observations

into fundamental atomic concepts regarding a patient.

For example, a code may be assigned to a patient from

several sources indicating that a patient has a disease

such as diabetes. Some sources may indicate the

patient has type I diabetes, while others indicate

the patient has type II diabetes. Since these two types

of diabetes are mutually exclusive, it is clear that one of

the sources is in error. A determination of the true

diagnosis can be estimated by assigning a prior proba-

bility to each source as to how often it contains correct

information, and use these probabilities, to calculate

the likelihood of each diagnosis.

2. Clinical trials performed ‘‘in-silico.’’ Performing

an observational phase IV clinical trial is an expensive

and complex process that can be potentially modeled in

a retrospective database using groups of patients avail-

able in the large amounts of highly organized medical

data. This application would allow a formalized way of

discovering new knowledge frommedical databases in a

manner that is well accepted by the medical community.

For example, a prospective trial examining the potential

harm of Vioxx would entail recruiting large numbers of

patients and several years of observation. However, an

in-silico clinical trial would entail setting up the database

to enroll patients into a patient set automatically when

they are given a prescription for Vioxx and watching

them for adverse events as these events are entered in

the course of clinical care. Besides requiring fewer

resources, these trials could be set up for thousands of

medications at a time and thereby provide a much

greater scope of observational trials.

3. Finding correlations within data. When multiple

variables are measured for each patient in a data set,

there exists an underlying relationship between all pairs

of variables, some highly correlated and some not. Cor-

relations between pairs of variables may be discovered

with this application, leading to new knowledge, or

further insight into known relationships. Unsupervised

techniques using Relevance Networks andMutual Infor-

mation algorithms can generate hypothesis from sec-

ondary observed correlations in the data. This is a way

to exploit existing electronic databases for unsupervised

medical knowledge discovery without a prior model for

the information content. Observations collected within

labs, physical examinations, medical histories, and gene

expressions can be expressed as continuous variables

describing human physiology at a point in time. For

example, the expression of RNA found within a tumor

cell may be found to correlate with the dose of effective

chemotherapy for that tumor. This would allow future

tumors to have their RNA expression determined and

matched to various chemotherapies, and the chemother-

apy found to correlate most with that gene expression

would be chosen as the agent for that individual.

Cross-references
▶Bioinformatics and Health Informatics Databases

▶Data Integration Systems

▶Data Mining

▶Data Models

Recommended Reading
1. Inmon W.H. Building the Data Warehouse, 2nd edn. Wiley,

NY, 1996.

2. Kimball R. The Data Warehousing Toolkit. Wiley, NY, 1997.

3. Murphy S.N., Gainer V.S., and Chueh H. A visual interface

designed for novice users to find research patient cohorts in

Data Warehousing for Clinical Research D 137

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:24

a large biomedical database. In: Proc. AMIA Annu. Fall Symp.,

489–493, 2003.

4. Murphy S.N., Morgan M.M., Barnett G.O., and Chueh H.C.

Optimizing healthcare research data warehouse design

through past COSTAR query analysis. In: Proc. AMIA Fall

Symp., 892–896, 1999.

5. Nadkarni P.M. and Brandt C. Data extraction and ad hoc

query of an entity-attribute-value database. J. Am. Med. Inform.

Assoc., 5:511–517, 1998.

Data Warehousing Systems:
Foundations and Architectures

IL-YEOL SONG

Drexel University, Philadelphia, PA, USA

Definition
A data warehouse (DW) is an integrated repository

of data for supporting decision-making applications of

an enterprise. The most widely cited definition of a

DW is from Inmon [3] who states that ‘‘a data ware-

house is a subject-oriented, integrated, nonvolatile,

and time-variant collection of data in support of man-

agement’s decisions.’’

Historical Background
DW systems have evolved from the needs of decision-

making based on integrated data, rather than an indivi-

dual data source. DW systems address the two primary

needs of enterprises: data integration and decision

support environments. During the 1980s, relational

database technologies became popular. Many organi-

zations built their mission-critical database systems

using the relational database technologies. This trend

proliferated many independent relational database sys-

tems in an enterprise. For example, different business

lines in an enterprise built separate database systems at

different geographical locations. These database sys-

tems improved the operational aspects of each business

line significantly. Organizations, however, faced the

needs of integrating the data which were distributed

over different database systems and even the legacy

database systems in order to create a central knowledge

management repository. In addition, during the 1990s,

organizations faced increasingly complex challenges in

global environments. Organizations realized the need

for decision support systems that can analyze historical

data trends, generate sophisticated but easy-to-read

reports, and react to changing business conditions in

a rapid fashion. These needs resulted in the develop-

ment of a new breed of database systems that can

process complex decision-making queries against

integrated, historical, atomic data. These new database

systems are now commonly called data warehousing

systems because they store a huge amount of data –

much more than operational database systems – and

they are kept for long periods of time. A data ware-

housing system these days provides an architectural

framework for the flow of data from operational sys-

tems to decision-support environments. With the

rapid advancement in recent computing technologies,

organizations build data warehousing systems to im-

prove business effectiveness and efficiency. In a mod-

ern business environment, a data warehousing system

has emerged as a central component of an overall

business intelligence solution in an enterprise.

Foundations

OLTP vs. Data Warehousing Systems

Data warehousing systems contain many years of

integrated historical data, ending up storing a huge

amount of data. Directly storing the voluminous data

in an operational database system and processing

many complex decision queries would degrade the

performance of daily transaction processing. Thus,

DW systems are maintained separately from opera-

tional databases, known as online transaction proces-

sing (OLTP) systems. OLTP systems support daily

business operations with updatable data. In contrast,

data warehousing systems provide users with an envi-

ronment for the decision-making process with read-

only data. Therefore, DW systems need a query-centric

view of data structures, access methods, implementa-

tion methods, and analysis methods. Table 1 highlights

the major differences between OLTP systems and data

warehousing systems.

Rolap and Molap

The data in a DWare usually organized in formats made

for easy access and analysis in decision-making. Themost

widely used data model for DWs is called the dimension-

al model or the star schema [6]. A dimensional model

consists of two types of entities–a fact table and many

dimensions. A fact table stores transactional or factual

data calledmeasures that get analyzed. Examples of fact

tables are Order, Sale, Return, and Claim. A dimension

represents an axis that analyzes the fact data. Examples of

138D Data Warehousing Systems: Foundations and Architectures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:24

dimensions are Time, Customer, Product, Promotion,

Store, and Market. Since a DW contains time-variant

data, the Time dimension is always included in dimen-

sional schemas and the data in a fact table are organized

by a unit of time. An extensive list of dimensions

commonly found in DWs including those dimensions

used in [1,6] are presented in [4]. A typical structure

of the dimensional model is illustrated in Fig. 1.

Syntactically, all the dimensions are connected with

the fact table by one-to-many relationships. Thus, when

Data Warehousing Systems: Foundations and Architectures. Table 1. A comparison between OLTP and data

warehousing systems

OLTP Data warehouse & OLAP

Purpose Daily business support Decision support

Transaction processing Analytic processing

User Data entry clerk, administrator, developer Decision maker, executives

DB design Application oriented Subject-oriented

DB design model ER model Star, snowflake, Multidimensional model

Data structures Normalized, Complex Denormalized

Simple

Data redundancy Low High

Data contents Current, up-to-date operational data Historical

Atomic Atomic and summarized

Data integration Isolated or limited integration Integrated

Usage Repetitive, Routine Ad-hoc

Queries Predictable, predefined Unpredictable, Complex, long queries

Simple joins

Optimized for small transactions Optimized for complex queries

Update Transactions constantly generate new data Data is relatively static

Often refreshed weekly, daily

Access type Read/update/delete/insert Read/append mostly

Number of Records per access Few Many

Concurrency level High Low

Data retention Usually less than a year 3–10 years or more

Response time Subsecond to second Seconds, minutes, worse

Systems Requirements Transaction throughput, Data consistency Query throughput, Data accuracy

Data Warehousing Systems: Foundations and Architectures. Figure 1. The typical structure of the star schema.

Data Warehousing Systems: Foundations and Architectures D 139

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:24

a dimension has a many-to-many relationship with the

fact table, a special technique such as an intersection

table should be used. All the dimensions have a surrogate

key, which establishes an identifying relationship with

the fact table. In a star schema, all the dimensions

are usually denormalized to simplify the query structure

in order tominimize the number of joins. When dimen-

sions are normalized into the third normal form, the

schema is called a snowflake schema [6].

A dimensional model simplifies end-user query

processing by simplifying the database structure with

a few well-defined join paths. Conceptually, a dimen-

sional model characterizes a business process with the

fact table, the dimensions, and themeasures involved in

the business process. The dimensional model allows

users of a DW to analyze the fact data from any

combination of dimensions. The structure provides a

multidimensional analysis space within a relational

database.

Interactive data analysis of the data in a DW envi-

ronment is called online analytic processing (OLAP).

When the data in a dimensional model is stored in a

relational database, the analysis is called relational

online analytic processing (ROLAP). ROLAP engines

extend SQL to support dimensional model schema and

advanced OLAP functions.

DWdata can also be stored in a specialized multidi-

mensional structure called a data cube or a hypercube.

Data analysis of the data stored in a data cube is called

multidimensional OLAP (MOLAP). Compared with

ROLAP engines, MOLAP engines are usually limited

in data storage, but provide more efficient OLAP pro-

cessing by taking advantage of the multidimensional

data cube structure. A typical structure of a data cube is

illustrated in Fig. 2.

Hybrid OLAP (HOLAP) servers take advantage of

both ROLAP and MOLAP technologies. They usually

store large volumes of detailed data in a ROLAP server

and store aggregated data in a MOLAP server.

Data Warehousing Architecture

A data warehousing system is an environment that

integrates diverse technologies into its infrastructure.

As business data and analysis requirements change,

data warehousing systems need to go through an evo-

lution process. Thus, DW design and development

must take growth and constant change into account

to maintain a reliable and consistent architecture.

A DW architecture defines an infrastructure by which

components of DW environments are organized.

Figure 3 depicts the various components of a typical

DW architecture that consists of five layers – data

source systems, ETL management services, DW storage

and metadata repository, data marts and OLAP

engines, and front-end tools.

Data Source Systems The data source system layer

represents data sources that feed the data into the DW.

An enterprise usually maintains many different data-

bases or information systems to serve different OLTP

Data Warehousing Systems: Foundations and Architectures. Figure 2. A three dimensional data cube having

dimensions Time, Item, and Location for MOLAP.

140D Data Warehousing Systems: Foundations and Architectures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:25

functions. Since a DW integrates all the important data

for the analysis requirements of an enterprise, it needs

to integrate data from all disparate sources. Data could

include structured data, event data, semi-structured

data, and unstructured data. The primary source for

data is usually operational OLTP databases. A DWmay

also integrate data from other internal sources such as

legacy databases, spreadsheets, archived storages, flat

files, and XML files. Frequently, a DW system may also

include any relevant data from external sources. Exam-

ples of such data are demographic data purchased from

an information vendor to support sales and marketing

analysis and standard reference data from the industry or

the government. In order to analyze trends of data from

a historical perspective, some archived data could also be

selected. Thus, data warehousing systems usually end up

with huge amounts of historical data.

These data are regularly fed into the second layer for

processing. The interval between each feed could

be monthly, weekly, daily, or even real-time,

depending on the frequency of changes in the data and

the importance of up-to-datedness of the data in theDW.

ETL Management Services The second layer extracts

the data from disparate data sources, transforms the

data into a suitable format, and finally loads them to a

DW. This process is known as ETL processing.

A DW does not need all the data from the data

source systems. Instead, only those data that are neces-

sary for data analysis for tactical and strategic decision-

making processes are extracted. Since these data come

from many different sources, they could come in het-

erogeneous formats. Because a DW contains integrated

data, data need to be kept in a single standard format

by removing syntactic and semantic variations from

different data source systems. Thus, these data are

standardized for the data model used in the DW in

terms of data type, format, size, unit of data, encoding

of values, and semantics. This process ensures that the

warehouse provides a ‘‘single version of the truth’’ [3].

Data Warehousing Systems: Foundations and Architectures. Figure 3. An enterprise data warehousing system

architecture with ROLAP/MOLAP/Hybrid OLAP.

Data Warehousing Systems: Foundations and Architectures D 141

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:25

Only cleaned and conformed data are loaded into the

DW. The storage required for ETL processing is called a

staging database.

The ETL process is usually the most time-consum-

ing phase in developing a data warehousing system [7].

It normally takes 60–80% of the whole development

effort. Therefore, it is highly recommended that ETL

tools and data cleansing tools be used to automate the

ETL process and data loading.

Data Warehouse Storage and Metadata Repository

The third layer represents the enterprise DWand meta-

data repository. The enterprise DW contains all the

extracted and standardized historical data at the atom-

ic data level. A DW addresses the needs of cross-

functional information requirements of an enterprise.

The data will remain in the warehouse until they reach

the limit specified in the retention strategy. After that

period, the data are purged or archived.

Another component of this layer is the metadata

repository. Metadata are data about the data. The repos-

itory contains information about the structures, opera-

tions, and contents of the warehouse. Metadata allows

an organization to track, understand, and manage the

population and management of the warehouse. There

are three types of metadata – business metadata, tech-

nical metadata, and process metadata [7]. Business

metadata describe the contents of the DW in business

terms for easy access and understanding. They include

the meaning of the data, organizational rules, policies,

and constraints on the data as well as descriptive names

of attributes used in reports. They help users in finding

specific information from the warehouse. Technical

metadata define the DW objects such as tables, data

types, partitions, and other storage structures, as well as

ETL information such as the source systems, extraction

frequency, and transformation rules. Process metadata

describe events during ETL operations and query sta-

tistics such as begin time, end time, CPU seconds, disk

reads, and rows processed. These data are valuable for

monitoring and troubleshooting the warehouse.

Metadata management should be carefully planned,

managed, and documented. OMG’s Common Ware-

house Metamodel [9] provides the metadata standard.

Data Mart and OLAP Engines The fourth layer repre-

sents the data marts and OLAP engines. A data mart is

a small-sized DW that contains a subset of the enter-

prise DW or a limited volume of aggregated data for

the specific analysis needs of a business unit, rather

than the needs of the whole enterprise. This definition

implies three important features of a data mart, differ-

ent from a DW system. First, the data for a data mart is

fed from the enterprise DW when a separate enterprise

DW exists. Second, a data mart could store lightly

aggregated data for optimal analysis. Using aggregated

data improves query response time. Third, a data mart

contains limited data for the specific needs of a busi-

ness unit. Conceptually, a data mart covers a business

process or a group of related business processes of a

business unit. Thus, in a fully-developed DWenviron-

ment, end-users access data marts for daily analysis,

rather than the enterprise DW.

An enterprise usually ends up having multiple data

marts. Since the data to all data marts are fed from the

enterprise DW, it is very important to maintain the

consistency between a data mart and the DWas well as

among data marts themselves. A way to maintain the

consistency is to use the notion of conformed dimension.

A conformed dimension is a standardized dimension or

a master reference dimension that is shared across

multiple data marts [6]. Using conformed dimensions

allows an organization to avoid repeating the ‘‘silos of

information’’ problem.

Data marts are usually implemented in one or

more OLAP servers. OLAP engines allow business

users to perform data analysis using one the underly-

ing implementation model – ROLAP, MOLAP, or

HOLAP.

Front-end Tools The fifth layer represents the front-

end tools. In this layer, end-users use various tools

to explore the contents of the DW through data

marts. Typical analyses include standard report gen-

erations, ad-hoc queries, desktop OLAP analysis,

CRM, operational business intelligence applications

such as dashboards, and data mining.

Other DW Architectures

Figure 3 depicts the architecture of a typical data ware-

housing system with various possible components. The

two primary paradigms for DW architectures are en-

terprise DW design in the top-down manner [3] and

data mart design in the bottom-up manner [6]. A

variety of architectures based on the two paradigms

and other options exists [3,6,8,10,12]. In this section,

seven different architectures are outlined. Figures 4–9

illustrate those architectures.

142D Data Warehousing Systems: Foundations and Architectures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:25

Independent Data Marts Architecture In this architec-

ture, multiple data marts are created independently of

each other. The data marts do not use conformed

dimensions and measures. Thus, there is no unified

view of enterprise data in this architecture. As the

number of data marts grows, maintenance of consisten-

cy among data marts are difficult. In the long run, this

architecture is likely to produce ‘‘silos of data marts.’’

Data Warehousing Systems: Foundations and

Architectures. Figure 4. Independent data marts.

Data Warehousing Systems: Foundations and

Architectures. Figure 5. Data mart bus architecture with

conformed dimensions.

Data Warehousing Systems: Foundations and

Architectures. Figure 6. Centralized DW architecture

with no data marts.

Data Warehousing Systems: Foundations and

Architectures. Figure 7. Hub-and-spoke architecture.

Data Warehousing Systems: Foundations and Architectures D 143

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:25

Data Mart Bus Architecture with Conformed Dimen-

sions In this architecture, instead of creating a single

enterprise level DW, multiple dimensional data marts

are created that are linked with conformed dimensions

and measures to maintain consistency among the data

marts [6,7]. Here, an enterprise DW is a union of all

the data marts together with their conformed dimen-

sions. The use of the conformed dimensions and mea-

sures allows users to query all data marts together. Data

marts contain either atomic data or summary data.

The strength of the architecture is that data marts can

be delivered quickly, and multiple data marts can be

delivered incrementally. The potential weaknesses are

that it does not create a single physical repository of

integrated data and some data may be redundantly

stored in multiple data marts.

Centralized Data Warehouse Architecture In this

architecture, a single enterprise level DW is created

for the entire organization without any dependent

data marts. The warehouse contains detailed data for

all the analytic needs of the organization. Users and

applications directly access the DW for analysis.

Hub-and-Spoke Architecture (Corporate Information

Factory) In this architecture, a single enterprise DW,

called the hub, is created with a set of dimensional data

marts, called spokes, that are dependent on the enterprise

DW. The warehouse provides a single version of truth for

the enterprise, and each data mart addresses the analytic

needs of a business unit. This architecture is also called

the corporate information factory or the enterprise

DW architecture [3]. The warehouse contains data at

the atomic level, and the datamarts usually contain either

atomic data, lightly summarized data, or both, all fed

from the warehouse. The enterprise warehouse in this

architecture is usually normalized for flexibility and scal-

ability, while the datamarts are structured in star schemas

for performance. This top-down development method-

ology provides a centralized integrated repository of the

enterprise data and tends to be robust against business

changes. The primary weakness of this architecture is that

it requires significant up-front costs and time for devel-

oping the warehouse due to its scope and scale.

Distributed Data Warehouse Architecture A distri-

buted DW architecture consists of several local DWs

Data Warehousing Systems: Foundations and Architectures. Figure 8. Distributed DW architecture.

144D Data Warehousing Systems: Foundations and Architectures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:26

and a global DW [3]. Here, local DWs have mutually

exclusive data and are autonomous. Each local ware-

house has its own ETL logic and processes its own

analysis queries for a business division. The global ware-

house may store corporate-wide data at the enterprise

level. Thus, either corporate-level data analysis at the

enterprise level or global data analyses that require data

from several local DWs will be done at the global DW.

For example, a financial analysis covering all the business

divisions will be done at the global DW. Depending on

the level of data and query flows, there could be several

variations in this architecture [3]. This architecture

supports multiple, geographically distributed business

divisions. The architecture is especially beneficial when

local DWs run on multiple vendors.

Federated Data Warehouse Architecture A federated

DW architecture is a variation of a distributed DW

architecture, where the global DW serves as a logical

DW for all local DWs. The logical DW provides users

with a single centralized DW image of the enterprise.

This architecture is a practical solution when an enter-

prise acquires other companies that have their own

DWs, which become local DWs. The primary advan-

tage of this architecture is that existing environments

of local DWs can be kept as they are without physically

restructuring them into the global DW. This architec-

ture may suffer from complexity and performance

when applications require frequent distributed joins

and other distributed operations. The architecture is

built on an existing data environment rather than

starting with a ‘‘clean slate.’’

Virtual Data Warehouses Architecture In a virtual DW

architecture, there is no physical DWor any data mart.

In this architecture, a DW structure is defined by a set

of materialized views over OLTP systems. End-users

directly access the data through the materialized views.

The advantages of this approach are that it is easy to

build and the additional storage requirement is

Data Warehousing Systems: Foundations and Architectures. Figure 9. Federated DW architecture.

Data Warehousing Systems: Foundations and Architectures D 145

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:26

minimal. This approach, however, has many disadvan-

tages in that it does not allow any historical data; it

does not contain a centralized metadata repository; it

does not create cleansed standard data items across

source systems; and it could severely affect the perfor-

mance of the OLTP system.

Key Applications
Numerous business applications of data warehousing

technologies to different domains are found in [1,6].

Design and development of clickstream data marts is

covered in [5]. Applications of data warehousing tech-

nologies to customer relationship management (CRM)

are covered in [2,11]. Extension of data warehousing

technologies to spatial and temporal applications is

covered in [8].

URL to Code
Two major international forums that focus on data

warehousing and OLAP research are International

Conferences on Data Warehousing and Knowledge

Discovery (DaWaK) and ACM International Work-

shop on Data Warehousing and OLAP (DOLAP).

DaWaK has been held since 1999, and DOLAP has

been held since 1998. DOLAP papers are found at

http://www.cis.drexel.edu/faculty/song/dolap.htm. A

collection of articles on industrial DW experience and

design tips by Kimball is listed in http://www.ralph-

kimball.com/, and the one by Inmon is listed in www.

inmoncif.com.

Cross-references
▶Active and Real-time Data Warehousing

▶Cube

▶Data Mart

▶Data Mining

▶Data Warehouse

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse Maintenance

▶Data Warehouse Metadata

▶Data Warehouse Security

▶Dimension

▶ Evolution and Versioning

▶ Extraction

▶Materialized Views

▶Multidimensional Modeling

▶On-line analytical Processing

▶Optimization and Tuning in Data Warehouses

▶Transformation and Loading

▶View Maintenance

Recommended Reading
1. Adamson C. and Venerable M. Data Warehouse Design Solu-

tions. Wiley, New York, 1998.

2. Cunningham C., Song I.-Y., and Chen P.P. Data warehouse

design for customer relationship management. J. Database

Manage., 17(2):62–84, 2006.

3. Inmon W.H. Building the Data Warehouse, 3rd edn., Wiley,

New York, 2002.

4. Jones M.E. and Song I.-Y. Dimensional modeling: identification,

classification, and evaluation of patterns. Decis. Support Syst.,

45(1):59–76, 2008.

5. Kimball R. and Merz R. The Data Webhouse Toolkit: Building

the Web-Enabled Data Warehouse. Wiley, New York, 2000.

6. Kimball R. and Ross M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling, 2nd edn., Wiley,

2002.

7. Kimball R., Ross M., Thorntwaite W., Munday J., and Becker B.

1The Data Warehouse Lifecycle Toolkit, 2nd edn., Wiley,

2008.

8. Malinowski E. and Zimanyi E. Advanced Data Warehouse De-

sign: From Conventional to Spatial and Temporal Applications.

Springer, 2008.

9. Poole J., Chang D., Tolbert D., and Mellor D. Common Ware-

house Metamodel: An Introduction to the Standard for Data

Warehouse Integration. Wiley, 2002.

10. Sen A. and Sinha P. A comparison of data warehousing meth-

odologies. CACM, 48(3):79–84, 2005.

11. Todman C. Designing a Data Warehouse Supporting Customer

Relationship Management. Prentice-Hall, 2000.

12. Watson H.J. and Ariyachandra T. Data Warehouse Architec-

tures: Factors in the Selection, Decision, and the Success of

the Architectures. 2005.

Data, Text, and Web Mining
in Healthcare

ELIZABETH S. CHEN

Partners HealthCare System, Boston, MA, USA

Synonyms
Data mining; Text data mining; Web mining; Web data

mining; Web content mining; Web structure mining;

Web usage mining

Definition
The healthcare domain presents numerous opportu-

nities for extracting information from heterogeneous

sources ranging from structured data (e.g., laboratory

results and diagnoses) to unstructured data (e.g.,

146D Data, Text, and Web Mining in Healthcare

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:26

clinical documents such as discharge summaries) to

usage data (e.g., audit logs that record user activity for

clinical applications). To accommodate the unique

characteristics of these disparate types of data and

support the subsequent use of extracted information,

several existing techniques have been adapted and ap-

plied including Data Mining, Text Mining, and Web

Mining [7]. This entry provides an overview of each of

these mining techniques (with a focus on Web usage

mining) and example applications in healthcare.

Historical Background
Given the exponential growth of data in all domains,

there has been an increasing amount of work focused

on the development of automated methods and tech-

niques to analyze data for extracting useful informa-

tion. Datamining is generally concerned with large data

sets or databases; several specialized techniques have

emerged such as text mining and Web mining that are

focused on text data and Web data, respectively. Early

applications were in the domains of business and

finance; however, the past decade has seen an increas-

ing use of mining techniques in the life sciences, bio-

medicine, and healthcare. In the healthcare domain,

data mining techniques have been used to discover

medical knowledge and patterns from clinical data-

bases, text mining techniques have been used to analyze

unstructured data in the electronic health record, and

Web mining techniques have been used for studying

use of healthcare-related Web sites and systems.

Foundations

Data Mining

Knowledge Discovery in Databases (KDD) and data

mining are aimed at developing methodologies and

tools, which can automate the data analysis process

and create useful information and knowledge from

data to help in decision-making [9,11]. KDD has

been defined as ‘‘the non-trivial process of identifying

valid, novel, potentially useful, and ultimately under-

standable patterns in data.’’ This process is interactive

and iterative and consists of several steps: data selection,

preprocessing, transformation, data mining, and inter-

pretation. Data mining is considered one step in the

KDD process and is concerned with the exploration

and analysis of large quantities of data in order to dis-

covermeaningful patterns and rules [9,11]. Two primary

goals of data mining are prediction and description.

Text Mining

While data mining focuses on algorithmic and

database-oriented methods that search for previously

unsuspected structure and patterns in data, text mining

is concerned with semi-structured or unstructured

data found within text documents [5,12]. A narrower

definition of text mining follows that of data mining in

that it aims to extract useful information from text data

or documents; a broader definition includes general

text processing techniques that deal with search, extrac-

tion, and categorization [17]. Example applications

include document classification, entity extraction, and

summarization.

Web Mining

Web mining is the application of data mining techni-

ques to automatically discover and extract information

from data related to the World Wide Web [9,24,25].

Three categories of Web mining have been defined

[18,6]:

� Web content mining: involves the discovery of useful

information from Web content. These techniques

involve examining the content of Web pages as well

as results of Web searching.

� Web structure mining: obtains information from the

organization of pages on the Web. These techniques

seek to discover the model underlying link struc-

tures of the Web.

� Web usage mining: discovers usage patterns from

Web data. These techniques involve analyzing data

derived from the interactions of users while inter-

acting with the Web.

Web usage mining seeks to understand the behavior of

users by automatically discovering access patterns from

their Web usage data. These data include Web server

access logs, proxy server logs, browser logs, user ses-

sions, and user queries. The typical Web usage mining

process has three phases: preprocessing, pattern dis-

covery, and pattern analysis [6,18,25].

Key Applications

Data Mining in Healthcare

Several studies have discussed the use of structured

and unstructured data in the electronic health record

for understanding and improving health care pro-

cesses [5]. Applications of data mining techniques for

structured clinical data include extracting diagnostic

Data, Text, and Web Mining in Healthcare D 147

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:26

rules, identifying new medical knowledge, and discover-

ing relationships between different types of clinical data.

Using association rule generation, Doddi et al. discov-

ered relationships between procedures performed on a

patient and the reported diagnoses; this knowledge

could be useful for identifying the effectiveness of a

set of procedures for diagnosing a particular disease

[8]. To identify factors that contribute to perinatal out-

comes, a database of obstetrical patients was mined

for the goal of improving the quality and cost effective-

ness of perinatal care [23]. Mullins et al. explored a set

of data mining tools to search a clinical data repository

for novel disease correlations to enhance research

capabilities [21].

Text Mining in Healthcare

Natural language processing and text mining techniques

have been applied in healthcare for a range of applica-

tions including coding and billing, tracking physician

performance and resource utilization, improving pro-

vider communication, monitoring alternate courses

of treatment, and detecting clinical conditions and

medical errors [15]. Several studies have focused on the

development of text mining approaches for identifying

specific types of co-occurring concepts (e.g., concept

pairs such as disease-drug or disease-finding) in clini-

cal documents (e.g., discharge summaries) and biomed-

ical documents (e.g., Medline articles). In one study,

associations between diseases and findings (extracted

from discharge summaries using a natural language pro-

cessing tool) were identified and used to construct a

knowledge base for supporting an automated problem

list summarization system [2]. Another study discusses

the mining of free-text medical records for the creation

of disease profiles based on demographic information,

primary diseases, and other clinical variables [14].

Web Usage Mining in Healthcare

Major application areas of Web usage mining include

personalization, system improvement, site modifica-

tion, business intelligence, and usage characterization

[25]. Web usage mining is viewed as a valuable source

of ideas and methods for the implementation of

personalized functionality in Web-based information

systems [10,22]. Web personalization aims to make

Web-based information systems adaptive for the

needs and interests of individual users. The four basic

classes of personalization functions are: memorization,

guidance, customization, and task performance support.

A number of research projects have used Web usage

mining techniques to add personalization functio-

nality in Web-based systems [20].

There are several reports of applying advanced tech-

niques such as Web usage mining to study healthcare-

related Web sites and systems. Malin has looked at

correlating medical status (represented in health insur-

ance claims as ICD-9 codes) with how information is

accessed in a health information Web site [19]. The

value of log data for public health surveillance has been

explored for detecting possible epidemics through usage

logs that record accesses to disease-specific on-line health

information [16,13]. Zhang et al. used Web usage

data to study users’ information-seeking patterns of

MyWelch, a Web-based medical library portal system

[27]. Rozic-Hristovski et al. have used data warehouse

and On-Line Analytical Processing (OLAP) techniques

to evaluate use of the Central Medical Library (CMK)

Web site. They found that existingWeb log analysis tools

only provided a set of predefined reports without any

support for interactive data exploration, while their data

warehouse and OLAP techniques would allow for dy-

namic generation of different user-defined reports that

could be used to restructure the CMK Web site [26].

Data, Text, and Web Mining in Healthcare. Figure 1. WebCIS log file records. The WebCIS log files record details for

users’ (e.g., clinicians) interactions with patient data. Log file lines provide information on who, what, when, where, and

how information was accessed in a patient’s record. Each line has seven fields: timestamp, application name, userID, IP

address, Medical Record Number (MRN), data type, and action. Data types may have subtypes (delimited by ‘‘^’’). For

example, the subtype ‘‘2002–09–30–12.15.00.000000’’ for the data type ‘‘lab’’ refers to a specific laboratory result (e.g.,

Basic Metabolic Panel) for the patient.

148D Data, Text, and Web Mining in Healthcare

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

Another study explored regression analysis as a Web

usage mining technique to analyze navigational routes

used to access the gateway pages of the Arizona Health

Sciences Library Web site. Bracke concluded that this

technique could supplement Web log analysis for im-

proving the design of Web sites [1].

Experimental Results
Depending on the clinical task, often only subsets of

data are of interest to clinicians. Identifying these

data, and the patterns in which they are accessed, can

contribute to the design of efficient clinical informa-

tion systems. At NewYork-Presbyterian Hospital

(NYP), a study was performed to learn the patient-

specific information needs (need for data in the

patient record) of clinicians from the log files of

WebCIS (a Web-based clinical information system

at NYP) and subsequently apply this knowledge to

enhance PalmCIS (a wireless handheld extension to

WebCIS) [3,4].

Based on existing mining techniques (i.e., data

mining and Web usage mining), ‘‘CIS Usage Mining’’

was developed as an automated approach for identify-

ing patterns of usage for clinical information systems

through associated log files (CIS log files). The CIS

usage mining process consists of four phases: Data

Collection – identify sources of CIS log files and

obtain log file data (Fig. 1); Preprocessing – perform

various tasks to prepare data for pattern discovery

techniques including de-identification, data cleaning,

data enrichment, and data transformation; Pattern

Discovery – apply techniques for discovering statistics,

patterns, and relationships such as descriptive statistical

analysis, sequential pattern discovery, classification, and

association rule generation; and, Pattern Analysis – filter

out uninteresting patterns and determine how the

discovered knowledge can be used through visualization

techniques or query mechanisms.

The CIS usage mining techniques were applied to

the log files of WebCIS to obtain usage statistics and

patterns for all WebCIS users as well as particular

classes of users (e.g., role-based groups such as physi-

cians or nurses or specialty-based groups like pediat-

rics and surgery). A subset of the patterns were

transformed into rules and stored in a knowledge

base for enhancing PalmCIS with context-sensitive

‘‘shortcuts’’, which seek to anticipate what patient

data the clinician may be interested in viewing next

and provide automated links to those data (Fig. 2).

Preliminary evaluation results indicated that shortcuts

may have a positive impact and that CIS usage mining

techniques may be valuable for detecting clinician

information needs in different contexts.

Cross-references
▶Association Rules

▶Data Mining

▶Text Mining

▶Text Mining of Biological Resources

▶Visual Data Mining

Recommended Reading
1. Bracke P.J. Web usage mining at an academic health sciences

library: an exploratory study. J. Med. Libr. Assoc., 92(4):

421–428, 2004.

2. Cao H., Markatou M., Melton G.B., Chiang M.F., and

Hripcsak G. Mining a clinical data warehouse to discover

disease-finding associations using co-occurrence statistics. In

Proc. AMIA Annual Symposium, 2005, pp. 106–110.

3. Chen E.S. and Cimino J.J. Automated discovery of patient-

specific clinician information needs using clinical information

system log files. In Proc. AMIA Symposium, 2003, pp. 145–149.

4. Chen E.S. and Cimino J.J. Patterns of usage for a web-based

clinical information system. In Medinfo, 2004, pp. 18–22.

5. Chen H., Fuller S., Friedman C., and Hersh W. Knowledge

Management and Data Mining in Biomedicine. Springer, 2005.

6. Cooley R., Mobasher B., and Srivastava J. Web mining: informa-

tion and pattern discovery on the World Wide Web. In Proc.

Data, Text, and Web Mining in Healthcare. Figure 2. Transforming usage patterns to rules to shortcut rules. Each

usage pattern (mined from the CIS log files (a) can be converted to a rule (b) and some patterns can be transformed to

shortcut rules that exclude viewing of the department listings such as a listing of radiology results (c).

Data, Text, and Web Mining in Healthcare D 149

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

Nineth IEEE Int. Conf. on Tools with Artificial Intelligence,

1997, pp. 558–567.

7. Data Mining, Web Mining, Text Mining, and Knowledge Dis-

covery. wwwkdnuggetscom.

8. Doddi S., Marathe A., Ravi S.S., and Torney D.C. Discovery of

association rules in medical data. Med. Inform. Internet Med.,

26(1):25–33, 2001.

9. Dunham M. Data Mining Introductory and Advanced Topics.

Prentice-Hall, Englewood, Cliffs, NJ, 2003.

10. Eirinaki M. and Vazirgiannis M. Web mining for web persona-

lization. ACM Trans. Internet Techn., 3(1):1–27, 2003.

11. Fayyad U., Piatetsky-Shapiro G., Smyth P., and Uthurusamy R.

Advances in Knowledge Discovery and Data Mining. AAAI/MIT,

1996.

12. Hearst M. Untangling text data mining. In Proceedings of ACL.

1999.

13. Heino J. and Toivonen H. Automated detection of epidemics

from the usage logs of a physicians’ reference database. In Prin-

ciples of Data Mining and Knowledge Discovery, 7th European

Conf, 2003, pp. 180–191.

14. Heinze D.T., Morsch M.L., and Holbrook J. Mining free-text

medical records. In Proc. AMIA Symposium, 2001, pp. 254–258.

15. Hripcsak G., Bakken S., Stetson P.D., and Patel V.L. Mining

complex clinical data for patient safety research: a framework

for event discovery. J. Biomed. Inform. 36(1–2):120–30, 2003.

16. Johnson H.A., Wagner M.M., Hogan W.R., Chapman W.,

Olszewski R.T., and Dowling J. et al. Analysis of web access logs

for surveillance of influenza. In Medinfo, 2004, p. 1202.

17. Konchady M. Text Mining Application Programming. Charles

River Media. 2006, p. 2.

18. Kosala R. and Blockeel H. Web mining research: a survey.

SIGKDD Explor., 2(1):1–15, 2000.

19. Malin B.A. Correlating web usage of health information

with patient medical data. In Proc. AMIA Symposium. 484–

488, 2002.

20. Mobasher B., Cooley R., and Srivastava J. Automatic perso-

nalization based on web usage mining. Commun. ACM,

43(8):142–151, 2000.

21. Mullins I.M., Siadaty M.S., Lyman J., Scully K., Garrett C.T., and

Greg Miller W. et al. Data mining and clinical data repositories:

insights from a 667,000 patient data set. Comput. Biol. Med., 36

(12):1351–77, 2006.

22. Pierrakos D., Paliouras G., Papatheodorou C., and

Spyropoulos C. Web usage mining as a tool for personalization:

a survey. User Model. User-Adap., 13(4):311–372, 2003.

23. Prather J.C., Lobach D.F., Goodwin L.K., Hales J.W., Hage M.L.,

and Hammond W.E. Medical data mining: knowledge discovery

in a clinical data warehouse. In Proc. AMIA Annual Fall Sympo-

sium. pp. 101–105, 1997.

24. Scime A. Web mining: applications and techniques. Idea Group

Inc. 2005.

25. Srivastava J., Cooley R., Deshpande M., and Tan P. Web usage

mining: discovery and applications of usage patterns from web

data. SIGKDD Explor., 1(2):12–23, 2000.

26. Rozic-Hristovski A., Hristovski D., and Todorovski L. Users’

information-seeking behavior on a medical library Website.

J. Med. Libr. Assoc., 90(2):210–217, 2002.

27. Zhang D., Zambrowicz C., Zhou H., and Roderer N. User

information seeking behavior in a medical web portal environ-

ment: a preliminary study. J. Am. Soc. Inform. Sci. Tech., 55(8):

670–684, 2004.

Database Adapter and Connector

CHANGQING LI

Duke University, Durham, NC, USA

Synonyms
Database connectivity

Definition
A database connector is a software that connects an

application to any database. A database adapter is an

implementation of a database connector. The connec-

tor is more at the conceptual level, while the adapter is

at the implementation level, though they refer to the

same thing. For simplicity, in the remaining parts of

this entry, a database adapter will not be explicitly

distinguished from a database connector, i.e. they are

used to have the same meaning in the rest sections.

Unlike the way to access data with a fixed schema,

stored procedures, or queues, one can access table

data directly and transparently with a database adapter.

Open Database Connectivity (ODBC) [2] and Java

Database Connectivity (JDBC) [4] are two main data-

base adapters to execute Structured Query Language

(SQL) statements and retrieve results.

Historical Background
Before the universal database adapters, one has to write

code that talks to a particular database using an appro-

priate language. For example, if a program needs to

talk to an Access database and an Oracle database, the

program has to be coded with two different database

languages. This can be a quite daunting task, therefore

uniform database adapters emerged.

Here the histories of the two main universal data-

base adapters, i.e. ODBC and JDBC, are introduced.

ODBC enables applications connect to any database

for which an ODBC driver is available. ODBC was

created in 1992 by Microsoft, in partnership with

Simba Technologies, by adapting the Call Level Interface

(CLI) from the SQL Access Group (SAG). Later ODBC

was aligned with the CLI specification making its way

through X/Open (a company name) and International

150D Database Adapter and Connector

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

Organization for Standardization (ISO), and SQL/CLI

became part of the international SQL standard in 1995.

JDBC is similar to ODBC, but is designed specifi-

cally for Java programs. JDBC was firstly developed by

JavaSoft, a subsidiary of Sun Microsystems, then de-

veloped under the Java Community Process. JDBC is

part of the Java Standard Edition and the Java package

java.sql contains the JDBC classes.

Foundations
A data architecture defines a data source interface to an

application through connectors, and also by com-

mands. Thus, a configurable request for data is issued

through commands to the adapters of the data sources.

This architecture provides the ability to create custom

connectivity to disparate backend data sources.

Universal connectors enable rapid access to hetero-

geneous data and allow a broad range of seamless

connectivity to file systems, databases, web applica-

tions, business applications and industry-standard

protocols on numerous platforms. Business connectors

allow customers to participate in collaboration, while

web database adapters allow direct access to the data-

base from web services.

Relational Database (RDB) adapters efficiently pro-

vide access to RDB data and systems. Standard SQL

statements may be used to access RDB data via connec-

tors including ODBC, OLE DB (Object Linking and

Embedding, Database), JDBC, XML, iWay Business Ser-

vices (Web services), MySQL Connector/ODBC and

Connector/NET driver, and others.

Due to the longer history, ODBC offers connectivity

to a wider variety of data sources than other new data-

access Application Programming Interfaces (APIs) such

as OLE DB, JDBC, and ADO.NET (ADO stands for

ActiveX Data Objects).

Before the information from a database can be used

by an application, an ODBC data source name must be

defined, which provides information about how to

connect the application server to a database, such as

Microsoft SQL Server, Sybase, Oracle, or IBM DB2.

The implementations of ODBC can run on different

operating systems such as Microsoft Windows, Unix,

Linux, OS/2, and Mac OS X. Hundreds of ODBC

drivers exist for different database products including

Oracle,DB2,Microsoft SQLServer, Sybase,MySQL, Post-

greSQL, Pervasive SQL, FileMaker, and Microsoft Access.

The first ODBC product was released by Microsoft

as a set of Dynamic-Link Libraries (DLLs) for

Microsoft Windows. In 2006, Microsoft ships its own

ODBC with every supported version of Windows.

Independent Open Database Connectivity (iODBC)

offers an open source, platform-independent imple-

mentation of both the ODBC and X/Open specifica-

tions. iODBC has been bundled into Darwin and Mac

OS X, and it has also been ported by programmers to

several other operating systems and hardware platforms,

including Linux, Solaris, AIX, HP-UX, Digital UNIX,

Dynix, FreeBSD, DG-UX, OpenVMS, and others.

Universal Database Connectivity (UDBC), laid the

foundation for the iODBC open source project, is a

cross-platform fusion of ODBC and SQL Access Group

CLI, which enables non-Windows-based DBMS-inde-

pendent (Database Management System independent)

application development when shared-library imple-

mentations on Unix occurred only sporadically.

Headed, maintained and supported by Easysoft Di-

rector Nick Gorham, unixODBC has become the most

common driver-manager for non-Microsoft Windows

platforms and for one Microsoft platform, Interix. In

advance of its competitors, unixODBC fully supports

ODBC3 and Unicode. Most Linux distributions includ-

ing Red Hat, Mandriva and Gentoo, now ship uni-

xODBC. unixODBC is also used as the drivers by

several commercial database vendors, including IBM

(DB2, Informix), Oracle and SAP (Ingres). Many open

source projects also make use of unixODBC. unixODBC

builds on any platform that supports most of the GNU

(a computer operating system composed entirely of free

software) autoconf tools, and uses the LGPL (Lesser

General Public License) and the GPL (General Public

License) for licensing.

ODBC provides the standard of ubiquitous connec-

tivity and platform-independence because hundreds of

ODBC drivers exist for a large variety of data sources.

However, ODBC has certain drawbacks. Writing

ODBC code to exploit DBMS-specific features requires

more advanced programming. An application needs to

use introspection to call ODBC metadata functions

that return information about supported features,

available types, syntax, limits, isolation levels, driver

capabilities and more. Even when adaptive techniques

are used, ODBC may not provide some advanced

DBMS features. Important issues can also be raised

by differences between drivers and driver maturity.

Compared with drivers deployed and tested for years

which may contain fewer bugs, newer ODBC drivers

do not always have the stability.

Database Adapter and Connector D 151

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

Developers may use other SQL APIs if ODBC does

not support certain features or types but these features are

required by the applications. Proprietary APIs can be used

if it is not aiming for platform-independence; whereas if it

is aiming to produce portable, platform-independent,

albeit language specific code, JDBC API is a good choice.

Sun’s (a company name) Java (a programming

language) 2 Enterprise Edition (J2EE) Connector

Architecture (JCA) defines a standard architecture for

connecting the Java 2 Platform to heterogeneous Enter-

prise Information Systems (EISs). The JCA enables an

EIS vendor to provide a standard resource adapter

(connector). The JDBC Connector is used to connect

relational data sources. DataDirect technology is a pio-

neer in JDBC which provides resource adapters as an

installable option for JDBC. The JDBCDeveloper Center

provides the most current, developer-oriented JDBC

data connectivity information available in the industry.

Multiple implementations of JDBC can exist and be

used by the same application. A mechanism is provided

by the API to dynamically load the correct Java packages

and register them with the JDBC Driver Manager, a

connection factory for creating JDBC connections.

Creating and executing statements are supported

by JDBC connections. These statements may either be

update statements such as SQL CREATE, INSERT,

UPDATE and DELETE or query statements with

SELECT.

Update statements e.g. INSERT, UPDATE and DE-

LETE return how many rows are affected in the data-

base, but do not return any other information.

Query statements, on the other hand, return a

JDBC row result set, which can be walked over. Based

on a name or a column number, an individual column

in a row can be retrieved. Any number of rows may exist

in the result set and the row result set has metadata to

describe the names of the columns and their types.

To allow for scrollable result sets and cursor sup-

port among other things, there is an extension to the

basic JDBC API in the javax.sql package.

Next the bridging configurations between ODBC

and JDBC are discussed:

ODBC-JDBC bridges: an ODBC-JDBC bridge con-

sists of an ODBC driver, but this ODBC driver uses the

services of a JDBC driver to connect to a database.

Based on this driver, ODBC function calls are translat-

ed into JDBC method calls. This bridge is usually used

when an ODBC driver is lacked for a particular data-

base but access to a JDBC driver is provided.

JDBC-ODBC bridges: a JDBC-ODBC bridge con-

sists of a JDBC driver, but this JDBC driver uses the

ODBC driver to connect to the database. Based on this

driver, JDBC method calls are translated into ODBC

function calls. This bridge is usually used when a partic-

ular database lacks a JDBC driver. One such bridge is

included in the Java Virtual Machine (JVM) of Sun

Microsystems. Sun generally recommends against the

use of its bridge. Far outperforming the JVM built-in,

independent data-access vendors now deliver JDBC-

ODBC bridges which support current standards.

Furthermore, the OLE DB [1], the Oracle Adapter

[3], the iWay [6] Intelligent Data Adapters, and

MySQL [5] Connector/ODBC and Connector/NET

are briefly introduced below:

OLE DB (Object Linking and Embedding, Data-

base), maybe written as OLEDB or OLE-DB, is an API

designed by Microsoft to replace ODBC for accessing

different types of data stored in a uniform manner.

While supporting traditional DBMSs, OLE DB also

allows applications to share and access a wider variety

of non-relational databases including object databases,

file systems, spreadsheets, e-mail, and more [1].

The Oracle Adapter for Database and Files are part

of the Oracle Business Process Execution Language

(BPEL) Process Manager installation and is an imple-

mentation of the JCA 1.5 Resource Adapter. The

Adapter is based on open standards and employs the

Web Service Invocation Framework (WSIF) technolo-

gy for exposing the underlying JCA Interactions as

Web Services [3].

iWay Software’s Data Adapter can be used for

ALLBASE Database, XML, JDBC, and ODBC-Based En-

terprise Integration. The Intelligent Data Adapters of

iWayWork Together; each adapter contains a communi-

cation interface, a SQL translator to manage adapter

operations in either SQL or iWay’s universal Data Ma-

nipulation Language (DML), and a database interface to

translate standard SQL into native SQL syntax [6].

MySQL supports the ODBC interface Connector/

ODBC. This allows MySQL to be addressed by all the

usual programming languages that run under Micro-

soft Windows (Delphi, Visual Basic, etc.). The ODBC

interface can also be implemented under Unix, though

that is seldom necessary [5]. The Microsoft .NET

Framework, a software component of Microsoft Win-

dows operating system, provides a programming inter-

face to Windows services and APIs, and manages the

execution of programs written for this framework [7].

152D Database Adapter and Connector

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

Key Applications
Database adapters and connectors are essential for the

current and future Web Services and Service Oriented

Architecture, Heterogeneous Enterprise Information Sys-

tems, Data Integration andData Interoperability, and any

other applications to access any data transparently.

URL To Code
The catalog and list of ODBC Drivers can be found at:

http://www.sqlsummit.com/ODBCVend.htm and

http://www.unixodbc.org/drivers.html.

The guide about how to use JDBC can be found at:

http://java.sun.com/javase/6/docs/technotes/guides/

jdbc/.

Cross-references
▶Data Integration

▶ Interface

▶ Java Database Connectivity

▶ .NET Remoting

▶Open Database Connectivity

▶Web 2.0/3.0

▶Web Services

Recommended Reading
1. Blakeley J. OLE DB: a component dbms architecture. In Proc.

12th Int. Conf. on Data Engineering, 1996.

2. Geiger K. Inside ODBC. Microsoft, 1995.

3. Greenwald R., Stackowiak R., and Stern J. Oracle Essentials:

Oracle Database 10g. O’Reilly, 2004.

4. Hamilton G., Cattell R., and Fisher M. JDBC Database Access

with Java: A Tutorial and Annotated Reference. Addison Wesley,

USA, 1997.

5. Kofler M. The Definitive Guide to MySQL5. A press, 2005.

6. Myerson J. The Complete Book of Middleware. CRC, USA, 2002.

7. Thai T., Lam H., .NET Framework Essentials. O’Reilly, 2003.

Database Clustering Methods

XUE LI

The University of Queensland, Brisbane, QLD, QLD,

Australia

Synonyms
Similarity-based data partitioning

Definitions
Given a database D = {t1, t2,. . .,tn}, of tuples and a user

defined similarity function s, 0 � s(ti, tj) � 1, ti, tj 2 D,

the database clustering problem is defined as a parti-

tioning process, such that D can be partitioned into a

number of (such as k) subsets (k can be given), as C1,

C2,. . .,Ck, according to s by assigning each tuple in D to

a subset Ci. Ci is called a cluster such that Ci = {ti | s(ti,

tr) s(ti,ts), if ti,tr 2 Cj and ts =2 Cj}.

Key Points
Database clustering is a process to group data objects

(referred as tuples in a database) together based on a

user defined similarity function. Intuitively, a cluster

is a collection of data objects that are ‘‘similar’’ to each

other when they are in the same cluster and ‘‘dissimi-

lar’’ when they are in different clusters. Similarity can

be defined in many different ways such as Euclidian

distance, Cosine, or the dot product. For data objects,

their membership belonging to a certain cluster can

be computed according to the similarity function.

For example, Euclidian distance can be used to com-

pute the similarity between the data objects with the

numeric attribute values, where the geometric distance

is used as a measure of the similarity. In a Euclidian

space, the data objects are to each other, the more

similar they are. Another example is to use the Euclid-

ian distance to measure the similarity between a data

object and a central point namely centroid of

the cluster. The closer to the centroid the object is,

the more likely it will belong to the cluster. So in this

case, the similarity is decided by the radius of the

points to their geometric centre.

For any given dataset a challenge question is how

many natural clusters that can be defined. The answer

to this question is generally application-dependent and

can be subjective to user intentions.

In order to avoid specifying k for the number

of clusters in a clustering process, a hierarchical meth-

od can be used. In this case, two different appro-

aches, either agglomerative or divisive, can be

applied. Agglomerative approach is to find the clusters

step-by-step through a bottom-up stepwise merging

process until the whole dataset is grouped as a single

cluster. Divisive approach is to find the clusters step-

by-step through a top-down stepwise split process

until every data object becomes a single cluster.

Although hierarchical approaches have been widely

used in many applications such as biomedical

researches and experimental analysis in life science,

they suffer from the problems of unable to undo the

intermediate results in order to approach a global

Database Clustering Methods D 153

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

optimum solution. In an agglomerative approach,

once two objects are merged, they will be together for

all following merges and cannot be reassigned. In a

divisive approach, once a cluster is split into two sub-

clusters, they cannot be re-grouped into the same

cluster for the further split.

In addition to hierarchical approaches, which

do not need to specify how many clusters to be dis-

covered, a user may specify an integer k for clustering

data objects. In general, the task of finding a global

optimal k partitions belongs to the class of NP-hard

problem. For this reason, heuristics are used in many

algorithms to achieve a balance between the efficiency

and effectiveness as much as possible to close to

the global optimum. Two well-known algorithms are

the k-means and k-medoids.

One important feature of database clustering is that

a dataset tends to be very large, high-dimensional, and

coming at a high speed. By using a balanced tree struc-

ture, BIRCH algorithm [3] makes a single scan on the

incoming data stream. BIRCH algorithm consists of

two phases: (i) a summary of historical data is incre-

mentally maintained in main memory as a clustering

tree (CF tree). A node in CF tree gives the cardinality,

centre, and radius of the cluster. Based on some heur-

istics, each new arriving data object is assigned to a sub-

cluster, which leads to the update of its cluster feature in

the CF tree. (ii) The clustering process is then applied

on the leaf nodes of the CF tree. When the final cluster

needs to be generated, the sub-clusters are treated as

weighted data points and various traditional clustering

algorithms can be applied in phase two computation

without involving I/O operations.

DBSCAN [1] is a density based approach consider-

ing the coherence of the data objects. As a result, the

nonconvex shapes clusters can be found based on the

density that connect the data objects forming any kind

of shapes in a Euclidian space. Spatial data indexes

such as R* tree can be used to improve the system

performance. STING [2] is another hierarchical

approach that uses a grid structure to stores density

information of the objects.

The key features of database clustering approaches

are that (i) they are designed to deal with a large

volume of data so a trade-off of accuracy and efficiency

often needs to be considered. (ii) They are not able to

see the complete dataset before the objects are clus-

tered. So a progressive resolution refinement is used to

approach the optimal solutions. (iii) They are designed

to deal with constant data streams and so the incre-

mental maintenances of the clustering results are

required.

Cross-references
▶Data Partitioning

▶K-Means and K-Medoids Clustering

▶Unsupervised Learning

Recommended Reading
1. Ester M., Kriegel H.P., Sander J., and Xu X. A density-based

algorithm for discovering clusters in large spatial databases

with noise, In Proc. Second Int. Conf. on Knowledge Discovery

and Data Mining, pp. 226–231.

2. Han J., Kamber M., and Tung A.K.H. 1Spatial clustering

methods in data mining: a survey, In Geographic Data Mining

and Knowledge Discovery, H. Miller, J. Han (eds.). Taylor and

Francis, UK, 2001.

3. Zhang T., Ramakrishnan R., and Livny M. Birch: An efficient

data clustering method for very large databases. In Proc. 1996

ACM SIGMOD Int. Conf. on Management of Data. Quebec,

Canada, 1996, pp. 103–114.

Database Clusters

MARTA MATTOSO

Federal University of Rio de Janeiro, Rio de Janeiro,

Brazil

Synonyms
DBC

Definition
A database cluster (DBC) is as a standard computer

cluster (a cluster of PC nodes) running a Database

Management System (DBMS) instance at each node.

A DBC middleware is a software layer between a data-

base application and the DBC. Such middleware is

responsible for providing parallel query processing on

top of the DBC. It intercepts queries from applications

and coordinates distributed and parallel query execu-

tion by taking advantage of the DBC. The DBC term

comes from an analogy with the term PC cluster,

which is a solution for parallel processing by assem-

bling sequential PCs. In a PC cluster there is no need

for special hardware to provide parallelism as opposed

to parallel machines or supercomputers. A DBC takes

advantage of off-the-shelf sequential DBMS to run

parallel queries. There is no need for special software

154D Database Clusters

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

or hardware as opposed to parallel database systems.

The idea is to offer a high performance and cost-

effective solution based on a PC cluster, without need-

ing to change the DBMS or the application and its

database.

Historical Background
Traditionally, high-performance of database query pro-

cessing has been achieved with parallel database systems

[7]. Parallel processing has been successfully used to

improve performance of heavy-weight queries, typically

by replacing the software and hardware platforms with

higher computational capacity components (e.g. tightly-

coupled multiprocessors and parallel database systems).

Although quite effective, this solution requires the data-

base system to have full control over the data, requiring

an efficient database partitioning design. It also requires

adapting applications from the sequential to the parallel

environment. Migrating applications is complex (some-

times impossible), since it may require modifications to

the source code. In addition, often it requires the expan-

sion of the computational environment and the applica-

tion modification, which can be very costly. A cheaper

hardware alternative is to use parallel database systems

for PC clusters. However, the costs can still be high

because of a new database partitioning design and

some solutions require specific software (DBMS) or

hardware (e.g. SAN – Storage Area Network).

The DBC approach has been initially proposed by

the database research group from ETH Zurich through

the PowerDB project [10] to offer a less expensive and

cost-effective alternative for high performance query

processing. Thus, DBC is based on clusters of PC

servers and pre-existing DBMS and applications. How-

ever, PowerDB is not open-source nor available for

download. Several open-source DBC systems (e.g.

RepDB*, C-JDBC, ParGRES, and Sequoia) have been

proposed to support database applications by using

different kinds of database replication on the DBC

to obtain inter- and intra-query parallelism and fault

tolerance.

Foundations
While many techniques are available for high perfor-

mance query processing in parallel database systems,

the main challenge of a DBC is to provide parallelism

from outside the DBMS software.

A typical DBC architecture is a set of PC servers

interconnected by a dedicated high-speed network,

each one having its own processor(s) and hard disk

(s), and running an off-the-shelf DBMS all coordinat-

ed by the DBC software middleware (Fig. 1). The DBC

middleware is responsible for offering a single external

view of the whole system, like a virtual DBMS. Appli-

cations need not be modified when database servers

are replaced by their cluster counterparts. The DBC

approach is considered to be non-intrusive since it

does not require changes on the current application,

its queries, its DBMS and its database.

Typically, the application is on the client side while

the DBMS and the database is fully replicated at the PC

cluster nodes. The DBC software middleware

Database Clusters. Figure 1. DBC architecture.

Database Clusters D 155

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

intercepts the application queries at the moment they

are sent to the DBMS through the database driver. The

DBC middleware then defines the best strategy to

execute this query on the DBC to obtain the best

performance from the DBC configuration. The DBC

software middleware is typically divided on a global

component which orchestrates the parallelism and a

local component which tunes the local execution to

participate on load balancing.

High performance in database applications can

be obtained by increasing the system throughput, i.e.

improving the number of transactions processed per

second, and by speeding-up the query execution time

for long running queries. The DBC query execution

strategy varies according to the type of transactions

being submitted and the DBC load. To improve system

throughput, the DBC uses inter-query parallelism. To

improve queries with long time execution the DBC

implements intra-query parallelism. Inter- and intra-

query parallelism can be combined. The query execu-

tion strategy is based on available database replicas.

Inter-query parallelism consists of executing many

queries at the same time, each at a different node.

Inter-query parallelism is implemented inDBCby trans-

parently distributing queries to nodes that contain repli-

cas of the required database. When the database is

replicated at all nodes of the DBC, read-only inter-

query parallelism is almost straightforward. Any read

query can be sent to any replica node and execute in

parallel. However, in the presence of updates the DBC

must ensure the ACID transaction properties. Typically,

a DBC global middleware has a component that man-

ages a pool of connections to running DBMSs. Each

request received by the DBC is submitted to a scheduler

component that controls concurrent request executions

and makes sure that update requests are executed in the

same order by all DBMSs. Such scheduler should be

able to be configured to enforce different parallel levels

of concurrency.

Intra-query parallelism consists of executing the

same query in parallel, using sub-queries that scan dif-

ferent parts of the database (i.e. a partition), each at a

different node. In a DBC, scanning different partitions

without hurting the database autonomy is not simple to

implement. In DBC, independent DBMSs are used

by the middleware as ‘‘black-box’’ components. It is up

to the middleware to implement and coordinate parallel

execution. This means that query execution plans gen-

erated by such DBMSs are not parallel. Furthermore, as

‘‘black-boxes,’’ they cannot bemodified to become aware

of the other DBMS and generate cooperative parallel

plans. Physically partitioning the database relies on a

good distribution designwhichmay not work for several

queries. An interesting solution to implement intra-

query parallelism in DBC is to keep the database repli-

cated and design partitions using virtual partitioning

(VP) as proposed by Akal et al. [1]. VP is based on

replication and dynamically designs partitions. The

basic principle of VP is to take one query, rewrite it

as a set of sub-queries ‘‘forcing’’ the execution of each

one over a different subset of the table. Then the final

query result is obtained through a composition of the

partial results generated by the sub-queries.

Key Applications
DBC obtained much interest for various database

applications like OLTP, OLAP, and e-commerce. Such

applications can be easily migrated from sequential

environments to the low cost DBC solution and obtain

high performance in query processing. Different DBC

open source solutions are available to cost-effective

parallelism for various database applications. Since

the high-performance requirements vary according to

the typical queries of the applications, different DBC

parallel techniques are provided. C-JDBC [3] and

Sequoia [11] are DBC focused on e-commerce and

OLTP applications. They use inter-query parallelism

and are based on fault tolerance and load balancing

in query distribution. RepDB* [8] is a DBC focused

on throughput, which offers HPC for OLTP transac-

tions. It uses inter-query parallelism and it is based on

replica consistency techniques. ParGRES [6] is the only

open-source DBC to provide for intra-query parallel

processing [5], thus it is focused on OLAP applications.

All these solutions have shown significant speedup

through high performance query processing. Experi-

mental results using the TPC series of benchmarks

can be found for each one of the specific DBC software

middlewares, for example TPC-W with C-JDBC and

Sequoia, TPC-C with RepDB* and TPC-H with

ParGRES.

Future Directions
Grid platforms can be considered a natural extension

of PC clusters. They are also an alternative of high

performance computing with large volumes of data.

Several challenges in grid data management are dis-

cussed in [9]. An extension of the DBC approach to

156D Database Clusters

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:27

grids is proposed [4]. However, communication and

data transfer can become a major issue.

Experimental Results
The graphic in Fig. 2 shows query execution time

decreasing as more processors are included to process

queries from the TPC-H benchmark. Query execution

times in the graphic are normalized. These experi-

ments have used a 32 PC cluster from Grid05000 [2].

The graphic also shows the execution time that should

be obtained if linear speedup was achieved. The speed-

up achieved by ParGRES while processing isolated

queries with different number of nodes (from 1 to

32) is superlinear for most queries. A typical OLAP

transaction is composed by a sequence of such queries,

where one query depends on the result of the previous

query. The user has a time frame to take his decisions

after running a sequence of queries. Since OLAP

queries are time consuming, running eight queries

can lead to a four hour elapsed time, according to

these tests using one single node for an 11 GB database.

These eight queries can have their execution time re-

duced from four hours of elapsed time to less than one

hour, just by using a small four nodes cluster configu-

ration. With 32 nodes these queries are processed in a

few minutes.

Data Sets
‘‘TPC BenchmarkTM H – Revision 2.1.0’’, url: www.

tpc.org.

URL to Code
url: cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/pargres/

pargres/

Cross-references
▶Data Partitioning

▶Data Replication

▶Data Warehouse Applications

▶Distributed Database Design

▶Grid File (and family)

▶ JDBC

▶ODBC

▶On-line Analytical Processing

▶ Parallel Database Systems

▶ Parallel Query Processing

▶ Storage Area Network

Recommended Reading
1. Akal F., Böhm K., and Schek H.J. OLAP query evaluation

in a database cluster: a performance study on intra-query paral-

lelism. In Proc. Sixth East-European Conference on Advances

in Databases and Information Systems (ADBIS), 2002,

pp. 218–231.

2. Cappello F., Desprez F., and Dayde, M., et al. Grid5000: a large

scale and highly reconfigurable grid experimental testbed.

In International Workshop on Grid Computing, IEEE 2005,

pp. 99–106.

3. Cecchet E. C-JDBC: a middleware framework for database

clustering. IEEE Data Eng. Bull., 27:19–26, 2004.

4. Kotowski N., Lima A.A., Pacitti E., Valduriez P., and Mattoso M.,

Parallel Query Processing for OLAP in Grids. Concurrency and

Computation: Practice & Experience, 2008, p. 1303.

Database Clusters. Figure 2. ParGRES DBC – TPC-H query execution times.

Database Clusters D 157

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:28

5. Lima A.A.B., Mattoso M., and Valduriez P. Adaptive virtual

partitioning for OLAP query processing in a database cluster.

In Proc. XIX Brazilian Symp. on Database Systems, 2004,

pp. 92–105.

6. Mattoso M. et al. ParGRES: a middleware for executing OLAP

queries in parallel. COPPE-UFRJ Technical Report, ES-690,

2005.

7. Özsu T. and Valduriez P. Principles of Distributed Database

Systems (2nd edn.). Prentice Hall, Englewood Cliffs, NJ, 1999.

8. Pacitti E., Coulon C., Valduriez P., and Özsu M.T. Preventive

replication in a database cluster. Distribut. Parallel Databases,

18(3):223–251, 2005.

9. Pacitti E., Valduriez P., and Mattoso M. Grid data manage-

ment: open problems and new issues. J. Grid Comput.,

5(3):273–281, 2007.

10. Röhm U., Böhm K., Scheck H.-J., and Schuldt H. FAS - A

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 754–768.

11. Sequoia Project, http://sequoia.continuent.org.

Database Connectivity

▶Database Adapter and Connector

Database Constraints

▶Database Dependencies

Database Dependencies

MARC GYSSENS

Hasselt University, Diepenbeek, Belgium

Synonyms
Database constraints; Data dependency

Definition
For a relational database to be valid, it is not sufficient

that the various tables of which it is composed con-

form to the database schema. In addition, the instance

must also conform to the intended meaning of the

database [15]. While many aspects of this intended

meaning are inherently informal, it will generally in-

duce certain formalizable relationships between the

data in the database, in the sense that whenever a

certain pattern is present among the data, this pattern

can either be extended or certain data values must be

equal. Such a relationship is called a database depen-

dency. The vast majority of database dependencies in

the literature are of the following form [5]:

ð8x1Þ . . . ð8xnÞ’ðx1; . . . ;xnÞ
) ð9z1Þ . . . ð9zkÞcðy1; . . . ; ym; z1; . . . ; zkÞ:

Here, {y1,. . .,ym} � {x1,. . .,xn}, ’ is a (possibly empty)

conjunction of relation atoms using all the variables

x1,. . .,xn, and c is either a single equality atom involving

universally quantified variables only (in which case

the dependency is called equality-generating); or c is

a non-empty conjunction of relation atoms involv-

ing all the variables y1,. . .,ym, z1,. . .,zk (in which case

the dependency is called tuple-generating. A

tuple-generating dependency is called full if it has no

existential quantifiers: In the other case, it is called

embedded.

Historical Background
The theory of database dependencies started with the

introduction of functional dependencies by Codd in his

seminal paper [8]. They are a generalization of (super)

keys. A relation satisfies a functional dependency X! Y

(where X and Y are sets of attributes) if, whenever two

tuples agree on X, they also agree on Y . For example,

if in a employee relation of a company database with

schema

O ¼ fEMP-NR; EMP-NAME; JOB; SALARYg;

the functional dependencies

fEMP-NRg ! fEMP-NAME;DEPT ;
JOB; SALARYg;

fDEPT ; JOBg ! fSALARYg

hold, this means that EMP-NR is a key of this relation,

i.e., uniquely determines the values of the other attri-

butes, and that JOB in combination with DEPT

uniquely determines SALARY.

Codd also noticed that the presence of a functional

dependency X ! Y also allowed a lossless decomposi-

tion of the relation into its projections onto X [Y

and X [Y (Y denoting the complement of Y). In

the example above, the presence of {DEPT, JOB} !
{SALARY} allows for the decomposition of the original

relation into its projections onto {DEPT, JOB, SALARY}

and {EMP-NR, EMP-NAME, DEPT}.

158D Database Connectivity

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:28

Hence, the identification of constraints was not

only useful for integrity checking but also for more

efficient representation of the data and avoiding

update anomalies through redundancy removal.

Subsequent researchers (e.g., [18]) noticed indepen-

dently that the presence of the functional dependency

X ! Y is a sufficient condition for decomposability of

the relation into its projection onto X [Y and X [Y ,

but not a necessary one. For example,

can be decomposed losslessly into its projections onto

{DRINKER, BEER} and {BEER, BAR}, but neither

{BEER} ! {DRINKER} nor {BEER} ! {BAR} holds.

This led to the introduction of the multivalued depen-

dency: a relation satisfies the multivalued dependency

X � ↡ Y exactly when this relation can be decomposed

losslessly into its projections onto X [Y and X [Y .

Fagin [10] also introduced embedded multivalued

dependencies: A relation satisfies the embedded multi-

valued dependency X� ↡ Y jZ if its projection onto X [
Y [Z can be decomposed losslessly into its projections

onto X [Y and X [Z. Sometimes, however, a relation

be decomposed losslessly into three or more of its

projections but not in two. This led Rissanen [17] to

introduce a more general notion: a relation satisfies a

join dependency X1⋈ ��� ⋈Xk if it can be decomposed

losslessly into its projections onto X1,. . . ,Xk.

Quite different considerations led to the introduc-

tion of inclusion dependencies [6], which are based on

the concept of referential integrity, already known to

the broader database community in the 1970s. As an

example, consider a company database in which one

relation, MANAGERS, contains information on de-

partment managers, in particular, MAN-NAME, and

another, EMPLOYEES, contains general information

on employees, in particular, EMP-NAME. As each

manager is also an employee, every value MAN-

NAME in MANAGERS must also occur as a value of

EMP-NAME in EMPLOYEES. This is written as

the inclusion dependency MANAGERS[MAN-NAME]

� EMPLOYEES[EMP-NAME]. More generally, a

database satisfies the inclusion dependency R[A1,. . . ,

An] � S[B1,. . . ,Bm] if the projection of the relation R

onto the sequence of attributes A1,. . . ,An is contained

in the projection of the relation S onto the sequence of

attributes B1, . . . ,Bn.

The proliferation of dependency types motivated

researchers to propose subsequent generalizations,

eventually leading to the tuple- and equality-generat-

ing dependencies of Beeri and Vardi [5] defined higher.

For a complete overview, the reader is referred to [14]

or the bibliographic sections in [1]. For the sake of

completeness, it should also be mentioned that depen-

dency types have been considered that are not captured

by the formalism of Beeri and Vardi. An example is the

afunctional dependency of De Bra and Paredaens (see,

e.g., Chap. 5 of [15]).

Foundations
The development of database dependency theory has

been driven mainly by two concerns. One of them is

solving the inference problem, and, when decidable,

developing tools for deciding it. The other is, as point-

ed out in the historical background, the use of database

dependencies to achieve decompositions of the

database contributing to more efficient data represen-

tation, redundancy removal, and avoiding update ano-

malies. Each of these concerns is discussed in some

more detail below.

Inference

The inference problem is discussed here in the context of

tuple- and equality-generating dependencies. The ques-

tion that must be answered is the following: given a

subtype of the tuple- and equality generating dependen-

cies, given as input a set of constraints C and a single

constraint c, both of the given type, is it decidable

whether C logically implies c In other words, is it

decidable if each database instance satisfying C also

satisfies c? Given that database dependencies have

been defined as first-order sentences, one might be

inclined to think that the inference problem is just an

instance of the implication problem in mathematical

logic. However, for logical implication, one must con-

sider all models of the given database scheme, also

those containing infinite relations, while database rela-

tions are by definition finite. (In other words, the study

of the inference of database dependencies lies within

finite model theory.) To separate both notions of infer-

ence, a distinction is made between unrestricted

Drinker Beer Bar

Jones Tuborg Tivoli

Smith Tuborg Far West

Jones Tuborg Tivoli

Smith Tuborg Tivoli

Database Dependencies D 159

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:28

implication (denoted C � c) and finite implication

(denoted C�f c) [5]. Since unrestricted implication

is recursively enumerable and finite implication is co-r-

ecursively enumerable, their coincidence yields that the

finite implication problem is decidable. The opposite,

however, is not true, as is shown by the following

counterexample. Consider a database consisting of a

single relation R with scheme {A, B}. Let

C ¼ fB ! A;R½B� � R½A�g and let c be the inclusion

dependency R[A] � R[B]. One can show that C�f c,

but C j6¼ c, as illustrated by the following, necessarily

infinite, counterexample:

As will be pointed out later, the finite implication

problem for functional dependencies and so-called

unary inclusion dependencies (i.e., involving only one

attribute in each side) is decidable.

An important tool for deciding (unrestricted)

implication is the chase. In the chase, a table is created

for each relation in the database. For each relation

atom in the left-hand side of the dependency c to be

inferred, its tuple of variables is inserted in the

corresponding table. This set of tables is then chased

with the dependencies of C: in the case of a tuple-

generating dependency, new tuples are added in a

minimal way until the dependency is satisfied (in

each application, new variables are substituted for ex-

istential variables); in the case of an equality-generat-

ing dependency, variables are equated until the

dependency is satisfied. The result, chaseðCÞ, which
may be infinite, can be seen as a model for C. It is the
case that C � c if and only if the right-hand side of c is

subsumed by some tuple of chaseðCÞ (in the case of a

tuple-generating dependency) or the required equality

has been applied during the chase procedure.

In the case where only full tuple-generating depen-

dencies and equality-generating dependencies are

involved, the chase procedure is bound to end, as no

existential variables occur in the dependencies, hence

no new values are introduced. In particular, the unre-

stricted implication problems coincides with the finite

implication problem, and is therefore decidable. De-

ciding this inference problem is EXPTIME-complete,

however.

The inference problem for all tuple- and equality-

generating dependencies is undecidable, however (hence

unrestricted and finite implication do not coincide).

In 1992, Herrmann [13] solved a longstanding open

problem by showing that the finite implication prob-

lem is already undecidable for embedded multivalued

dependencies.

Another approach towards deciding inference of

dependency types is trying to find an axiomatization:

a finite set of inference rules that is both sound and

complete. The existence of such an axiomatization

is also a sufficient condition for the decidability of

inference. Historically, Armstrong [2] was the first

to propose such an axiomatization for functional

dependencies. This system of inference rules was

eventually extended to a sound and complete axiomat-

ization for functional and multivalued dependencies

together [3]:

ðF1Þ ; � X ! Y if Y � X ðreflexivityÞ
ðF2Þ X ! Yf g � XZ ! YZ ðaugmentationÞ
ðF3Þ X ! Y ;Y ! Zf g � X ! Z ðtransitivityÞ
ðM1Þ X ↡Yf g � X ↡ �Y ðcomplementationÞ
ðM2Þ ; � X ↡ Y if Y � X ðreflexivityÞ
ðM3Þ X ↡Yf g � XZ ↡YZ ðaugmentationÞ
ðM4Þ X ↡Y ;Y ↡Zf g � X ↡Z � Y ðpseudo�

transitivityÞ
ðFM1Þ X ! Yf g � X ↡Y ðconversionÞ
ðFM2Þ X ↡Y ;Y ! Zf g�X ! Z � Y ðinteractionÞ

Moreover, (F1)–(F3) are sound and complete for

the inference of functional dependencies alone, and

(M1)–(M4) are sound and complete form the infer-

ence of multivalued dependencies alone. The above

axiomatization is at the basis of an algorithm to decide

inference of functional and multivalued dependencies

in low polynomial time.

Of course, the inference problem for join dependen-

cies is also decidable, as they are full tuple-generating

dependencies. However, there does not exist a sound

and complete axiomatization for the inference of

join dependencies [16], even though there does exist

A B

0 1

1 2

2 3

3 4
..
. ..

.

160D Database Dependencies

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:28

an axiomatization for a larger class of database

dependencies.

There also exists a sound and complete axiomati-

zation for inclusion dependencies [6]:

ðI1Þ ; � R X½ � � R X½ � ðreflexivityÞ
ðI2Þ R A1; ::: ;Am½ � � S B1; :::; Bm½ �f g � R Ai1; :::Aik½ �

� S Bi1; :::; Bik½ �
if i1; :::; ik is a sequence of integers in 1;:::;mf g

ðprojectionÞ
ðI3Þ R X½ � � S Y½ �; S Y½ � � T Z½ �f gR X½ � � T Z½ �

ðtransitivityÞ

Above, X, Y , and Z represent sequences rather than sets

of attributes.

Consequently, the implication problem for inclu-

sion dependencies is decidable, even though inclusion

dependencies are embedded tuple-generating depen-

dencies. However, deciding implication of inclusion

dependencies is PSPACE-complete.

It has already been observed above that the unre-

stricted and finite implication problems for functional

dependencies and unary inclusion dependencies taken

together do no coincide. Nevertheless, the finite impli-

cation problem for this class of dependencies is decid-

able. Unfortunately, the finite implication problem for

functional dependencies and general inclusion depen-

dencies taken together is undecidable (e.g., [7]).

Decompositions

As researchers realized that the presence of functional

dependencies yields the possibility to decompose the

database, the question arose as to how far this decom-

position process ought to be taken. This led Codd in

follow-up papers to [8] to introduce several normal

forms, the most ambitious of which is Boyce-Codd

Normal Form (BCNF). A database is in BCNF if, when-

ever one of its relations satisfies a nontrivial functional

dependency X ! Y (i.e., where Y is not a subset of X),

X must be a superkey of the relation (i.e., the functi-

onal dependency X! U holds, where U is the set of all

attributes of that relation). There exist algorithms that

construct a lossless BCNF decomposition for a given

relation. Unfortunately, it is not guaranteed that such a

decomposition is also dependency-preserving, in the

following sense: the set of functional dependencies that

hold in the relations of the decomposition and that can

be inferred from the given functional dependencies is

in general not equivalent with the set of the given

functional dependencies. Even worse, a dependency-

preserving BCNF decomposition of a given relation

does not always exist. For that reason, Third Normal

Form (3NF), historically a precursor to BCNF, is also

still considered. A datatabase is in 3NF if, whenever

one of its relations satisfies a nontrivial functional

dependency X !{A} (A being a single attribute), the

relation must have a minimal key containing A. Every

database in BCNF is also in 3NF, but not the other way

around. However, there exists an algorithm that, given

a relation, produces a dependency-perserving lossless

decomposition in 3NF. Several other normal forms

have also been considered, taking into account multi-

valued dependencies or join dependencies besides

functional dependencies.

However, one can argue that, by giving a join

dependency, one actually already specifies how one

wants to decompose a database. If one stores this

decomposed database rather than the original one,

the focus shifts from integrity checking to consistency

checking: can the various relations of the decomposi-

tions be interpreted as the projections of a universal

relation? Unfortunately, consistency checking is in gen-

eral exponential in the number of relations. Therefore,

a lot of attention has been given to so-called acyclic join

dependencies [4]. There are many equivalent defini-

tions of this notion, one of which is that an acyclic

join dependency is equivalent to a set of multivalued

dependencies. Also, global consistency of a decompo-

sition is already implied by pairwise consistency if and

only if the join dependency defining the decomposi-

tion is acyclic, which explains in part the desirability of

acyclicity. Gyssens [12] generalized the notion of acy-

clicity to k-cyclicity, where acyclicity corresponds with

the case k = 2. A join dependency is k-cyclic if it is

equivalent to a set of join dependencies each of which

has at most k components. Also, global consistency of a

decomposition is already implied by k-wise consisten-

cy if and only if the join dependency defining the

decomposition is k-cyclic.

Key Applications
Despite the explosion of dependency types during the

latter half of the 1970s, one must realize that the

dependency types most used in practice are still func-

tional dependencies (in particular, key dependencies)

and inclusion dependencies. It is therefore unfortunate

Database Dependencies D 161

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:28

that the inference problem for functional and inclusion

dependencies combined is undecidable.

At a more theoretical level, the success of studying

database constraints from a logical point view and the

awareness that is important to distinguish between

unrestricted and finite implication certainly contribu-

ted to the interest in and study and further develop-

ment of finite model theory by theoretical computer

scientists.

Finally, decompositions of join dependencies led to

a theory of decompositions for underlying hyper-

graphs, which found applications in other areas as

well, notably in artificial intelligence (e.g., [9,11]).

Cross-references
▶Boyce-Codd Normal Form (BCNF)

▶Chase

▶ Equality-Generating Dependencies

▶ Fourth Normal Form (4NF)

▶ Functional Dependency

▶ Implication of Constraints

▶ Inconsistent Databases

▶ Join Dependency

▶Multivalued Dependency

▶Normal Forms and Normalization

▶Relational Model

▶ Second Normal Form (2NF)

▶Third Normal Form (3NF)

▶Tuple-Generating Dependencies

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of databases.

Addison-Wesley, Reading, Mass., 1995. (Part C).

2. Armstrong W.W. Dependency structures of data base relation-

ships. In Proc. IFIP Congress 74. J.L. Rosenfeld (ed). North-

Holland, 1974, pp. 580–583.

3. Beeri C., Fagin R., and Howard J.H. A complete axiomatization

for functional and multivalued dependencies. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1978, pp. 47–61.

4. Beeri C., Fagin R., Maier D., and Yannakakis M. On the

desirability of acyclic database schemes. J. ACM, 30

(3):479–513, 1983.

5. Beeri C. and Vardi M.Y. The implication problem for data

dependencies. In Proc. Int. Conf. on Algorithms, Languages,

and Programming, 1981. In Even Kariv Lect. Notes Comput.

Sci., 115:73–85, Springer, 1981.

6. Casanova M.A., Fagin R., and Papadimitriou C.H. Inclusion

dependencies and their interaction with functional dependen-

cies. J. Comput. Syst. Sci., 28(1):29–59, 1984.

7. Chandra A.K. and Vardi M.Y. The implication problem for

functional and inclusion dependencies is undecidable. SIAM J.

Comput., 14(3):671–677, 1985.

8. Codd E.F. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, 1970.

9. Cohen D.A., Jeavons P., and Gyssens M. A unified theory

of structural tractability for constraint satisfaction problems.

J. Comput. Syst. Sci., 74(5):721–743, 2008.

10. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Syst., 2(3):262–278,

1977.

11. Gottlob G., Miklós Z., and Schwentick T. Generalized hypertree

decompositions: NP-hardness and tractable variants. In Proc.

26th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2007, pp. 13–22.

12. Gyssens M. On the complexity of join dependencies. Trans.

Database Syst., 11(1):81–108, 1986.

13. Herrmann C. On the undecidability of implications between

embedded multivalued dependencies. Inform. Comput., 122

(2):221–235, 1995.

14. Kanellakis P.C. Elements of relational database theory. In: Van

Leeuwen J. (ed.). Handbook of theoretical computer science,

Elsevier, 1991, pp. 1074–1156.

15. Paredaens J., De Bra P., Gyssens M., and Van Gucht D.

The structure of the relational database model. In EATCS

Monographs on Theoretical Computer Science, Vol. 17.

Brauer W., Rozenberg G., and Salomaa A., (eds.). Springer, 1989.

16. Petrov S.V. Finite axiomatization of languages for representation

of system properties. Inform. Sci., 47(3):339–372, 1989.

17. Rissanen J. Independent components of relations. ACM Trans.

Database Syst., 2(4):317–325, 1977.

18. Zaniolo C. Analysis and design opf relational schemata for

database systems. Ph. D. thesis, University of California at Los

Angeles, 1976. Technical Report UCLA-Eng-7669.

Database Design

JOHN MYLOPOULOS

University of Trento, Trento, Italy

Definition
Database design is a process that produces a series of

database schemas for a particular application. The

schemas produced usually include a conceptual, logical

and physical schema. Each of these is defined using a

different data model. A conceptual or semantic data

model is used to define the conceptual schema, while

a logical data model is used for the logical schema.

A physical schema is obtained from a logical schema by

deciding what indexes and clustering to use, given

a logical schema and an expected workload for the

database under design.

Key Points
For every existing database, there is a design team and

a design process that produced it. That process can

162D Database Design

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:28

make or break a database, as it determines what infor-

mation it will contain and how will this information

be structured.

The database design process produces a concep-

tual, a logical and a physical database schema. These

schemas describe the contents of a database at different

levels of abstraction. The conceptual schema focuses

on the entities and relationships about which informa-

tion is to be contained in the database. The Entity-

Relationship Model is the standard model for defining

conceptual schemas, though there have been many

other proposals. UML class diagrams can also be used

for this design phase. The logical schema describes the

logical structure of the database. The Relational Model

is the standard model for this phase, which views a

database as a collection of tables. Alternative data

models include the Hierarchical and the Network

Data Models, but also object-oriented data models

that view a database as a collection of inter-related

objects instantiating a collection of classes.

The need to create different schemas that describe

the contents of a database at different levels of abstrac-

tion was noted as far back as 1975 in a report by the

American National Standards Institute (ANSI) [1], but

has also evolved since. The report proposed a three-

level architecture consisting of several external schemas

representing alternative user views of a database, a

conceptual schema whose information content sub-

sumed that of external schemas, and an internal sche-

ma that represented database content in terms of a

particular database technology (such as a relational

Database Management System). For database design

purposes, conceptual schemas have to be built up-

front, whereas external schemas can be created dyna-

mically according to user needs. Moreover, the notion

of an internal schema has been refined to that of a

logical and a physical schema.

The database design process often consists of four

phases: requirements elicitation, conceptual schema

design, logical schema design, and physical schema

design. Requirements elicitation gathers information

about the contents of the database to be designed from

those who have a stake (a.k.a. stakeholders) This infor-

mation is often expressed in natural language and

may be ambiguous and/or contradictory. For example,

two stakeholders may differ on what information

about customers or patients is useful and should be

included in the database-to-be. A conceptual schema is

extracted from a given set of requirements through a

series of steps that focus on noun phrases to identify

entities, verb phrases to identify important relation-

ships among entities, and other grammatical construc-

tions to identify attributes about which information

is useful to include in the database.

A conceptual schema is then transformed to a logical

one through a series of well-defined transformations

that map collections of entities and relationships into

a relation whose attributes and keys are determined

by the source entities and relationships. The logical sche-

ma design phase often includes a normalization step

where an initial logical schema with associated functional

dependencies is transformed into a normalized schema

using one of several well-studied normal forms.

Physical schema design starts with a logical schema

and determines the index to be used for each relation

in the logical schema. This decision is based on the

expected workload for the database-to-be, defined by

the set of most important queries and updates that

will be evaluated against the database. In addition,

physical design determines the clustering of tuples in

physical storage. This clustering plays an important

role in the performance of the system as it evaluates

queries that return many tuples (for example, queries

that include joins). Physical schema design may dictate

the revision of the logical schema by splitting/merging

relations to improve performance. This step is known

as denormalization.

As suggested by denormalization, the database

design process should not be viewed as a sequential

process that begins with requirements elicitation

and proceeds to generate a conceptual, logical and

physical schema in that order. Rather, the process con-

sists of four linearly ordered phases and is iterative:

after completing any one phase, the designer may

return to earlier ones to revise the schemas that have

been produced so far, and even the requirements that

have been gathered.

Cross-references
▶Conceptual Data Models

▶Normalization Theory

▶ Physical Database Design for Relational Databases

▶ Semantic Data Models

Recommended Reading
1. American National Standards Institute. Interim Report: ANSI/

X3/SPARC Study Group on Data Base Management Systems.

FDT – Bull. ACM SIGMOD, 7(2):1–140, 1975.

Database Design D 163

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

2. Atzeni P., Ceri S., Paraboschi S., and Torlone R. Database

Systems: Concepts, Languages and Architectures. McGraw Hill,

New York, 1999.

Database Design Recovery

▶Database Reverse Engineering

Database Engine

▶Query Processor

Database Implementation

▶ Physical Database Design for Relational Databases

Database Interaction

▶ Session

Database Languages for Sensor
Networks

SAMUEL MADDEN

Massachusetts Institute of Technology, Cambridge,

MA, USA

Synonyms
Acquisitional query languages; TinySQL

Definition
Sensor networks – collections of small, inexpensive

battery-powered, wirelessly networked devices equip-

ped with sensors (microphones, temperature sensors,

etc.) – offer the potential to monitor the world with

unprecedented fidelity. Deploying software for these

networks, however, is difficult, as they are complex,

distributed, and failure prone. To address these com-

plexities, several sensor network database systems,

including TinyDB [7], Cougar [12], and SwissQM [8]

have been proposed. These systems provide a high level

SQL-like query language that allows users to specify

what data they would like to capture from the network

and how they would like that data processed without

worrying about low-level details such power manage-

ment, network formation, and time synchronization.

This entry discusses the main features of these lan-

guages, and their relationship to SQL and other data-

base languages.

Historical Background
Cougar and TinyDB were the first sensor network

databases with the bulk of their development occurring

between 1999 and 2003. They emerged as a result of

rising interest in wireless sensor networks and other

tiny, embedded, battery powered computers. TinyDB

was co-developed as a part of the TinyOS operating

system [2] for Berkeley Mote-based sensor networks.

Initial versions of the motes used Atmel 8-bit micro-

processors and 40 kbit s�1 radios; newer generations,

developed by companies like Crossbow Technologies

(http://www.xbow.com) and Moteiv Technologies

(http://www.moteiv.com) use Zigbee (802.15.4) radios

running at 250 kbit s�1 and Atmel or Texas Instruments

8 or 16 bit microprocessors running at 4–8 MHz.

Nodes typically are very memory constrained (with

4–10 Kbytes of RAM and 48–128 Kbytes of non-

volatile flash-based program memory.) Most nodes

can be interfaced to sensors that can capture a variety

of readings, including light, temperature, humidity,

vibration, acceleration, sounds, or images. The limited

processing power and radio bandwidth of these devices

constrains sample rates to at most a few kilosamples/s.

Using such tiny devices does allow power consumption

to be quite low, especially when sample rates are kept

down; for example, networks that sample about once

a second from each node can provide lifetimes of a

month or longer on coin-cell batteries or a year or

more on a pair of AA batteries [4].

The promise of sensor network databases is that they

provide a very simple way to accomplish one of the

most common goals of sensor networks: data collection.

Using a simple, high level declarative language, users

specify what data they want and how fast they want it.

The challenge of building a sensor network database lies

in capturing the required data in a power-efficient and

reliable manner. The choice of programming language

for these systems – the main topic of this entry – is

essential to meeting that challenge. The language must

be expressive enough to allow users to get the data they

164D Database Design Recovery

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

want, but also implementable in a way that is power-

efficient, so that the network lasts as long as possible.

To understand how sensor network querying

works, it is important to understand how sensor net-

work databases are used. The typical usage model is as

follows: a collection of static sensor nodes is placed in

some remote location; each node is pre-programmed

with the database software. These nodes report data

wirelessly (often over multiple radio hops) to a nearby

‘‘basestation’’ – typically a laptop-class device with an

Internet connection, which then relays data to a server

where data is stored, visualized, and browsed.

Users interact with the system by issuing queries at

the basestation, which in turn broadcasts queries out

into the network. Queries are typically disseminated

via flooding, or perhaps using some more clever gossip

based dissemination scheme (e.g., Trickle [3]). As

nodes receive the query, they begin processing it. The

basic programming model is data-parallel: each node

runs the same query over data that it locally produces

or receives from its neighbors. As nodes produce query

results, they send them towards the basestation.

When a node has some data to transmit, it relays it

to the basestation using a so-called tree-based routing

protocol. These protocols cause the nodes to arrange

themselves into a tree rooted at the basestation. This

tree is formed by having the basestation periodically

broadcast a beacon message. Nodes that hear this bea-

con re-broadcast it, indicating that they are one hop

from the basestation; nodes that hear those messages in

turn re-broadcast them, indicating that they are two

hops from the basestation, and so on. This process of

(re)broadcasting beacons occurs continuously, such

that (as long as the network is connected) all nodes

will eventually hear a beacon message. When a node

hears a beacon message, it chooses a node from which

it heard the message to be its parent, sending messages

through that parent when it needs to transmit data to

the basestation (In general, parent selection is quite

complicated, as a node may hear beacons from several

candidate parents. Early papers by Woo and Culler

[11] and DeCouto et al. [1] provide details.). Note

that this ad hoc tree-based network topology is signifi-

cantly different than the any-to-any routing networks

that are used in traditional parallel and distributed

database systems. As discussed below, this imposes

certain limitations on the types of queries that are

feasible to express efficiently in sensor network data-

base systems.

Foundations
Most sensor network databases systems provide a SQL-

like query interface. TinySQL, the query language used

in TinyDB, for example, allows users to specify queries

(through a GUI or command line interface) that app-

ear as follows:

SELECT <select list>

FROM <table list>

WHERE <condition list>

GROUP BY <field list>

HAVING <condition list>

SAMPLE PERIOD <duration>

<additional clauses>

Most of these clauses behave just as they do in

standard SQL. There are a few differences, however.

First, the SAMPLE PERIOD clause requests that a data

reading be produced once every <duration> seconds.

This means that unlike most databases, where each

query produces a single result set, in most sensor

databases, each query produces a continuous stream

of results. For example, to request the temperature

from every node in a sensor network whose value is

greater than 25˚C once per sec, a user would write:

SELECT nodeid, temperature

FROM sensors

WHERE temperature > 25˚C

SAMPLE PERIOD 1s

Besides the continuous nature of sensor network query

languages, this example illustrates that the data model

provided by these systems is also somewhat unusual.

First, the nodeid attribute is a unique identifier

assigned to each sensor node and available in every

query. Second, the table sensors is virtual table of

sensor readings. Here, virtual means that it concep-

tually contains one row for every sensor type (light,

temperature, etc.) from every sensor node at every

possible instant, but all of those rows and columns

are not actually materialized. Instead, only the sensor

readings needed to answer a particular query are actu-

ally generated. The research literature refers to such

languages as acquisitional, because they specify the rate

and location where data should be acquired by the

network, rather that simply querying a pre-existing

table of data stored in the memory of the device [6].

Note also that although this table appears to be a

single logical table its rows are actually produced by

different, physically disjoint sensors. This suggests that

Database Languages for Sensor Networks D 165

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

some elements of query processing may be done inside

of the network, before nodes transmit their data. For

example, in the TAG system [5] a method for efficiently

computing aggregates inside of a sensor network was

proposed.

Restricted Expressiveness

It is important to note that sensor network query

languages are less expressive than more general lan-

guages like SQL. By restricting expressiveness of their

query languages, sensor network databases are able to

ensure reasonably efficient query execution. For exam-

ple, the TinyDB system imposes the following restric-

tions on queries:

� Arbitrary self-joins with the sensors table are not

allowed. Such joins would require propagation of

the entire table to all other nodes in the system.

Queries with an equality predicate on nodeid can

be evaluated efficiently and may be allowed.

� Nested queries are not allowed. Such queries po-

tentially require disseminating query state through-

out the network. For example, the query:

SELECT nodeid, temp

FROM sensors

WHERE temp >

(SELECT AVG(temp)

FROM sensors)

SAMPLE PERIOD 1s

requires disseminating the average throughout the net-

work in order to compute the query in a distributed

fashion. Centralized implementations – where all of the

data is sent to the basestation – are likely the only feasible

implementation but can be quite inefficient due to the

large amount of required data transmission.

Not all nested queries are inefficient to imple-

ment. For example, queries that compute aggregates

over local state and then compute global aggregates

over those local values (e.g., the average of the last five

minutes temperatures at each node) have a natural

distributed implementation. To avoid a confusing

language interface where some nested queries are

allowed and some are not, the designers of TinyDB

chose to support certain classes of nested queries

through two additional syntactic clauses: temporal

aggregates and the storage points.

� Temporal aggregates allow users to combine a series

of readings collected on a single node over time.

For example, in a building monitoring system for

conference rooms, users may detect occupancy by

measuring the maximum sound volume over time

and reporting that volume periodically; this could

be done with the following query:

SELECT nodeid, WINAVG(volume,

30s, 5s)

FROM sensors

GROUP BY nodeid

SAMPLE PERIOD 1s

This query will report the average volume from each

sensor over the last 30 seconds once every 5 seconds,

sampling once per second. The WINAVG aggregate is an

example of a sliding-window operator. The final two

parameters represent the window size, in seconds, and

the sliding distance, in seconds, respectively.

� Storage points add a simple windowing mecha-

nism to TinyDB that can be used to compute

certain classes of locally nested queries. A stor-

age point simply defines fixed-size materializa-

tion buffer of local sensor readings that

additional queries can be posed over. Consider,

as an example:

CREATE

STORAGE POINT recentLight SIZE

8 seconds

AS (SELECT nodeid, light FROM

sensors

SAMPLE PERIOD 1s)

This statement provides a shared, local (i.e., single-

node) location called recentLight to store a stream-

ing view of recent data.

Users may then issue queries which insert into or

read from storage points, for example, to insert in the

recentLight storage point a user would write:

SELECT nodeid, light

INTO recentLight

SAMPLE PERIOD 1s

And to read from it, he might write:

SELECT AVG(light)

FROM recentLight

SAMPLE PERIOD 5s

Joins are also allowed between two storage points on the

same node, or between a storage point and the sensors

166D Database Languages for Sensor Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

relation. When a sensors tuple arrives, it is joined

with tuples in the storage point at its time of arrival.

The SwissQM [8] system does allow some forms of

nested queries to be specified, but like TinyDB’s STOR-

AGE POINT syntax, these queries can operate only on a

node’s local state. For example, the internal query

can compute each node’s minimum temperature over

the last 5 minutes, and then a global aggregate query

can be used to compute the global minimum tempera-

ture over all nodes.

Specialized Language Constructs

Sensor network query languages usually include a

number of specialized features designed to allow

them to take advantage of the special hardware avail-

able on the sensor nodes they run on. For example, a

user may wish to actuate some piece of attached hard-

ware in response to a query. In TinyDB queries may

specify an OUTPUT ACTION that will be executed when

a tuple satisfying the query is produced. This action

can take the form of a low-level operating system

command (such as ‘‘Turn on the red LED’’), or the

instantiation of another query. For example, the query:

SELECT nodeid, temp

WHERE temp > 100˚ F

OUTPUT ACTION alarm()

SAMPLE PERIOD 1 minute

will execute the command alarm() whenever a tuple

satisfying this query is produced. This command is an

arbitrary piece of C code that is written by the user and

stored in a system catalog.

A related feature that is important in sensor net-

works is event handling. The idea is to initiate data

collection when a particular external event occurs –

this event may be outside of the database system (for

example, when a switch on the physical device is trig-

gered.) Events are important because they allow the

system to be dormant until some external condition

occurs, instead of continually polling or blocking,

waiting for data to arrive. Since most microprocessors

include external interrupt lines than can wake a sleep-

ing device to begin processing, efficient implementa-

tions of event processing are often possible.

As an example, the TinyDB query:

ON EVENT switch-pressed(loc):

SELECT AVG(light), AVG(temp),

event.loc

FROM sensors AS s

WHERE dist(s.loc, event.loc) < 10m

SAMPLE PERIOD 2 s FOR 30 s

reports the average light and temperature level at sen-

sors when a switch on the device is pressed. Every time

a switch-pressed event occurs, the query is issued

from the detecting node and the average light and

temperature are collected from nearby nodes once

every 2 seconds for 30 seconds. The switch-pressed

event is signaled to TinyDB by a low piece of driver-like

C code that interfaces to the physical hardware.

Key Applications
Sensor network query languages have applications in

any wireless sensing domain. They are particularly

designed for environments where relatively simple pro-

grams that capture and process data are needed.

Systems that implement such languages are often com-

parably efficient to hand-coded programs that require

hundreds of times more code to implement.

Applications where sensor network databases have

been deployed to good effect include environmental

[10] and industrial [9] monitoring.

Cross-references
▶ In-Network Query Processing

▶ SQL

▶ Stream Processing

Recommended Reading
1. Couto D.S.J.D., Aguayo D., Bicket J., and Morris R. A high-

throughput path metric for multi-hop wireless routing. In

Proc. 9th Annual Int. Conf. on Mobile Computing and Net-

working, 2003.

2. Hill J., Szewczyk R., Woo A., Hollar S., Culler D., and Pister K.

System architecture directions for networked sensors. In Proc.

9th Int. Conf. on Architectural Support for Programming Lan-

guages and Operating Systems, 2000.

3. Levis P., Patel N., Culler D., and Shenker S. Trickle: a self-

regulating algorithm for code propagation and maintenance in

wireless sensor network. In Proc. 1st USENIX Symp. on Net-

worked Systems Design & Implementation, 2004.

4. Madden S. The Design and Evaluation of a Query Processing

Architecture for Sensor Networks. Ph.D. thesis, UC Berkeley,

2003.

5. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG:

A Tiny AGgregation Service for Ad-Hoc Sensor Networks. In

Proc. 5th USENIX Symp. on Operating System Design and

Implementation, 2002.

6. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. The

design of an acquisitional query processor for sensor networks.

Database Languages for Sensor Networks D 167

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2003.

7. Madden S., Hong W., Hellerstein J.M., and Franklin M. TinyDB

Web Page.

8. Müller R., Alonso G., and Kossmann D. SwissQM: next genera-

tion data processing in sensor networks. In Proc. 3rd Biennial

Conf. on Innovative Data Systems Research, 2007, pp. 1–9.

9. Stoianov I., Nachman L., Madden S., and Tokmouline T.

PIPENET: a wireless sensor network for pipeline monitoring.

In Proc. 6th Int. Symp. Inf. Proc. in Sensor Networks, 2007, pp.

264–273.

10. Tolle G., Polastre J., Szewczyk R., Culler D.E., Turner N., Tu K.,

Burgess S., Dawson T., Buonadonna P., Gay D., and Hong W.

A macroscope in the redwoods. In Proc. 3rd Int. Conf. on

Embedded Networked Sensor Systems, 2005, pp. 51–63.

11. Woo A., Tong T., and Culler D. Taming the underlying chal-

lenges of reliable multihop routing in sensor networks. In Proc.

1st Int. Conf. on Embedded Networked Sensor Systems, 2003.

12. Yao Y. and Gehrke J. Query processing in sensor networks.

In Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.

Database Machine

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
A database machine is a computer system which has

special hardware designed and/or tuned for database

accesses. Database machines may sometimes be cou-

pled with a frontend server and, in this case, the data-

base machines are called backend processors.

Key Points
The basic idea behind database machines was to put

database computation closer to disk drives so as to

achieve significant performance improvements. Data-

base machines were actively studied in the 1970’s

and 1980’s.

Early researchers explored filter processors which

could efficiently examine data transferred from disk

drives to a frontend server. Filter processors were cate-

gorized into four groups by D. DeWitt et al. [2].

A Processor-per-Track (PPT) machine is a system

which consists of a number of cells (a set of tracks)

and cell processors. As the data track rotates, the cell

processor can scan the data and process search opera-

tions on the fly. A Processor-per-Head (PPH) machine

is a system in which a processor is coupled with each

head. Data is transferred in parallel from a set of heads

and then processed in a set of processors. Thus, a whole

cylinder is searched in a single rotation. In contrast to

the PPT and PPH machines which need special disk

hardware, a Processor-per-Disk (PPD) machine cou-

ples a processor with each disk drive. PPD can be seen

as a compromising design, which has less performance

advantage but can be realized at lower cost. A Multi-

Processor Cache (MPC) machine is a system which

couples multiple processors and multiple disk cache

modules with each disk drive. The cache space is used

for the processors to exchange the ability of selection

operation.

When it came to the 1980s, researches of database

machines were shifted to massive parallel comput-

ing. General-purpose processors and disk drives were

tightly coupled into a node, and such nodes were then

combined by a high-speed interconnect. Some of

these types of database machines attained much suc-

cess in the industry.

Cross-references
▶Active Storage

▶ Intelligent Storage Systems

Recommended Reading
1. DeWitt D.J. and Gray J. Parallel database systems: The future of

high performance database systems. Comm. ACM, 36(6):85–98,

1992.

2. DeWitt D.J. and Hawthorn P.B. A performance evaluation of

data base machine architectures. In Proc. Very Large Data Base

(VLDB). 1981, pp. 199–214.

3. Hurson A.R., Miller L.L., and Pakzad S.H. Parallel architectures

for database systems. IEEE CS Press, 1989.

Database Management System

PAT HELLAND

Microsoft Corporation, Redmond, WA, USA

Synonyms
DBMS

Definition
A database management system is a software-based

system to provide application access to data in a con-

trolled and managed fashion. By allowing separate def-

inition of the structure of the data, the database

168D Database Machine

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

management system frees the application frommany of

the onerous details in the care and feeding of its data.

Historical Background
The first general purpose database systems emerged in

the 1960s and represented their data in the network

data model which presumes that portions of the data

(typically called records) would explicitly reference any

related data items in a graph (or network). The model

was standardized as the CODASYL (Conference on

Data Systems Languages) model and remained a strong

influence on database systems into the 1980s.

In the late 1960s, the hierarchical data model emer-

ged as exemplified by IBM’s IMS (Information Man-

agement System). In the hierarchical data model, data

was oriented in a hierarchy and the most natural

form of navigation was via a parent-child relationship.

Starting in the 1970s, the relational data model

emerged based on theoretical work done by Ted

Codd and the System R research project at IBM’s San

Jose Research Lab. Out of System R emerged the SQL

language. Concurrent with the System R effort, the

Ingres project at UC Berkeley contributed strongly to

both the development of the concepts and implemen-

tation techniques of the relational data model.

In the relational data model, data is represented in

tables which can be related to each other by value in an

operation called a join. Seminal to the relational data

model is the absence of any explicit navigational links

in the data. Relational systems continue to dominate

what most people think of as a database system.

Other systems such as Object-Relational (O-R)

systems and Entity-Relationship (E-R) systems either

augment or compete with pure relational systems by

formalizing the representation of relationships and

objects (or entities) in the abstractions formally man-

aged by the system. Industry opinions vary as to

whether the O-R and E-R functionality should be

included in the database management system itself or

provided by the application layered on top of the

database management system.

The notion of a database management system is

under pressure to evolve in many different ways:

� In the 1980s, stored procedures and triggers were

introduced into some system allowing the execu-

tion of application logic within the database itself.

Stored procedures, combined with referential in-

tegrity and other declarative forms of business

rules, pushed portions of the application into the

database management system itself, blurring the

traditional delineation between ‘‘app and data.’’

� As the single mainframe evolved into distributed

systems, databases evolved to span many computers

while attempting to provide the same behavior (on

a larger scale) as provided by the centralized system.

As the scope of the systems grows to thousands of

machines, the semantics of the access to the data can

no longer be identical to the smaller systems. Hence,

the meaning of access to data is evolving.

� As huge numbers of devices and sources of data

have arrived, it is no longer always enough to con-

sider data as a passive collection. Consequently,

innovations are seen in streaming databases where-

in questions are posed about data which has not yet

been completely gathered.

� With the arrival of the Internet, data is frequently

sent outside of the database and then is returned

back into it (potentially with changes). Database

management systems have been designed to have

complete control over their data and the effect of

the Internet and other widely distributed systems

pose challenges.

� As multiple applications (and their data) are inde-

pendently created and then brought together in an

increasingly connected world, the concept of a cen-

tralized definition of the data is under increasing

pressure and forcing new innovation.

Database management systems focus on the data as

separated from the application. While the concepts and

implementations have evolved, the emphasis on data

has remained at the center.

Foundations
The basic charter of a database management system is

to focus on the separate management of data to reduce

the costs and increase the functionality. Key to data-

base management systems is the creation of higher

level abstractions around how the application is sepa-

rated from the data.

Today’s database management systems are domi-

nated by the relational data model. With the relational

model, the high level abstraction is expressed as the

DDL (Data Definition Language) which defines the

schema for the data. In DDL, the data is laid out in

tables and rows. Above the DDL abstraction, the appli-

cation can manipulate the data. Below the DDL

Database Management System D 169

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

abstraction, the database management system can han-

dle the storage, protection, high-performance reading

and writing, and many other services. In so many ways,

it is the existence of the DDL abstraction layer that is

the essence of a database management system.

The high-level abstractions that separate the data

from the application allows for a number of valuable

characteristics:

� Independent Evolution

With the existence of the schema, the application

can evolve based on the schema itself. Indeed, in most

modern database management systems, the schema

itself can be evolved while maintaining continuous

support for existing applications.

In addition, the schema as seen by the application

(the conceptual or logical schema) is typically separated

from the physical schema which defines the actual

layout of the storage and its associated indices. Lever-

aging the separation provided by the schema, the actual

representation of the data may evolve to respond to

changes in technology.

An essential part of a database management system

is the protection of the investment in the application

(which is typically very large) to allow for changes in

technology. It is the higher level abstraction captured

in the schema (via the DDL definition) that enable the

protection of the investment in the application.

� Multiple Applications Sharing the Same Data

As the data is represented in a fashion based on its

underlying semantics, it is possible to write new appli-

cations that modify the same shared data. By capturing

the high-level conceptual schema, the underlying

access to the physical storage is managed by the data-

base management system. The combination of clearly

separated meaning and the delegation of physical

access to the intermediary provided by the database

management system allows for new applications to be

written against the same data.

� Ad-Hoc Access to Data

An important usage of database management sys-

tems has emerged in the form of business intelligence.

Users are allowed to directly query and/or modify the

contents of the data using direct access to the database

management system itself. Ad-hoc access to data is

made possible by the existence of the higher-level

abstraction of the conceptual schema which describes

the data independently of its physical schema and of

its applications.

Business intelligence has, on its own, grown to a

multi-billion dollar industry. Many enterprises find

that the knowledge extracted from rapid and ad-hoc

queries against their data can dramatically influence

the business.

Essential to providing these abstractions are three

application visible mechanisms, schema definition,

data manipulation language (DML), and transactions.

� Schema Definition

Schema definition is typically done at two levels, the

conceptual (or logical) schema and the physical schema.

The conceptual schema definition is the expres-

sion of the shape and form of the data as viewed by

the application. In relational database management

systems, the conceptual schema is described as tables,

rows, and columns. Each column has a name and a

data type. A collection of columns comprise a row, and

a collection of rows, a table. The goal of the conceptual

schema is to express the data organization as concisely

as possible with each piece of knowledge represented in

a single way.

The physical schema definition maps the concep-

tual schema into the underlying access methods which

store the data onto disk. Both the storage of the under-

lying records and the capturing of various indices used

for locating the records must be declared in the physi-

cal schema.

� Data Manipulation

Data manipulation refers to the mechanism by

which the application extracts data from the database

and changes data within the database. In relational

systems, data manipulation is expressed as set oriented

operations known as queries or updates. The SQL

language, originally defined as a part of IBM’s System

R project in the late 1970s, has emerged as an ANSI

standard and is, by far, the most commonly used DML

(Data Manipulation Language) in modern relational

database management systems.

The means for expressing access to and manipula-

tion of data is one of the most important interfaces in

computing. As innovations in data representation

(such as XML) arrive, there are frequent debates

about how to codify the access to those representa-

tions. There are competing forces in that the preserva-

tion of the existing interfaces is essential to the

170D Database Management System

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

industry-wide investment in applications and in pro-

grammer expertise. Applying pressure to that is the

desire to innovate in the representation and usage of

data as system evolve. The evolution of database man-

agement systems is currently driven by the pressures of

the blurring of data versus application, Internet scale

distribution, streaming databases, and independently

defined systems coming together.

The data manipulation portion of database man-

agement systems is a vibrant and lively space for inno-

vation both in academia and industry.

� Transactions

The ability to process data using relations within

the relational model of database management is de-

pendent on transactions to combine the data in a

meaningful and predictable way.

The transaction is a unit of work with four proper-

ties whose first letters spell ACID:

Atomic – The changes made within the transaction are

all or nothing (even when failures occur).

Consistent – Rules enforced within the database (e.g.

don’t lose money in a bank) remain in effect when

many transaction are concurrently executing.

Isolated – An ongoing transaction cannot see the effects

of any other ongoing transaction.

Durable – When a transaction is committed, it remains

committed.

It is the combination of Atomic, Isolated, and Du-

rable which, when provided by the database manage-

ment system, allow the application to provide its own

notion of consistency.

Underlying these application visible mechanisms

lays a lot of technology. Consider, in turn, query pro-

cessing, access methods, and concurrency control and

recovery.

� Query Processing

Since the advent of relational systems, set oriented

expressions of data and updates to data have proven to

be extraordinarily powerful. Application developers

are given mechanisms for describing large amounts of

data to be examined or modified and the system deter-

mines the best approach to accomplishing the intent

expressed by the application. SQL DML allows for

these powerful queries and updates as do some newly

arriving other representations such as XQuery. There is

an entire discipline within database management

systems called query processing which applies set ori-

ented operations to the underlying data and leverages

whatever optimizations are appropriate to efficiently

perform the application’s work.

Efficient query processingmust considermany factors

over and above the expressed desires of the application.

The available indices on the data, potential distribution of

the data, the expected result sizes of the various sets of data

that must be created as intermediaries, the performance

characteristics of the processors, disks, networks, and

remote computers all play a role in deciding a strategy

by which the work will be accomplished.

One of the most important aspects to modern

query processing is that these performance concerns

are removed from the application programmer in

most cases. Separating performance concerns from

the application program’s intent allows for an invest-

ment in applications which can survive many changes

in the machines and data set sizes. The query processor

may change its optimization strategies based upon new

knowledge while the application program remains in-

tact. While the ideal of performance independence is

not completely realized in complex cases, it is true for a

large number of applications.

Similar to the pressures on DML, query processing

remains a vibrant discipline in a changing world.

� Access Methods

Access methods provide mechanisms for storing

and retrieving the data. The dominant semantics for

access methods is called a key-value pair. A key-value

pair provides the ability to insert a blob of data asso-

ciated with a unique key and then subsequently re-

trieve that blob. Some access methods allow searching

for adjacent keys within a sort order of the keys. Other

access methods only allow reading and writing based

exclusively on exact matches of the key.

Much of the work in the 1970s and early 1980s in

access method was dominated by methods for rapidly

determining the disk address for the data. Initially, the

records in the network and hierarchical schemes in-

cluded direct disk addresses and it was straightforward

for the system to retrieve the record. Soon, hashing

schemes were employed wherein a single primary key,

not a direct pointer, could be used locate a bucket of

records and do so with high probability of accessing

the record with a single disk operation. Separate

indices where needed to find records based on non-

primary key values.

Database Management System D 171

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

Originally introduced in 1971 by Rudolf Bayer and

Ed McCreight, B-Trees have emerged as the standard

mechanism for self-organizing access methods. A

B-Tree keeps an ordered list of keys in a balanced

fashion which ensures a fixed depth from the base of

the tree to the root even in the face of tremendous

changes and churn. Since the mid-1990s, most modern

database systems use a variant called a B+Tree in which

the payload (the blob described above in the key-blob

pair) is always kept in the collection of leaf nodes and a

balanced structure of keys and pointers to other

pages in the B+tree is kept in the non-leaf pages of

the B+Tree.

Access methods (intertwined with the Concurrency

Control and Recovery mechanism described below)

are responsible for managing the storage of data within

DRAM and when that data must be written out to disk.

As the sizes of DRAM have increased more rapidly

than most databases, there is an increasing trend

towards in-memory databases. Indeed, the tipping

point towards B+Trees as the dominant form of access

method occurred when DRAM memories became

large enough that the upper levels of the tree were

essentially guaranteed to be in memory. That meant

climbing the B+Tree did not require extra disk I/Os

as it did when used with a smaller memory footprint.

B+Trees offer exceptional advantages for database

management systems. In addition to access times that

are uniform due to the uniform depth of the tree, each

operation against the tree can be performed in a

bounded (functional to O(log-n) of the size of the

tree) time. Perhaps most importantly, B+Trees are

self-managing and do not face challenges with empty

space and garbage collection.

� Concurrency Control and Recovery

The goal of concurrency control is to provide the

impression to the application developer that nothing

else is happening to the contents of the database while

the application’s work proceeds. It should appear as if

there is some serial order of execution even when lots

of concurrent activity is happening. Practitioners of

concurrency control speak of serializability. The effects

of tightly controlling the concurrency are to make the

execution behave as if it were within a serial order even

when lots of work is happening concurrently. The

ability to make a serial order is serializeabilty. While

there are other more relaxed guarantees, serializability

remains an important concept.

Recovery includes all the mechanisms used to en-

sure the intact recreation of the database’s data even

when things go wrong. These potential problems span

system crashes, the destruction of the disks holding the

database, and even the destruction of the datacenter

holding the database.

Concurrency control and recovery systems use

locking and other techniques for ensuring isolation.

They are also responsible for managing the cached

pages of the database as they reside in memory. So-

phisticated techniques based on logging have allowed

for high-performance management of caching, trans-

actional recovery, and concurrency control.

Key Applications
Database management systems are widely in use to cap-

ture most of the data used in today’s businesses. Almost

all enterprise applications are written using database

management systems. While many client-based applica-

tions are based on file system representations of data,

most server-based applications use a DBMS.

Cross-references
▶Abstraction

▶Access Control

▶ACID Properties

▶Active and Real-Time Data Warehousing

▶Atomicity

▶B+-tree

▶Conceptual Schema Design

▶Concurrency Control-Traditional Approaches

▶Concurrency Control Manager

▶Distributed DBMS

▶ Entity Relationship Model

▶Generalization of ACID Properties

▶Hierarchical Data Model

▶ Logical Schema Design

▶Network Data Model

▶QUEL

▶Query Language

▶Query Processing

▶Query Processing (in relational databases)

▶Relational Model

▶ Schema Evolution

▶ Secondary Index

▶ Serializability

▶ Stream Models

▶ Stream Processing

▶ System R(R*) Optimizer

172D Database Management System

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

▶Transaction

▶Transaction Management

▶Transaction Manager

▶XML

▶XML Query Processing

▶XPath/XQuery

Recommended Reading
1. Bayer R. Binary B-Trees for Virtual Memory, ACM-SIGFIDET

Workshop, 1971, pp. 219–235.

2. Blasgen M.W., Astrahan M.M., Chamberlin D.D., Gray J., King

W.F., Lindsay B.G., Lorie R.A., Mehl J.W., Price T.G., Putzolu

G.F., Schkolnick M., Slutz D.R., Selinger P.G., Strong H.R.,

Traiger I.L., Wade B., and Yost B. SystemR – an Architectural

Update. IBM RJ IBM RJ 2581, IBM Research Center, 95193,

7/17/1979. 42 pp.

3. Gray J. Data management: past, present, and future. IEEE

Comput., 29(10):38–46, 1996.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques, Morgan Kaufmann, San Mateo, CA, 1992.

5. Stonebraker M., Wong E., Kreps P., and Held G. The Design and

Implementation of INGRES.

Database Materialization

▶ Physical Database Design for Relational Databases

Database Middleware

CRISTIANA AMZA

University of Toronto, Toronto, ON, Canada

Synonyms
Database scheduling; Load balancing; Mediation and

adaptation

Definition
Database middleware is a generic term used to refer to

software infrastructure that supports (i) functionality,

such as, interoperability between software compo-

nents, or distributed transaction execution, (ii) im-

proved database service, such as, performance scaling

or fault tolerance of a database back-end in a larger

system, or (iii) adaptations to workloads e.g., through

the use of adaptive queuing middleware or of a sched-

uler component for adaptive reconfiguration of a

database back-end.

Historical Background
Historically, TP Monitors were the first recognized

database middleware components. TP Monitors,

thus database middleware, was originally run on main-

frames to connect different applications. Later, with the

advent of e-business applications andmodernmulti-tier

architectures that supported them, similar functionality

as in the original TP Monitors became integrated in

software components within the software stack used in

these infrastructures, software components known as:

‘‘application servers,’’ middleware components for ‘‘en-

terprise application integration,’’ ‘‘enterprise service

bus,’’ and ‘‘transactional middleware.’’ Transactional

middleware supported the execution of distributed elec-

tronic transactions, and often provided much more

functionality than just transactions. Modern e-business

architectures consist of multiple tiers, such as client,

application server, and database server. In these archi-

tectures typically replication in the database back-end is

used for scaling. In these architectures, middleware

components, such as, schedulers and load balancers

are interposed in front of a database back-end for the

purposes of scheduling database transactions, maintain-

ing fault tolerance or providing data availability.

Foundations
Software for database middleware is very diverse, and

serves a variety of purposes, e.g., integration of various

data sources, load balancing for scaling, fault tolerance,

etc. This entry distinguishes between the following

middleware classes:middleware for integration,middle-

ware for performance scaling and availability, transac-

tional and messaging middleware, and middleware for

adaptation and reconfiguration. This section will review

these main types of database middleware and their

uses, providing a brief survey of each of these areas.

Database Middleware for Integration

Database middleware, such as, Oracle9i, Informix Uni-

versal Server, MOCHA [12], DISCO [11], and Garlic

[13] support integration of possibly heterogeneous,

distributed data sources. Specifically, database middle-

ware of this type may commonly consist of a data inte-

gration server, accessing the data at the remote data

sources through a gateway, which provides client appli-

cations with a uniform view and access mechanism to

the data available in each source. Several existing com-

mercial database servers use this approach to access

remote data sources through a database gateway, which

Database Middleware D 173

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:29

provides an access method to the remote data, e.g., the

IBM DB2 DataJoiner, and Sybases’s Direct Connect,

and Open Server Connect products. These products

enable viewing multi-vendor, relational, nonrelational,

and geographically remote data, as if it were local data.

The alternative is to use a mediator server for the

same purpose. In this approach, the mediator server is

capable of performing distributed query processing for

the purposes of integration of the various data sources.

Both methods superimpose a global data model on top

of the local data models used at each data source. For

example, the mediator uses wrappers to access and

translate the information from the data sources into

the global data model. Furthermore, in both of these

middleware solutions, specialized libraries defining ap-

plication data types and query operators are used by

the clients, integration servers, gateways or wrappers

deployed in the system.

Database Middleware for Scaling and Availability

Middleware components, such as, schedulers, load

balancers and optimizers have been used for perfor-

mance scaling of workloads on LAN-based database

clusters, and/or for data availability. Schedulers and

optimizers have been used for maintaining data con-

sistency in replicated database clusters, and for mini-

mizing the data movement in shared-nothing database

clusters employing data partitioning, respectively.

Shared-nothing database cluster architectures have

been traditionally used for scaling classic database

applications, such as, on-line transaction processing

(OLTP) workloads. Data partitioning across the cluster

[4,6] was absolutely necessary to alleviate the massive

I/O needs of these applications through in-memory

data caching. Data partitioning implied using rather

complex optimizers to minimize reconfigurations and

data movement between machines [5].

In contrast, more recently, due to the advent of larger

memories, and the impact of modern e-commerce

applications with more localized access patterns, sched-

uling applications for performance scaling on a cluster,

using database replication has gained more attention

[2,3]. For example, for the usual application sizes, there

is little disk I/O in dynamic content applications [1], due

to the locality exhibited by these applications. For exam-

ple, in on-line shopping, bestsellers, promotional items

and new products are accessed with high frequency.

Similarly, the stories of the day and items on auction

are hot objects in bulletin board and on-line bidding

applications, respectively. This makes replication much

more promising, and considerably easier to use than

data partitioning.

However, replication for scaling incurs the cost of

replicating the execution of update queries for main-

taining the table replicas consistent. Fortunately, in

dynamic content applications, queries that update

the database are usually lightweight compared to

read-only requests. For instance, in e-commerce, typi-

cally, only the record pertaining to a particular cus-

tomer or product is updated, while any given customer

may browse the product database using complex search

criteria. More importantly, the locality in access pat-

terns of dynamic content applications may imply

higher conflict rates relative to traditional applications,

given a sufficiently high fraction of writes. For instance

the probability that a ‘‘best seller’’ book is being bought

concurrently by two different customers, incurring a

conflict on that item’s stock is much higher than the

probability that two customers access their joint account

at the same time. Thus, intuitively, e-commerce applica-

tions have potentialy higher conflict rates than tradition-

al OLTP applications. This trend has motivated more

recent schemes on middleware support for scheduling

transactions using a combination of load balancing

and conflict-aware replication [2,3,10]. These techni-

ques have shown good scaling in the tens of database

engines range for the most common e-commerce

workloads, e.g., on experiments using the TPC-W in-

dustry standard e-commerce benchmark. Middleware

for caching query results has also been used in isolation

or in combination with replication, e.g., through

caching query results within the scheduler component

corrdinating replication on a cluster, as an ortho-

gonal technique for performance scaling of web sites

supporting these workloads.

Finally, replication brings with it fault tolerance and

high data availability as a bonus. Middleware compo-

nents for fault tolerance support different degrees of

failure transparency to the client. In the most common

case, transaction aborts due to failures are exposed to

the client when a failure of a replica occurs. More

sophisticated fail-over schemes focus on precise error

semantics, and on hiding failures from the client. More-

over, providing fault tolerance and data availability in a

multi-tier architecture consisting of web-servers, appli-

cation servers and database servers that interact with

each other raises important trade-offs in terms of archi-

tecture design.

174D Database Middleware

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

Middleware for precise failure semantics, such as

exactly-once transactions [7], provide an automated

end-to-end solution involving the client. Such middle-

ware tracks client transactions through the software

stack e.g., composed of client, application server, and

database server, and can be used to automatically han-

dle client duplicate requests, and reissue aborted trans-

actions, thus seamlessly hiding failures in the database

back-end from the client.

Transactional and Messaging Middleware

Transactional middleware provides control and the

transfer of data between clients and a set of distributed

databases. The main purpose is to run distributed

transactions in an efficient manner. Transactional mid-

dleware systems, such as BEATuxedo, typically support

a subset of the ACID properties, such as atomicity

(by running a 2-phase-commit protocol over the

distributed databases), durability or isolation. Transac-

tional middleware is especially important in three-tier

architectures that employ load balancing because a

transaction may be forwarded to any of several servers

based on their load and availability.

Message Queueing systems offer analogous func-

tionality to TP Monitors, such as, improving reliability

and scalability, although they typically offer weaker con-

sistency guarantees than TP Monitors. Several messages

may be required to complete an overall transaction, and

those messages will each tend to reflect the latest system

state rather than consistently looking back to the state of

the system at the time the transaction started.

Messaging-oriented middleware provides an inter-

face between client and server applications, allowing

them to send data back and forth intermittently. If the

target computer isn’t available, the middleware stores

the data in a message queue until the machine becomes

available.

Middleware for Adaptation and Reconfiguration

Recent systems investigate adaptive reconfiguration in

two classic middleware scenarios: database replication

and message queuing systems.

In the context of database replication, dynamic

adaptation has been used for reconfiguration of a da-

tabase cluster to adapt to workload changes. Specifical-

ly, recent work adapts the configuration of a database

cluster dynamically in response to changing demand

by (i) adapting the placement of primary replicas and

the degree of multi-programming at each replica [9] or

by (ii) changing the number of replicas allocated to a

workload [14]. For example, recent techniques for

dynamic replica allocation in a database cluster employ

an on-line technique based on middleware or group

communication [8,14] for bringing a new replica up to

date with minimal disruption of transaction proces-

sing on existing replicas in the application’s allocation.

Key Applications
Database middleware is widely used in practice. All

database vendors also offer a suite of middleware solu-

tions for data integration, load balancing, scheduling,

data replication, etc. Transactional middleware, mes-

sage queuing systems, and middleware for fault toler-

ance, availbility and reconfiguration of the database

back-end are commonly used in all modern e-business

solutions, and in particular in multi-tier dynamic con-

tent web sites, such as, amazon.com and e-bay.com.

Cross-references
▶Adaptive Middleware for Message Queuing Systems

▶Mediation

▶Message Queuing Systems

▶Middleware Support for Caching And Replication

▶Middleware Support for Precise Failure Semantics

▶Replication in Multi-tier Architectures

▶Transactional Middleware

Recommended Reading
1. Amza C., Cecchet E., Chanda A., Cox A., Elnikety S., Gil R.,

Marguerite J., Rajamani K., and Zwaenepoel W. Specification

and implementation of dynamic web site benchmarks. In Fifth

IEEE Workshop on Workload Characterization, 2002.

2. Amza C., Cox A., and Zwaenepoel W. Conflict-aware scheduling

for dynamic content applications. In Proc. Fifth USENIX Symp.

on Internet Technologies and Systems, March 2003, pp. 71–84.

3. Amza C., Cox A.L., and Zwaenepoel W. Distributed versioning:

Consistent replication for scaling back-end databases of dyna-

mic content web sites. In Proc. ACM/IFIP/USENIX Int. Middle-

ware Conf., volume 2672 of Lecture Notes in Computer Science,

2003, pp. 282–304.

4. Boral H., Alexander W., Clay L., Copeland G., Danforth S.,

Franklin M., Hart B., Smith M., and Valduriez P. Prototyping

Bubba, a highly parallel database system. IEEE Trans. Knowl.

Data Eng., 2:4–24, 1990.

5. Chaudhuri S. andWeikum G. Rethinking database system archi-

tecture: Towards a self-tuning RISC-style database system. In

Proc. 26th Int. Conf. on Very Large Data Bases, 2000, pp. 1–10.

6. Copeland G., Alexander W., Boughter E., and Keller T. Data

placement in Bubba. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1988, pp. 99–108.

Database Middleware D 175

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

7. Frolund S. and Guerraoui R. e-transactions: End-to-end reliabil-

ity for three-tier architectures. IEEE Trans. Software Eng., 2002,

pp. 378–395.

8. Liang W. and Kemme B. Online recovery in cluster databases. In

Advances in Database Technology, Proc. 11th Int. Conf. on

Extending Database Technology, 2008.

9. Milan-Franco J.M., Jimenez-Peris R., Patio-Martnez M., and

Kemme B. Adaptive middleware for data replication. In Proc.

ACM/IFIP/USENIX Int. Middleware Conf., 2004.

10. Plattner C. and Alonso G. Ganymed: scalable replication for

transactional web applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004.

11. Rashid L., Tomasic A., and Valduriez P. Scaling heterogeneous

databases and the design of DISCO. In Proc. 16th Int. Conf. on

Distributed Computing Systems, 1996.

12. Rodriguez-Martinez M. and Roussopoulos N. MOCHA: a self-

extensible database middleware system for distributed data

sources. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000.

13. Roth M.T. and Schwarz P. Don’t scrap it, wrap it! a wrapper

architecture for legacy data sources. In Proc. 23th Int. Conf. on

Very Large Data Bases, 1997.

14. Soundararajan G. and Amza C. Reactive provisioning of back-

end databases in shared dynamic content server clusters.. ACM

Trans. Auto. Adapt. Syst. (TAAS), 1(2):151–188, 2006.

Database Physical Layer

▶ Storage Access Models

Database Profiling

▶Data Profiling

Database Protection

▶Database Security

Database Provisioning

▶Autonomous Replication

Database Redocumentation

▶Database Reverse Engineering

Database Repair

LEOPOLDO BERTOSSI

Carleton University, Ottawa, ON, Canada

Definition
Given an inconsistent database instance, i.e. that fails

to satisfy a given set of integrity constraints, a repair is

a new instance over the same schema that is consistent

and is obtained after performing minimal changes on

the original instance with the purpose of restoring

consistency.

Key Points
Database instances may be inconsistent, in the sense

that they may not satisfy certain desirable integrity

constraints. In order to make the database consistent,

certain updates can be performed on the database

instance. However, it is natural to expect that any

new consistent instance obtained in this way does not

differ too much from the original instance. The notion

of repair of the original instance captures this intui-

tion: it is an instance of the same schema that does

satisfy the integrity constraints and differs from the

original instance by a minimal set of changes. Depend-

ing on what is meant by minimal set of changes,

different repair semantics can be obtained.

The notion of repair, also calledminimal repair, was

introduced in [1]. Database instances can be seen as

finite sets of ground atoms. For example, Students(101,

joe) could be a database atom representing an entry

in the relation Students. In order to compare two

instances of the same schema, it is possible to consider

their (set-theoretic) symmetric difference. A repair, as

introduced in [1], will make the symmetric difference

with the original instance minimal under set inclusion.

That is, no other consistent instance differs from the

original instance by a proper subset of database tuples.

It is implicit in this notion of repair that changes on the

original instance are obtained through insertions or

deletions of complete database atoms. This notion of

repair was used in [1] to characterize the consistent

data in an inconsistent database as the data that is

invariant under all possible repairs.

In the same spirit, other repairs semantics have also

been investigated in the literature. For example, an

alternative definition of repair might minimize the

cardinality of the symmetric difference. There are also

176D Database Physical Layer

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

repairs that are obtained via direct updates of attribute

values (as opposed to deletions followed by insertions,

which might not represent a minimal change). In

this case, the number of those local changes could

be minimized. A different, more general aggregation

function of the local changes could be minimized

instead (cf. [2,3] for surveys).

Cross-references
▶Consistent Query Answering

▶ Inconsistent Databases

Recommended Reading
1. Arenas M., Bertossi L., and Chomicki J. Consistent query

answers in inconsistent databases. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 68–79.

2. Bertossi L. Consistent query answering in databases. ACM Sig-

mod Rec., 35(2):68–76, 2006.

3. Chomicki J. Consistent query answering: five easy pieces. In

Proc. 11th Int. Conf. on Database Theory. Springer, LNCS,

4353:1–17, 2007.

Database Replication

▶Data Replication

▶Replica Control

Database Reverse Engineering

JEAN-LUC HAINAUT, JEAN HENRARD, VINCENT

ENGLEBERT, DIDIER ROLAND, JEAN-MARC HICK

University of Namur, Namur, Belgium

Synonyms
Database redocumentation; Database design recovery

Definition
Database reverse engineering is the process through

which the logical and conceptual schemas of a legacy

database, or of a set of files, are reconstructed from

various information sources such as DDL code, data

dictionary contents, database contents or the source

code of application programs that use the database.

Basically, database reverse engineering comprises

three processes, namely physical schema extraction,

logical schema reconstruction, and schema conceptuali-

zation. The first process consists in parsing the DDL code

or the contents of an active data dictionary in order to

extract the physical schema of the database. Reconstruct-

ing the logical schema implies analyzing additional

sources such as the data and the source code of the

application programs to discover implicit constraints

and data structures, that is, constructs that have not

been declared but that are managed by the information

system or by its environment. The conceptualization pro-

cess aims at recovering the conceptual schema that the

logical schema implements.

Database reverse engineering is often the first step

in information system maintenance, evolution, migra-

tion and integration.

Historical Background
Database reverse engineering has been recognized to be

a specific problem for more than three decades, but

has been formally studied since the 1980’s, notably in

[3,6,12]. The first approaches were based on simple

rules, that work nicely with databases designed in a

clean and disciplined way. A second generation of

methodologies coped with physical schemas resulting

from empirical design in which practitioners tend to

apply non standard and undisciplined techniques.

More complex design rules were identified and inter-

preted [2], structured and comprehensive approaches

were developed [11,7] and the first industrial tools

appeared (e.g., Bachman’s Reengineering Tool). Many

contributions were published in the 1990’s, addressing

practically all the legacy technologies and exploiting

such sources of information as application source

code, database contents or application user interfaces.

Among synthesis publications, it is important to men-

tion [5], the first tentative history of this discipline.

These second generation approaches were faced

with two kinds of problems induced by empirical de-

sign [8]. The first problem is the recovery of implicit

constructs, that is, structures and constraints that have

not been explicitly declared in the DDL code. The

second problem is that of the semantic interpretation

of logical schemas that include non standard data

structures.

Foundations
The ultimate goal of reverse engineering a piece of

software is to recover its functional and technical spe-

cifications, starting mainly from the source code of the

Database Reverse Engineering D 177

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

programs [4]. The problem is particularly complex

with old and ill-designed applications. In this case,

there is no documentation to rely on; moreover, the

lack of systematic methodologies for designing and

maintaining them have led to tricky and obscure

code. Therefore, reverse engineering has long been

regarded as a complex, painful and failure-prone activ-

ity, in such a way that it is simply not undertaken most

of the time, leaving huge amounts of invaluable knowl-

edge buried in legacy software, lost for all practical

purposes.

In most software engineering cases, analysts have to

content themselves with the extraction of abstract and/

or partial information, such as call graphs, dependency

graphs or program slices in order to ease the mainte-

nance and evolution of the software. The result of

reverse engineering a database is more satisfying, in

that reconstructing the logical and conceptual schemas

of an undocumented database is achievable with rea-

sonable effort.

Database Design Revisited

To understand the problems, challenges and techni-

ques specific to database reverse engineering, it is nec-

essary to reexamine the way databases are developed,

both in theory and in practice.

Standard Database Design Methodology Standard da-

tabase design comprises four formal processes, namely

conceptual analysis, logical design, physical design and

coding.

Conceptual analysis produces the conceptual sche-

ma of the database, that is, an abstract description of

the concepts that structure the application domain, of

the relationships between these concepts and of the

information to be collected and kept about theses

classes and relationships. This schema is independent

of the application programs that will use the database

and is expressed in an abstract formalism such as some

variant of the Entity-relationship model. It must be

readable, maintainable, normalized and independent

of any implementation technology.

Logical design translates the conceptual schema into

data structures compliant with the data model of a

family of DBMSs. This process is best described by a

transformation plan, according to which the constructs

(or components) of the conceptual schema that cannot

be directly translated into the target DDL are first

transformed into constructs of the DBMS model. For

instance, a single-valued atomic attribute is directly

translated into a column. On the contrary, a N:N

relationship type cannot be expressed in the relational

DDL. Therefore, it is first transformed into a relation-

ship entity type and two N:1 relationship types, which

in turn are translated into a relationship table and two

foreign keys. The resulting logical schema is the basis

for program development. It must be clear, simple and

devoid of any performance concern. Denoting the

conceptual and logical schemas respectively by CS

and LS, this process can be synthesized by the func-

tional expression LS = logical-design(CS), that

states that the logical schema results from the transfor-

mation of the conceptual schema.

Physical design enriches and potentially reshapes

the logical schema to make it meet technical and per-

formance requirements according to a specific technol-

ogy (DBMS). Physical design can be expressed by

PS = physical-design(LS), where PS denotes the

physical schema.

Coding expresses the physical schema in the DDL of

the DBMS. Some of the data structures and integrity

constraints can be translated into explicit DDL state-

ments. Such is the case, in relational databases, for

elementary data domains, unique keys, foreign keys

and mandatory columns. However, the developer

must resort to other techniques to express all the

other constructs. Most relational DBMSs offer check

and trigger mechanisms to control integrity, but other

servers do not include such facilities, so that many

constraints have to be coped with by procedural code

distributed and duplicated in the application pro-

grams. The derivation of the code can be expressed

by code = coding(PS). The code itself can be

decomposed into the DDL code in which some con-

structs are explicitly expressed and the external code

that controls and manages all the other constructs:

code = codeddl [codeext. Similarly, the coding func-

tion can be developed into a sequence of two processes

(codingddl(PS); codingext(PS)).

The production of the database code from the

conceptual schema (forward engineering or FE) can

be written as code = FE(CS), where function FE is

the composition coding o physical-design o

logical-design.

Empirical Database Design Actual database design

and maintenance do not always follow a disciplined

approach such as that recalled above. Many databases

178D Database Reverse Engineering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

have been built incrementally to meet the evolving

needs of application programs. Empirical design relies

on the experience of self-taught database designers,

who often ignore the basic database design theories

and best practices. This does not mean that all these

databases are badly designed, but they may include

many non-standard patterns, awkward constructs and

idiosyncrasies that make them difficult to understand

[2]. Since no disciplined approach was adopted, such

databases often include only a logical schema that

integrates conceptual, logical, physical and optimiza-

tion constructs. Quite often too, no up-to-date docu-

mentation, if any, is available. An important property

of the functional model of database design evoked in

previous section is that it is still valid for empirical

design. Indeed, if empirical design rules of the desig-

ner are sorted according to the criteria of the three

processes, functions logical-design’, physical-

design’ and coding’ can be reconstructed into an

idealized design that was never performed, but that

yields the same result as the empirical design.

Database Reverse Engineering Processes

Broadly speaking, reverse engineering can be seen

as the reverse of forward engineering [1], that is,

considering the function RE = FE�1, CS = RE(code).

Since most forward engineering processes consist of

schema transformations [9], their reverse counterparts

should be easily derivable by inverting the forward

transformations.

Unfortunately, forward engineering is basically a

lossy process as far as conceptual specifications are

concerned. On the one hand, it is not unusual to discard

bits of specifications, notably when they prove difficult

to implement. On the other hand, the three processes

areseldominjectivefunctionsinactualsituations. Indeed,

there is more than one way to transform a definite con-

struct and several distinct constructs can be transformed

into the same target construct. For instance, there are

severalways to transform an is-a hierarchy into relational

structures, including the use of primary-foreign keys

(forward engineering). However, a primary-foreign

key can also be interpreted as the implementation of a 1:1

relationship type, as the trace of entity type splitting or

as the translation of an is-a relation (reverse engineer-

ing). Clearly, the transformational interpretation of

these processesmust be refined.

Nevertheless it is important to study and to model

the reverse engineering as the inverse of FE, at least to

identify and describe the pertinent reverse processes.

Decomposing the initial relation CS = RE(code), one

obtains:

CS = conceptualization(LS)

LS = logical-reconstruction(PS, codeext)

PS = physical-extraction(codeddl)

RE = conceptualization o logical-

reconstruction o physical-extraction

where

Conceptualization = logical-design�1

Logical-reconstruction = physical-

design�1 || codingext
�1

Physical-extraction = codingddl
�1

This model emphasizes the role of program code as

a major source of information. As explained below,

other sources will be used as well.

Physical Schema Extraction

This process recovers the physical schema of the data-

base by parsing its DDL code (codeddl) or, equivalent-

ly, by analyzing the contents of its active data

dictionary, such as the system tables in most relational

systems. This extraction makes visible the explicit con-

structs of the schema, that is, the data structures and

constraints that have been explicitly declared through

DDL statements and clauses. Such is the case for pri-

mary keys, unique constraints, foreign keys and man-

datory fields. Generally, this process is fairly

straightforward. However, the analysis of sub-schemas

(e.g., relational views, CODASYL sub-schemas or IMS

PCBs) can be more intricate. Indeed, each sub-schema

brings a partial, and often refined view of the global

schema. In addition, some data managers, such as

standard file managers, ignore the concept of global

schema. ACOBOL file for instance, is only described in

the source code of the programs that use it. Each of

them can perceive its data differently. Recovering the

global physical schema of a COBOL file requires a

potentially complex schema integration process.

Logical Schema Reconstruction

This process addresses the discovery of the implicit

constructs of the schema. Many logical constructs have

not been declared by explicit DDL statements and

clauses. In some favorable situations, they have been

translated into programmed database components

such as SQL checks, triggers and stored procedures.

Database Reverse Engineering D 179

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

However, most of them have been translated into appli-

cation program fragments (nearly) duplicated and scat-

tered throughout millions of lines of code (codeext).

For instance, a popular way to check a referential

constraint consists in accessing the target record before

storing the source record in its file. Recovering these

implicit constructs, in contrast with explicit constructs,

which have been expressed in DDL, requires a precise

analysis of various pieces of procedural code. Though

program source code is the richest information source,

the database contents (the data), screen layout, report

structure, program execution, users interview and, of

course, (possibly obsolete) documentation will be ana-

lyzed as well. As a final step of the reconstruction,

physical components are discarded inasmuch as they

are no longer useful to discover logical constructs.

Implicit Constructs All the structures and constraints

that cannot be expressed in the DDL are implicit by

nature. However, many database schemas include im-

plicit constructs that could have been declared at design

time but that were not, for such reasons as convenience,

standardization, inheritance from older technology or

simply by ignorance or bad design. Two popular exam-

ples can be mentioned. In network and hierarchical

databases, some links between record types are translat-

ed into implicit foreign keys despite the fact that rela-

tionship types could have been explicitly declared

through set types or parent-child relationship types. In

many legacy relational databases, most foreign keys are

not declared through foreign key clauses, but are

managed by an appropriate set of triggers. The most

important implicit constructs are the following [8].

Exact field and record structure. Compound and

multivalued fields are often represented by the con-

catenation of their elementary values. Screen layout

and program analysis are major techniques to discover

these structures.

Unique keys of record types and multivalued fields.

This property is particularly important in strongly

structured record types and in sequential files.

Foreign keys. Each value of a field is processed as a

reference to a record in another file. This property can

be discovered by data analysis and program analysis.

Functional dependencies. The values of a field can

depend on the values of other fields that have not been

declared or elicited as a candidate key. This pattern is

frequent in older databases and file systems for perfor-

mance reasons.

Value domains. A more precise definition of

the domain of a field can be discovered by data and

program analysis. Identifying enumerated domains is

particularly important.

Meaningful names. Proprietary naming standards

(or, worse, the absence thereof) may lead to cryptic

component names. However, the examination of pro-

gram variables and electronic form fields in/from

which field values are moved can suggest more signifi-

cant names.

Sources and Techniques Analytical techniques ap-

plied to various sources can all contribute to a better

knowledge of the implicit components and properties

of a database schema.

Schema analysis. Spotting similarities in names,

value domains and representative patterns may help

identify implicit constructs such as foreign keys.

Data analysis. Mining the database contents

can be used in two ways. First, to discover implicit

properties, such as functional dependencies and foreign

keys. Second, to check hypothetic constructs that have

been suggested by other techniques. Considering the

combinatorial explosion that threaten the first approach,

data analysis is most often applied to check the existence

of formerly identified patterns.

Program analysis. Understanding how programs

use the data provides crucial information on properties

of these data. Even simple analysis, such as dataflow

graphs, can bring valuable information on field struc-

ture (Fig. 1) and meaningful names. More sophisticat-

ed techniques such as dependency analysis and

program slicing can be used to identify complex con-

straint checking or foreign keys.

Screen/report layout analysis. Forms, reports and

dialog boxes are user-oriented views on the database.

They exhibit spatial structures (e.g., data aggregates),

meaningful names, explicit usage guidelines and, at

run time, data population that, combined with data-

flow analysis, provide much information on implicit

data structures and properties.

Schema Conceptualization

The goal of this process is to interpret the logical

schema semantically by extracting a conceptual schema

that represents its intended meaning. It mainly relies

on transformational techniques that undo the effect

of the logical design process. This complex process

is decomposed in three subprocesses, namely

180D Database Reverse Engineering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

untranslation, de-optimization and conceptual normal-

ization. The untranslation process consists of reversing

the transformations that have been used to draw the

logical schema from the conceptual schema. For in-

stance, each foreign key is interpreted as the imple-

mentation of a N:1 relationship type. This process

relies on a solid knowledge of the rules and heuristics

that have been used to design the database. Those rules

can be standard, which makes the process fairly

straightforward, but they can also be specific to the

company or even to the developer in charge of the

database (who may have left the company), in which

case reverse engineering can be quite tricky. The main

constructs that have to be recovered are relationship

types (Fig. 2), super-type/subtype hierarchies, multi-

valued attributes, compound attributes and optional

attributes. The de-optimization process removes the

trace of all the optimization techniques that have been

used to improve the performance of the database.

Redundancies must be identified and discarded, unnor-

malized data structures must be decomposed and hori-

zontal and vertical partitioning must be identified and

undone. Finally, conceptual normalization improves the

expressiveness, the simplicity, the readability and the

extendability of the conceptual schema. It has the same

goals and uses the same techniques as the

corresponding process in Conceptual analysis.

Tools

Reverse engineering requires the precise analysis of

huge documents such as programs of several millions

of lines of code and schemas that include thousa-

nds of files and hundreds of thousands of fields. It

also requires repeatedly applying complex rules on

thousands of patterns. In addition, many reverse

processes and techniques are common with those of

forward engineering, such as transformations, valida-

tion and normalization. Finally, reverse engineering is

only a step in larger projects, hence the need for

integrated environments that combine forward and

reverse tools and techniques [11].

Examples

Figure 1 illustrates the respective roles of the physical

schema extraction and logical schema reconstruction

processes. Parsing the DDL code identifies column

CUS_DESCR as a large atomic field in the physical

schema (left). Further dataflow analysis allows this

column to be refined as a compound field (right).

The conceptualization of a compound field as

a complex relationship type is illustrated in Figure 2.

The multivalued field O-DETAIL has a component

(O-REF) that serves both as an identifier for its values

(the values of O-DETAIL in an ORDER record have

distinct values of O-REF) and as a reference to an

Database Reverse Engineering. Figure 1. Illustration of the physical schema extraction and logical schema

reconstruction processes.

Database Reverse Engineering. Figure 2. Conceptualization of a complex field.

Database Reverse Engineering D 181

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

ITEM record. This construct is interpreted as an N:N

relationship type between ORDER and ITEM.

Key Applications
Database reverse engineering is most often the first

step in information system maintenance, evolution

[10], migration and integration. Indeed, such complex

projects cannot be carried out when no complete,

precise and up-to-date documentation of the database

of the information system is available.

The scope of data reverse engineering progressively

extends to other kinds of information such as web

sites, electronic forms, XML data structures and any

kind of semi-structured data. Though most techniques

and tools specific to database reverse engineering re-

main valid, additional approaches are required, such as

linguistic analysis and ontology alignment.

Cross-references
▶Database Design

▶ Entity-Relationship Model

▶Hierarchical Data Model

▶Network Data Model

▶Relational Data Model

Recommended Reading
1. Baxter I. and Mehlich M. Reverse engineering is reverse forward

engineering. Sci. Comput. Programming, 36:131–147, 2000.

2. Blaha M.R. and Premerlani W.J. Observed idiosyncrasies of

relational database designs. In Proc. 2nd IEEE Working Conf.

on Reverse Engineering, 1995, p. 116.

3. Casanova M.A. and Amaral de Sa J.E. Mapping uninterpreted

schemes into entity-relationship diagrams: two applications to

conceptual schema design. IBM J. Res. Develop., 28(1):82–94,

1984.

4. Chikofsky E.J. and Cross J.H. Reverse engineering and design

recovery: a taxonomy. IEEE Softw., 7(1):13–17, 1990.

5. Davis K.H. and Aiken P.H. Data reverse engineering: a historical

view. In Proc. Seventh Working Conf. on Reverse Engineering

(WCRE’00). 2000, pp. 70–78.

6. Davis K.H. and Arora A.K. A methodology for translating

a conventional file system into an entity-relationship model.

In Proc. Fourth Int. Conf. on Entity-Relationship Approach

(ERA). 1985, pp. 148–159.

7. Edwards H.M. and Munro M. Deriving a logical model for a

system using recast method. In Proc. Second IEEE Working

Conf. on Reverse Engineering, 1995, pp. 126–135.

8. Hainaut J.-L. Introduction to database reverse engineering,

LIBD lecture notes, Pub. University of Namur, Belgium, 2002,

pp. 160.

9. Hainaut J-L. The transformational approach to database engi-

neering. In Generative and Transformational Techniques in

Software Engineering, R. Lämmel, J. Saraiva, J. Visser (eds.),

LNCS 4143. Springer-Verlag, 2006, pp. 89–138.

10. Hainaut J-L., Clève A., Henrard J., and Hick J.-M. Migration

of Legacy Information Systems. In Software Evolution,

T. Mens, S. Demeyer (eds.). Springer-Verlag, 2007, pp. 107–138.

11. Hainaut J-L., Roland D., Hick J-M., Henrard J., and Englebert V.

Database reverse engineering: from requirements to CARE tools.

J. Automated Softw. Eng., 3(1/2):9–45, 1996.

12. Navathe S.B. and Awong A. Abstracting relational and hierarchi-

cal data with a semantic data model. In Proc. Entity-Relation-

ship Approach: a Bridge to the User. North-Holland, 1987, pp.

305–333.

Database Scheduling

▶Database Middleware

Database Security

ELENA FERRARI

University of Insubria, Varese, Italy

Synonyms
Database protection

Definition
Database security is a discipline that seeks to protect

data stored into a DBMS from intrusions, improper

modifications, theft, and unauthorized disclosures.

This is realized through a set of security services,

which meet the security requirements of both the

system and the data sources. Security services are

implemented through particular processes, which are

called security mechanisms.

Historical Background
Research in database security has its root in operating

system security [6], whereas its developments follow

those in DBMSs. Database security has many branches,

whose main historical developments are summarized

in what follows:

Access control. In the 1970s, as part of the research on

System R at IBM Almaden Research Center, there

was a lot of work on access control for relational

DBMSs [3]. About the same time, some early work

on Multilevel Secure Database Management Systems

(MLS/DBMSs) was reported, whereas much of the

182D Database Scheduling

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:30

development on MLS/DBMSs began [9] only after the

Air Force Summer Study in 1982 [1]. This has resulted

in different research prototypes, such as for instance

those developed at MITRE, SRI International and

Honeywell Inc. Access control models developed for

relational databases have then been extended to cope

with the new requirements of advanced DBMSs, such

as object-oriented, object-relational, multimedia and

active DBMSs [9], GIS [7], and XML DBMSs [5], and

other advanced data management systems and appli-

cations, including digital libraries, data warehousing

systems, and workflow management systems [9]. Role-

based access control has been proposed in the 1990s

[8] as a way to simplify authorization management

within companies and organizations.

Privacy protection. Given the vast amount of personal

data that is today collected by DBMSs, privacy is

becoming a primary concern, and this has resulted in

various research activities that have been started quite

recently. A first research direction is related to privacy-

preserving data mining, that is, how to apply data

mining tools without compromising user privacy. All

approaches developed so far are based on modifying or

perturbing the data in some way. One of the issues is

therefore how to maintain the quality of the modified

data in such a way that they can be useful for data

mining operations. Another line of research deals with

the support of privacy policies, within the DBMS. In

this direction, one of the most mature and promising

proposal is the concept of Hippocratic database recent-

ly proposed by Agrawal et al. [3].

Auditing. Research on this issue has mainly focused

on two directions: organization of the audit data and

use of these data to discover possible security breaches.

Another important research area is how to protect the

audit data to prevent their malicious tampering.

Authentication. The simplest form of authentication

is the one based on password. Throughout the years,

several efforts have been made to make this scheme

more robust against security threats or to develop

schemes more suited to distributed and web-based

environments. This is the case, for instance, of token-

based schemes, that is, schemes based on biometric

information, or single sign-on (SSO) schemes, particu-

larly suited for distributed environments since they

allow a user to authenticate once and gain access to

the resources of multiple DBMSs. Recently, an innova-

tive form of authentication has been proposed, based

on user social relationships [4].

Foundations
Today data are one of the most crucial assets of

any organization and, as such, their protection from

intrusions, improper modifications, theft, and unau-

thorized disclosures is a fundamental service that any

DBMS must provide [3,9,13]. Since data in a database

are tightly related by semantic relationships, a damage

of a data portion does not usually affect a single user or

application, but the entire information system. Secu-

rity breaches are typically categorized into the follow-

ing categories: unauthorized data observation, incorrect

data modification, and data unavailability. Security

threats can be perpetrated either by outsiders or by

users legitimately entitled to access the DBMS. The

effect of unauthorized data observation is the disclo-

sure of information to users not entitled to access such

information. All organizations one may think of, rang-

ing from commercial organizations to social or mili-

tary organizations, may suffer heavy losses from both

financial view and human point of view upon unau-

thorized data observation. Incorrect modifications of

data or incorrect data deletion, either intentional or

unintentional, results in an inconsistent database state.

As a result, the database is not any longer correct. Any

use of incorrect data may again result in heavy losses

for the organization. Think, for instance, of medical

data, where different observations of the same vital

parameter may be used to make a clinical diagnosis.

For the correct diagnosis it is crucial that each obser-

vation has not been incorrectly modified or deleted.

When data are unavailable, information that are cru-

cial for the proper functioning of the organization may

not be readily accessible when needed. For instance,

consider real-time systems, where the availability of

some data may be crucial to immediately react to

some emergency situations.

Therefore, data security requires to address three

main issues:

1. Data secrecy or confidentiality. It prevents improper

disclosure of information to unauthorized users.

When data are related to personal information, pri-

vacy is often used as a synonym of data confidenti-

ality. However, even if some techniques to protect

confidentiality can be used to enforce privacy,

protecting privacy requires some additional coun-

termeasures. More precisely, since information pri-

vacy relates to an individual’s right to determine

how, when, and to what extent his or her personal

Database Security D 183

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:31

information will be released to another person or to

an organization [11], protecting privacy requires to

deal with additional issues with regard to confidenti-

ality, such as, for instance, verifying that data are used

only for the purposes authorized by the user and not

for other purposes, or obtaining and recording the

consents of users.

2. Data integrity. It protects data from unauthorized

or improper modifications or deletions.

3. Data availability. It prevents and recovers data from

hardware and software errors and from malicious

data denials making the database or some of its

portions not available.

Today, access to databases is mainly web-based and, in

this context, two additional issues, besides the above-

mentioned one, should be addressed, in order to pro-

vide strong guarantees about data contents to users:

Data authenticity. It ensures that a user receiving

some data can verify that the data have been generated

by the claimed source and that they have not been

maliciously modified.

Data completeness. The user can verify whether he or

she has received all the data he or she requested.

A DBMS exploits the services of the underlying

operating system to manage its data (for instance to

store data into files). This applies also to security.

However, protecting data stored into a DBMS is differ-

ent from protecting data at the operating system level,

and therefore it requires additional and more sophisti-

cated mechanisms. The main reasons are the following:

1. DBMSs and operating systems adopt different data

models. In particular, data in a DBMS can be repre-

sented at different level of abstraction (physical, logi-

cal, view level), whereas an operating system adopts a

unique representation of data (i.e., data are stored

into files) and this simplifies data protection.

2. DBMSs are characterized by a variety of granularity

levels for data protection. For instance, in a rela-

tional database, data can be protected at the rela-

tion or view level. However, sometimes finer

granularity levels are needed, such as for instance

selected attributes or selected tuples within a table.

In contrast, in an operating system data protection

is usually enforced at the file level.

3. In a database, objects at the logical level may

be semantically related and these relations must be

carefully protected. Moreover, several logical objects

(e.g., different views) may correspond to the same

physical object (e.g., the same file). These issues do

not have to be considered when protecting data in an

operating system.

Therefore, it is necessary that a DBMS is equipped with

its own security services. Of course it can also exploit

the security services provided by the underlying

operating system, as well as those enforced at the

hardware and network level. Generally, each security

property is ensured by more than one DBMS service.

In particular, the access control mechanism ensures data

secrecy. Whenever a subject tries to access an object,

the access control mechanism checks the right of the

subject against a set of authorizations, stated usually

by some Security Administrators or users. The access

is granted only if it does not conflict with the stated

authorizations. An authorization states which subject

can perform which action on which object and,

optionally, under which condition. Authorizations are

granted according to the security policies of the orga-

nization. Data confidentiality is also obtained through

the use of encryption techniques, either applied to the

data stored on secondary storage or when data are

transmitted on a network, to avoid that an intruder

intercepts the data and accesses their contents. Data

integrity is jointly ensured by the access control mecha-

nism and by semantic integrity constraints. Similarly to

confidentiality enforcement, whenever a subject tries to

modify some data, the access control mechanism verifies

that the subject has the right to modify the data, accord-

ing to the specified authorizations and, only in this case,

it authorizes the update request. Additionally, current

DBMSs allow one to specify a set of integrity constraints,

using SQL in case of an RDBMS, that expresses cor-

rectness conditions on the stored data, and therefore

avoids incorrect data updates and deletions. These

constraints are automatically checked by the constraint

checker subsystem upon the request for each update

operation. Furthermore, digital signature techniques

can be applied to detect improper data modifications.

They are also used to ensure data authenticity. Finally,

the recovery subsystem and the concurrency control

mechanism ensure that data are available and correct

despite hardware and software failures and despite data

accesses from concurrent application programs. In

particular, to properly recover the correct state of the

database after a failure, all data accesses are logged. Log

files can then be further used for auditing activities,

184D Database Security

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:31

that is, they can be analyzed by an intrusion detection

system to discover possible security breaches and their

causes. Data availability, especially for data that are

available on the web, can be further enhanced by the

use of techniques avoiding query floods [2] or other

Denial-of-Service (DoS) attacks. Completeness en-

forcement is a quite new research direction, which

is particularly relevant when data are outsourced to

(untrusted) publishers for their management [12]. It

can be ensured through the use of nonstandard digital

signature techniques, like Merkle trees and aggregation

signatures. Table 1 summarizes the security properties

discussed so far and the techniques for their

enforcement.

Database Security. Figure 1. Security mechanisms.

Database Security. Table 1. Security requirements and

enforcement techniques

Security
properties Techniques

Secrecy Access control mechanism, data
encryption

Integrity Access control mechanism, semantic
integrity constraints, digital signatures

Availability Recovery subsystem, concurrency
control mechanism,

techniques preventing DoS attacks

Authenticity Digital signatures

Completeness Non standard digital signatures

Database Security D 185

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:31

The above described security services must rely for

their proper functioning on some authentication mech-

anism, which verifies whether a user wishing to con-

nect to the DBMS has the proper credentials. Such a

mechanism identifies users and confirms their identi-

ties. Commonly used authentication mechanisms are

based on the use of login and password, whereas more

sophisticated schemes include those using biometric

information, or token-based authentication.

The security mechanisms discussed so far and their

interactions are graphically summarized in Fig. 1.

Additionally, security mechanisms should be devised

when data are accessed through web applications.

These applications can be exploited to perpetrate one

of the most serious threats to web-accessible databases,

that is, SQL-Injection Attacks (SQLIAs) [10]. In the

worst case, these attacks may cause the intruder to

gain access to all the data stored into the database, by

by-passing the security mechanisms, and, therefore, it

gives him or her the power to leak, modify, or delete

the information that is stored in the database. SQLIAs

are very widespread, as reported by a study by Gartner

Group over 300 Internet websites, which has shown

that most of them could be vulnerable to SQLIAs.

SQLIAs basically exploit insufficient input validation

in the application code. One of the simplest form of

SQLJ attack is that of inserting SQL meta-characters

into web-based input fields to manipulate the execu-

tion of the back-end SQL queries. Although several

techniques to prevent such attacks have been recently

proposed [10], there are so many variants of SQLIAs

that finding a complete solution to these threats is still

a challenging research issue.

Key Applications
Database security services are nowadays used in any

application environment that exploits a DBMS to

manage data, including Healthcare systems, Banking

and financial applications, Workflow Management

Systems, Digital Libraries, Geographical and Multi-

media management systems, E-commerce services,

Publish-subscribe systems, Data warehouses.

Cross-references
▶Access Control

▶Auditing and Forensic Analysis

▶Authentication

▶Concurrency Control-Traditional Approaches

▶Data Encryption

▶Digital Signatures

▶ Intrusion Detection Technologies

▶Merkle Trees

▶ Privacy

▶ Privacy-Enhancing Technologies

▶ Privacy-Preserving Data Mining

▶ Secure Data Outsourcing

▶ Secure Database Development

▶ Security Services

Recommended Reading
1. Air Force Studies Bord and Committee on Multilevel data

management security. Multilevel data management security.

National Academy, WA, USA, 1983.

2. Bertino E., Laggieri D., and Terzi E. Securing DBMS: character-

izing and detecing query flood. In Proc. Ninth Information

Security Conference (ISC’04). Springer, 2004, pp. 195–206.

3. Bertino E. and Sandhu R.S. Database security: concepts,

approaches, and challenges. IEEE Trans. Depend. Secure Com-

put., 2(1):2–19, 2005.

4. Brainard J., Juels A., Rivest R.L., SzydloM., and YungM. Fourth-

factor authentication: somebody you know. In Proc. 13th ACM

Conf. on Computer and Communications Security. USA, 2006.

5. Carminati B., Ferrari E., and Thuraisingham B.M. Access control

for web data: models and policy languages. Annals Telecomm.,

61(3–4):245–266, 2006.

6. Castano S., Fugini M.G., Martella G., and Samarati P. Database

security. Addison-Wesley, Reading, MA, 1995.

7. Damiani M.L. and Bertino E. Access control systems for

geo-spatial data and applications. In Modelling and Manage-

ment of Geographical Data over Distributed Architectures,

A. Belussi, B. Catania, E. Clementini, E. Ferrari (eds.). Springer,

2007, pp. 189–214.

8. Ferraiolo D.F., Sandhu R.S., Gavrila S.I., Kuhn D.R., and

Chandramouli R. Proposed NIST standard for role-based access

control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

9. Ferrari E. and Thuraisingham B.M. Secure database systems.

In Advanced Databases: Technology and Design, O. Diaz, M.

Piattini (eds.). Artech House, London, 2000.

10. Halfond W.G., Viegas J., and Orso A. A classification of

SQL-injection attacks and countermeasures. Int. Symp. on Se-

cure Software Engineering (ISSSE 2006). 2006.

11. Leino-Kilpi H., Valimaki M., Dassen T., Gasull M., Lemonidou

C., Scott A., and Arndt M. Privacy: a review of the literature. Int.

J. Nurs. Stud., (38):663–671, 2001.

12. Pang H. and Tan K.L. Verifying completeness of relational query

answers from online servers. ACM Trans. Inf. Syst. Secur., 11(2),

2008, article no. 5.

13. Pfleeger C.P. and Pfleeger S.L. Security in computing, 3rd edn.

Prentice-Hall, Upper Saddle River, NJ, USA, 2002.

Database Socket

▶Connection

186D Database Socket

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:31

Database Storage Layer

▶ Storage Access Models

Database Techniques to Improve
Scientific Simulations

BISWANATH PANDA, JOHANNES GEHRKE,

MIREK RIEDEWALD

Cornell University, Ithaca, NY, USA

Synonyms
Indexing for online function approximation

Definition
Scientific simulations approximate real world physical

phenomena using complex mathematical models. In

most simulations, the mathematical model driving the

simulation is computationally expensive to evaluate

and must be repeatedly evaluated at several different

parameters and settings. This makes running large-scale

scientific simulations computationally expensive. A com-

monmethod used by scientists to speed up simulations is

to store model evaluation results at some parameter

settings during the course of a simulation and reuse the

stored results (instead of direct model evaluations) when

similar settings are encountered in later stages of the

simulation. Storing and later retrieving model evalua-

tions in simulations can bemodeled as a high dimension-

al indexing problem. Database techniques for improving

scientific simulations focus on addressing the new chal-

lenges in the resulting indexing problem.

Historical Background
Simulations have always been an important method used

by scientists to study real world phenomena. The general

methodology in these application areas is similar. Scien-

tists first understand the physical laws that govern the

phenomenon. These laws then drive a mathematical

model that is used in simulations as an approximation

of reality. In practice scientists often face serious compu-

tational challenges. The more realistic the model, the

more complex the corresponding mathematical equa-

tions. As an example, consider the simulation of a com-

bustion process thatmotivated the line of work discussed

in this entry. Scientists study how the composition of

gases in a combustion chamber changes over time due to

chemical reactions. The composition of a gas particle is

described by a high-dimensional vector (10–70 dimen-

sions). The simulation consists of a series of time steps.

During each time step some particles in the chamber

react, causing their compositions to change. This reaction

is described by a complex high-dimensional function

called the reaction function, which, given the current

composition vector of a particle and other simulation

properties, produces a new composition vector for the

particle. Combustion simulations usually require up to

108–1010 reaction function evaluations each of which

requires in the order tens of milliseconds of CPU time.

As a result, even small simulations can run into days.

Due to their importance in engineering and science,

many algorithms have been developed to speed up

combustion simulations. The main idea is to build an

approximate model of the reaction function that is

cheaper to evaluate. Early approaches were offline,

where function evaluations were collected from simu-

lations and used to learn multivariate polynomials

approximating the reaction function [8]. These poly-

nomials were then used later in different simulations

instead of the reaction function. Recently, more

sophisticated models like neural networks and self

organizing maps have also been used [3]. The off-

line approaches were not very successful because a

single model could not generalize to a large class

of simulations. In 1997, Pope developed the In Situ

Adaptive Tabulation (ISAT) algorithm [7]. ISAT was

an online approach to speeding up combustion simu-

lations. The algorithm cached reaction function eva-

luations at certain frequently seen regions in the

composition space and then used these cached values

to approximate the reaction function evaluations

at compositions encountered later on in the simula-

tion. The technique was a major breakthrough in

combustion simulation because it enabled scientists

to run different simulations without having to first

build a model for the reaction function. Until today,

the Algorithm remains the state of the art for combus-

tion simulations. Several improvements to ISAT have

been proposed. DOLFA [9] and PRISM [1] proposed

alternative methods of caching reaction function eva-

luations. More recently, Panda et al. [6] studied the

storage/retrieval problem arising out of caching/

reusing reaction function evaluations in ISAT

and this entry mainly discusses their observations

and findings.

Database Techniques to Improve Scientific Simulations D 187

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:31

Foundations
Even though the ISATalgorithmwas originally proposed

in the context of combustion simulations the algorithm

can be used for building an approximate model for any

high dimensional function (f), that is expensive to com-

pute. This section begins with a discussion on local

models, that represent the general class of models built

by ISAT (section ‘‘Local Models’’). This is followed by a

description of the ISAT Algorithm that uses selective

evaluations of the expensive function f to build a local

model (section ‘‘ISAT Algorithm’’). The algorithm

introduces a new storage/retrieval, and hence indexing,

problem. The section then discusses the indexing

problem in detail: its challenges and solutions that

have been proposed (sections ‘‘Indexing Problem’’

and ‘‘An Example: Binary Tree’’) and concludes with

some recent work on optimizing long running simula-

tions (section ‘‘Long Running Simulations’’).

Local Models

Local models are used in many applications to approx-

imate complex high dimensional functions. Given a

function f : Rm ! Rn; a local model defines a set of

high dimensional regions in the function domain:

R ¼ R1. . .RnjRi � Rmf g. Each region Ri is associated

with a function f̂Ri
: Ri ! Rn; such that

8x 2 Ri : jjf̂Ri
ðxÞ � f ðxÞ jj � E; where e is a specified

error tolerance in the model and jj is some specified

error metric such as the Euclidean distance. Using a

local model to evaluate f at some point x in the func-

tion domain first involves finding a region (R 2 R)

that contains x and then evaluating f̂RðxÞ as an approx-

imation to f (x).

ISAT Algorithm

Main algorithm: ISAT is an online algorithm for func-

tion approximation; its pseudocode is shown in Fig. 1.

The algorithm takes as input a query point x at which

the function value must be computed and a search

structure S that stores the regions in R. S is empty

when the simulation starts. The algorithm first tries to

compute the function value at x using the local model

it has built so far (Lines 2–3). If that fails the algorithm

computes f(x) using the expensive model (Line 5) and

uses f(x) to update existing or add new regions in the

current local model (Line 6). The algorithm is online

because it does not have access to all query points when

it builds the model.

Model updating: ISATupdates the local model using

a strategy outlined in Fig. 2. In general it is extremely

difficult to exactly define a region R and an associated

f̂R , such that f̂R approximates f in all parts of R.

ISAT proposes a two step process to discover regions. It

initially starts with a region that is very small and con-

servative but where it is known that a particular f̂R
approximates f well. It then gradually grows the con-

servative approximations over time. More specifically

the update process first searches the index S for regions

where x lies outside the region but jjf̂RðxÞ � f ðxÞjj � E.
Such regions are grown to contain x (Lines 2–7). If no

existing regions can be grown a new conservative re-

gion centered around x and associated f̂R is added to

the local model (Line 9). The grow process described is

a heuristic that works well in practice for functions that

are locally smooth. This assumption holds in combus-

tion and in most other applications.

Instantiation: While the shape of the regions and

associated functions can be anything, the original ISAT

algorithm proposed high dimensional ellipsoids as

regions and used a linear model as the function in a

region. The linear model is initialized by computing

the f value and estimating the derivative of f at the

center of the ellipsoidal region:

f̂RðxÞ ¼ f ðaÞ þ F 0
a � ðx � aÞ;

where a, is the center of the region R and F’a is the

derivative at a.

ISAT performs one of the following high level

operations for each query point x. Retrieve: Comput-

ing the function value at x using the current local

model by searching for a region containing x. Grow:

Searching for regions that can be grown to contain x

and updating these regions in S. Add: Adding a new

region (R) and an associated f̂R into S.

Database Techniques to Improve Scientific

Simulations. Figure 1. Pseudocode of the ISAT

algorithm.

188D Database Techniques to Improve Scientific Simulations

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

Indexing Problem

The indexing problem in function approximation pro-

duces a challenging workload for the operations on

index S in Figs. 1 and 2. The retrieve requires the

index to support fast lookups. The grow requires

both a fast lookup to find growable ellipsoids and

then an efficient update process once an ellipsoid is

grown. Finally, an efficient insert operation is required

for the add step. There are two main observations

which make this indexing problem different from tra-

ditional indexing [2,4]:

� The regions that are stored in the index are not

predefined but generated by the add and grow

operations. Past decisions about growing and add-

ing affect future performance of the index, there-

fore the algorithm produces an uncommon query/

update workload.

� The framework in which indexes must be evaluated

is very different. Traditionally, the performance of

index structures has been measured simply in terms

of the cost of a search and in some cases update.

There are two distinct cost factors in the function

approximation problem. First, there are the costs

associated with the search and update operations

on the index. Second, there are costs of the function

approximation application which include function

evaluations and region operations. Since the goal of

function approximation is to minimize the total

cost of the simulation, all these costs must be

accounted for when evaluating the performance of

an index.

In the light of these observations a principled analysis

of the various costs in the function approximation

algorithm leads to the discovery of novel tradeoffs.

These tradeoffs produce significant and different effects

on different index structures. Due to space constraints a

high-level discussion of the various costs in the algo-

rithm and the associated tradeoffs are discussed here.

The remainder of this section briefly describes the

tradeoffs and the tuning parameters that have been

proposed to exploit the different tradeoffs. The indexing

problem is studied here using the concrete instantiation

of the ISAT algorithm using ellipsoidal regions with

linear models. Therefore, regions are often referred

to as ellipsoids in the rest of the section. However, it is

important to note that the ideas discussed are applicable

to any kind of regions and associated functions.

Tuning Retrieves

In most high dimensional index structures the ellip-

soid containing a query point is usually not the first

ellipsoid found. The index ends up looking at a num-

ber of ellipsoids before finding ‘‘the right one.’’ The

additional ellipsoids that are examined by the index are

called false positives. For each false positive the algo-

rithm pays to search and retrieve the ellipsoid from the

index and to check if the ellipsoid contains the query

point. In traditional indexing problems, if an object that

satisfies the query condition exists in the index, then

finding this object during search is mandatory. There-

fore, the number of false positives is a fixed property of

the index. However, the function approximation prob-

lem provides the flexibility to tune the number of false

positives, because the expensive function can be evalu-

ated if the index search was not successful. The number

of false positives can be tuned by limiting the number of

ellipsoids examined during the retrieve step. This pa-

rameter is denoted by Ellr. Ellr places an upper bound

on the number of false positives for a query. Tuning Ellr

controls several interesting effects.

� Effect 1: Decreasing Ellr reduces the cost of the

retrieve operation as less number of ellipsoids are

retrieved and examined.

� Effect 2: Decreasing Ellr decreases the chances of

finding an ellipsoid containing the query point

thereby resulting in expensive function evaluations.

� Effect 3: Misses that result from decreasing Ellr can

grow and add other ellipsoids. These grows and adds

index new parts of the domain and also change the

overall structure of the index. Both of these affect the

probability of retrieves for future queries. This is a

more subtle effect unique to this problem.

Database Techniques to Improve Scientific

Simulations. Figure 2. Pseudocode for updating a local

model.

Database Techniques to Improve Scientific Simulations D 189

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

Tuning Grows and Adds

Just like the retrieve, the grow and add operations can be

controlled by the number of ellipsoids examined for

growing denoted as Ellg. Since an add is performed only

if a grow fails, this parameter controls both the operations.

Ellg provides a knob for controlling several effects that

affect performance of the index and the algorithm.

� Effect 4: The first part of the grow process involves

traversing the index to find ellipsoids that can be

grown. Decreasing Ellg reduces the time spent in

the traversal.

� Effect 5: Decreasing Ellg decreases the number of

ellipsoids examined for the grow and hence the

number of ellipsoids actually grown. This results

in the following effects.

– Effect 5a: Reducing the number of ellipsoids

grown reduces index update costs that can be

significant in high dimensional indexes.

– Effect 5b: Growing a large number of ellipsoids

on each grow operation indexes more parts of

the function domain, thereby improving the

probability of future retrieves.

– Effect 5c: Growing a large number of ellipsoids

on each grow results in significant overlap

among ellipsoids. Overlap among objects

being indexed reduces search selectivity in

many high dimensional indexes.

� Effect 6: Decreasing Ellg increases the number

of add operations. Creating a new region is more

expensive than updating an existing region since

it involves initializing the function f̂R in the new

region.

In summary, the two tuning parameters have many

different effects on index performance and the cost of

the simulation. What makes the problem interesting is

that these effects often move in opposite directions.

Moreover, tuning affects indexes differently and to

varying degrees, which makes it necessary to analyze

each index individually.

An Example: Binary Tree

The previous section presented a qualitative discussion

of the effects that tuning Ellr and Ellg can have on

index performance and simulation cost. This section

makes the effects outlined in the previous section more

concrete using an example index structure, called the

Binary Tree. The tree indexes the centers of the ellip-

soids by recursively partitioning the space with cutting

Database Techniques to Improve Scientific Simulations. Figure 3. Binary tree.

190D Database Techniques to Improve Scientific Simulations

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

planes. Leaf nodes of the tree correspond to ellipsoid

centers and non-leaf nodes represent cutting planes.

Figure 3 shows an example tree for three ellipsoids A,

B, C and two cutting planes X and Y . Next, this entry

focuses on the tree in the top part of Fig. 3 and describe

the operations supported by the index.

Retrieve

There are two possible traversals in the index that

result in a successful retrieve.

Primary Retrieve. The first called a Primary Re-

trieve is illustrated with query point q2. The retrieve

starts at the root, checking on which side of hyper-

plane X the query point lies. The search continues

recursively with the corresponding subtree, the left

one in the example. When a leaf node is reached, the

ellipsoid in the leaf is checked for the containment of

the query point. In the example, A contains q2, and

hence, a successful retrieve.

Secondary Retrieve. Since the binary tree only in-

dexes centers, ellipsoids can straddle cutting planes,

e.g., A covers volume on both sides of cutting plane

X. If ellipsoids are straddling planes, then the Primary

Retrieve can result in a false negative. For example,

q3 lies to the right of X and so the Primary Retrieve

fails even though there exists an ellipsoid A containing

it. To overcome this problem the Binary Tree performs

a more expensive Secondary Retrieve if the Primary

fails. The main idea of the Secondary Retrieve is to

explore the ‘‘neighborhood’’ around the query point by

examining ‘‘nearby’’ subtrees. In the case of q3, the

failed Primary Retrieve ended in leaf B. Nearby sub-

trees are explored by moving up a level in the tree and

exploring the other side of the cutting plane. Specifi-

cally, C is examined first(after moving up to Y , C is in

the unexplored subtree). Then the search would con-

tinue with A (now moving up another level to X and

accessing the whole left subtree). This process con-

tinues until a containing ellipsoid is found, or Ellr

ellipsoids have been examined unsuccessfully.

Update

Scenario 1 (Grow) and 2 (Add) of Fig. 3 illustrate the

update operations on the index.

Grow. The search for growable ellipsoids proceeds

in exactly the same way as a Secondary Retrieve, start-

ing where the failed Primary Retrieve ended. Assume

that in the example in Fig. 3, ellipsoid B can be grown

to include q4, but C and A cannot. After the retrieve

failed, the grow operation first attempts to grow C.

Then it continues to examine B, then A (unless Ellg

< 3). B is grown to include q4, as shown on the bottom

left (Scenario 1). Growing of Bmade it straddle hyper-

plane Y . Hence, for any future query point near q4 and

‘‘below’’ Y , a Secondary Retrieve is necessary to find

containing ellipsoid B, which is ‘‘above’’ Y .

Add. The alternative to growing B is illustrated on

the bottom right part of Fig. 3 (Scenario 2). Assume

Ellg = 1, i.e., after examining C, the grow search ends

unsuccessfully. Now a new ellipsoid F with center q4
is added to the index. This is done by replacing leaf C

with an inner node , which stores the hyper-plane that

best separates C and F. The add step requires the

expensive computation of f, but it will enable future

query points near q4 to be found by a Primary Retrieve.

Tuning parameter Ellg affects the Binary Tree in its

choice of scenario 2 over 1. This choice, i.e., performing

an add instead of a grow operation, reduces false posi-

tives for future queries, but adds extra-cost for the

current query. Experiments on real simulation work-

loads have shown that this tradeoff has a profound

influence on the overall simulation cost [6].

Long Running Simulations

When ISAT is used in long running combustion simu-

lations (108 time steps), updates to the local model

are unlikely after the first few million queries and the

time spent in building the local model is very small

compared to the total simulation time. Based on

these observations, Panda et al. have modeled a long

running combustion simulation as a traditional super-

vised learning problem [5]. They divide a combustion

simulation into two phases. During the first phase, the

ISAT algorithm is run and at the same time (x,f(x))

pairs are sampled uniformly from the composition

space accessed by the simulation. At the end of the

first phase, the sampled (x,f(x)) pairs are used as train-

ing data for a supervised learning algorithm that tries to

find a ‘‘new’’ local model with lower retrieve cost than

the model built using ISAT. This new model is then used

for the remainder of the simulation. Their experiment

shows that the algorithm adds little overhead and that

the new model can reduce retrieve costs by up to 70% in

the second phase of the simulation.

Key Applications
The ISATalgorithm and its optimizations have primar-

ily been applied to combustion simulation workloads.

Database Techniques to Improve Scientific Simulations D 191

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

However, the ideas are applicable to any simulation

setting where repeated evaluations in a fixed domain

of a function that is locally smooth and expensive to

compute are required.

Cross-references
▶ Spatial and Multidimensional Databases

Recommended Reading
1. Bell J.B., Brown N.J., Day M.S., Frenklach M., Grcar J.F., Propp

R.M., and Tonse S.R. Scaling and efficiency of PRISM in adap-

tive simulations of turbulent premixed flames. In Proc. 28th Int.

Combustion Symp., 2000.

2. Böhm C., Berchtold S., and Keim D.A. Searching in high-

dimensional spaces: index structures for improving the

performance of multimedia databases. ACM Comput. Surv.,

33(3):322–373, 2001.

3. Chen J.Y., KollmannW., and Dibble R.W. A self-organizing-map

approach to chemistry representation in combustion applica-

tions. Combustion Theory and Modelling, Vol. 4. 2000,

pp. 61–76.

4. Gaede V. and Günther O. Multidimensional access methods.

ACM Comput. Surv., 30(2):170–231, 1998.

5. Panda B., Riedewald M., Gehrke J., and Pope S.B. High speed

function approximation. In Proc. 2007 IEEE Int. Conf. on Data

Mining, 2007.

6. Panda B., Riedewald M., Pope S.B., Gehrke J., and Chew L.P.

Indexing for function approximation. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006.

7. Pope S.B. Computationally efficient implementation of combus-

tion chemistry using in situ adaptive tabulation. Combust. The-

ory Model., 1997, 1:41–63.

8. Turanyi T. Application of repro-modeling for the reduction of

combustion mechanisms. In Proc. 25th Symp. on Combustion,

1994, pp. 949–955.

9. Veljkovic I., Plassmann P., and Haworth D.C. A scientific on-line

database for efficient function approximation. In Proc. Int.

Conf. on Computational Science and its Applications, 2003,

pp. 643–653.

Database Trigger

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Synonyms
Triggers

Definition
A database trigger is code that is executed in response

to events that have been generated by database com-

mands such as INSERT, DELETE, or UPDATE.

Key Points
Triggers are code that are executed in response to events

that have been generated before or after a database oper-

ation. They are sometimes separated as pre- and post-

triggers in the literature. A pre-trigger can be used as an

extra validation check before the database command is

executed, whereas a post-trigger can be used as a notifi-

cation that the database command has been executed.

Triggers can be classified according to trigger gran-

ularity: row-level triggers or statement-level triggers. In

case of row-level triggers, each row will generate an

event, whereas statement-level triggers occur only once

per database command.

Overviews of database triggers can be found in [1,2].

Cross-references
▶Active Database (aDB)

▶Active Database (Management) System (aDBS/

aDBMS)

▶ ECA-rules

▶ Event

Recommended Reading
1. Kulkarni K.G., Mattos N.M., and Cochrane R. Active Database

Features in SQL3. In Active Rules in Database Systems. 1999,

pp. 197–219.

2. Sudarshan S., Silberschatz A., and Korth H. Triggers, chap. 8.6.

2006, pp. 329–334.

Database Tuning using
Combinatorial Search

SURAJIT CHAUDHURI
1, VIVEK NARASAYYA

1,

GERHARD WEIKUM
2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
Some database tuning problems can be formulated

as combinatorial search, i.e. the problem of searching

over a large space of discrete system configurations

to find an appropriate configuration. One tuning prob-

lem where feasibility of combinatorial search has been

demonstrated is physical database design. As part of the

self-management capabilities of a database system, it is

desirable to develop techniques for automatically recom-

mending an appropriate physical design configuration

192D Database Trigger

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

to optimize database system performance. This entry

describes the application of combinatorial search tech-

niques to the problem of physical database design.

Historical Background
Combinatorial search (also referred to as combinatorial

optimization) [8] is branch of optimization where the

set of feasible solutions (or configurations) to the prob-

lem is discrete, and the goal is to find the ‘‘best’’ possible

solution. Several well-known problems in computer

science such as the Traveling Salesman Problem, Mini-

mum Spanning Tree Problem, Knapsack Problem etc.

can be considered as examples of combinatorial search.

Several combinatorial search problems have been shown

to be NP-Hard, and exact algorithms that guarantee

optimality are not scalable. In such cases, heuristic

search algorithms such as greedy search, simulated

annealing, genetic algorithms etc. are often used to

ensure scalability.

In the area of database tuning problems, the com-

binatorial search paradigm has been successfully used

for problems such as query optimization [2] and phys-

ical database design tuning [5]. These are described in

more details below.

Foundations
Some of the key aspects of combinatorial search are:

� The search space, i.e. the space of discrete config-

urations from which the solution is picked.

� A metric for evaluating the ‘‘goodness’’ of a con-

figuration in the search space. This is essential

for being able to quantitatively compare different

configurations.

� A search algorithm for efficiently searching the

space to find a configuration with the minimum

(or maximum) value of the goodness metric.

One early example of use of combinatorial search for

tuning in database systems is query optimization (see [2]

for an overview on query optimization in relational

database systems). The goal of query optimization is to

produce an efficient execution plan for a given query

using the physical operators supported by the under-

lying execution engine. The above key aspects of combi-

natorial search are now illustrated for the problem of

query optimization. The search space of execution plans

considered by a query optimizer depends on: (i) The

set of algebraic transformations that preserve equiva-

lence of query expressions (e.g. commutativity and

associativity of joins, commutativity of group by and

join, rules for transforming a nested subquery into

a single-block query, etc.) (ii) The set of physical opera-

tors supported in the system (e.g. three different phy-

sical operators Index Nested Loops Join, Hash Join,

Merge Join for implementing a join). Query optimizers

use a cost model that defines the goodness metric

for evaluating the ‘‘goodness’’ of an execution plan.

In particular for a given execution plan, the cost

model computes an overall number based on estimates

of the CPU, I/O and communication costs of physical

operators in the execution plan. Finally, different kinds

of search algorithms are used in today’s query optimi-

zers including bottom-up approaches (e.g. in the

Starburst query optimizer [7]) as well as top-down

approaches (e.g. optimizers based on the Volcano/

Cascades [6] framework).

Example: Physical Database Design using

Combinatorial Search

An in-depth example is now considered, the problem

of physical database design. A crucial property of a

relational DBMS is that it provides physical data inde-

pendence. This allows physical structures such as

indexes and materialized views to be added or dropped

without affecting the output of the query; but such

changes do impact efficiency. Thus, together with the

capabilities of the execution engine and the optimizer,

the physical database design determines how efficiently

a query is executed on a DBMS. Over the years, the

importance of physical design has become amplified as

query optimizers have become sophisticated to cope

with complex decision support queries. Since query

execution and optimization techniques have become

more sophisticated, database administrators (DBAs)

can no longer rely on a simplistic model of the engine.

Thus, tools for automating physical database design

can ease the DBA’s burden and greatly reduce the total

cost of ownership. For an overview of work in the area

of physical database design, refer to [5].

The role of the workload, including SQL queries

and updates, in physical design is widely recognized.

Therefore, the problem of physical database design can

be stated as: For a given workload, find a configuration,

i.e. a set of indexes and materialized views that mini-

mize the cost of the given workload. Typically, there

is a constraint on the amount of storage space that

the configuration is allowed to take. Since the early

1970s, there has been work on trying to automate

Database Tuning using Combinatorial Search D 193

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

physical database design. However, it is only in the past

decade that automated physical database design tools

have become part of all major commercial DBMS

vendors [5].

Search Space: The search space of configurations

(i.e. set of physical design structures) for a given

query (and hence the given workload) can be very

large. First, the set of physical design structures that

are relevant to a query i.e., can potentially be used by

the query optimizer to answer the query, is itself

large. For example, consider a query with n selection

predicates. An index defined on any subset of the

columns referenced in the predicates is relevant. The

order of columns in the index is also significant; thus,

in principle any permutation of the columns of the

subset also defines a relevant index. The space of rele-

vant materialized views is larger than the space of

indexes since materialized views can be defined on

any subset of tables referenced in the query. Finally,

the search space of configurations for the physical data-

base design problem is the power set of all relevant

indexes and materialized views.

Today’s physical database design tools approach the

issue of large search space by adopting heuristics for

restricting the search space. For example in [3], a key

decision is to define the search space as consisting of

the union of (only) the best configurations for each

query in the workload, where the best configuration

itself is the one with lowest optimizer estimated cost

for the query. Intuitively, this candidate selection step

leverages the idea that an index (or materialized view)

that is not part of an optimal (or close to optimal)

configuration for at least one query, is unlikely to be

optimal for the entire workload. To improve the quali-

ty of the solution in the presence of constraints (e.g. a

storage bound), the above space is augmented with an

additional set of indexes (and materialized views)

derived by ‘‘merging’’ or ‘‘reducing’’ structures from

the above space (e.g. [1]). These additional candidates

exploit commonality across queries in the workload,

and even though they may not be optimal for any

individual query in the workload, they can be optimal

for the workload as a whole in the presence of the

constraint.

Metric: It is not feasible to estimate goodness of a

configuration for a workload by actual creation of phys-

ical design structures and then executing the queries and

updates in the workload. Early papers on physical design

tuning used an external model to estimate the cost

of a query for a given configuration. However, this has

the fundamental problem that the decisionsmade by the

physical design tool could be ‘‘out-of-sync’’ with the

decisions made by the query optimizer. This can lead

to a situation where the physical design tool recom-

mends an index that is never used by the query opti-

mizer to answer any query in the workload.

In today’s commercial physical design tools, the

goodness of a configuration for a query is measured

by the optimizer estimated cost of the query for that

configuration. Unlike earlier approaches that used an

external cost model, this approach has the advantage

that the physical design tool is ‘‘in-sync’’ with the

query optimizer.

One approach for enabling this measure of goodness

is by making the following key server-side enhance-

ments: (i) Efficient creation of a hypothetical (or

‘‘what-if ’’) index. This requires metadata changes to

signal to the query optimizer the presence of a what-if

index (or materialized view). (ii) An extension to the

‘‘Create Statistics’’ command to efficiently generate

the statistics that describe the distribution of values

of the column(s) of a what-if index via the use of sam-

pling. (iii) A query optimization mode that enabled

optimizing a query for a selected subset of indexes

(hypothetical or actually materialized) and ignoring the

presence of other access paths. This is important as the

alternative would have been repeated creation and

dropping of what-if indexes, a potentially costly solu-

tion. For more details, refer to [4].

Search algorithm: Given a workload and a set of

candidate physical design structures (e.g. obtained as

described above using the candidate selection step), the

goal of the search algorithm is to efficiently find a

configuration (i.e., subset of candidates) with the smal-

lest total optimizer cost for the workload. Note that the

problem formulation allows the specification of a set of

constraints that the enumeration step must respect,

(e.g. to respect a storage bound). Since the index selec-

tion problem has been shown to be NP-Hard [9], the

focus of most work has been on developing heuristic

solutions that give good quality recommendations and

can scale well.

One important observation is that solutions that

naively stage the selection of different physical design

structures (e.g., select indexes first followed by materi-

alized views, select partitioning for table first followed

by indexes etc.) can result in poor recommendations.

This is because: (i) The choices of these structures

194D Database Tuning using Combinatorial Search

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

interact with one another (e.g., optimal choice of index

can depend on how the table is partitioned and vice

versa). (ii) Staged solutions can lead to redundant

recommendations. (iii) It is not easy to determine

a priori how to partition the storage bound across

different kinds of physical design structures. Thus,

there is a need for integrated recommendations that

search the combined space in a scalable manner.

Broadly the search strategies explored thus far can

be categorized as bottom-up (e.g. [3]) or top-down [1]

search, each of which has different merits. The bottom

up strategy begins with the empty (or pre-existing

configuration) and adds structures in a greedy manner.

This approach can be efficient when available storage is

low, since the best configuration is likely to consist

of only a few structures. In contrast, the top-down

approach begins with a globally optimal configuration

but it could be infeasible if it exceeds the storage

bound. The search strategy then progressively refines

the configuration until it meets the storage constraints.

The top-down strategy has several key desirable prop-

erties and this strategy can be efficient in cases where

the storage bound is large.

Future Directions
The paradigm of combinatorial search has been effec-

tively used in database tuning problems such as

query optimization and physical database design. It

is future research to consider if this paradigm can

also be effectively applied to other database tuning

problems such as capacity planning and optimizing

database layout.

Cross-references
▶Administration Wizard

▶ Index Tuning

▶ Physical Layer Tuning

▶ Self-Management Technology in Databases

Recommended Reading
1. Bruno N. and Chaudhuri S. Automatic physical design tuning:

a relaxation based approach. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2005.

2. Chaudhuri S. An overview of query optimization in relational

systems. In Proc. 17th ACM SIGACT-SIGMOD-SIGART Symp.

Principles of Database Systems, 1998.

3. Chaudhuri S. and Narasayya V. An efficient cost driven index

selection tool for microsoft SQL server. In Proc. 23th Int. Conf.

on Very Large Data Bases, 1997.

4. Chaudhuri S. and Narasayya V. AutoAdmin ‘‘What-If ’’ index

analysis utility. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1998.

5. Chaudhuri S. and Narasayya V. Self-tuning database systems:

a decade of progress. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

6. Graefe G. The Cascades framework for query optimization. Data

Eng. Bull., 18(3), 1995.

7. Haas L., Freytag C., Lohman G., and Pirahesh H. Extensible

query processing in Starburst. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1989.

8. Papadimitriou C.H. and Steiglitz K. Combinatorial optimiza-

tion: algorithms and complexity. Dover, July 1998. ISBN 0-486-

40258-4.

9. Piatetsky-Shapiro G. The optimal selection of secondary indices

is NP-complete. SIGMOD Rec., 13(2):72–75, 1983.

Database Tuning using Online
Algorithms

NICOLAS BRUNO
1, SURAJIT CHAUDHURI

1,

GERHARD WEIKUM
2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
A self-managing database system needs to gracefully

handle variations in input workloads by adapting its

internal structures and representation to changes in the

environment. One approach to cope with evolving

workloads is to periodically obtain the best possible

configuration for a hypothetical ‘‘average’’ scenario.

Unfortunately, this approach might be arbitrarily sub-

optimal for instances that lie outside the previously

determined average case. An alternative approach is

to require the database system to continuously tune

its internal parameters in response to changes in the

workload. This is the online tuning paradigm. Although

solutions for different problems share the same under-

lying philosophy, the specific details are usually

domain-specific. In the context of database systems,

online tuning has been successfully applied to issues

such as buffer pool management, statistics construc-

tion and maintenance, and physical design.

Historical Background
Database applications usually exhibit varying work-

load characteristics over time. Moreover, changes in

workloads cannot be easily modeled beforehand. As a

Database Tuning using Online Algorithms D 195

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

consequence, database systems traditionally provided

offline tools to make corrections to the system’s current

configuration. Examples include physical design tools

that take a representative workload and return a new

database design that would be beneficial in the future,

or the possibility of refreshing the statistical informa-

tion about values stored in database columns. These

approaches allow a database administrator to react

to environmental changes but only after they had hap-

pened (and potentially disrupted a previously well-

tuned system).

Although offline tuning tools have been successfully

introduced in several commercial database systems,

there has been a growing need for additional functional-

ity that is outside the scope of such tools. As database

applications increase in size and complexity, it becomes

more difficult to even decide when offline tools should

be called. Additionally, offline tools are sometimes re-

source intensive and assume that there are idle periods of

time on which they can be applied, which is not neces-

sarily the case. To cope with these new requirements,

a new set of algorithms emerged (e.g., [1,2,6,8,11,12]),

which are based on a different principle. The idea is to

monitor the database system as queries are processed,

and in the background reorganize its internal state to

cope with changes in the workload. In this way, the

database system is continuously modifying itself in a

closed ‘‘monitor-diagnose-tune’’ loop.

Foundations
A requirement towards understanding online tuning is

to conceptualize the transition from scenarios in which

full information is known about the system in consid-

eration (and can therefore identify the optimal solu-

tion). Within the online tuning paradigm, only partial

information is known as time passes (and therefore

it is necessary to approximate optimal solutions at all

times without knowing the future). For illustration

purposes, some specific examples of online tuning are

reviewed briefly, and one such example is provided in

more detail.

An example of online tuning is that of automati-

cally managing memory allocation across different

memory pools [2,12]. Complex queries generally use

memory-intensive operators (e.g., hash-joins) whose

performance depends on the amount of memory that

is given to each operator at runtime. However, only a

finite amount of memory is available at any time, and

it has to be distributed among all the competing

operators. This problem is further complicated by the

fact that new queries are continually being served by

the database system, and therefore any static policy to

distribute available memory might be inadequate as

workloads change. Reference [7] presents an online

algorithm to manage memory that is based on the

ability of operators to dynamically grow and shrink

their own memory pools. By using a feedback loop

while statements are being executed, this technique is

able to incrementally model the optimal resource allo-

cation and adapt the distribution of memory to the

current operators to maximize performance.

Another example of online tuning is physical data-

base design, which is concerned with identifying the

best set of redundant access paths (e.g., indexes or

materialized views) that would accelerate workloads

[5]. While there has been work on offline tools that

assume that the representative input workload would

repeat indefinitely in the future, many scenarios exhib-

it unpredictable changes in workload patterns. Online

physical design tuning takes a different approach: it

monitors incoming queries and measures the relative

cost/benefit of each of the present and hypothetical

(i.e., not part of the current design) structures. By

carefully measuring the impact of creating and dropp-

ing structures (e.g., indexes), the system is able to

change the underlying database configuration in re-

sponse to changes in workload characteristics [3].

Expanded Example: Self Tuning Histograms

Consider, as an in-depth example, the problem of

statistics management in database systems. Relational

query optimization has traditionally relied on single-

or multi-column histograms to model the distribution

of values in table columns. Ideally, histogram buckets

should enclose regions of the data domain with ap-

proximately uniform tuple density (i.e., roughly the

same number of tuples per unit of space in a bucket),

to accurately estimate the result size of range queries.

At the same time, histograms (especially multi-column

ones) should be sufficiently compact and efficiently

computable. Typically, histogram construction strate-

gies inspect the data sets that they characterize without

considering how the histograms will be used (i.e., there

is an offline algorithm that builds a given histogram,

possibly as a result of bad performance of some work-

load query). The implicit assumption while building

such histograms is that all queries are equally likely.

This assumption, however, is rarely true in practice,

196D Database Tuning using Online Algorithms

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:32

and certain data regions might be much more heavily

queried than others. By analyzing workload queries

and their results, one could detect buckets that do

not have uniform density and ‘‘split’’ them into smaller

and more accurate buckets, or realize that some adja-

cent buckets are too similar and ‘‘merge’’ them, thus

recuperating space for more critical regions.

In other words, rather than computing a given

histogram at once, without knowledge of how it is

going to be used, one can instead incrementally refine

the statistical model based on workload information

and query feedback. This is the essence of self-tuning

histograms. Intuitively, self-tuning histograms exploit

query workload to zoom in and spendmore resources in

heavily accessed areas, thus allowing some inaccuracy in

the rest. These histograms also exploit query feedback

as truly multidimensional information to identify

promising areas to enclose in histogram buckets. As a

result, the resulting histograms are more accurate

for the expected workload than traditional workload-

independent ones. Self-tuning histograms can also

gracefully adapt to changes in the data distribution

they approximate, without the need to periodically

rebuild them from scratch.

Reference [1] presents STGrid, the first multidi-

mensional histogram that uses query feedback to refine

buckets. STGrid histograms greedily partition the data

domain into disjoint buckets that form a grid, and

refine their frequencies using query feedback by adjust-

ing the expected cardinality of buckets based on ob-

served values. After a predetermined number of queries

have been executed, the histogram is restructured by

merging and splitting rows of buckets at a time. Effi-

ciency in histogram tuning is the main goal of this

technique, at the expense of accuracy. Since STGrid

histograms need to maintain the grid structure at all

times, and also due to the greedy nature of the tech-

nique, some locally beneficial splits and merges have

the side effect of modifying distant and unrelated

regions, hence decreasing the overall accuracy of the

resulting histograms.

To alleviate this problem, STHoles histograms, intro-

duced in [4], are based on a novel partitioning strategy

that is especiallywell suited to exploit workload informa-

tion. STHoles histograms allow inclusion relationships

among buckets, i.e., some buckets can be completely

included inside others. Specifically, each bucket in an

STHoles histogram identifies a rectangular range in

the data domain, similar to other histogram

techniques. However, unlike traditional histograms,

STHoles histograms identify bucket sub-regions with

different tuple density and ‘‘pull’’ them out from the

corresponding buckets. Hence a bucket can have holes,

which are themselves first-class histogram buckets. In

this way, these histograms implicitly relax the require-

ment of rectangular regions while keeping rectangular

bucket structures. By allowing bucket nesting, the

resulting histograms do not suffer from the problems

of STGrid histograms and can model complex shapes

(not restricted to rectangles anymore); by restricting

the way in which buckets may overlap, the resulting

histograms can be efficiently manipulated and updated

incrementally by using workload information.

STHoles histograms exploit query feedback in a truly

multidimensional way to improve the quality of the

resulting representation. Initially, an STHoles histogram

consists of a single bucket that covers the whole data

domain. For each incoming query from the workload,

the query optimizer consults existing histograms and

produces a query execution plan. The resulting plan is

then passed to the execution engine, where it is pro-

cessed. A build/refine histogram module intercepts the

stream of tuples that are returned, and tunes the relevant

histogram buckets so that the resulting histogram

becomes more accurate for similar queries. Specifically,

to refine an STHoles histogram, one first intercepts the

stream of results from the corresponding query execu-

tion plan and counts how many tuples lie inside each

histogram bucket. Next, one determines which regions

in the data domain can benefit from using this new

information, and refines the histogram by ‘‘drilling

holes,’’ or zooming into the buckets that cover the

region identified by the query plan. Finally, to adhere

to the budget constraint, it is possible to consolidate

the resulting histogram by merging similar buckets.

Recently, [10] introduces ISOMER (Improved Sta-

tistics andOptimization byMaximum-Entropy Refine-

ment), a new algorithm for feedback-driven histogram

construction. ISOMER uses the same partitioning strat-

egy as STHoles, but it is based on a more efficient

algorithm to restructure the histogram, which does not

require counting the number of tuples that lie within

each histogram bucket. In contrast, ISOMER uses the

information-theoretic principle of maximum entropy to

approximate the true data distribution by a histogram

distribution that is as ‘‘simple’’ as possible while being

consistent with all the previously observed cardinalities.

In this manner, ISOMER avoids incorporating

Database Tuning using Online Algorithms D 197

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

extraneous (and potentially erroneous) assumptions

into the histogram. ISOMER’s approach amounts to

imposing uniformity assumptions (as made by tradi-

tional optimizers) when, and only when no other statis-

tical information is available. ISOMER can be seen as

combining the efficient refinement characteristics from

STGrid histograms with the accuracy of STHoles histo-

grams. A related piece of work is [9], which addresses the

problem of combining complementary selectivity esti-

mations frommultiple sources (which themselves can be

computed using ISOMER histograms) to obtain a con-

sistent selectivity estimation using the idea of maximum

entropy. Similar to the approach in ISOMER, this work

exploits all available information and avoids biasing the

optimizer towards plans for which the least information

is known.

Future Directions
Online tuning is dramatically gaining importance as

more and more applications exhibit unpredictable

workload evolution. In particular, this is a requirement

for cloud-based data services. In such scenarios, the

backend data services are shared by multiple applica-

tions and must be able to cope with changing access

patterns. It should be noted that feedback-driven control

is another paradigm that has been applied for continu-

ous incremental tuning of systems, e.g., in the context

of automated memory management [7]. A detailed dis-

cussion of feedback-driven control and its applications

to computing systems can be found in [8].

Cross-references
▶Histograms

▶ Self-Management Technology in Databases

Recommended Reading
1. Aboulnaga A. and Chaudhuri S. Self-tuning histograms: build-

ing histograms without looking at data. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999.

2. Brown K.P., Mehta M., Carey M.J., and Livny M. Towards auto-

mated performance tuning for complex workloads. In Proc. 20th

Int. Conf. on Very Large Data Bases, 1994, pp. 72–84.

3. Bruno N. and Chaudhuri S. An online approach to physical

design tuning. In Proceedings of ICDE. Istanbul, Turkey, 2007.

4. Bruno N., Chaudhuri S., and Gravano L. STHoles: a multidi-

mensional workload-aware histogram. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001.

5. Chaudhuri S. and Narasayya V.R. Self-tuning database sys-

tems: a decade of progress. In Proc. 33rd Int. Conf. on Very

Large Data Bases, 2007.

6. Chen C.-M. and Roussopoulos N. Adaptive selectivity estima-

tion using query feedback. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1994, pp. 161–172.

7. Dageville B. and Zait M. SQL memory management in Oracle9i.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

8. Diao Y., Hellerstein J.L., Parekh S.S., Griffith R., Kaiser G.E., and

Phung D.B. Self-managing systems: a control theory foundation.

In ECBS. Greenbelt, Maryland, USA, 2005, pp. 441–448.

9. Markl V., Haas P.J., Kutsch M., Megiddo N., Srivastava U., and

Tran T.M., Consistent selectivity estimation via maximum

entropy. VLDB J., 16(1):55–76, 2007.

10. Srivastava U. et al. ISOMER: consistent histogram construction

using query feedback. In Proc. 22nd Int. Conf. on Data Engi-

neering, 2006.

11. Stillger M., Lohman G.M., Markl V., and Kandil M. LEO - DB2’s

LEarning Optimizer. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2001, pp. 19–28.

12. Weikum G., König A.C., Kraiss A., and Sinnwell M. Towards

self-tuning memory management for data servers. IEEE Data

Eng. Bull., 22(2):3–11, 1999.

Database Tuning using Trade-off
Elimination

SURAJIT CHAUDHURI
1, GERHARD WEIKUM

2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
Database systems need to be prepared to cope with

trade-offs arising from different kinds of workloads

that different deployments of the same system need

to support. To this end, systems offer tuning para-

meters that allow experienced system administrators

to tune the system to the workload characteristics

of the application(s) at hand. As part of the self-

management capabilities of a database system, it is

desirable to eliminate these tuning parameters and

rather provide an algorithm for parameter settings

such that near-optimal performance is achieved across

a very wide range of workload properties. This is the

trade-off elimination paradigm. The nature of the

solution for trade-off elimination depends on specific

tuning problems; its principal feasibility has been

successfully demonstrated on issues such as file strip-

ing and cache management.

Historical Background
To cope with applications that exhibit a wide variety

of workload characteristics, database systems have

198D Database Tuning using Trade-off Elimination

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

traditionally provided a repertoire of alternative algo-

rithms for the same or overlapping functionalities, and

have also exposed a rich suite of quantitative tuning

parameters. Examples include a choice of page sizes

and a choice of striping units at the underlying storage

level, a choice of different data structures for single-

dimensional indexing, and various tuning options for

cache management. This approach prepares the system

for trade-offs that arise across different workloads and

within mixed workloads.

More than a decade ago, exposing many options

and tuning parameters to system administrators had

been widely accepted, but has eventually led to prohib-

itive costs for skilled staff. In the last 10 years, many

trade-offs have become much better understood and

analytically or experimentally characterized in a

systematic manner. In some cases, the analysis led to

the insight that a specific criteria for parameter settings

could yield satisfactory performance across a wide

range of workloads. Typically, this insight was derived

hand in hand with progress on the underlying algo-

rithmics or hardware technology. This can form the

basis for eliminating various tuning options such as

page sizes, striping units, data structures for single-

dimensional indexing, and cache management strate-

gies. Some of these research results have been adopted

by commercial engines for self-management; in other

cases, tuning parameters are still exposed.

Foundations
The first step towards trade-off elimination is to better

understand the nature of the trade-off. The key ques-

tions to consider and analyze are the following: Why

are different alternatives needed for the given para-

meter or function? Is the variance across (real or con-

ceivable) workloads really so high that tuning options

are justified? Do different options lead to major differ-

ences in performance? Do some options result in very

poor performance? Are there any options that lead to

acceptably good performance across a wide spectrum

of workloads?

For illustration consider the following specific

tuning issues:

1. Page sizes: There is a trade-off between disk I/O

efficiency and efficient use of memory [4]. Larger

page sizes lead to higher disk throughput because

larger sequential transfers amortize the initial disk-

arm seeks. Smaller page sizes can potentially make

better use of memory because they contain exactly

the actual requested data and there are more of

such small pages that fit into memory. The impact

of this trade-off was large more than 10 years ago

with much smaller memory sizes. Today, memory

sizes are usually at comfortable level, and disk con-

trollers always fetch entire tracks anyway. Thus, a

page size of one disk track (e.g., 100 Kilobytes) is

almost always a good choice, and neither hurts disk

efficiency nor memory usage too much.

2. Striping units: When files or tablespaces are parti-

tioned by block or byte ranges and striped (i.e.,

partitions being allocated in round-robin manner)

across multiple disks, the partition size, aka. striping

unit, leads to a trade-off regarding I/O parallelism

versus disk throughput [2,9]. Small striping units

lead to high parallelism when reading large amounts

of data from the disk-array, but they consume much

more disk-arm time for all involved disks together,

compared to larger striping units with lower degree

of parallelism. Thus, larger striping units can achieve

higher I/O throughput. In some applications, it may

still be worthwhile to tune striping units of different

files according to their request size distributions. But

in database systems, there is usually only a mix of

single-block random accesses and sequential scans.

For such workloads, large striping units in the order

of one Megabyte achieve near-optimal throughput

while still allowing I/O parallelism for scans.

3. Single-dimensional indexing:Many commercial sys-

tems offer the (human or automated) tuning wiz-

ard a choice between a B+-tree or a hash index, for

each single-attribute index that is to be created.

B+-trees provide high efficiency for both random

key lookups and sequential scans, and have proven

their high versatility. Hash indexes offer random-

ization to counter access skew (with some keys

being looked upmuchmore frequently than others)

and even better worst-case performance for look-

ups. Hashing guarantees exactly one page access,

whereas B+-tree indexes have to access a logarith-

mic number of pages in their descent towards the

requested key. This was an important trade-off to

consider for tuning a decade ago. But today, the

disadvantages of B+-trees for certain workloads

have become minor: randomization can be achie-

ved as well by using hash-transformed keys in the

tree (at the inherent expense of penalizing range

queries); and the extra costs of the tree descent

Database Tuning using Trade-off Elimination D 199

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

are negligible given the high fan-out and resulting

low depth of index trees and the fact that all index

levels other than leaf pages virtually always reside

in memory. So if one were to build a lean, largely

self-managing database engine today, it would

have to support only B+-tree indexes (but, of

course, have hash-based algorithms in its reper-

toire for joins and grouping).

These examples demonstrate the kinds of insights and

simplifications towards self-managing systems that may

be achieved by means of trade-off analysis. The analyses

may be based on mathematical modeling (e.g., for esti-

mating response times and throughput of different

striping units), draw from comprehensive experimenta-

tion or simulation, or assess strengths and weaknesses

qualitatively (e.g., functionality and computational costs

of index implementations). Often a combination of dif-

ferent methodologies is needed. None of these

approaches can be automated; while automatic tool sup-

port is standard (e.g., for evaluating analytic models and

for sensitivity analyses) the final assessment requires

human analytics and judgment. Thus, the trade-off elim-

ination paradigm is a ‘‘thinking tool’’ for system-design

time, providing guidance towards self-tuning systems.

Example: Cache Management with Trade-off Elimination

As a more detailed example, consider the management

of a shared page cache in a database system and

the tuning issue that underlies the page replacement

strategy. It is discussed in more depth here, as it is

not only another illustration of eliminating trade-

offs, but also an important performance issue by itself.

For choosing a cache replacement victim, cache

managers assess the ‘‘worthiness’’ of the currently

cache-resident pages and drop the least worthy page.

Ideally, one would predict the future access patterns:

the least worthy page is the one whose next access is

farthest in the future [3]. But the cache manager only

knows the past accesses, and can remember only a

bounded amount of information about the previous

patterns. In this regard, a page shows evidence of being

potentially worthy if it exhibits a history frequent

accesses or recent accesses. The traditional replacement

strategies give priority to either frequency or recency,

but neither is optimal and the co-existence of the two

criteria presents a trade-off for the cache manager.

Frequency-based worthiness would be optimal if

access patterns were in steady state, i.e., if page-access

frequencies had a time-invariant distribution with

merely stochastic fluctuation. The algorithm of choice

would then be LFU, which always replaces the least-

frequently-used page. However, if the workload evolves

and the distributions of access frequencies undergo

significant changes, LFU is bound to perform poorly

as it takes a long time to adjust to new load character-

istics and re-estimate page-access probabilities. There-

fore, the practically prevalent method is actually LRU,

which always replaces the least-recently-used page. The

LRU strategy automatically adapts itself to evolving

access patterns and is thus more robust than LFU.

Despite its wide use and salient properties, LRU

shows significantly sub-optimal behavior under vari-

ous workloads. One issue is the co-existence of random

accesses and sequential scans. Pages that are accessed

only once during a scan will be considered by LRU

although they may never be referenced again in the

near future. This idiosyncrasy is typically fixed in

industrial-strength database system by allowing the

query processor to pass hints to its cache manager

and advise it to give low priority to such a read-once

page. However, there are further situations where the

specifics of the access patterns reveal shortcomings of

the LRU strategy.

Consider a workload with random accesses only,

but with very high variance of the individual pages’

access probabilities. Assume that there is a sequence of

primary-key lookups on a database table that results in

alternating accesses to uniformly selected index and

data pages. As there are usually many more data pages

than index pages (for the same table), the individual

index pages have much higher access frequencies than

each of the data pages. This indicates that index pages

are more worthy for staying in the cache, but LRU

considers only recency and is inherently unable to dis-

criminate the two kinds of pages. In steady state, LRU

would keep the same numbers of index pages and data

pages in the cache, but the optimal behavior would

prioritize index pages. Ironically, LFU would be opti-

mal for this situation (but fails in others).

The LRFU algorithm [6] has addressed this issue by

defining the worthiness of a page as a linear combina-

tion of its access recency and access frequency. Unfor-

tunately, the performance of this method highly

depends on proper tuning of the weighting coefficients

for the two aspects and on additional parameters that

govern the aging of frequency estimates. Another

sophisticated approach that at least one commercial

200D Database Tuning using Trade-off Elimination

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

system had taken is to support multiple caches with

configurable sizes and allow the administrator to as-

sign different tablespaces to different caches. This way,

the cache management for data vs. index pages or

pages of different tables and indexes can be tuned

extremely well. But this requires very good human

skills; automating this approach would be a major

challenge for databases with hundreds of tables and

highly diverse workloads.

An approach that aims at eliminating all such tun-

ing parameters is the LRU-k algorithm [8]. Its main

principle is to dynamically estimate the access frequen-

cy of ‘‘interesting’’ pages by tracking the time points of

the last k accesses to each page. It can be viewed as a

maximum-likelihood estimator for page-access prob-

abilities, and uses a sliding-window technique for

built-in aging of the estimates. Worthiness of a page

is now defined as the reciprocal of the backward dis-

tance to its kth last access, and this has been shown to

be optimal among all replacement algorithms that have

the same information about the access history. For

k = 1, LRU-k behaves exactly like LRU; for k 2, it

has enough information to properly handle sequential-

ly scanned read-once pages and to automatically dis-

criminate page classes with very different access

frequencies and patterns.

LRU-k introduces additional bookkeeping that

incurs overhead compared to the best, extremely light-

weight, implementations of standard LRU. In particular,

it needs to track the last k accesses ofmore pages than the

cache currently holds. There is a robust heuristics, based

on the ‘‘5-min rule of thumb’’ [4], for deciding which

pages should be tracked at all. But the bookkeeping uses

a non-negligible amount of memory – the very resource

whose usage the cachemanager aims to optimize with so

much scrutiny. Thus, LRU-k invests some memory and

effectively reduces the size of the cache by that amount,

in order to improve the overall caching benefit. It has

been experimentally shown that this cost/benefit ratio

is indeed profitable: even if the cache size is reduced

by the bookkeeping memory, LRU-k (for k 2) still

significantly outperforms LRU (but one would typi-

cally limit k to 2 or 3).

LRU-k also needs more CPU time than LRU because

its replacement decision criterion, the backward distance

to the kth last accesses of the currently cache-resident

pages, requires a priority queue rather than a simple

linked list. Even with the best possible implementation

techniques, this leads to logarithmic rather than

constant cost per page access. However, there are ex-

cellent ways of implementing approximate versions of

the LRU-k principle without this overhead. The 2Q

algorithm [5] and the ARC algorithm [7] use LRU-like

linked lists but separate pages in two lists: one for pages

with at least k accesses and one for pages with less

accesses in the current bookkeeping. By devising smart

rules for migrating pages between lists, these algorithms

achieve cache hit ratios that are as good as LRU-k while

keeping the implementation overhead as low as that of

LRU. Other extensions of the LRU-k principle are cache

replacement algorithms for variable-size data items such

as files or Web pages [1,10].

The best algorithms of the LRU-k family have suc-

cessfully eliminated the recency-frequency trade-off

and provide self-tuning cache management. The

insights from this line of research provide several,

more general or potentially generalizable, lessons:

� It is crucial to analyze the nature of the trade-off

that led to the introduction of tuning options or

alternative algorithms for the same function.

� It is beneficial to unify the modeling and treatment

of different classes of access patterns (workloads),

thus providing a basis for simplifying algorithms

and systems.

� Additional bookkeeping to better capture the work-

load can be worthwhile even if it consumes the very

same resource that is to be optimized. But the

overhead needs to be carefully limited.

� To eliminate a ‘‘troublesome’’ tuning option, self-

managing algorithms may introduce additional

second-order parameters (e.g., for bookkeeping

data structures). The art is to ensure that the new

parameters must be such that it should be easy to

find a robust setting that leads to near-optimal

behavior under almost all workloads.

Future Directions
Trade-off elimination is a general paradigm, but not

a directly applicable recipe for self-management. Thus,

future research should consider studying more trade-

offs and tuning problems in view of this paradigm,

bearing in mind both its potential benefits and

intricacies.

Cross-references
▶Memory Hierarchy

▶ Self-Management Technology in Databases

Database Tuning using Trade-off Elimination D 201

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

Recommended Reading
1. Cao P. and Irani S. Cost-awareWWWproxy caching algorithms.

In Proc. 1st USENIX Symp. on Internet Tech. and Syst., 1997.

2. Chen P.M., Lee E.L., Gibson G.A., Katz R.H., and Patterson D.A.

RAID: high-performance, reliable secondary storage. ACM

Comput. Surv., 26(2):145–185, 1994.

3. Coffman E.G. Jr. and Denning P.J. Operating Systems Theory.

Prentice-Hall, Englewood, Cliffs, NJ, 1973.

4. Gray J. and Graefe G. The five-minute rule ten years later, and

other computer storage rules of thumb. SIGMOD Rec., 26

(4):63–68, 1997.

5. Johnson T. and Shasha D. 2Q: a low overhead high performance

buffer management replacement algorithm. In Proc. 20th Int.

Conf. on Very Large Data Bases. 1994, pp. 439–450.

6. Lee D., Choi J., Kim J.-H., Noh S.H., Min S.L., Cho Y., and

Kim C.-S. LRFU: a spectrum of policies that subsumes the least

recently used and least frequently used policies. IEEE Trans.

Comput., 50(12):1352–1361, 2001.

7. Megiddo N. and Modha D.S. Outperforming LRU with an

adaptive replacement cache algorithm. IEEE Comput., 37

(4):58–65, 2004.

8. O’Neil E.J., O’Neil P.E., and Weikum G. The LRU-K page

replacement algorithm for database disk buffering. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1993, pp.

297–306.

9. Scheuermann P., Weikum G., and Zabback P. Data partitioning

and load balancing in parallel disk systems. VLDB J., 7(1):48–66,

1998.

10. Young N.E. On-line file caching. Algorithmica, 33(3):371–383,

2002.

Databases for Biomedical Images

▶ Image Management for Biological Data

Dataguide

▶ Structure Indexing

Datalog

GRIGORIS KARVOUNARAKIS

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Deductive databases

Definition
An important limitation of relational calculus/algebra

is that it cannot express queries involving ‘‘paths’’

through an instance, such as taking the transitive clo-

sure over a binary relation. Datalog extends conjunc-

tive queries with recursion to support such queries.

A Datalog program consists of a set of rules, each of

which is a conjunctive query. Recursion is introduced

by allowing the same relational symbols in both the

heads and the bodies of the rules. A surprising and

elegant property of Datalog is that there are three

very different but equivalent approaches to define its

semantics, namely the model-theoretic, proof-theoretic,

and fixpoint approaches. Datalog inherits these proper-

ties from logic programming and its standard language

Prolog. The main restriction that distinguishes Datalog

from Prolog is that function symbols are not allowed.

Several techniques have been proposed for the effi-

cient evaluation of Datalog programs. They are usually

separated into two classes depending on whether they

focus on top-down and bottom-up evaluation. The ones

that have had the most impact are centered around

magic sets rewriting, which involves an initial prepro-

cessing of the Datalog program before following a

bottom-up evaluation strategy. The addition of nega-

tion to Datalog rules yields highly expressive languages,

but the semantics above do not extend naturally to

them. For Datalog¬, i.e., Datalog with negated atoms

in the body of the rules, stratified semantics, which

impose syntactic restrictions on the use of negation

and recursion, is natural and relatively easy to under-

stand. The present account is based primarily on the

material in [1]. Each of [1,2,9] has an excellent intro-

duction to Datalog (Capitalization of the name follows

the convention used in [2,8] (rather than [1,9]).). An

informal survey can be found in [8]. The individual

research contributions to Datalog are cited in the

union of the bibliographies of these textbooks.

Historical Background
Datalog is a restriction of the paradigm of logic

programming (LP) and its standard programming

language, Prolog, to the field of databases. What

makes logic programming attractive is its declarative

nature, as opposed to the more operational flavor of

other programming paradigms, be they imperative,

object-oriented, or functional. In the late 1970’s and

into the 1980’s, this led to much LP-related activity in

Artificial Intelligence and even supercomputing (The

202D Databases for Biomedical Images

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

Fifth Generation Project) which has later subsided

dramatically. In databases this remains a useful para-

digm, since the relational calculus is also a declarative

language and LP provides a mechanism for extending

its expressiveness with so-called recursive queries.

The name ‘‘Datalog’’ was coined by DavidMaier [1].

Research on recursive queries in databases picked up

in the 1980’s and eventually led to several prototype

deductive database systems [8,9] whose data is

organized into relations, but whose queries are based

on Datalog.

Datalog has not quite made it as a practical query

language due to the preeminence of SQL. When the

need for recursive queries was recognized by RDBMS

vendors, they preferred to extend SQL with some lim-

ited forms of recursion [8]. Nonetheless, more recent

research on data integration has found Datalog to be a

useful conceptual specification tool.

Foundations

Datalog Syntax

The syntax of Datalog follows that of the logic pro-

gramming language Prolog with the proviso that

only constants and relational symbols are allowed (no

function symbols).

Definition 1

Fix a relational schema. (The use of the symbol :- has its

roots in Prolog, but some texts, e.g., [1], use the sym-

bol ←instead, to convey the fact that each rule is

closely related to a logical implication, as explained in

the discussion of model-theoretic semantics.) A Data-

log rule has the form:

TðxÞ :� qðx; yÞ

where x = x1,. . .,xn is a tuple of distinguished variables,

y = y1,. . .,ym is a tuple of ‘‘existentially quantified’’

variables, T is a relation and q is a conjuction of

relational atoms. The left-hand side is called the head

of the rule and corresponds to the output/result of the

query and the right-hand side is called the body of

the rule. Note that all distinguished variables in the

head need to appear in at least one atom in the body, i.e.,

the rules are range restricted. A Datalog rule is identical

to a conjunctive query in rule-based syntax, except that

the latter does not always have a name for the head

relation symbol. A Datalog program is a finite set of

Datalog rules over the same schema. Relation symbols

(a.k.a. predicates) that appear only in the body of the

program’s rules are called edb (extensional database)

predicates, while those that appear in the head of some

rule are called idb (intensional database) predicates.

A Datalog program defines a Datalog query when

one of the idb predicates is specified as the output.

For example, if G is a relation representing edges of

a graph, the following Datalog program PTC computes

its transitive closure in the output predicate T:

Tðx; yÞ :- Gðx; yÞ
Tðx; yÞ :- Gðx; zÞ;Tðz; yÞ

Semantics

Three different but equivalent definitions can be given

for the semantics of Datalog programs, namely the

model-theoretic, proof-theoretic and fixpoint semantics.

A countably infinite set D of constants is fixed as

the sole universe for structures/instances. Since there are

no function symbols, any relational instance over D is

an Herbrand interpretation in the sense used in logic

programming.

In the model-theoretic semantics of Datalog,

each rule is associated with a first-order sentence

as follows. First recall that as a conjunctive query,

T(x) :- q (x, y) corresponds to the first-order query

T
 {x j ∃y q(x, y)}. To this, one associates the sen-

tence 8x (∃y q(x, y)!T(x)) which is clearly satisfied

in a structure in which T is interpreted as the answer to

the query. Note that this sentence is a definite Horn

clause. More generally, given a Datalog program P,

let SP be the set of Horn clauses associated to the

rules of P.

Let I be an input database instance, in this case

an instance of the schema consisting only of edb pre-

dicates. Amodel of P is an instance of the entire schema

(both edb and idb relation symbols) which coincides

with I on the edb predicates and which satisfies SP.

However, there can be infinitely many instances that

satisfy a given program and instance of the edb relations.

Thus, logic programming, and consequentlyDatalog use

a minimal model, i.e., one such that no subset of it is

also a model. This is usually understood as a manifes-

tation of the closed world assumption: don’t assume

more than you need! It can be shown that for Datalog,

there is exactly one minimal model, which is also the

minimum model.

Datalog D 203

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

In the proof-theoretic approach of defining the

semantics of Datalog, note first that a tuple of constants

in a relation can be seen as the head of a rule with empty

body. Such rules are called facts. As previously seen,

Datalog rules can be associated with first-order sen-

tences. Facts correspond to just variable-free relational

atoms. Now, the main idea of the proof-theoretic se-

mantics is that the answer of a Datalog program con-

sists of the set of facts that can be proven from the edb

facts using the rules of the program as proof rules. More

precisely, a proof tree of a fact A is a labeled tree where

(i) each vertex of the tree is labeled by a fact; (ii) each

leaf is labeled by a fact in the base data; (iii) the root is

labeled by A; and (iv) for each internal vertex, there

exists an instantiation A1 :- A2,. . .,An of a rule r such

that the vertex is labeled A1 and its children are respec-

tively labeled A2,. . .,An and the edges are labeled r.

Example 1. Consider the program:

ðr1Þ Sðx1; x3Þ :- T ðx1; x2Þ;Rðx2; a; x3Þ
ðr2Þ Tðx1; x4Þ :- R ðx1; a; x2Þ;Rðx2; b; x3Þ;Tðx3; x4Þ
ðr3Þ Tðx1; x4Þ :- R ðx1; a; x2Þ;Rðx2; a; x3Þ

and the instance

fRð1; a; 2Þ;Rð2; b; 3Þ;Rð3; a; 4Þ;Rð4; a; 5Þ;Rð5; a; 6Þg

A proof tree of S(1, 6) is shown in Fig. 1.

Because rule instantiation and application corre-

spond to standard first-order inference rules (substitu-

tion and modus ponens), the proof trees are actually

rearrangements of first-order proofs. This connects

Datalog, through logic programming, to automated

theorem-proving. One technique for constructing

proofs such as the one above in a top-down fashion

(i.e., starting from the fact to be proven) is SLD resolu-

tion [1]. Alternatively, one can start from base data and

apply rules on them (and subsequently on facts derived

this way) to create proof trees for new facts.

The third approach is an operational semantics for

Datalog programs stemming from fixpoint theory. The

main idea is to use the rules of the Datalog program to

define the immediate consequence operator, which

maps idb instances to idb instances. Interestingly, the

immediate consequence operator can be expressed in

relational algebra, in fact, in the SPCU (no difference)

fragment of the relational algebra, enriched with edb

relation names. For example, the immediate conse-

quence operator F for the transitive closure above is:

FðTÞ ¼ G ffl T [G

One way to think about this operator is that it applies

rules on existing facts to get new facts according to the

head of those rules. In general, for a recursive Datalog

program, the same operator can be repeatedly applied

on facts produced by previous applications of it. It is

easy to see that the immediate consequence operator is

monotone. Another crucial observation is that it will

not introduce any constants beyond those in the edb

instance or in the heads of the rules. This means that

any idb instance constructed by iteration of the imme-

diate consequence operator is over the active domain of

the program and the edb instance. This active domain

is finite, so there are only finitely many possible idb

instances. They are easily seen to form a finite poset

ordered by inclusion. At this point one of several

technical variants of fixpoint theory can be put to

work. The immediate consequence operator has a

least fixpoint which is an idb instance and which is

the semantics of the program. It can be shown that

this idb instance is the same as the one in the minimal

model semantics and the one in the proof tree seman-

tics. It can also be shown that this least fixpoint can be

reached after finitely many iterations of the immediate

consequence operator which gives a Datalog evalua-

tion procedure called bottom-up.

Evaluation and Optimization of Datalog

The simplest bottom-up evaluation strategy, also called

naive evaluation, is based directly on fixpoint Datalog

semantics. The main idea is to repeatedly apply the

immediate consequence operator on results of allDatalog. Figure 1. Proof tree.

204D Datalog

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

previous steps (starting from the base data in the first

step) until some step doesn’t yield any new data. It is

clear that naive evaluation involves a lot of redundant

computation, since every step recomputes all facts

already computed in previous steps. Seminaive evalua-

tion tries to overcome this deficiency, by producing

at every step only facts that can be derived using at

least one of the new facts produced in the last step (as

opposed to all previous steps).

In some cases, bottom-up evaluation can produce

a lot of ‘‘intermediate’’ tuples that are not used in

derivations of any facts in the output relation of the

query. The top-down approach avoids this problem by

using heuristic techniques to focus attention on rele-

vant facts, i.e., ones that appear in some proof tree of

a query answer, especially for Datalog programs with

constants appearing in some atoms. Themost common

approach in this direction is called the query-subquery

(QSQ) framework. QSQ generalizes the SLD resolution

technique, on which the proof-theoretic semantics are

based, by applying it in sets, as opposed to individual

tuples, as well as using constants to select only relevant

tuples as early as possible. In particular, if an atom of an

idb relation appears in the body of a rule with a constant

for some attribute, this constant can be pushed to rules

producing this idb. Similarly, ‘‘sideways information

passing’’ is used to pass constant binding information

between atoms in the body of the same rule. Such

constant bindings are expressed using adornments or

binding patterns on atoms in the rules, to indicate

which attributes are bound to some constant and

which are free.

Magic set techniques simulate the pushing of

constants and selections that happens in top-down

evaluation to optimize bottom-up evaluation. In par-

ticular, they rewrite the original Datalog program into

a new programwhose seminaive bottom-up evaluation

produces the same answers as the original one, as

well as producing the same intermediate tuples as the

top-down approaches such as QSQ.

Datalog with Negation

The language Datalog¬ extends Datalog by allowing

negated atoms in the body of the rules. Unfortunately,

the semantics described above do not extend naturally to

Datalog¬ programs. For example, if the fixpoint

semantics are followed, there are programs that do not

have a fixpoint or havemultiple least fixpoints, or even if

there is a least fixpoint the constructive method

described above does not converge or its limit is not

the least fixpoint. For model-theoretic semantics,

uniqueness of the minimal model is not guaranteed.

For these reasons, the common approach is to only

consider a syntactically restricted use of negation in

Datalog¬ programs, called stratification, for which nat-

ural extensions of the usual Datalog semantics do not

have these problems. A stratification of Datalog¬ is a

partition of its rules into subprograms that can be

ordered in strata, so that for each relation R in the

program, all rules defining R (i.e., with R in the head)

are in the same stratum and for all atoms in the bodies

of those rules, the definitions of those relations are in a

smaller or the same stratum, if the atom is positive, or

strictly in a smaller stratum, for negative atoms.

For stratified Datalog¬ programs, one can evaluate

within each stratum considering atoms of relations de-

fined in smaller strata as edbs. Then, a negated atom

is satisfied in the body of the rule if the corresponding

tuple does not appear in that relation (as it appears in

the base data or computed for the subprograms of

smaller strata).

Key Applications

Current and Potential Users and the Motivation of

Studying This Area

Although Datalog was originally proposed as the foun-

dation of deductive databases, which never succeeded

in becoming part of commercial systems, it has recently

seen a revival in the areas of data integration and

exchange. This is due to the similarity of Datalog rules

with popular schema mapping formalisms (GLAV or

tuple generating dependencies [5]) used to describe

relationships between heterogeneous schemas. In par-

ticular, [3] proposed the inverse rules algorithm for

reformulating queries over a target schema to queries

over source schemas in data integration. Other work

has used Datalog rules to compute data exchange [7]

or update exchange [4] solutions. In these cases, the

authors employed an extension of Datalog with Skolem

functions in the head of rules, to deal with existentially

quantified variables in the target of mappings. Another

extension of Datalog, Network Datalog (NDlog) [6]

allows the declarative specification of a large variety of

network protocols with a handful of lines of program

code, resulting to orders of magnitude of reduction in

programsize.

Datalog D 205

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:33

Cross-references
▶Conjunctive Query

▶Relational Calculus

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, MA, USA, 1995.

2. Bidoit N. Bases de Données Déductives: Présentation de

Datalog. Armand Colin, 1992.

3. Duschka O., Genesereth M., and Levy A. Recursive query

plans for data integration. J. Logic Program., special issue on

Logic Based Heterogeneous Information Systems, 43(1), 2000.

4. Green T.J., Karvounarakis G., Ives Z.G., and Tannen V.

Update exchange with mappings and provenance. In Proc.

33rd Int. Conf. on Very Large Data Bases, 2007.

5. Lenzerini M. Tutorial – data integration: a theoretical per-

spective. In PODS, 2002.

6. Loo B.T., Condie T., Garofalakis M.N., Gay D.E., Hellerstein

J.M., Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I.

Declarative networking: language, execution and optimization.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 97–108.

7. Popa L., Velegrakis Y., Miller R.J., Hernández M.A., and Fagin R.

Translating web data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002.

8. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edn. McGraw-Hill, New York, 2003.

9. Ullman J.D. Principles of Database and Knowledge-Base

Systems, Volume II. Addison-Wesley, MA, USA, 1989.

Datalog Query Processing and
Optimization

▶Query Processing in Deductive Databases

Datastream Distance

▶ Stream Similarity Mining

Datawarehouses Confidentiality

▶Data Warehouse Security

DBC

▶Database Clusters

DBMS

▶Database Management System

DBMS Component

JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
DBMS Module

Definition
A component is a self-contained piece of software in a

database system. A component can be defined at dif-

ferent levels of coarseness. At the coarsest level, the

components of a relational database management sys-

tem consist of the client communications manager, the

process manager, a relational query processor, a trans-

actional storage manager, and utilities [1].

Key Points
The components of a relational database management

system can be further refined into subcomponents [1].

The client communications manager consists of local

client protocols and remote client protocols. The pro-

cess manager consists of admission control and dis-

patch and scheduling. The relational query processor

consists of query parsing and authorization, query

rewrite, query optimization, plan execution, and

DDL and utility processing. The transactional storage

manager consists of access methods, a buffer manager,

a lock manager, and a log manager. Sub-components

that comprise the utilities component include the cat-

alog manager, the memory manager, and replication

and loading services.

This high-level division varies among commercial

and open-source database products, both by level of

granularity and by functionality of individual (sub-)

components. Database management systems opti-

mized for certain types of workloads (for example,

decision support workloads) or database management

systems with specialized architectures (for example,

main-memory database management systems) may

lack some of these components [2].

206D Datalog Query Processing and Optimization

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

Cross-references
▶Client Communications Manager

▶ Process Manager

▶Relational Query Processor

▶Transactional Storage Manager.

Recommended Reading
1. Joseph M. Hellerstein, Michael Stonebraker and James

Hamilton. Architecture of a Database System. In Foundations

and Trends in Databases: Vol. 1: No. 2, pp. 141–259.

2. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edition. McGraw-Hill Science/Engineering/Math, 2002.

DBMS Interface

JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
Communication boundary of a DBMS

Definition
A DBMS interface is the abstraction of a piece of

functionality of a DBMS. It usually refers to the com-

munication boundary between the DBMS and clients

or to the abstraction provided by a component within

a DBMS. A DBMS interface hides the implementation

of the functionality of the component it encapsulates.

Key Points
DBMS interfaces can be external or internal [3].

An external DBMS interface is the communication

boundary between the DBMS and clients. The external

DBMS interface enables clients to access internal

DBMS functionality without exposing the mechanisms

of how this functionality is implemented. Well-known

external DBMS interfaces are SQL, XPath, and XQuery.

There are many different types of external DBMS

interfaces, for example, stand-alone languages (such

as SQL), extensions to existing languages with features

from SQL (such as JDBC), and integration into middle-

tier programming languages (such as PHP). The DBMS

interface can also be graphical; for example, the DBMS

interface to the data data definition language is often a

graphical editor enabling database designers to visualize

and manipulate logical and physical database schemas

in the Entity-Relationship Model or in UML.

Internal DBMS interfaces exist between different

DBMS components, for example, the query processor

and the storage manager [2]. Although standards for

these interfaces do not exist, their design is as impor-

tant as the design of the external interfaces. For exam-

ple, by exposing a queue interface for internal DBMS

components and arranging the DBMS components in

stages, the DBMS can be designed such that queries

interact with a single component at a given time,

permitting enhanced processor utilization during

query processing [1].

Cross-references
▶DBMS Component

▶Query Language

▶ SQL

▶XPath

▶XQuery

Recommended Reading
1. Harizopoulos S. and Ailamaki A. StagedDB: Designing Database

Servers for Modern Hardware. IEEE Data Engineering Bulletin,

28(2):11–16, June 2005.

2. Hellerstein J.M., Stonebraker M. and Hamilton J. Architecture

of a Database System. In Foundations and Trends in Data-

bases: Vol. 1: No. 2, pp. 141–259. http://dx.doi.org/10.1561/

1900000002.

3. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edition. McGraw-Hill Science/Engineering/Math, 2002.

DBTG Data Model

▶Network Data Model

DCE

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Distributed computing environment

Definition
The Distributed Computing Environment (DCE) [1–3]

is a technology standardized by the Open Group for

client/server computing. A primary goal of DCE is inter-

operability using remote procedure call semantics.

DCE D 207

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

Key Points
The Distributed Computing Environment (DCE)

technology was developed through the efforts of the

Open Software Foundation (OSF) in the late 1980s and

early 1990s as an interoperable solution for client-

server distributed computing. A primary objective

was to overcome the heterogeneity in operating sys-

tems and network technologies. The DCE technology

uses procedural programming semantics provided by

languages, such as C. OSF is now part of the Open

Group, which releases DCE code under the LGPL

license via its DCE portal [2].

A primary feature provided by DCE is the remote

procedure call [1]. DCE is, however, not only about

remote procedure calls. In addition, DCE provides

a number of fundamental building blocks to make appli-

cations secure, as well as provides a number of services,

such as a cell directory service, a distributed file system

service, a time service and a threading service.

DCE supports the notion of a cell, which is a

collection of nodes that are managed by a single au-

thority. Intra-cell communication is highly optimized

and secure. Inter-cell communication requires more

advanced configurations. The distributed file system

service provides a high performance network file sys-

tem. A POSIX-like API available locally hides the

distributed aspects of the file system.

The DCE concepts and technology laid the founda-

tion for the next generation of object-oriented client-

server paradigms, such as CORBA in the mid 1990s.

DCE RPC is used as the building block technology for

Microsoft COM/DCOM technologies.

Cross-references
▶Client-Server Architecture

▶CORBA

▶DCOM

▶ J2EE Middleware

▶ Java RMI

▶ .NET Remoting

▶Request Brokers

▶ SOAP

Recommended Reading
1. The Open Group, ‘‘DCE 1.1: Remote Procedure Call,’’ CAE

Specification, Document no. C706, 1997, Published online at

http://www.opengroup.org/onlinepubs/9629399.

2. The Open Group, ‘‘DCE Portal,’’ http://www.opengroup.

org/dce/.

3. Software Engineering Institute, ‘‘Distributed Computing Envi-

ronment,’’ http://www.sei.cmu.edu/str/descriptions/dce.html.

DCOM

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Distributed component object model

Definition
Distributed Component Object Model (DCOM) [1,2]

is a Microsoft technology for component-based

distributed computing.

Key Points
Distributed Component Object Model (DCOM) is an

extension of Microsoft’s Component Object Model

(COM) to enable distribution across address spaces

and networks. By leveraging COM, which is the funda-

mental technology used to build many Microsoft

applications, DCOM applications can derive all the

power of COM applications. Distribution capabilities

in DCOM are realized by leveraging DCE Remote

Procedure Call mechanisms and extending them to

support the notion of remote objects.

DCOMprovidesmost of the capabilities of a Request

Broker. For example, it supports location transpar-

ency, connection management, resource management,

concurrency control, versioning, language-neutrality

and QoS management. Since DCOM is a component

model, additional capabilities for composing and

deploying component-based applications also exist.

Despite its numerous benefits, DCOM has its

own limitations. For example, DCOMuses its own bina-

ry protocol for communicating between applications,

which restricts interoperability to communication be-

tween the same object models. Additionally, although

some efforts exist at porting DCOM to other platforms,

such as Linux, DCOM remains predominantly a Micro-

soft platform-specific technology, which limits its appli-

cability to a wider range of applications.

These limitations have necessitated the move to-

wards more advanced technologies, such as .NET

Remoting, which provide a wider range of interopera-

ble solutions.

208D DCOM

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

Cross-references
▶Client-Server Architecture

▶CORBA

▶DCE

▶DCOM

▶ J2EE Middleware

▶ Java RMI

▶ .NET Remoting

▶Request Brokers

▶ SOAP

Recommended Reading
1. Brown N. and Kindel C. Distributed Component Object Model

Protocol – DCOM/1.0, Internet Draft, NetworkWorking Group,

November 1996.

2. Horstmann M. and Kirtland M. DCOM Architecture, DCOM

Technical Articles, Microsoft Developer Network Library, July

23, 1997.

Deadlocks in Distributed Database
Systems

▶Distributed Deadlock Management

Decay Models

EDITH COHEN

AT&T Labs-Research, Florham Park, NJ, USA

Definition
Decay models are applicable on data sets where data

items are associated with points in a metric space

(locations) and there is a notion of ‘‘significance’’ of a

data item to a location, which decays (decreases) with

the distance between the item and the location. This

decrease is modeled by a decay function.

Each location has a ‘‘view’’ of the data set

through a different weight distribution over the

items: the weight associated with each item is its

decayed weight which is a product of its original weight

and a decay function applied to its distance from the

observing location.

While global aggregates or statistics are computed

over the set of items and their original weights, decay-

ing aggregates or decaying statistics depend on the loca-

tion with respect to which the aggregation is

performed and on the decay function. Figure 1 illus-

trates a small network and the decaying sum with

respect to all nodes.

Historical Background

Kernel Estimation

The earliest use of decay models that the author is

aware of is Kernel estimation. Kernel estimation is a

non-parametric density function estimation method

[19]. The metric space is the Euclidean space and the

method is applied to a set of points with weights. The

decay function captures a spherically symmetric prob-

ability density (typically a Gaussian which corresponds

to Exponential decay); the decaying sum at a point is

the density estimate.

Recently, Hua et al. [16] proposed the use of

decayed sum to assign typicality score to items, based

on Kernel estimation. They also propose methods to

efficiently compute approximate decaying sum in a

high dimensional Euclidean space.

Decay Models. Figure 1. Decaying sum over a network

with respect to decay function gðdÞ ¼ 1
1þd

. Items of

distance 1 have decayed weight that is 1∕ 2 of their

original weight. Similarly, items of distance 2 have

decayed weight that is 1 ∕ 3 of their original weight.

The global (non-decaying) sum is 14. The decaying sums

(listed for all nodes) are location-dependent.

Decay Models D 209

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

Time-Decay

Time-decay, where significance of a data point

decreases with elapsed time (or with number of ob-

served items), is a natural model. Decaying aggregation

on data streams predates the formal analysis of stream

algorithms but was mostly limited to exponential

decay. Several applications are listed next.

The random early detection (RED) protocol: RED is

a popular protocol deployed in Internet routers for

congestion avoidance and control. RED uses the

weighted average of previous queue lengths to esti-

mate the impending congestion at the router; the

estimate is then used to determine what fraction of

packets to discard [13,17]. Holding-time policies for

ATM virtual circuits: Circuit-switched data connec-

tions have an associated cost of being kept open; data

transfers are bursty and intermittent and, when a data

burst arrives, it incurs smaller delay when the circuit is

open. Thus, when there are multiple connections, it is

important to assess the anticipated idle times (time to

the next data burst) of each circuit and to close first

those circuits that have longer anticipated idle times.

This can be done using a time-decaying weighted av-

erage of previous idle times [18]. A similar model

applies to maintaining open TCP connections at a

busy Web server [7]. Internet gateway selection pro-

ducts: Multiple internet paths are available to each

destination host and the product needs to assess the

reliability of each path in order to facilitate a better

selection of a path. A time-decaying average of previ-

ous measurements can be used as a measure of path

quality [2].

Datar et al. [12] introduced the sliding-window

model for data streams. Sliding-window are a threshold

decay function defined over the sequence number of

data items. They introduced a synopsis data structure

called Exponential Histograms that supports approxi-

mate sum queries on sliding windows with respect to

the ‘‘current’’ time and developed algorithms for ap-

proximately maintaining sum and average aggregates

and variance [1]. Gibbons and Tirthapura [14] devel-

oped an alternative data structure that can handle

multiple streams. The sliding window model was ex-

tensively studied.

Cohen and Strauss [8,9] considered decaying ag-

gregation on data streams under general decay func-

tions. They showed that general decay can be reduced

to sliding windows decay. However, sliding window

decay is in a sense the ‘‘hardest’’ decay function and

other functions, such as polynomial and exponential

decay can be computed more efficiently.

Network

Decaying aggregation over a network is a generaliza-

tion of decaying aggregation over data streams (data

streams correspond to path networks). It was first

considered by Cohen in [3] as Threshold decay (aggre-

gation over neighborhoods). Cohen proposed efficient

algorithms for decaying sum. General decay functions,

other aggregates, and efficient algorithms and analysis

to maintain these sketches in distributed settings were

considered by Cohen and Kaplan [5,6]. On networks,

just like on data streams, threshold decay is the ‘‘hard-

est’’ decay function, as all-distances sketches that sup-

port sums over neighborhoods, also support decaying

sums under general decay functions. It is not known,

however, whether other decay functions such as expo-

nential or polynomial decay can be computed or

approximated more efficiently by a tailored approach.

Further work on decayed aggregation over a networks

includes [10].

Euclidean Plane

Cohen and Kaplan [5] also considered decaying sums

in the Euclidean plane and proposed an efficient con-

struction of a data structure (based on incremental

construction of Voronoi diagrams [15]) that can sup-

port point queries. That is, for a query location and a

query decay function, the data structure returns a

respective approximate decaying sum.

Foundations

Metric Space

Decaying aggregates were considered on different metric

spaces. The simplest one is one-dimensional Euclidean

space such as the time dimension. Items have time

stamps or sequence numbers and the relevance of an

item at a certain time decays with elapsed time or with

the number of items with a later time stamp. Decayed

aggregates are also used on a higher dimensional Euclid-

ean space and on a networks (directed or undirected

graphs) where nonnegative lengths are associated with

edges and distances correspond to shortest paths lengths.

Decay Functions

The decayed weight of an item at a location depends

linearly on its original weight and decreases with

210D Decay Models

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

distance. It is defined as a product of its original weight

and the value of the decay function on the distance of

the item from the location. A decay function g(x) is a

non-increasing function defined over the nonnegative

reals. It is often convenient to define g(0) = 1. Some

natural decay functions are threshold functions, where

items within a certain distance from the location have

their original weights and other items have 0 weight,

Exponential decay, where the weight decreases expo-

nentially with the distance, and Polynomial decay,

where the weight decreases polynomially with the

distance.

Threshold decay assigns equal importance to all

data values within a distance of r and disregards all

other data values. Exponential decay is defined with

respect to a parameter l > 0, g(x) = exp(�lx). Expo-
nential decay is convenient to compute when used for

time decay as it can be maintained easily using a single

register (It is not known, however, if it is simpler to

compute than other decay functions on other metric

spaces). Exponential-decay over time captures some

natural phenomena such as radioactive decay.

Polynomial decay has the form g(x) = 1 ∕ (1 + axa)

for parameters a > 0 and a 1. Many natural effects

(for example, electro-magnetic radiation) have poly-

nomial decrease with distance. Polynomial decay is

often a natural choice when a smooth decay is desired

and when Exponential decay is too drastic [9]. In many

natural graphs (like d-dimensional grids), the neigh-

borhood size increases polynomially with the distance

and exponential decay suppresses longer horizons.

Aggregate Functions

Any aggregate function over a set of weighted items

can be applied to the decayed weights of the items to

obtain a corresponding decaying aggregate.

The decaying sum is the sum of the decaying

weights of the items. In the special case where the

weights are binary, this aggregate is referred to as the

decaying count. A related aggregate is the decaying

average, defined as the ratio of the decaying sum and

the decaying count of the items. Important aggregates

that can be reduced to (approximate) decaying sums

are (approximate) decaying variance and moments [4].

These aggregates can also be defined with respect to a

subpopulation of items that is specified by a predicate.

Other aggregates are decaying weighted random

sample of a certain size with or without replacement

and derived aggregates such as quantiles (using a

folklore technique, an approximate quantile with con-

fidence 1 � d can be obtained by taking the p quantile

of O(2�2 lnd�1) independent random samples) and

heavy hitters (all distinct identifiers with total decaying

weight above some threshold).

Computational Challenges

A decaying aggregate of a location with respect to a

decay function can be computed by processing all

items, calculating the distances and computing the

decayed weights, and finally computing the desired

aggregate on this set. This approach provides exact

answers (up to numerical computation errors) but is

highly inefficient and often infeasible.

This naive approach requires a linear pass over all

items for each location and decay function pair of

interest in aggregates with respect to multiple locations

or multiple decay functions.

On massive data sets, this approach is infeasible: on

massive data stream, one can not store the full history

of observed items and in distributed data sets, one can

not replicate the full information at every node.

The common approach for massive data sets is to

use summaries that enable more efficient computation

of approximate aggregate values. Algorithms maintain

a concise data structures that ‘‘summarizes’’ the full

information. The size of these data structure deter-

mines the amount of book keeping and/or communi-

cation required. A desirable feature of these summaries

is that they support aggregations over selected subpo-

pulations of the items.

Decaying aggregation, where summaries must be

able to support multiple locations and decay functions,

imposes greater challenges.

All Distances Sketches

Useful data structures for decayed aggregation are all-

distances sketches. The all-distances sketch of a loca-

tion is a concise encoding of sketches of the weighted

sets of items that are within some distance from the

location, for all possible distances. If the sketches

support approximate sum, the all-distances sketch

supports decaying sum with respect to any decay

function.

In many applications, it is desired to efficiently

obtain these sketches for multiple locations. Fortunate-

ly, all-distances sketches can be computed and main-

tained efficiently in many settings.

Decay Models D 211

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

Exponential histograms [1] and the wave summa-

ries [14] are applicable on data streams. For the more

general network setting, all-distances k-mins sketches

[3], which can be computed efficiently in a dis-

tributed setting [5]. All-distances bottom-k sketches,

which provide tighter estimates of the decaying

sum than all-distances k-mins sketches were proposed

in [6].

The data structure used in [5] for the Euclidean

plane essentially encodes all-distances k-mins sketch

for any query point in the plane.

Key Applications
Applications of decaying aggregation can be classified

into two main categories.

The first category is prediction or estimation of a

value at a location. In this context, the data items are

viewed as samples or measurements from some under-

lying smooth distribution and the decayed aggregate is

a way to estimate or predict the value or some statistics

at a query location. For example, the items are mea-

surements of some environmental parameter (humid-

ity, temperature, air pollution) collected by a sensor

network and the decaying aggregate is an estimate of

the value at other location. Application in this category

are [7,13,16–18].

The second category is some measure of influence:

the items constitute the complete data set and the

decayed aggregate is a measure of influence or close-

ness of a property to a location. For example, items are

undirected sources of electro magnetic radiation and the

decaying aggregate is a measure of the radiation level at

a query location. Other applications in this category

are content-based routing in p2p networks [11].

Cross-references
▶Approximate Query Processing

▶Data Sketch/Synopsis

▶Data Streams

Recommended Reading
1. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002.

2. Bremler-Barr A., Cohen E., Kaplan H., and Mansour Y. Predict-

ing and bypassing internet end-to-end service degradations.

In Proc. 2nd ACM SIGCOMMWorkshop on Internet Measure-

ment, 2002.

3. Cohen E. Size-estimation framework with applications to tran-

sitive closure and reachability. J. Comput. Syst. Sci., 55:441–453,

1997.

4. Cohen E. and Kaplan H. Efficient estimation algorithms for

neighborhood variance and other moments. In Proc. 15th An-

nual ACM-SIAM Symp. on Discrete Algorithms, 2004.

5. Cohen E. and Kaplan H. Spatially-decaying aggregation over a

network: model and algorithms. J. Comput. Syst. Sci.,

73:265–288, 2007.

6. Cohen E. and Kaplan H. Summarizing data using bottom-k

sketches. In Proc. ACM PODC’07 Conf., 2007.

7. Cohen E., Kaplan H., and Oldham J.D. Managing TCP connec-

tions under persistent HTTP. Comput. Netw., 31:1709–1723,

1999.

8. Cohen E. and Strauss M. Maintaining time-decaying stream

aggregates. In Proc. 22nd ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2003.

9. Cohen E. and Strauss M. Maintaining time-decaying stream

aggregates. J. Algorithms, 59:19–36, 2006.

10. Cormode G., Tirthapura S., and Xu B. Time-decaying sketches

for sensor data aggregation. In Proc. ACM PODC’07 Conf.,

2007.

11. Crespo A. and Garcia-Molina H. Routing indices for peer-to-

peer systems. In Proc. 18th Int. Conf. on Data Engineering,

2002.

12. Datar M., Gionis A., Indyk P., and Motwani R. Maintaining

stream statistics over sliding windows. SIAM J. Comput., 31

(6):1794–1813, 2002.

13. Floyd S. and Jacobson V. Random early detection gateways for

congestion avoidance. IEEE/ACM Trans. Netw., 1(4), 1993.

14. Gibbons P.B. and Tirthapura S. Distributed streams algorithms

for sliding windows. In Proc. 14th Annual ACM Symp. on

Parallel Algorithms and Architectures, 2002, pp. 63–72.

15. Guibas L.J., Knuth D.E., and Sharir M. Randomized incremental

construction of Delaunay and Voronoi diagrams. Algorithmica,

7:381–413, 1992.

16. Hua M., Pei J., Fu A.W.C., Lin X., and Leung H.-F. Efficiently

answering top-k typicality queries on large databases. In Proc.

33rd Int. Conf. on Very Large Data Bases, 2007.

17. Jacobson V. Congestion avoidance and control. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1988.

18. Keshav S., Lund C., Phillips S., Reingold N., and Saran H.

An empirical evaluation of virtual circuit holding time policies

in IP-over-ATM networks. J. Select. Areas Commun., 13

(8):1371–1382, 1995.

19. Scott D.W. Multivariate Density Estimation: Theory, Practice

and Visualization. Wiley, New York, 1992.

Decentralized Data Integration
System

▶ Peer Data Management System

212D Decentralized Data Integration System

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:34

Decision Rule Mining in Rough Set
Theory

TSAU YOUNG (T.Y.) LIN

San Jose State University, San Jose, CA, USA

Synonyms
Decision rules; Classification rules; Rough Set theory

(RST); Extensional relational databases (ERDB)

Definition
Rough set theory (RST) has two formats, abstract and

table formats. In this entry, abstract format is hardly

touched. The table format, by definition, is a theory of

extensional relational databases (ERDB). However,

their fundamental goals are very different. RST is on

data analysis and mining, while databases are on data

processing.

In RST, a relation, which is also known as informa-

tion table, is called a decision table (DT), if the attri-

butes are divided into two disjoint families, called

conditional and decision attributes. A tuple in such a

DT, is interpreted as a decision rule, namely, the condi-

tional attributes functionally determine decision attri-

butes. A sub-relation is called a Value Reduct, if it

consists of a minimal subset of minimal length deci-

sion rules that has the same decision power as the

original decision table. RST has the following distin-

guished theorem.

Every decision table can be reduced to a value

reduct [5].

This theorem has been regarded as a data mining

theorem. However, in its true natural, it is a data

reduction theorem. There are some trivial points in

this theorem: If there is a conditional attribute that

is a candidate key, then the column is an attribute

reduct, and each attribute value is a value reduct.

There are more than one value reducts.

One fundamental weak point of this theorem is the

assumption that every tuple is a rule. So a new theory,

based on the assumption that only the high frequency

tuples can be regarded as rules, has started, but not

very far [3,4].

Historical Background
Rough set theory (RST) has two formats, abstract and

table formats. In the abstract format, a rough set is

represented by the upper and lower approximations of

equivalence classes. In terms of pure math, they are the

closure and interior of special topological spaces, called

clopen spaces. However, this entry does not cover this

aspect.

The table format of RST is a formal theory derived

from the logical studies of tables (relations). So theo-

retically speaking, RST is a sub-theory of ERDB, how-

ever, historically, they were developed under different

philosophies. RDB assumes the semantics of data

is known and focuses on organizing data through its

semantics. On the other hand, RST assumes data

is completely defined by the given table, and focuses

on data analysis, rule discovery and etc.

Foundations
Though RST has been regarded as amethodology of data

mining, the core results are actually data reduction or

rule reduction. Namely, RST provides a methodology to

reduce a decision table to a minimal but an equivalent

table. They are equivalent in the sense that both tables

provide the same decision power. This minimal decision

table is called value reduct. This reduction is not unique.

In other words, given a decision table, there is a set of

value reducts, each is equivalent to the original table.

In this section some fundamental concepts will be

introduced, In addition, the procedure will be illu-

strated by an example. There are two major steps;

one is the attribute reducts that are generalization of

candidate keys. The second step is tuple reduction.

Attribute(Column) Reducts and Candidate Keys

In a relation, an attribute, or a set of attributes K is

called a candidate key if all attributes of the relation

is functionally depended on K (or K functionally deter-

mines every attribute), and K is a minimal set [1]. In

other words, candidate key is a set of ‘‘independent

variables’’ that all other attributes can be expressed as

functions of the candidate keys. In decision table, the

corresponding concept is equivalent to find a set ‘‘in-

dependent conditions’’ for ‘‘if-then’’ rules.

Let S = ðU ;A ¼ C
S
D;Dom; rÞ be a decision

table, where

C ¼ A1;A2; :::;Ai; :::;An;

D ¼ B1;B2; :::;Bi; :::; Bm:

Then S is said to be a consistent decision table, if C
functionally determine D.

Decision Rule Mining in Rough Set Theory D 213

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:35

Definition 1 B is called a attribute reduct of S, if B
is a minimal subset of C such that B functionally

determine C.
It is clear that such a B is not necessarily unique. If

D is chosen to be the whole table A, then the reduct

is the extensional candidate key. The algorithm of

finding the attribute reduct is quite straightforward;

it is nearly the same as that of finding a candidate

key, which can be found in almost any database text.

Value Reducts – Simplest Decision Rules

In the step of attribute reduct, the reduction algorithm

find the sets of minimal columns. In this section, a

similar procedure is considered, but one tuple at a

time. The minimal set is called value reduct.

Illustration

Without losing the generality, the idea can be

explained by the following table:

Select a Decision Table From the table given above,

the following decision table will be considered: Let U

be the universe, RESULT be the decision attribute,

and C = TEST, NEW, CASE be the set of conditional

attributes.

Each tuple in the DT is considered as an if-

then rule.

Split the Decision Table Two tuples ID-10 and ID-11

form a table of inconsistent rules. Nine tuples ID-1 to

ID-9 form a consistent table. From now on the term

in this section ‘‘decision table’’ is referred to this

consistent table.

Decision Classes The equivalence relation IND(RE-

SULT) classifies entities into three equivalence classes,

called decision classes

DECISION1¼fID-1;ID-2;ID-3g¼ ½10�RESULT
DECISION2¼fID-4;ID-5;ID-6g¼ ½50�RESULT
DECISION3¼fID-7;ID-8;ID-9g¼ ½99�RESULT

Condition Classes Let C = {TEST, NEW, CASE} be the

conditional attributes. The equivalence relation IND

(C) classifies entities into four equivalence classes,

called condition classes:

IND(C)-1 ¼ fID-1; ID-2g;
IND(C)-3 ¼ fID-4; ID-5; ID-6g;
IND(C)-2 ¼ fID-3g;
IND(C)-4 ¼ fID-7; ID-8; ID-9g

Knowledge Dependencies Pawlak regards a partition

(classification) as a knowledge, and observe that an

attribute defines a partition on the entities. So relation-

ships between attributes are regarded as relationships

between partitions, and hence between knowledges.

Observe that the entities that are indiscernible by

conditional attributes are also indiscernible by deci-

sion attributes, namely the following inclusions are

obtained

IND(C)-1 � DECISION1;

IND(C)-2 � DECISION1;

IND(C)-3 � DECISION2;

IND(C)-4 � DECISION3:

These inclusions imply that the equivalence relation

IND(C) is a refinement of IND(RESULT) in mathe-

matics. In RST, they imply that the knowledge IND

(RESULT) is knowledge depended on (coarser than)

the knowledge IND(C). Or equivalently, RESULT are

Knowledge Depended on C.

If-then Rules Knowledge dependences can be

expressed by if-then rules:

1. IfTEST=10,NEW=92,CASE=03,thenRESULT=10

2. IfTEST=10,NEW=92,CASE=04,thenRESULT=10

3. IfTEST=11,NEW=92,CASE=04,thenRESULT=50

4. IfTEST=11,NEW=93,CASE=70,thenRESULT=99

U Location Test New Case Result

ID-1 Houston 10 92 03 10

ID-2 San Jose 10 92 03 10

ID-3 Palo Alto 10 92 04 10

ID-4 Berkeley 11 92 04 50

ID-5 New York 11 92 04 50

ID-6 Atlanta 11 92 04 50

ID-7 Chicago 11 93 70 99

ID-8 Baltimore 11 93 70 99

ID-9 Seattle 11 93 70 99

ID-10 Chicago 51 95 70 94

ID-11 Chicago 51 95 70 95

214D Decision Rule Mining in Rough Set Theory

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:36

Attribute (Column) Reducts It is easy to verify that

{TEST, NEW} and {TEST CASE} are two attribute

reducts. Note that row ID-10 and ID-11 do not con-

tribute to the consistent decision; so they should be

ignored (For clarity, these have been removed.)

The two tables can be expressed as two sets of

uniformly shortened rules:

Set One:

1. If TEST = 10 and NEW = 92, then RESULT = 10

2. If TEST = 11 and NEW = 92, then RESULT = 50

3. If TEST = 11 and NEW = 93, then RESULT = 99

Set Two:

1. If TEST = 10, and CASE = 3, then RESULT =10

2. If TEST = 10, and CASE = 4, then RESULT = 10

3. If TEST = 11, and CASE = 4, then RESULT = 50

4. If TEST = 11, and CASE = 70, then RESULT = 99

More plainly, the consistent decisions made from the

original decision table can be accomplished equiva-

lently by either one of the two sets.

Value Reducts First, observe that ID-10 and ID-11

have been moved back. The reasons are that the two

inconsistent rules will have impact to the final form of

value reduct; see below. The first table gives

1. FIRST SET of Shortest Rules

Rule1 If TEST = 10, then RESULT = 10

Rule2 If TEST = 11 and NEW = 92, then

RESULT = 50

Rule3 If NEW = 93, then RESULT = 99

A casual user will not realize that the rules are derived

from the consistent sub-table. So a more natural view

is to look at the whole table. Fortunately these three

rules are not disturbed by the inclusion of ID-10 and

ID-11 tuples. In other words, The FIRST SET is a value

reduct of the consistent rules.

U Test New Result

ID-1 10 92 10

ID-2 10 92 10

ID-3 10 92 10

ID-4 11 92 50

ID-5 11 92 50

ID-6 11 92 50

ID-7 11 93 99

ID-8 11 93 99

ID-9 11 93 99

U Test Case Result

ID-1 10 03 10

ID-2 10 03 10

ID-3 10 04 10

ID-4 11 04 50

ID-5 11 04 50

ID-6 11 04 50

ID-7 11 70 99

ID-8 11 70 99

ID-9 11 70 99

U Test New Result

ID-1 10 X 10

ID-2 10 X 10

ID-3 10 X 10

ID-4 11 92 50

ID-5 11 92 50

ID-6 11 92 50

ID-7 11 X 99

ID-8 11 X 99

ID-9 11 X 99

ID-10 51 95 94

ID-11 51 95 95

U Test Case Result

ID-1 10 X 10

ID-1 X 03 10

ID-2 10 X 10

ID-2 X 03 10

ID-3 10 04 10

ID-4 11 04 50

ID-5 11 04 50

ID-6 11 04 50

ID-7 11/X 70 99

ID-8 11/X 70 99

ID-9 11/X 70 99

ID-10 51 70 94

ID-11 51 70 95

Decision Rule Mining in Rough Set Theory D 215

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:36

The second table provides two sets of Shortest

Rules

2. SECOND SET of Shortest Rules are: [Rule4a],

[Rule6], [Rule7] in the list below.

3. THIRD SET of Shortest Rules are: [Rule4b],

[Rule5], [Rule6], [Rule7] where each bracket [�]
is referring to the following rules:

Rule4a If TEST = 10, then RESULT = 10

Rule4b If CASE = 3, then RESULT = 10

Rule5 If TEST = 10 then RESULT = 10

Rule6 If TEST= 11 andCASE= 4, thenRESULT= 50

Rule7 If TEST = 11 and CASE = 70, then

RESULT = 99

C-Rule8 If CASE = 70, then RESULT = 99 (This

rule is valid only on consistence table.)

Note that the choice of [C-Rule8] is valid, if only the

consistence table is considered. Pawlak had adopted

this view [5]. However, as remarked earlier, a more

natural view is: the value reduct is derived from the

original whole table. In this case, [C-Rule8] is not a

rule, as it is ‘‘in conflict’’ with ID-10 and ID-11. So

Rule7 is used.

The illustrations on how to find the minimal sets

of shortest rules is completed. There are three solutions

(a modified view of Lin): (1) FIRST SET (Rule 1-3)

(2) SECOND SET (Rule4a, 6, 7), and (3) THIRD

SET (Rule4b, 6, 7). Taking the approach of Pawlak’s

book, the FIRST and SECOND SETS are the same

as those of the author, but Third SET is (Rule4b, 6,

C-Rule8).

Several comments are in order. In rough set theory,

Pawlak had assumed that every tuple in a decision table

is a rule; this assumption is debatable. So the view –

only high frequency tuples (as in frequent itemsets)

can be regarded as rules – should be explored. There

are such efforts, but not very far [3,4]. Other variations

also exist and should be explored.

Cross-references
▶Data Mining

▶Data Reduction

▶Decision Tree Classification

▶Decision Trees

▶ Frequent Itemsets and Association Rules

▶Granular Computing

▶Rough Set Approach

Recommended Reading
1. Gracia-Molina H., Ullman J., and Windin J. Database Systems

The Complete Book, Prentice-Hall, Englewood, Cliffs, NJ, 2002.

2. Lee T.T. Algebraic theory of relational databases. Bell Syst. Tech.

J., 62(10):3159–3204, December 1983.

3. Lin T.Y. Rough set theory in very large databases. In Symp. in

Modelling Analysis and Simulation, 1996, pp. 936–941.

4. Lin T.Y. and Han J. High frequent value reduct in very large

databases. RSFDGrC, 2007, pp. 346–354.

5. Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning about

Data. Kluwer, Dordecht, 1991.

Decision Rules

▶Decision Rule Mining in Rough Set Theory

Decision Rules, Classification

▶Deductive Data Mining Using Granular Computing

Decision Support

▶Clinical Decision Support

Decision Tree

▶Decision Tree Classification

Decision Tree Classification

ALIN DOBRA

University of Florida, Gainesville, FL, USA

Synonyms
Decision tree; Classification tree

Definition
Decision tree classifiers are decision trees used for

classification. As any other classifier, the decision tree

classifiers use values of attributes/features of the data to

make a class label (discrete) prediction. Structurally,

decision tree classifiers are organized like a decision tree

216D Decision Rules

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:36

in which simple conditions on (usually single) attri-

butes label the edge between an intermediate node and

its children. Leaves are labeled by class label predic-

tions. A large number of learning methods have been

proposed for decision tree classifiers. Most methods

have a tree growing and a pruning phase. The tree

growing is recursive and consists in selecting an attri-

bute to split on and actual splitting conditions then

recurring on the children until the data corresponding

to that path is pure or too small in size. The pruning

phase eliminates part of the bottom of the tree that

learned noise from the data in order to improve the

generalization of the classifier.

Historical Background
Decision tree classifiers were first introduced by

Breiman and his collaborators [2] in 1984 in the statis-

tics community. While the impact in statistics was not

very significant, with their introduction in 1986 by

Quinlan in machine learning literature[11], the deci-

sion tree classifiers become of the premier classification

method. A large amount of research was published on

the subject since in the machine learning literature.

There was a renewed interest in decision tree classifiers

in the 1990 in the data-mining literature due to the

fact that scalable learning is nontrivial and, more

importantly, the business community prefers decision

tree classifiers to other classification methods due to

their simplicity. A comprehensive survey of the work

on decision tree classifiers can be found in [10].

Foundations
Decision tree classifiers are especially attractive in a

data mining environment for several reasons. First,

due to their intuitive representation, the resulting

model is easy to assimilate by humans [2]. Second,

decision tree classifiers are non-parametric and thus

especially suited for exploratory knowledge discovery.

Third, decision tree classifiers can be constructed rela-

tively fast compared to other methods [8]. And last,

the accuracy of decision tree classifiers is comparable

or superior to other classification models [8].

As it is the case for most classification tasks, the

kind of data that can be represented by decision tree

classifiers is of tabular form, as depicted in Table 1.

Each data point occupies a row in the table. The names

of columns are characteristics of the data and are called

attributes. Attributes whose domain is numerical are

called numerical attributes, whereas attributes whose

domain is not numerical are called categorical attri-

butes. One of the categorical attributes is designated as

the predictive attribute. The predictive attribute needs

to be predicted from values of the other attributes.

For the example in Table 1, ‘‘Car Type’’ is a categorical

attribute, ‘‘Age’’ is a numerical attribute and ‘‘Lives in

Suburb?’’ is the predictor attribute.

Figure 1 depicts a classification tree, which was

built based on data in Table 1. It predicts if a person

lives in a suburb based on other information about

the person. The predicates, that label the edges (e.g.,

Age � 30), are called split predicates and the attributes

involved in such predicates, split attributes. In tradi-

tional classification and regression trees only determin-

istic split predicates are used (i.e., given the split

predicate and the value of the the attributes, it can be

determined if the attribute is true or false). Prediction

with classification trees is done by navigating the tree on

true predicates until a leaf is reached, when the predic-

tion in the leaf (YES or NO in the example) is returned.

Formal Definition

A classification tree is a directed, acyclic graph T with

tree shape. The root of the tree – denoted by RootðT Þ –
does not have any incoming edges. Every other node

has exactly one incoming edge and may have 0, 2 or

more outgoing edges. A node T without outgoing

edges is called leaf node, otherwise T is called an inter-

nal node. Each leaf node is labeled with one class label;

Decision Tree Classification. Table 1. Example training

database

Car Type Driver Age Children Lives in Suburb?

sedan 23 0 yes

sports 31 1 no

sedan 36 1 no

truck 25 2 no

sports 30 0 no

sedan 36 0 no

sedan 25 0 yes

truck 36 1 no

sedan 30 2 yes

sedan 31 1 yes

sports 25 0 no

sedan 45 1 yes

sports 23 2 no

truck 45 0 yes

Decision Tree Classification D 217

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:36

each internal node T is labeled with one attribute

variable XT, called the split attribute. The class label

associated with a leaf node T is denoted by Label(T).

Each edge (T, T 0) from an internal node T to one of

its children T 0 has a predicate q(T,T 0) associated with it

where q(T,T 0) involves only the splitting attribute XT

of node T. The set of predicates QT on the outgoing

edges of an internal node T must contain disjoint

predicates involving the split attribute whose conjunc-

tion is true – for any value of the split attribute exactly

one of the predicates inQT is true. The set of predicates

in QT will be reffered to as splitting predicates of T.

Given a classification tree T , the associated classifi-

er is defined as CT ðx1; :::; xmÞ in the following recursive

manner:

Cðx1; :::; xm;TÞ ¼

LabelðTÞ if T is a

leaf node

Cðx1; :::; xm;TjÞ if T is an

internal node,

Xi is label

of T , and

q(T , Tj) (xi)=

true

8>>>>>>>>><
>>>>>>>>>:

CT ðx1; :::; xmÞ ¼ Cðx1; :::; xm; RootðT ÞÞ

thus, to make a prediction, start at the root node and

navigate the tree on true predicates until a leaf is

reached, when the class label associated with it is

returned as the result of the prediction.

Building Decision Tree Classifiers

Several aspects of decision tree construction have been

shown to be NP-hard. Some of these are: building

optimal trees from decision tables [6], constructing

minimum cost classification tree to represent a simple

function [4], and building optimal classification trees

in terms of size to store information in a dataset [14].

In order to deal with the complexity of choosing

the split attributes and split sets and points, most

of the classification tree construction algorithms use

the greedy induction schema in Fig. 2. It consists in

deciding, at each step, upon a split attribute and split

set or point, if necessary, partitioning the data accord-

ing with the newly determined split predicates and

recursively repeating the process on these partitions,

one for each child. The construction process at a node

is terminated when a termination condition is satis-

fied. The only difference between the two types of

classification trees is the fact that for k-ary trees no

split set needs to be determined for discrete attributes.

By specifying the split attribute selection criteria and

the split point selection criteria various decision tree

classifier construction algorithms are obtained.

Once a decision is made to make a node a leaf, the

majority class is used to label the leaf and will be the

prediction made by the tree should the leaf be reached.

Split Attribute and Split Point Selection

At each step in the recursive construction algorithm, a

decision on what attribute variable to split is made.

The purpose of the split is to separate, as much as

possible, the class labels from each others. To make

this intuition useful, a metric that estimates how much

the separation of the classes is improved when a par-

ticular split is performed is needed. Such a metric is

called a split criteria or a split selection method.

Decision Tree Classification. Figure 1. Example of decision tree classifier for training data in Table 1.

218D Decision Tree Classification

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:36

There is extensive research in the machine learning

and statistics literature on devising split selection cri-

teria that produce classification trees with high predic-

tive accuracy [10].

The most popular class of split selection methods

are impurity-based [2,11]. The popularity is well

deserved since studies have shown that this class of

split selection methods have high predictive accuracy

[8], and at the same time they are simple and intuitive.

Each impurity-based split selection criteria is based on

an impurity function F(p1,. . .,pk), with pj interpreted

as the probability of seeing the class label cj. Intuitively,

the impurity function measures how impure the data is.

It is required to have the following: (i) to be concave,

(ii) to have a unique maximum at (1∕k,. . .,1∕k) (the most

impure situation), and (iii) to achieve the minimum

value for (1, 0, . . .,0), (0, 1, 0,. . .,0), . . ., (0, . . .,0,1) (i.e.,

when all data has the same class label). Given

such an impurity measure, the impurity of a node T

is i(T) = F(P[C = c1jT], . . ., P[C = ckjT]), where
P[C = cjjT] is the probability that the class label is cj
given that the data reaches node T. These statistics

are computed from the training data in the process

of building the decision tree classifier.

Given a set Q of split predicates on attribute vari-

able X that split a node T into nodes T1,. . .,Tn, define

the reduction in impurity as:

DiðT ;X ;QÞ ¼ iðTÞ �
Xn
i¼1

P½TijT � : iðTiÞ

¼ iðTÞ �
Xn
i¼1

P½qðT ;TiÞðXÞjT � : iðTiÞ
ð1Þ

Intuitively, the reduction in impurity is the amount

of purity gained by splitting, where the impurity

after split is the weighted sum of impurities of each

child node.

Two popular impurity measures are:

Giniindex: giniðp1; :::; pnÞ ¼ 1�
Xn
i¼1

p2i

Entropy: entropyðp1; :::; pnÞ ¼ �
Xn
i¼1

pi logðpiÞ

When used in conjunction with the (1), they produce

the Gini Gain and Information Gain split point selec-

tion criteria. A split attribute criteria can simply be

defined as the largest value of the split point selection

criteria for any predicate involving the attribute (i.e.,

the best split). In this way, the best split point is

determined simultaneously with the evaluation of an

attribute thus no other criteria is necessary.

The selection of the attribute can be dissociated

from the selection of the split point. A measures that

test the usefulness of a split on an attribute without

considering split points is w2-test.
Some comments on efficiently finding the split

point for the two types of attributes, categorical and

numerical, are in order. For numerical attributes, only

splits of the form X > 10 are considered thus only as

many split as there are data-points are possible. For

categorical attributes in the case when k-ary splits are

allowed (Quinlan decision tree classifier), there is only

one possible split on an attribute. The situation is more

complicated for binary split trees (Breiman et al.) since

Decision Tree Classification. Figure 2. Classification tree induction schema.

Decision Tree Classification D 219

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

there are an exponential number of possible split

points (sets in this case) to consider. Fortunately, in

this last situation a powerful result due to Breiman [2]

leads to a linear algorithm after a sort in a specific

order is performed.

Tree Pruning

An important question with respect to building deci-

sion tree classifiers is when to stop the growing of the

tree. Since the estimation of probabilities that make up

the formulas for the split criteria becomes less and less

statistically reliable as the tree is build (data is frag-

mented at an exponential speed due to splits) the tree

will eventually learn noise. In machine learning termi-

nology this is called overfitting and should be avoided

to the greatest extent possible.

Finding the point where the actual learning stops

and overfitting starts is problematic. For decision tree

classification there are two distinct approaches to

addressing this problem: (i) detect overfitting during

tree growth and stop learning, and (ii) grow a large tree

and, using extra independent data, determine what

part of the tree is reliable and what part should be

discarded.

A statistical test like w2-test can be used to detect

the point where overfitting occurs. This turns out

to work in some circumstances but not others. This

method of stopping the tree growth is preferred when

the w2-test is used for attribute selection as well.

The most popular method to producing good qual-

ity trees is to prune an overly large tree. The most

popular method to pruning is Quinlan’s Re-substitu-

tion Error Pruning. Re-substitution error pruning con-

sists of eliminating subtrees in order to obtain a tree

with the smallest error on the pruning set, a separate

part of the data used only for pruning. To achieve this,

every node estimates its contribution to the error on

pruning data when the majority class is used as an

estimate. Then, starting from the leaves and going

upward, every node compares the contribution to the

error by using the local prediction with the smallest

possible contribution to the error of its children (if a

node is not a leaf in the final tree, it has no contribu-

tion to the error, only leaves contribute), and prunes

the tree if the local error contribution is smaller – this

results in the node becoming a leaf. Since, after visiting

any of the nodes the tree is optimally pruned – this is

the invariant maintained – when the overall process

finishes, the whole tree is optimally pruned.

Other pruning techniques can be found in [9].

They tend to be significantly more complicated than

re-substitution error pruning.

Key Applications
Scientific classification, medical diagnosis, fraud detec-

tion, credit approval, targeted marketing, etc.

URL to Code
http://www.dtreg.com/

http://eric.univ-lyon2.fr/�ricco/sipina_overview.html

http://www.statistics.com/resources/glossary/c/cart.php

http://www.statsoft.com/textbook/stcart.html

http://www.salfordsystems.com/

Cross-references
▶Classification

▶Decision Trees

Recommended Reading
1. Agresti A. Categorical data analysis. John Wiley and Sons.

(1990).

2. Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. (1984).

Classification and regression trees. Belmont: Wadsworth.

3. Buntine W. Learning classification trees. Artificial Intelligence

frontiers in statistics Chapman & Hall, London. (pp. 182–201).

4. Cox L.A., Qiu Y., and Kuehner W. Heuristic least-cost computa-

tion of discrete classification functions with uncertain argument

values. Annals of Operations Research, 21, 1–30. (1989).

5. Frank E. Pruning decision trees and lists. Doctoral dissertation,

Department of Computer Science, University of Waikato,

Hamilton, New Zealand. (2000).

6. Hyafil L., and Rivest R.L. Constructing optimal binary decision

trees is np-complete. Information Processing Letters, 5, 15–17.

(1976).

7. James M. Classification algorithms.Wiley. (1985).

8. Lim T.-S., Loh W.-Y., and Shih Y.-S. An empirical comparison

of decision trees and other classification methods (Technical

Report 979). Department of Statistics, University of Wisconsin,

Madison. (1997).

9. Loh W.-Y. and Shih Y.-S. Split selection methods for classifica-

tion trees. Statistica Sinica, 7. (1997).

10. Murthy S.K. Automatic construction of decision trees from

data: A multi-disciplinary survey. Data Mining and Knowledge

Discovery. (1997).

11. Quinlan J.R. Induction of decision trees. Machine Learning, 1,

81–106. (1986).

12. Quinlan J.R. Learning with Continuous Classes. In: Proc.

5th Australian Joint Conference on Artificial Intelligence

(pp. 343–348). (1992).

13. Quinlan J.R. C4.5: Programs for machine learning. Morgan

Kaufman. (1993b).

220D Decision Tree Classification

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

14. Murphy O.J. and Mccraw R.L. Designing storage efficient

decision trees. IEEE Transactions on Computers, 40, 315–319.

(1991).

Decision Trees

ALIN DOBRA

University of Florida, Gainesville, FL, USA

Synonyms
Classification trees; DT

Definition
Decision trees are compact tree like representations

of conditions that specify when a decision should be

applied together with the actions/decision. Decision

trees consist into intermediate nodes and leaf nodes.

The outgoing edges from intermediate nodes are

labeled by conditions. The leaf nodes are labeled by

decisions or actions. The way decision trees are used is

by starting at the root then navigating down on true

conditions until a leaf is reached. The action or deci-

sion in the leaf is then taken. Decision trees are just

a compact representation of decision rules: the condi-

tion under which an action is taken is the conjunction

of conditions starting at the root of the decision tree

and leading to the leaf labeled by the action. An exam-

ple of a decision tree is given in Fig. 1.

Key Points
Decision trees are an important type of representation

for any kind of complex set of decisions that are

conditioned onmultiple factors. They aremore compact

than decision rules but less flexible. The main appeal of

decision trees is their intuitiveness; it is very easy to

understand how the decision is taken.

While they have uses in any areas that need decision

support of some kind, in databases their main use is in

specifying decision tree classifiers and decision tree

regressors. Decision trees are mostly used in one of

these two forms in databases.

Cross-references
▶Decision Tree Classification

▶ Scalable Decision Tree Construction

Recommended Reading
1. Lindley D.V. Making Decisions. Wiley, Hoboken, NJ, USA, 1991.

Declarative Networking

TIMOTHY ROSCOE

ETH Zurich, Switzerland

Synonyms
Declarative overlay networks

Definition
Declarative Networking refers to the technique of

specifying aspects of networked systems, such as rout-

ing algorithms, in terms of declarative queries over

distributed network state. These queries are then exe-

cuted by a distributed query processor to obtain

the same effect as executing an implementation of the

algorithm in an imperative language such as C or Java.

Executable descriptions of distributed algorithms as

queries are typically much more concise than impera-

tive implementations, and more amenable to auto-

mated analysis.

Historical Background
Declarative Networking emerged in about 2004 as an

application of results in data management and logic

programming to problems of network overlay mainte-

nance. Its roots can be traced in several areas: attempts

to describe real-world network configurations formally,

e.g., [11], network management systems built over a

declarative framework, such as IBM Tivoli Console and

various research systems, e.g., [12,15], and perhaps

most significantly the field of distributed query pro-

cessing systems (e.g., [5,6,10]).

Decision Trees. Figure 1. Example of a decision tree for

selecting a database.

Declarative Networking D 221

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

The observation that distributed query processors

need to construct overlay networks of some form to

route data led to the idea that the routing protocols

required might be specified declaratively. The idea of

describing Internet routing protocols (and new var-

iants on them) as queries over distributed data was

proposed in [9], and shortly afterwards real systems

for building overlay networks from declarative specifi-

cations began to appear. P2 [8] uses a variant of the

Datalog language and pushes most aspects of the

distributed algorithm into the declarative realm,

while Node Views [3] uses a SQL-like language [2]

and builds overlay networks as views over an underly-

ing node database.

Further work has expanded the applicability of

the approach from routing algorithms networks to

more general distributed algorithms such as Chandy-

Lamport consistent snapshots [14], specifying security

properties of networks [1], and building complete

sensor network applications [4].

Foundations
The basic principle of declarative networking can be

illustrated by reference to the example of routing pro-

tocols. The purpose of a routing protocol is to con-

tinously maintain a routing table at each node in the

network. This table provides a mapping from destina-

tion addresses to ‘‘next hop’’ nodes – those which are

directly connected to the node where the table resides.

The collection of routing tables in a network can be

viewed as the result of a distributed calculation whose

inputs are external data such as node liveness, link load

levels, user-specified policy, etc. If one represents such

external data as relations, routing tables can be

regarded as a distributed view over such relations,

and consequently the routing – the process of main-

taining the routing tables – can be regarded as an

instance of distributed view maintenance.

This can be illustrated further with the example of

link-state routing (as used by the widespread Internet

routing protocols OSPF and IS-IS), where connectivity

information is flooded globally through the network

and each router performs shortest-path computations

on the complete connectivity graph. Using the simpli-

fied notation of [9], based on Datalog, one can write:

path(S,D,P,C) :- link(S,D,C),

P = f concatPath(link

(S,D,C), nil).

path(S,D,P,C) :- link(S,Z,C1), path

(Z,D,P2,C2),

C = f_sum(C1, C2),

P = f concatPath

(link(S,Z,C1), P2).

These first two query rules give the standard inductive

defintion of reachability in a network: there is a path P

from source node S to destination Dwith cost C if there

is a (direct) link of costC from S to D, or if there is a path

P2 to D from a node Z adjacent to S, and C is the sum of

the link cost C1 to Z and the path cost C2 from Z to D.

Two further rules can compute the best path from S

to D, using the standard Datalog function for

aggregates:

bestPathCost(S,D,AGG<C>) :- path

(S,D,P,C).

bestPath(S,D,P,C) :- bestPathCost

(S,D,C),

path(S,D,P,C).

Note that the definition of ‘‘best’’ in this example is

deliberately unbound: by changing the sum function

f_sum and the aggregate AGG, a variety of network

metrics can be used. This illustrates some of the key

claimed benefits of declarative networking: conciseness

of specification, and ease of modification.

While the four rules above specify a link-state rout-

ing algorithm in some sense, they of course say nothing

about how such a specification is to executed, where

the rules are evaluated, or what messages need to

traverse the network. However, as [9] shows, each

term in a rule head and body can be annotated with a

‘‘location specifier’’, which identifies which node the

tuple resides on when the rule is executed. With such

identifiers, the specification above becomes:

path(@S,D,P,C) :- link(@S,D,C),

P = f concatPath(link

(@S,D,C), nil).

path(@S,D,P,C) :- link(@S,Z,C1), path

(@Z,D,P2,C2),

C = f_sum(C1, C2),

P = f concatPath(link

(@S,Z,C1), P2).

bestPathCost(@S,D,AGG<C>) :- path

(@S,D,P,C).

bestPath(@S,D,P,C) :- bestPathCost

(@S,D,C),

path(@S,D,P,C).

222D Declarative Networking

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

It can be seen that all rules execute entirely locally (on

whichever node corresponds to the value S in the

operand tuples) except the second one. For this, a

message must be sent from Z to S, which is convenient-

ly directly connected to S. Such a specification can

be trivially planned and executed independently on

each node in a network, and will result in best-path

routing table on each node. Furthermore, the messages

that will be sent during execution correspond to those

that an imperative link-state implementation would

need to transmit.

Loo et al. [7] detail various evaluation strategies,

and also discuss some automated checks that may be

performed on such algorithm specifications. In par-

ticular, if a set of relations (such as link in the above

example) are asserted to mean direct connectivity,

the system can determine at query plan time whether

or not the routing protocol is well-formed, in that it

will only cause a node to send messages to its direct

neighbours. It is this ‘‘global’’ specification of rules

which sets declarative networking systems apart

from purely local event-condition-action (ECA)

systems.

A declarative networking system like P2 [8] can

directly execute such a specification, allowing very con-

cise programs for distributed algorithms. [8] presents

an implementation of the Chord overlay in 47 lines of

Datalog, considerably shorter than the several thousand

lines of C++ in the original imlemenentation.

A further key benefit of declarative networking

is the flexibility afforded by the query framework.

Very few assumptions are made about the network in

question – even the point-to-point link predicate

in the example above could be replaced a more com-

plex relation conveying direct connectivity, for exam-

ple one giving radio strength in a wireless network. The

declarativity of the specification allows external data

about the network to be cleanly integrated into the

algorithmic framework using familiar techniques in

ways that would be tedious, cumbersome, and brittle

in an imperative implementation.

Key Applications
Declarative networking is currently the domain of

research rather than industrial adoption. In addition

to the specification of protocols for extensible network

routing and the overlay component of distributed

applications, the approach has been applied to building

sensor network applications over wireless networks and

the implementation of fault-tolerant replication algo-

rithms for the purposes of performance analysis [13].

Future Directions
There are a number of open questions in declarative

networking. Evaluating rules concurrently on a node so

as to preserve intelligible semantics to the programmer

is an open area, as is the field of optimizations of

such distributed queries over the kinds of sparsely-

connected graphs found computer networks. The best

way of integrating the declarative networking function-

ality of a distributed application with imperative func-

tionality local to a node is an area of ongoing study.

URL to Code
http://p2.berkeley.intel-research.net/, mirrored at

http://p2.cs.berkeley.edu/

http://developer.berlios.de/projects/slow/

http://www.dvs.tu-darmstadt.de/research/OverML/

index.html

Cross-references
▶Deductive Databases

▶Distributed Query Processing

▶ Event-Condition-Action Systems

Recommended Reading
1. Abadi M. and Loo B.T. Towards a declarative language and

system for secure networking. In Proc. Third Int. Workshop on

Networking meets Databases (NetDB), USA, April 2007.

2. Behnel S. SLOSL – a modelling language for topologies and

routing in overlay networks. In Proc. First Int. Workshop on

Modeling, Simulation and Optimization of Peer-to-Peer Envir-

onments (MSOP2P), Naples, Italy, 2008. to appear.

3. Behnel S. and Buchmann A. Overlay networks – implementation

by specification. In Proc. ACM/IFIP/USENIX 6th Int. Middle-

ware Conf., 2005.

4. Chu D., Tavakoli A., Popa L., and Hellerstein J. Entirely declara-

tive sensor network systems. In Proc. 32nd Int. Conf. on Very

Large Data Bases, 2006, pp. 1203–1206.

5. Chun B., Hellerstein J.M., Huebsch R., Jeffery S.R., Loo B.T.,

Mardanbeigi S., Roscoe T., Rhea S., Shenker S., and Stoica I.

Querying at Internet Scale (Demo). In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2004.

6. Huebsch R., Chun B., Hellerstein J.M., Loo B.T., Maniatis P.,

Roscoe T., Shenker S., Stoica I., and Yumerefendi A.R. The

architecture of PIER: an Internet-scale query processor. In

Proc. 2nd Biennial Conf. on Innovative Data Systems Research,

2005.

7. Loo B.T., Condie T., Garofalakis M., Gay D.E., Hellerstein J.M.,

Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I.

Declarative networking: language, execution and optimization.

Declarative Networking D 223

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 97–108.

8. Loo B.T., Condie T., Hellerstein J.M., Maniatis P., Roscoe T.,

and Stoica I. Implementing declarative overlays. In Proc. 20th

ACM Symp. on Operating System Principles, 2005, pp. 75–90.

ACM Press, New York.

9. Loo B.T., Hellerstein J.M., Stoica I., and Ramakrishnan R.

Declarative routing: extensible routing with declarative queries.

In Proc. Int. Conf. of the on Data Communication, 2005.

10. Loo B.T., Huebsch R., Hellerstein J.M., Roscoe T., and Stoica I.

Analyzing P2P overlays with recursive queries. Technical

Report IRB-TR-003-045, Intel Research, November 2003.

11. Roscoe T., Hand S., Isaacs R., Mortier R., and Jardetzky P.

Predicate routing: enabling controlled networking. In Proc,

First Workshop on Hot Topics in Networks (HotNets-I), 2002.

12. Roscoe T., Mortier R., Jardetzky P., and Hand S. InfoSpect: using

a logic language for system health monitoring in distributed

systems. In Proc. 2002 ACM SIGOPS EuropeanWorkshop, 2002.

13. Singh A., Maniatis P., Druschel P., and Roscoe T. BFT protocols

under fire. In Proc. 5th USENIX Symp. on Networked Systems

Design and Implementation, 2008.

14. Singh A., Maniatis P., Roscoe T., and Druschel P. Using

queries for distributed monitoring and forensics. In Proc. First

European Systems Conference (Eurosys), 2006.

15. Wawrzoniak M., Peterson L., and Roscoe T. Sophia: an informa-

tion plane for networked systems. In Proc. 5th USENIX Symp.

on Networked Systems Design & Implementation, 2003.

Declarative Overlay Networks

▶Declarative Networking

Deductive Data Mining using
Granular Computing

TSAU YOUNG (T. Y.) LIN

San Jose State University, San Jose, CA, USA

Synonyms
Decision rules, classification; Deductive data mining,

model for automated data mining; Rough set theory,

granular computing on partition

Definition
What is Deductive Data Mining (DDM)? It is a meth-

odology that derives patterns from the mathematical

structure of a given stored data. Among three core

techniques of data mining [1], classifications and asso-

ciation rule mining are deductive data mining, while

clustering is not, because its algorithms often use some

properties of the ambient space.

What is Granular Computing (GrC)? In general, it

is a problem solving methodology deeply rooted in

human thinking. For example, human body is granu-

lated into head, neck, and etc. However, the main

concerns here are on the data mining aspect of GrC.

Two views are presented. One is based on current

technology, and the other is on the incremental ap-

proach to the ultimate goal.

A) Mining Relational Databases (RDB) using GrC : In

GrC, a relation K (also known as information table in

rough set theory) is a knowledge representation that

maps a set U of entities into a set of attribute values.

The collection of entities that is mapped to the same

attribute value is called a granule. By replacing each

attribute value with its granule, a relation of granules is

formed. Observe that the collection of granules in each

column is a partition (hence an equivalence relation)

on U. Hence, the relation of granules is equivalent to

the pair ðU ;RÞ, called Granular Data Model (GDM),

where R is the set of equivalence relations that are

defined by those columns. Observe that GDM deter-

mines a relation (up to isomorphism) uniquely. See

Table 1. Note that GDM has a very explicit mathemat-

ical structure of data, hence

1. Mining RDB using GrC is DDM on GDM (or rela-

tion of granules). See ‘‘Key Applications – Deductive

Data Mining on GDM’’. Two striking results will be

explained.

B) Mining RDB over ‘‘real world sets’’ using GrC:

This is a goal statement. What is a ‘‘real world set’’?

Strictly speaking, this can not be answered mathe-

matically (there is no semantics in mathematics).

In GrC, the ‘‘real world set’’ has been modeled by

the Fifth GrC model (relational GrC model), (U,

b), where b is a collection of n-ary relations (n is

not fixed). In this approach, the focus has been on

capturing the interactions among elements of the

universe. For example, in human society, n person

may form a committee (hence they interact). In

this formulation, the committee is a tuple (as

each person may play a disticnt role) in one of the

relation in b [18,20]. Note that Fifth GrCModel (in

finite U) is the relational structure of the First

Order Logic (without function symbols). RDB

over a model of ‘‘real world set’’ can be viewed as

a Semantic Oriented RDB. For now, the ‘‘real world

224D Declarative Overlay Networks

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

set’’ is Fifth GrC Model, so the corresponding

GDM is Relational GrC Model (Fifth GrC Model)

based GDM, denoted by RGDM.

2. Mining RDB over ‘‘real world sets’’ using GrC is

DDM on RGDM. See ‘‘Future Directions’’.

Historical Background
How was the term GrC coined? In the academic year

1996–1997, when T. Y. Lin took his sabbatical leave at

UC-Berkeley, Zadeh suggested granular mathematics

to be his research area. To limit the scope, Lin proposed

the term granular computing [26] to label the research

area. Though the label is new, the notion is quite an-

cient, e.g., the infinitesimal granules led to

the invention of calculus. More recent examples are

Heisenberg uncertainty principle (A precise position

can only determine a granule of momentum) and fuzzy

set theory [25]. For database and data analysis areas, the

first work may be due to Hsiao in 1970 [7]; incidentally

he is also well known for database machines. His model

is essentially equivalent to relational database model and

was called Attribute Based File Organization (evolved

into attribute based data model (ABDM)) by Eugene

Wong in 1971 [2]; Wong and Stonebraker co-founded

database system INGRESS.

In ABDM, Hsiao imposed equivalence relations on

attribute domains to increase the precision of data

access. Around 1981, Ginsburg and Hull imposed an-

other binary relation, ‘‘partial ordering’’ on attribute

domains [4,5]. The goal is to capture the additional

information provided by the order.

About the same time, Pawlak (1982) and Lee

(1983) observed that an attribute can be regarded as a

partition of the universe [8,24], and developed rough

set theory and algebraic theory of relational databases.

Their approaches are quite different from previous

theories.

In 1988–1989, for approximate retrievals, Lin

generalized topological neighborhood system to Neigh-

borhood Systems (NS) by simply dropping the axioms

of topology. He imposed NS structure on attribute

domains and studied the Topological Data Model

[9,11] (see cross references). NS is equivalent to a set of

binary relations, so it is mathematically a generalization

equivalence relation (Hsiaos works) and partial ordering

(Ginsburg and Hulls works). However, semantically,

they are different; in NS, each neighborhood (a granule)

is regarded as a unit of uncertainty. Also in 1989, Lin

applied the idea of computer security [10]. This is related

to the information flow on access control model (see

cross references) In 1992, Lin developed a NS-version of

RS theory [12]. These are pre-GrC stories.

Next, are early works. By mapping NS onto Zadehs

intuitive statements, Lin used NS as his first mathe-

matical GrC model, developed Binary Relation based

Data Model [13,22], and observed ‘‘complete Pawlak

theories’’ in symmetric binary relations and some par-

tial covering [19,20]. Binary relation based Data Model

has many names, such as binary knowledge based,

granular table, clustered table, semantic oriented

table and, etc.; now it is called a Binary Granular

Data Models (BGDM). Intrinsically, BGDM is a se-

mantic oriented data model, and has been used to

mine semantic oriented decisions (classifications) and

association rules; it is still an ongoing theory.

Foundations

What is Data Mining?

What is data mining? There is no universally accepted

formal definition of data mining, however the follow-

ing informal description from [3] is rather universal:

‘‘data mining is a non-trivial process of identifying

valid, novel, potentially useful, and ultimately under-

standable patterns from data.’’

As having been pointed out previously in several

occasions, the terms, ‘‘novel,’’ ‘‘useful,’’ and ‘‘under-

standable’’ represent subjective views, and hence can

not be used for scientific purpose, it is paraphrased as

follows:

1. Deriving useful patterns from data.

This ‘‘definition’’ points out four key ingredients:

data, patterns, derivation methodology and the real

world meaning of patterns (implied by usefulness).

Deductive Data Mining

Convention. A symbol is a string of ‘‘bit and bytes’’ that

has no formal real world meaning, or whose real world

interpretation (if there is one) does not participate in

formal processing. A symbol is termed a word, if the

intended real world meaning does participate in the

formal processing.

What is the nature of the data in DDM? It is best to

examine how the data are created: In traditional data

processing: (i) first a set of attributes, called relational

schema, is selected. Then (ii) tuples of words are entered

Deductive Data Mining using Granular Computing D 225

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:37

the system. They represent a set of real world entities.

These words are called attribute values. Each such aword

is created to represent a real world fact, however, only the

symbol, but not the real world semantic, is stored.

How are the data processed? In traditional data

processing environment, DBMS processes these data,

under human commands, carries out the human

perceived-semantics. However, from the system point

of view, each word is a pure symbol (semantics are not

stored). So in an automated data mining algorithm

(without the human in the loop),

1. Words are treated as symbols.

For example, association mining algorithm merely

counts the symbols without consulting their real world

meanings. So association mining algorithm transforms

a table of symbols into a set of expressions (frequent

itemsets) of symbols. In summary,

1. A relation is a table of stored symbols.

2. Patterns are the mathematical expressions of the

stored symbols. For examples, frequency itemsets.

3. Principle of derivations is the mathematical

deduction.

Definition 1 Deductive data mining is a data mining

methodology that derives (using mathematical deduc-

tions only) patterns from the mathematical structure of

stored symbols.

Among three core topics of data mining [1],

Theorem 1 Classifications and association rule mining

are deductive data mining, while clustering may be not,

because its algorithms use some properties of the ambient

space.

Isomorphism – A Critical Concept

As having pointed out that a relation is a table of

symbols. So the following definition of isomorphism

is legitimate: Let K ¼ ðV ;AÞ and H ¼ ðV ;BÞ be

two relations, where A = {A1, A2,. . .An} and B = {B1,

B2,. . .Bm}.

Attributes Ai and Aj are isomorphic iff there is a

one-to-one and onto map, s : Dom(Ai) ! Dom(Aj)

such that Aj(v) = s(Ai(v))8v 2 V. The map s is called

an isomorphism. Intuitively, two attributes (columns)

are isomorphic iff one column turns into another one

by properly renaming its attribute values.

Definition 2 Two relations K and H are said to be iso-

morphic if there is a one-to-one and onto correspondence

between two families of attributes so that every Ai is

isomorphic to the corresponding Bj, and vice versa.

Two relational Schema K and H are said to be

isomorphic if all their instances are isomorphic.

Isomorphism is an equivalence relation defined on

the family of all relational tables, so it classifies the tables

into isomorphic classes. Moreover, in [15], the following

observationwasmade: Isomorphic relations have isomor-

phic patterns. Its implications are rather far reaching. It

essentially declares that patterns are syntactic in nature.

They are patterns of the whole isomorphic class, even

though many isomorphic relations may have very dif-

ferent semantics. Here is the important theorem:

Theorem 2 A pattern is a property of an isomorphic

class.

In next section, a canonical model, called Granular

Data Model (GDM), for each isomorphic class will be

constructed.

Granular/Relational Data Models

In RDB, a relation (called an information table

in rough set theory) can be viewed as a knowledge rep-

resentation of a given universe U(a set of entities) in

terms of a given set of attributes A ¼ fA1;A2; . . .Ang.
A tuple(row) is a representation of an entity. An attri-

bute (column) Aj is a mapping that maps U to its

attribute domain dom(Aj) (another classical set). Let

those entities that are mapped to the same value be

called granules. By replacing each attribute value with

the corresponding granule, a new relation of granules is

formed. Observe that the collection of granules in a

column are mutually disjoint So it defines a partition

and hence an equivalent relation. Let R be the collec-

tion of such equivalence relations. So the pair ðU ;RÞ,
called a granular data model (GDM), is equivalent to

the relation of granules.

The details are further illustrated in Table 1. Note

that the first two columns, A-partition and B-partition,

is a relation of granules. It is obviously equivalence

to the GDM (U, {A � partition, B � partition}).

The last two columns, A-NAME and B-NAME, is

the original given relation. It can be viewed as a relation

of ‘‘meaningful’’ names of these granules. So a relation

also will be called Data Model of Names (DMN), to

emphasize this contrast to the relation of granules.

226D Deductive Data Mining using Granular Computing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:38

Table 1 also illustrates the following isomorphism

theorem, which was observed by Pawlak ([24], p. 56).

Theorem 3 A relation (up to isomorphism) determines

a GDM and vice versa. In short, DMN, up to isomor-

phism, is equivalent to GDM.

So ‘‘data’’ processing is equivalent to ‘‘granule’’

processing – Granular Computing. This introduced

the data mining aspect of GrC in RDB.

Key Applications
In this section, two key applications are presented.

Conceptually, the results are rather striking and coun-

terintuitive; see Theorem 4 and Theorem 5.

Feature Constructions

What is an attribute (feature)? Surprisingly, this is

a thought provoking question. In database theory, an

attribute (in a relation schema) is a property, a view, or

a reference (e.g., a coordinate). These are the concepts

in human level. Based on these concepts, database

experts represent entities into relations. Unfortunately,

such knowledge representations are not thorough,

namely, the semantics of attributes and attribute values

are not stored in computer systems. So, automated

data mining algorithms cannot utilize these semantics,

simply because they are not in the computer systems.

So the key question is:

1. How could the concept of features be described by

data?

The first two columns of the Table 1 illustrates the

idea: an attribute is a partition of the universe. Since

the universe is a finite set, so there are the following

surprise:

Theorem 4 The number of non-isomorphic features

that can be constructed from the given relation is finite;

see [15].

This is rather counterintuitive results. The reason is

largely due to the fact that most people view features

from data processing point of view, not data mining

point of view.

The following example may illuminate the critical

concepts: Consider a numerical relation of two col-

umns. It can be visualized as a finite set of points in

Euclidean plane. In this view, attributes are coordi-

nates. So by simply rotating the X–Y-coordinate system

(from 0o to 360o), infinitely many relations of Py can

be generated, where y is the angle rotated. Now we

will examine these Py and four points whose polar

coordinates are (1, 0o),(1, 30o),(1, 45o),(1, 90o); see

Table 2. Note that the Xy-partition and Yy-partition

do not change most of the time, when y moves. It

only changes at y = 45o and its multiples, namely,

y = 135o, 315o. Note that though Xy-coordinate and

Yy-coordinate do change, but most of them are iso-

morphic to each other. Non-isomorphic ones occurs

only at y = 45o and its multiples.

The key point is:

1. As U is finite, both A-Partition and B-partition

columns only have finitely many possible distinct

choices.

High Frequency Patterns in RDB

GDM is a powerful data mining representation:

Observe that the frequency of the pair, (diaper, beer),

is equal to the cardinality of the intersection of two

granules, the diaper granule {e1, e2, e6, e7} and the beer

granule {e2, e6, e7}.

This illustration immediately gives us the following

generalization. Let D be the Boolean algebra generated

by granules. Then a Boolean algebraic expression in D
is a set theoretical expression in U, hence it has the

cardinality.

Definition 3 A Boolean algebraic expression in D is a

high frequency pattern (generalized frequent itemsets), if

the cardinality of the expression is greater than the given

threshold [14].

Deductive Data Mining using Granular Computing.

Table 1. The granular data model of a relation.

Relation of granules Original relation

U ! A-partition B-partition A-NAME B-NAME

e1 ! {e1, e2, e6, e7} {e1, e4} diaper sss

e2 ! {e1, e2, e6, e7} {e2, e6, e7} diaper beer

e3 ! {e3, e5, e8} {e3, e8} coo ttt

e4 ! {e4} {e1, e4} paat sss

e5 ! {e3, e5, e8} {e5} coo bar

e6 ! {e1, e2, e6, e7} {e3, e8} diaper beer

e7 ! {e1, e2, e6, e7} {e2, e6, e7} diaper beer

e8 ! {e3, e5, e8} {e3, e8} coo ttt

Deductive Data Mining using Granular Computing D 227

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:39

This idea can also be expressed by Pawlak’s decision

logic. A formula is a high frequency pattern, if its mean-

ing set has adequate cardinality. Here is a striking result:

Theorem 5 High frequency patterns can be enumerated

by solving a set of linear inequalities; see [17].

This theorem has not been useful in applications;

this is due to the high volume of the patterns. Theoreti-

cally, this theorem together with the facts in ‘‘Paradoxi-

cal Phenomena in Data Mining’’ led to the conclusion:

Semantic oriented patterns are needed.

Future Directions
There are three subsections. In the first subsection, the

goal statement and incremental approaches are out-

lined. In the second subsection, an example is given to

illustrate the inadequacy of current results. The last

subsection shows the feasibility of the outline in the

first subsection will work.

Relational Database Theory Over ‘‘Real World Sets’’

RDB and RST are based on classical set theory, in

which every set is discrete. In other words, there are

no interactions among elements of any set. However, a

‘‘real world set’’ contains interactions. For example in

human society, n persons may form a committee

(hence they have interactions). In GrC modeling,

Fifth GrC Model (U, b) have been proposed as a

model of ‘‘real world sets’’, where b is a collection of

n-ary relations (n is not a fixed integer) that represent

the interactions among elements in U [18,20]. Note

that the roles of each member in the committee may be

all distinct, so members are not exchangeable. So gran-

ules are tuples, not necessarily subsets. Many authors,

including (Lin), have used subsets as granules; such

notions may not be general enough.

A relational database over ‘‘real world sets,’’ as in

the classical relational database, is equivalent to ‘‘real

world’’ GDM ððU ; bÞ;RÞ, where (U, b) is a model of

‘‘real world sets’’ and R is a family of ‘‘equivalence

relations’’ on the model of a ‘‘real world sets,’’ (U, b).
In this paper, only the idea of simplest case will be

illustrated, namely, b is a single n-nary relation. By

combining b andR, the pair ððU ; bÞ;RÞ can be trans-

formed to the pair ðU ;SÞ, where each member Si of S
is a new relation that combined the n-nary relation b
and the ‘‘equivalence relations’’ Ri. Namely, each attri-

bute value in a relation b is replaced by an equivalence

class of Ri. The resulting new b is Si.

In this entry, only the case n = 2 will be discussed.

In other words, only the following type of GDM over

‘‘real world sets’’ ðU ;BÞ, called Binary GrC Data Model

(BGDM), will be considered, where B is a collection of

binary relations.

Paradoxical Phenomena in Data Mining

In this subsection, some paradoxical phenomena

in data mining will be discussed. First, two semantical-

ly very different, but syntactically equivalent relations

K and K are presented; see Table 3. Namely, two

isomorphic relations K and K are considered (see

‘‘Isomorphism – A Critical Concept’’, where K is a

relation about human beings and the other K is

about hardware. The central theme is their paradoxical

phenomena of high frequency patterns. Let the thresh-

old be 3, namely, a sub-tuple in Table 3 is regarded as

a pattern (frequent itemset or undirected association

Deductive Data Mining using Granular Computing.

Table 2. The granular data model of a relation

Relation of
granules of P0 Original relation P0

U ! X0-
partition

Y0-
partition

X0-
coordinate

Y0-
coordinate

p1 ! {p1} {p1} 1 0

p2 ! {p2} {p2}
ffiffiffi
3

p
=2 1∕2

p3 ! {p3} {p3}
ffiffiffi
2

p
=2

ffiffiffi
2

p
=2

p4 ! {p4} {p4} 1∕2
ffiffiffi
3

p
=2

p5 ! {p5} {p5} 0 1

Relation of granules
of P30o

Original relation P30o

U ! X30o -
partition

Y 30o -
partition

X30o -
coordinate

Y 30o -
coordinate

p1 ! {p1} {p1}
ffiffiffi
3

p
=2 � 1 ∕ 2

p2 ! {p2} {p2} 1 0

p3 ! {p3} {p3}
ffiffiffi
3

p
=2 1 ∕ 2

p4 ! {p4} {p4}
ffiffiffi
2

p
=2

ffiffiffi
2

p
=2

p5 ! {p5} {p5} 1∕2
ffiffiffi
3

p
=2

Relation of granules
of P45o

Original relation P45o

U ! X45o -
partition

Y 45o -
partition

X45o -
coordinate

Y 45o -
coordinate

p1 ! {p1, p4} {p1}
ffiffiffi
2

p
=2 �

ffiffiffi
2

p
=2

p2 ! {p2} {p2}
ffiffiffi
3

p
=2 � 1 ∕ 2

p3 ! {p3} {p3} 1 0

p4 ! {p1, p4} {p4}
ffiffiffi
2

p
=2

ffiffiffi
2

p
=2

228D Deductive Data Mining using Granular Computing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:39

rule), if its number of occurrences is greater then

or equal to 3:

1. Relation K:(TWENTY, SJ) is an interesting rule; it

means the amount of business in San Jose is likely

to be 20 million.

10 Relation K’ (20, BRASS) is an isomorphic pattern.

However, this rule is not meaningful at all. Materi-

al, such as BRASS, has no specific weight. The

schema indicates that weight 20 is referred to PIN,

not BRASS.

20 Relation K’:(SCREW, BRASS) is interesting rule; it

says screws are most likely made from BRASS.

2. Relation K: (MAR, SJ) is an isomorphic pattern; it

is not interesting, because MAR refers to the birth

month of a supplier, not to a city. The schema

indicates that totally unrelated two columns (attri-

butes) contain the pair.

30 Relation K’: (20, SCREW) is interesting rule; it says

screws are most likely weighing 20.

3. Relation K: (TWENTY, MARCH) is an isomorphic

pattern; TWENTY refers to an ability of a supplier,

not to birth month.

This analysis clearly indicates that the ‘‘real word’’ mean-

ings of the universe and attribute domains have to be

considered. In other words, a relational database theory

over ‘‘real word set’’ is needed; in GrC, the real world

model is Fifth GrC Model (relational GrC Model).

BGDM – Mining with Constraints

In this section, the solutions for the case n = 2 is

illustrated: The following ‘‘real word’’ BGDM struc-

tures are added to K and K’ ; K’ is unchanged. But,

binary relations BAmount and BCity are defined on the

two attribute domains of Relation K:

1. BAmount is the smallest reflexive and symmetric

binary relation that has the pair (TWENTY, TEN)

as its member (Recall that a binary relation is a

subset of the Cartesian Product of Domains.

2. BCity is the smallest reflexive and symmetric binary

relation, in which the three cites, SC, MV, SJ are

considered to be very near to each other and very

far away from LA.

Note that BAmount and BCity induce two binary relations

BA and BC on U (they form the S in previous discus-

sions). Again K’ has no changes. Relation K with two

additional binary relations and Relation K define the

following BGDM

1. BGDM of K is (U, RBirthMonth, BA, BC).

2. BGDM of K’ has no changes, namely, (U, RWeight,

RPartName, RMaterial),

where RAj
denotes the equivalence relation induced by

the attribute Aj. So from BGDM point of view, the two

relation K and K’ are not isomorphic. and hence the

paradoxical phenomena disappear. This is a formal

model for data mining with constraints.

Various GrC models provided various degree of

‘‘real world set’’ structures on attribute domains. GrC

may provide a right direction to ‘‘real world’’ deductive

data mining.

Cross-references
▶Access Control

▶Association Rule

Deductive Data Mining using Granular Computing. Table 3. Relational table K and K’

Relation K Relation K’

(S# Amount Birth month CITY) (P# Weight Part name Material)

(S1 TWENTY MAR SC) (P1 20 SCREW STEEL)

(S2 TEN MAR SJ) (P2 10 SCREW BRASS)

(S3 TEN FEB MV) (P3 10 NAIL ALUMINUM)

(S4 TEN FEB MV) (P4 10 NAIL ALUMINUM)

(S5 TWENTY MAR SJ) (P5 20 SCREW BRASS)

(S6 TWENTY MAR SJ) (P6 20 SCREW BRASS)

(S7 TWENTY APR SJ) (P7 20 PIN BRASS)

(S8 FIFTY NOV LA) (P8 300 HAMMER ALLOY)

(S9 FIFTY NOV LA) (P9 300 HAMMER ALLOY)

Deductive Data Mining using Granular Computing D 229

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:39

▶Data Mining

▶Data Reduction

▶Decision Tree Classification

▶Decision Trees

▶ Frequent Itemsets and Association Rules

▶ Frequent Itemsets Mining with Constraints

▶Granular Computing

▶ Information Integration

▶Rough Set Approach

▶ Search Engine Metrics

▶Topological Data Models

Recommended Reading
1. Dunham M. Data Mining Introduction and Advanced Topics.

Prentice Hall, Englewood Cliffs, NJ, 2003, ISBN 0-13-088892-3.

2. EugeneWong T.C. Chiang: canonical structure in attribute based

file organization. Commun. ACM 14(9)563–597, 1971.

3. Fayad U.M., Piatetsky-Sjapiro G., and Smyth P. From data

mining to knowledge discovery: an overview. In Knowledge

Discovery in Databases, Fayard, Piatetsky-Sjapiro, Smyth, and

Uthurusamy (eds.). AAAI/MIT Press, Cambridge, MA, 1996.

4. Ginsburg S. and Hull R. Ordered attribute domains in the

relational model. XP2Workshop on Relational Database Theory,

1981.

5. Ginsburg S. and Hull R. Order dependency in the relational

model. Theor. Comput. Sci., 26:149–195, 1983.

6. Gracia-Molina H., Ullman J., and Windin J. Database Systems –

The Complete Book. Prentice HallEnglewood Cliffs, NJ, 2002.

7. Hsiao D.K., and Harary F. A formal system for information

retrieval from files. Commun. ACM 13(2), 1970; Corrigenda,

13(4), April 1970.

8. Lee T.T. Algebraic theory of relational databases. The Bell System

Tech. J., 62:(10)3159–3204, 1983.

9. Lin T.Y. Neighborhood systems and relational database. In Proc.

CSC’88, 1988, p. 725.

10. Lin T.Y. (1989) Chinese wall security policy – an aggressive

model. In Proc. Fifth Aerospace Computer Security Application

Conf., 1989, pp. 286–293.

11. Lin T.Y. Neighborhood systems and approximation in database

and knowledge base systems. In Proc. Fourth Int. Symp. on

Methodologies of Intelligent Systems (Poster Session), 1989,

pp. 75–86.

12. Lin T.Y. (1992) Topological and fuzzy rough sets. In Decision

Support by Experience – Application of the Rough Sets Theory,

R. Slowinski (ed.). Kluwer, Dordecht, 1992, pp. 287–304.

13. Lin T.Y. Granular computing on binary relations: I. Da min-

ing and neighborhood systems. I, II: Rough set representati-

ons and belief functions. In Rough Sets in Knowledge

Discovery, A. Skoworn and L. Polkowski (eds.). Physica-Verlag,

Wurzburg, 1998, pp. 107–140.

14. Lin T.Y. Data mining andmachine oriented modeling: a granular

computing approach. Appl. Intell. 13(2)113–124, 2000.

15. Lin T.Y. Attribute (feature) completion – the theory of attributes

from data mining prospect. Proc. 2002 IEEE Int. Conf. on Data

Mining, 2002:282–289.

16. Lin T.Y. Chinese wall security policy models: information flows

and confining Trojan horses. DBSec 2003:282–289.

17. Lin T.Y. Mining associations by linear inequalities. Proc. 2004

IEEE Int. Conf. on Data Mining, 2004:154–161.

18. Lin T.Y. Granular computing: examples, intuitions and model-

ing. GrC pp. 40–44.

19. Lin T.Y. A roadmap from rough set theory to granular comput-

ing. RSKT 2006:33–41, 2006.

20. Lin T.Y. Granular computing: ancient practices, modern forma-

lization and future directions. In: EDBS Granular Computing

Section.

21. Lin T.Y. and Chiang I.J. A simplicial complex, a hypergraph,

structure in the latent semantic space of document clustering.

Int. J. Approx. Reason. 40(1–2):55–80, 2005.

22. Lin T.Y. and Liau C.J. Granular computing and rough sets. Data

Min. Knowl. Discov. Handbook 2005:535–561, 2004.

23. Louie E. and Lin T.Y. Finding association rules using fast bit

computation: machine-oriented modeling. ISMIS 2000:486–

494, 2000.

24. Pawlak Z. Rough sets. Theoretical aspects of reasoning about

data. Kluwer, Dordecht, 1991.

25. Zadeh L.A. Fuzzy Sets Inf. Control 8(3):338–353, 1965.

26. Zadeh L.A. Some reflections on soft computing, granular com-

puting and their roles in the conception, design and utilization

of information/ intelligent systems. Soft Comput., 2:23–25,

1998.

Deductive Data Mining, Model for
Automated Data Mining

▶Deductive Data Mining using Granular Computing

Deductive Databases

▶Datalog

Dedup

▶Deduplication

Deduplication

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
Dedup; Single Instancing

230D Deductive Data Mining, Model for Automated Data Mining

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:39

Definition
The term Deduplication refers to the task of eliminat-

ing redundant data in data storage so as to reduce the

required capacity. The benefits of Deduplication in-

clude saving rack space and power consumption of

the data storage. Deduplication is often implemented

in archival storage systems such as content-addressable

storage (CAS) systems and virtual tape libraries (VTLs).

The term Deduplication is sometimes shortened to

Dedup.

Key Points
An address mapping table and a hash index are often

used for implementing Deduplication. The address

mapping table converts a logical address to a physical

location for each block, and the hash index converts a

hash value to a physical location for each block. When

a block X is to be written to the data storage, a hash

value is calculated from the content of X and then the

hash index is searched. If the same hash value is not

found in the hash index, a new block is allocated in

the storage space, X is written to the allocated block,

and then the mapping table and the hash index are

updated: a pair of the logical address and the physical

location of X is registered to the mapping table, and a

pair of the hash value and the physical location is also

registered to the hash index. In contrast, if the same

hash value is found, an identical block is supposed to

exist in the storage. A pair of the logical address of X

and the physical location retrieved from the hash index

is merely registered to the mapping table, such that the

block redundancy can be avoided. Note, above, that

the possibility of hash collision is ignored. In reality

there is the potential that the hash function produces

the same hash value for different block contents, and in

such rare cases, Deduplication would lose data in the

data storage. To mitigate the issue, some vendors in-

troduce hash algorithms which have a very low possi-

bility of hash collisions. However, this solution cannot

eliminate the potential of data loss completely. Others

have chosen to check block contents every time the

same hash value is found in the hash index. Such

careful block checking may degrade archiving through-

put, but can completely avoid data loss.

Deduplication techniques may generally operate at

different granularities and at different implementation

levels. For example, file systems may do Deduplication

at the file level, and disk array controllers may do

Deduplication at the sector level.

In enterprise systems, Deduplication is often imple-

mented at the controller of archiving storage systems

such as content-addressable storage (CAS) systems and

virtual tape libraries (VTLs). Intrinsically, enterprise

systems often store redundant data in the data storage.

Suppose that an email message which attaches a docu-

ment file is forwarded to many persons in the office.

A separatemailbox of each recipient thus stores the same

document file. Eliminating such duplication at archival

storage systems sounds a natural and effective idea.

Deduplication is recognized as a technique of energy

saving in data centers. Deduplication has the benefit of

reducing the number of disk drives that are required to

accommodate the explosively expanding data. Conse-

quent effects of saving electric power are expected

to help the improvement of system cost efficiency and

the reduction of environmental impact.

Cross-references
▶ Information Lifecycle Management

▶ Storage Management

▶ Storage Power Management

▶ Storage Virtualization

Recommended Reading
1. Diligent Technologies. A hyper factor: a breakthrough in data

reduction technology. White Paper.

2. Patterson H. Dedupe-centric storage for general applications.

White Paper, Data Domain.

3. Quinlan S. and Dorward S. Venti: a new approach to archival

storage. In Proc. Fast 2002 Conf. on file and storage Technolo-

gies, (USENIX FAST), 2002, pp. 89–102.

Deduplication in Data Cleaning

RAGHAV KAUSHIK

Microsoft Research, Redmond, WA, USA

Synonyms
Reference reconciliation; Record matching; Merge-

purge; Clustering

Definition
Many times, the same logical real world entity has

multiple representations in a relation, due to data

entry errors, varying conventions, and a variety of

other reasons. For example, when Lisa purchases pro-

ducts from SuperMart twice, she might be entered as

Deduplication in Data Cleaning D 231

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:39

two different customers, e.g., [Lisa Simpson, Seat-

tle, WA, USA, 98025] and [Simson Lisa, Seat-

tle, WA, United States, 98025]. Such duplicated

information can cause significant problems for the

users of the data. For example, it can lead to increased

direct mailing costs because several customers may be

sent multiple catalogs. Or, such duplicates could cause

incorrect results in analytic queries (say, the number of

SuperMart customers in Seattle), and lead to errone-

ous data mining models. Hence, a significant amount

of time and effort are spent on the task of detecting and

eliminating duplicates.

This problem of detecting and eliminating dupli-

cated data is referred to as deduplication. It is an im-

portant problem in the broader area of data cleaning.

Note that this is markedly more challenging than the

standard duplicate elimination problem for answering

select distinct queries in relational database sys-

tems, which consider two tuples to be duplicates if

they match exactly.

Historical Background
The problem of deduplication has been studied for a

long time under application-specific settings such as

library cataloging [17] and the Census Bureau [19].

Several techniques for measuring the similarity between

records for these domains have been developed. For

instance, the BigMatch technique [19] is used for dedu-

plication by the US Census Bureau.

With the advent of data warehouses, data cleaning

and deduplication in particular arose as a critical step

in the Extract-Transform-Load (ETL) cycle of loading

a data warehouse. Ensuring good quality data was

essential for the data analysis and data mining steps that

followed. Since themost commonfield of interest was the

customer address field used for applications such

as direct mailing, several tools such as Trillium [16]

emerged that performed deduplication of addresses.

For the past several years, the database research

community has addressed the deduplication problem

[1,4,10,11,13]. This has been largely in a domain-inde-

pendent context. The idea is to seek fundamental

operations that can be customized to any specific ap-

plication domain. This domain-independent approach

has had a commercial presence. For instance, Microsoft

SQL Server 2005 Integration Services supports data

cleaning operators called Fuzzy Lookup and Fuzzy

Grouping that respectively perform approximate

matching and deduplication.

A new area of application for data cleaning tech-

nology and deduplication in particular has been with

the data on the internet. There are web sites such as

Citeseer, Google Scholar, Live Search Academic, Froo-

gle and Live Products that integrate structured data

such as citations and product catalogs from various

sources of data and need to perform deduplication

prior to hosting the web service.

Foundations
Deduplication can be loosely thought of as a fuzzy or

approximate variant of the relational select dis-

tinct operation. It has as its input a table and a set

of columns; the output is a partition of this table where

each individual group denotes a set of records that

are approximately equal on the specified columns.

A large amount of information can be brought to

bear in order to perform deduplication, namely the

textual similarity between records, constraints that

are expected to hold over clean data such as functio-

nal dependencies and attribute correlations that are

known to exist. Techniques that use this wide variety

of information have been explored in prior work.

Figure 1 shows an example table containing citations

and a partition defined over all the textual columns,

illustrating the output of deduplication.

At the core of the deduplication operation is a

similarity function that measures the similarity or dis-

tance between a pair of records. It returns a similarity

score which is typically a value between 0 and 1, a

higher value indicating a larger similarity with 1 denot-

ing equality. Example similarity functions are edit

distance, jaccard similarity, Jaro-Winkler distance,

hamming similarity and cosine similarity [12]. Given

a table, the similarity function can be applied to all

pairs of records to obtain a weighted similarity graph

where the nodes are the tuples in the table and there is

a weighted edge connecting each pair of nodes, the

weight representing the similarity. Figure 2 shows the

similarity graph for the data in Fig. 1 (the numbers

inside the nodes correspond to the IDs). In practice, the

complete graph is rarely computed since this involves a

cross-product. Rather, only those edges whose weight is

above a given threshold are materialized. There are well-

known similarity join algorithms that perform this step

efficiently as the data scales.

The deduplication operation is defined as a parti-

tion of the nodes in the similarity graph. Intuitively,

one desires a partition where nodes that are connected

232D Deduplication in Data Cleaning

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:40

with larger edge weights have a greater likelihood of

being in the same group. Since similarity functions

often do not satisfy properties such as triangle inequal-

ity, there are multiple ways of partitioning the similar-

ity graph. Accordingly, several intuitive ways of

partitioning the graph have been proposed in the liter-

ature. Note that this is closely related to the problem of

clustering in data mining. Not surprisingly, a lot of the

clustering algorithms such as K-means clustering [15]

are also applicable for deduplication. While a compre-

hensive survey of these methods is beyond the scope

of this entry, some of the key graph partitioning

algorithms are reviewed.

In the Single-Linkage Clustering algorithm [14], at

any point there is a partitioning of the nodes. At each

step, the algorithm chooses a pair of groups to merge by

measuring the similarity between all pairs of groups and

picking the pair that has the highest similarity. The

similarity between two groups of nodes is defined as

the maximum similarity among all pairs of nodes, one

from each group. The algorithm can be terminated in

various ways, for example if there are a given number of

clusters or if there are no more pairs of groups to merge

which happens when all the connected components in

the similarity graph have been collapsed. Figure 2 also

shows the output of single-linkage when thresholds

the similarity graph and retains only edges whose sim-

ilarity is larger than or equal to 0.8. Notice that this

partition corresponds to the one shown in Fig. 1.

One of the limitations of the single-linkage ap-

proach is that nodes two groups may be merged even

if only one pair of nodes has a high similarity even if all

other pairs do not. In order to address this limitation,

an alternative is to decompose the graph into cliques.

This ensures that whenever two tuples are collapsed,

their similarity is large. Figure 3a shows the output of

the clique decomposition for the similarity graph in

Fig. 2, which only considers edges whose threshold is

greater than or equal to 0.8. Since the similarity between

nodes 2 and 3 is smaller than 0.8, the three nodes 1,2,3

cannot be collapsed as with single-linkage. Clique parti-

tioning can often be overly restrictive and leads to many

Deduplication in Data Cleaning. Figure 1. Example citation data and its deduplication.

Deduplication in Data Cleaning. Figure 2. Weighted similarity graph.

Deduplication in Data Cleaning D 233

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:40

pairs that have a large similarity getting split into multi-

ple groups, as is the case with nodes 1 and 3 in Fig. 3a.

Further, clique partitioning is known to be NP-hard.

To address this limitation, a relaxed version of the

clique approach is proposed, namely star clustering [2].

A star is a pattern consisting of a single center node and

a set of satellite nodes such that there is an edge with

weight above a given threshold that connects the center

to each of the satellite nodes. The intuition behind this

choice is that for similarity functions that do satisfy the

triangle inequality, the similarity between any pair of

satellite nodes cannot be arbitrarily low. Aslam et al.

[2] propose a greedy algorithm to compute a star

partitioning of the input similarity graph. The graph

is thresholded in that only edges with weight above a

given threshold are retained. At any point in the algo-

rithm, one operates with a current partitioning of the

nodes. Nodes that are not assigned to any partition so

far are deemed uncovered. At each step, one picks the

uncovered node that such that the sum of the weights

of its uncovered neighbors is the largest. This node and

is uncovered neighbors define the next star and are

grouped together. This process is repeated until no

node is left uncovered. This algorithm has been empir-

ically proven to be effective on several real-world data-

sets and is deployed commercially in the Fuzzy

Groupby transform in Microsoft SQL Server 2005 In-

tegration Services. Figure 3b shows the output of the

star clustering algorithm over the data in Fig. 2.

One of the more recently proposed partitioning

algorithms is correlation clustering [3]. Here, each

edge in the similarity graph is viewed as a positive(+)

edge when the similarity is high, say above a fixed

threshold and as a negative(�) edge if it is not a

positive edge. Figure 3c shows the similarity graph in

which one views each edge with weight greater than or

equal to 0.8 as a positive edge. Negative edges are not

shown explicitly. The goal of correlation clustering is

then to find a partition of the nodes that has the least

disagreement with the pairwise edges. For a given

partition of the nodes, the disagreement cost is the

number of positive edges where the nodes at either

end are split into different groups plus the number of

negative edges where the nodes at either end are

grouped together. While finding the optimal partition

is NP-hard, efficient approximation algorithms have

been proposed [3,7]. In fact, a simple one-pass rando-

mized algorithm similar in spirit to the star-clustering

algorithm can be shown to be a 3-approximation with

high probability. The algorithm maintains a current

partition of the nodes. At each step, it picks a random

uncovered node. This node with all its uncovered pos-

itive neighbors define the next group to be merged.

This process is repeated until no node is uncovered.

Figure 3c shows the output of the correlation cluster-

ing algorithm on the data in Fig. 2.

Multi-Attribute Deduplication

Thus far, the entire discussion has focused on the com-

putation of a single partition of the input table. However,

one might often wish to partition the same input table or

even multiple tables in a database in different ways. For

example, the data in Fig. 1 could be partitioned by

author, by title and by conference. These parti-

tions of the data do not necessarily have to agree. One

approach to computing these partitions is to separately

run the algorithms described above for each of the

chosen attributes. But clearly these attributes are not

independent of one another. For example, the fact that

the paper titles of papers 2 and 3 are grouped together

provides additional evidence that the respective con-

ference values must also be grouped together.

Deduplication in Data Cleaning. Figure 3. Example partitions.

234D Deduplication in Data Cleaning

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:40

Ananthakrishna et al. [1] exploit this intuition in

a multi-table setting where there is a hierarchical

relationship among the different tables. For example,

consider an address database with separate tables for

nations, states, cities and street addresses. The idea is

to proceed bottom-up in this hierarchy. The idea

is to begin by deduplicating streets and then follow

it up with cities, states and finally nations. At each

step, the output of the previous step is used as contextual

information for the current step. For example, if two

states share many common cities, this provides further

evidence that the two states must be collapsed.

The same intuition has also been explored in a

more general setting where the data objects are

arranged in a graph [9].

Constraints

A large body of work has focused on incorporating

various constraints over the data into the deduplica-

tion process [3–5,8,18]. Five classes of work are identi-

fied in this overall space of incorporating constraints.

The first consists of constraints on individual tuples.

These are constraints that express the condition that

only some tuples (for instance ‘‘authors that have pub-

lished in SIGMOD’’) may participate in the deduplica-

tion. Such constraints are easily enforced by pushing

these filter conditions before deduplication is invoked.

The second consists of constraints that are in effect

parameters input to the deduplication algorithm. For

instance, the K-means clustering algorithm takes as

input the number K that indicates the number of

output groups desired. If the user of deduplication

has some expectation for the number of groups

returned after the data is partitioned, this may be

used as a constraint during the deduplication itself.

Another class of constraints consists of positive and

negative examples [5]. For example, for the data in

Fig. 1, one might know that records 1 and 2 are indeed

the same. Alternatively, one might also provide nega-

tive examples such as the fact that records 1 and 4 are

not identical. These constraints may be used either as

hard constraints to only consider partitions where the

constraints are met, or to adapt the similarity function

to accommodate the input examples.

The role of functional dependencies and inclusion

dependencies in deduplication has also been explored

[6]. The idea is to model the deduplication problem as

a renaming problem where one is allowed to rename

the attribute values of any record. At the end of the

renaming, the partitions are defined by exact match-

ing. Thus if the titles of records 1 and 2 in Fig. 1 are

renamed to be the same, this signifies that these two

titles have been collapsed. Every renaming has a cost

defined by a distance function. The cost of a renaming

is the distance between the new and old values. The

input also consists of a set of functional and inclusion

dependencies that are supposed to hold on the clean

data. For example, one might require that title

functionally determine conference for the data in

Fig. 1. The goal is to compute the lowest cost renaming

such that the output of the renaming satisfies all the

constraints. Since this problem is NP-hard to solve

optimally, efficient heuristics are proposed in [6].

Finally, the use of groupwise constraints for dedu-

plication has also been investigated [18,8]. Here every

group of tuples is expected to satisfy a given aggregate

constraint. Such constraints arise when multiple sour-

ces of data are integrated. For instance, suppose one is

integrating data from ACM and DBLP and that one

is performing deduplication on the set of authors in

the union of these sources. One constraint one might

wish to assert on any subset of authors being considered

for a collapse is that the set of papers authored in ACM

and DBLP have a substantial overlap.

With an appropriate use of similarity function

thresholds, constraints, and correlation attributes a

user can guide the deduplication process to achieve

the desired result.

Key Applications
See applications of data cleaning.

Cross-references
▶Data Cleaning

▶Data Integration

▶ Inconsistent Databases

▶ Probabilistic Databases

▶Record Matching

Recommended Reading
1. Ananthakrishna R., Chaudhuri S., and Ganti V. Eliminating

fuzzy duplicates in data warehouses. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002.

2. Aslam J.A., Pelehov K., and Rus D. A practical clustering algo-

rithm for static and dynamic information organization. In Proc.

10th Annual ACM -SIAM Symp. on Discrete Algorithms, 1999.

3. Bansal N., Blum A., and Chawla S. Correlation clustering. Mach.

Learn., 56(1–3):89–113, 2002.

Deduplication in Data Cleaning D 235

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:40

4. Bhattacharya I. and Getoor L. Collective entity resolution in

relational data. In Data Engineering Bulletin, 2006.

5. Bilenko M., Basu S., and Mooney R.J. Integrating constraints and

metric learning in semi-supervised clustering. In Proc. 21st Int.

Conf. on Machine Learning, 2004.

6. Bohannon P., Fan W., Flaster M., and Rastogi R. A cost based

model and effective heuristic for repairing constraints by value

modification. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005.

7. Charikar M., Guruswami V., and Wirth A. Clustering

with qualitative information. In J. Comp. and System Sciences,

2005.

8. Chaudhuri S., Sarma A., Ganti V., and Kaushik R. Leveraging

aggregate constraints for deduplication. In Proc. ACM SIGMOD

Int. Conf. on Management of Data. 2007.

9. Dong X., Halevy A.Y., and Madhavan J. Reference reconciliation

in complex information spaces. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2005.

10. Fuxman A., Fazli E., and Miller R.J. ConQuer: efficient manage-

ment of inconsistent databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2005.

11. Galhardas H., Florescu D., Shasha D., Simon E., and Saita C.

Declarative data cleaning: Language, model, and algorithms.

In Proc. 27th Int. Conf. on Very Large Data Bases, 2001.

12. Koudas N., Sarawagi S., and Srivastava D. Record linkage: simi-

larity measures and algorithms. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006.

13. Sarawagi S. and Bhamidipaty A. Interactive deduplication using

active learning. In Proc. 8th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2002.

14. Single Linkage Clustering. http://en.wikipedia.org/wiki/Single_

linkage_clustering.

15. The K-Means Clustering Algorithm. http://mathworld.wolfram.

com/K-MeansClusteringAlgorithm.html.

16. Trillium Software. http://www.trilliumsoft.com/trilliumsoft.nsf.

17. Toney S. Cleanup and deduplication of an international biblio-

graphic database. Inform. Tech. Lib., 11(1), 1992.

18. Tung A.K.H., Ng R.T., Lakshmanan L.V.S., and Han J. Con-

straint-based clustering in large databases. In Proc. 8th Int.

Conf. on Database Theory, 2001.

19. Yancey W.E. Bigmatch: a program for extracting probable

matches from a large file for record linkage. Statistical Research

Report Series RRC2002/01, US Bureau of the Census, 2002.

Deep-Web Search

KEVIN C. CHANG

University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Synonyms
Hidden-Web search

Definition
With the proliferation of dynamic Web sites, whose

contents are provided by online databases in response

to querying, deep-Web search aims at finding informa-

tion from this ‘‘hidden’’ or ‘‘deep’’ Web. Current search

engines crawl and index pages from statically linked

Web pages, or the ‘‘surface’’ Web. As such crawlers

cannot effectively query online databases, much of

the deepWeb is not generally covered by current search

engines, and thus remains invisible to users. A deep-

Web search system queries over online databases to

help users search these databases uniformly.

Historical Background
In the last few years, the Web has been rapidly ‘‘deep-

ened’’ by the massive networked databases on the Inter-

net. While the surface Web has linked billions of static

HTML pages, a far more significant amount of infor-

mation is hidden in the deep Web, behind the query

forms of searchable databases. A July 2000 survey [1]

claims that there were 500 billion hidden pages in 105

online sources, and an April 2004 study [3] reports 1.2

million query interfaces on the Web. Such information

cannot be accessed directly through static URL links;

they are only available as responses to dynamic queries

submitted through the query interface of a database.

Because current crawlers cannot effectively query data-

bases, such data is invisible to traditional search

engines, and thus remain largely hidden from users.

With the proliferation of such dynamic sources,

deep-Web search has become crucial for bridging

users to the vast contents behind query forms. Unlike

traditional search on the surface Web, searching over

the deep Web requires integrating structured data

sources at a large scale. While information integration

has been investigated actively for decades, since 2000,

large scale information integration has become the

key issue for enabling deep-Web search: How to tackle

the challenge of large scale? How to take advantage

of large scale?

Foundations

Search Architecture

With the dynamic, structured nature of deep-Web data

sources, depending on the application domains of

focus, a deep-Web search system can take two forms

of architecture:

236D Deep-Web Search

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:40

1. Crawl-and-Index: A search system can crawl deep-

Web sources regularly to build a local index for

search, similar to what the current ‘‘surface-oriented’’

Web search engines do. This approach, by building a

local index, will give fast online search performance

but may risk returning stale data, if target sources

are updated frequently. For comprehensive and up-

to-date crawling from data sources offline to retrieve

their structured data objects, it will require special

‘‘structure-aware’’ crawling techniques that can deal

with query-driven sources.

2. Discovery-and-Forward: A search engine can auto-

matically discover databases from the Web, by

crawling and indexing their query interfaces (and

not their data pages), and forward user queries to

the right sources for the actual search of data, upon

user querying. This approach, with its on-the-fly

querying, gives up-to-date results, while there may

be increased query latency online. As a key chal-

lenge, it needs to be able to interact with data

sources to execute user queries.

Source Modeling

How does one to find sources and model what they are

about? In building a deep-Web search system, one first

needs to determine the set of sources to integrate, either

by crawling offline or querying online. With the large

scale of the Web, where numerous sources are scattered

everywhere, it is necessary to crawl the Web to discover

and model their query interfaces. After crawling finds a

query interface, its query attributes and capabilitiesmust

be extracted. The objective of this form extraction, which

extracts the structure of query forms, is to provide a

‘‘model’’ of how a source is queried, so that the search

system can interact with the source.

Guarding data behind them, such query interfaces are

the ‘‘entrance’’ to the deep Web. These interfaces, usually

in HTML query forms, express query conditions for

accessing objects from databases behind. Each condi-

tion, in general, specifies an attribute, one or more

supported operators (or modifiers), and a domain

of allowed values. A condition is thus a three-tuple

[attribute; operators; domain], e.g., [author;

{"first name. . .", "start. . .", "exact name"};

text] in interface shown in Fig. 1a. Users can then

use the condition to formulate a specific constraint (e.g.,

[author = "tom clancy"] by selecting an operator

(e.g., "exact name") and filling in a value (e.g., "tom

clancy"). Formodeling and integratingWeb databases,

the very first step is to ‘‘understand’’ what a query inter-

face says – i.e., what query capabilities a source supports

through its interface, in terms of specifiable conditions.

For instance, Amazon.com (Fig. 1a) supports a set of

five conditions (on author, title, . . ., publisher).

Such query conditions establish the schema model un-

derlying the Web query interface. These extracted

schema model, each of which representing the query

capabilities of a source, can then be used for determin-

ing whether a source is relevant to the desired applica-

tions or user queries and how to query the source.

There are two main approaches for form extrac-

tion: The first approach, grammar-based parsing [9],

observes that there are common visual patterns in the

layout of query forms, abstracts these patterns as gram-

mar production rules, and executes a ‘‘best-effort pars-

ing’’ to extract the form structure. That is, given the set of

grammar rules, it assembles the ‘best-possible’’ parse of

the query form. In this approach, it is shown that a small

set of (20–30) patterns can already capture common

layouts across different subject domains (books, airlines,

etc.) of query forms.

The second approach, classifier-based recognition,

applies learning-based or rule-based classifiers to

determine the role of each form element, to formulate

an overall interpretation of the form (e.g., [4]). It

can first identify, for each input element (e.g., a text

Deep-Web Search. Figure 1. Query interfaces examples.

Deep-Web Search D 237

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:40

input box), a set of text elements as the candidates of

its labels. Based on the candidates for each input

element, the process then goes on to form a global

assignment, which will reconcile conflicts between the

candidates. The recognition of candidates can be based

on features such as the proximity between elements

(e.g., what are the closest text elements to this input

element?) or the content of text elements (e.g., can one

classify this text element as likely a label, e.g.,

‘‘author’’?).

Schema Matching

Schema matching, for corresponding attributes at dif-

ferent sources, is crucial for translating queries (as will

be discussed later) to search these sources. It has been a

central problem in information integration, and thus

also a key challenge for deep-Web search. Because one

is dealing with querying Web sources, such matching

takes query forms (as extracted by source modeling) as

input schemas (where attributes are specified for que-

rying) and attempts to unify them by finding their

correspondence (or by matching them to a common

mediated schema). While a classic problem, however, it

takes a new form in this context, with both new chal-

lenges and new insights.

As the new challenge, for searching the deep Web,

in many application scenarios, such matching must

deal with large scale, to match numerous sources

(e.g., many airfare sources; book sources). Traditional

schema matching targets at finding attribute corre-

spondence between a pair of sources. Such pairwise

matching, by tackling two sources at a time, does not

directly handle a large number of data sources.

On the other hand, however, the new setting also

hints on new approaches that can exploit the scale.

Given there are many sources on the Web, instead of

focusing on each pair of sources, one can observe the

schemas of all the sources together, to take advantage

of the ‘‘holistic’’ information observable only across

many sources. Such holistic methods can, in particular,

explore the ‘‘regularity’’ existing among Web sources.

Note that – since one is dealing with query forms for

schema matching – these query forms are ‘‘external’’

schemas, which are designed for users to easily under-

stand. Unlike ‘‘internal’’ schemas (say, for database

tables), which may use arbitrary variable names (e.g.,

‘‘au_name’’), these external schemas tend to use com-

mon terms (e.g., ‘‘author’’) as the names of attributes.

As conventions naturally emerge, it has been observed

[2] that certain regularities exist, in particular, for

what attributes are likely to appear and what names

they may be labeled with.

There are several approaches that leverage this new

insight of holistic schema matching, to exploit the

regularities across multiple sources. First, the approach

of model discovery [2]: Schema matching may be con-

sidered as discovering a hidden generative model that

dictates the occurrences of attribute names (such as

when to use ‘‘author’’ versus ‘‘first name’’ and ‘‘last

name’’). Such a model effectively captures how attri-

bute terms would occur – some attributes are synonyms

that will not be used together (e.g., ‘‘author’’ and

‘‘name’’), and some attributes are usually grouped

with each other (e.g., ‘‘first name’’ and ‘‘last name’’).

With this conceptual view, the schema matching prob-

lem is transformed into finding an underlying model

that is statistically consistent with the input schemas

(to be matched). Various statistical methods can then

be used for this model discovery, such as hypothesis

testing or correlation mining.

Second, the approach of attribute clustering: In this

view, one considers finding synonym attributes as clus-

tering of those attributes into equivalent classes [8].

Given a set of query forms, where attributes are

extracted with a hierarchy that indicates how they are

related to each other in a form, this approach clusters

attributes from different sources into a hierarchy of

clusters that represent their synonym and grouping

relationships. The clustering process will exploit the

hierarchical relationship extracted from each individ-

ual query form as well as the similarities between

attribute labels.

Furthermore, another new insight can be observed

that, in the context of the deep Web, since one is

dealing with matching between query interfaces, it is

possible to actually try out querying, or probing, each

source to derive their attribute correspondence.

Exploiting the dynamic response of query forms has

been explored for schema matching [6].

Offline Crawling

In the Crawl-and-Index architecture, like a typical

search engine, data objects can be collected from vari-

ous sources, index them in a local database, and pro-

vide search from the database. To realize this search

framework, one needs to crawl data offline (before user

searches) from various sources. The objective of this

deep Web crawling is to collect data, as exhaustively as

238D Deep-Web Search

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

possible, from each source to provide comprehensive

coverage. As such sources are accessed by querying

through their query forms, a deep Web ‘‘crawler’’ [5]

thus, for each source, repeatedly submitting queries

and collect data from query results. There are two

issues for realizing this crawling:

First, comprehensiveness: How to formulate queries

so that the results cover as much as possible the data at

the source? Each query is a way to fill in the query form

of the source. For those query attributes that have a

clearly defined set of input values (e.g., a selection-box

of two choices {paperback, hardcover} for book for-

mat), each value can be enumerated in querying. For

attributes with an open set of input values, such as a

text input that takes any keywords, the crawler will need

to be driven by certain ‘‘domain knowledge’’ that can

generate a set of keyword terms relevant to the applica-

tion, e.g., {computer, internet, web, databases, . . .}.

Second, efficiency: How to minimize the number of

queries to submit to a source for crawling its content?

Since different queries may retrieve overlapping

results, it is possible to choose different sets of queries

for crawling. For efficiency, one wants to minimize the

cost of querying, such as the number of queries sub-

mitted. The problem is thus, as each data object can be

reached by multiple queries, to select the smallest set of

queries that together reach all the data objects [7].

Online Querying

In the Discover-and-Forward architecture, user queries

are directed to search relevant sources, at the time of

querying. Unlike offline crawling, which aims at col-

lecting all the data from each source by any query

(subject to cost minimization), this online querying

must execute a specific user query at run time. Given a

query (in some unified front-end language), for each

source, one needs to translate the query for the source,

to fill in its query form. This query translation will

rewrite the original query into a new format that

satisfies two criteria: First, it is executable at the source:

The new query must contain only query conditions

and operators that the source can accept in its query

form. Second, it is a good approximation of the origi-

nal query: The translated query, if not ‘‘equivalent’’ to

the original query, should be as close to it as possible.

In terms of techniques, query translation (e.g., [10])

can be driven by either generic type hierarchies (e.g.,

how to transform commonly-used data types such as

date and number) or specialized domain knowledge.

Key Applications
� Enhancing General Web Search: Current search

engines have started to combine specialized search

responses for certain categories of queries (e.g.,

returning stock information for search of company

names).

� Enabling Vertical Web Search: Searching data on the

Web in specific domains, such as travel or real estate.

Cross-references
▶ Information Integration

▶Query Translation

▶ Schema Matching

Recommended Reading
1. BrightPlanet.com. The Deep Web: Surfacing Hidden Value. http://

www.brightplanet.com/resources/details/deepweb.html, 2000.

2. He B. and Chang K.C.C. Statistical Schema Matching across

Web Query Interfaces. In Proc. ACM SIGMOD Int. Conf. on

Management of Data,, 2003, pp. 217–228.

3. He H., Meng W., Lu Y., Yu C.T., and Wu Z. Towards deeper

understanding of the search interfaces of the deep Web. In Proc.

16th Int. World Wide Web Conference, 2007, pp. 133–155.

4. He B., Patel M., Zhang Z., and Chang K.C.C. Accessing the deep

Web: a survey. Commun ACM, 50(5): 94–101, 2007.

5. Raghavan S. and Garcia-Molina H. Crawling the hidden Web.

In Proc. 27th Int. Conf. on Very Large Data Bases, 2001,

pp. 129–138.

6. Wang J., Wen J.R., Lochovsky F.H., and Ma W.Y. Instance-based

schema matching for web databases by domain-specific query

probing. In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 408–419.

7. Wu P., Wen J.R., Liu H., and Ma W.Y. Query selection

techniques for efficient crawling of structured Web sources.

In Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 47.

8. Wu W., Yu C.T., Doan A., and Meng W. An interactive

clustering-based approach to integrating sourc query interfaces

on the deep Web. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2004, pp. 95–106.

9. Zhang Z., He B., and Chang K.C.C. Understanding Web query

interfaces: best-effort parsing with hidden syntax. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004, pp. 117–

118.

10. Zhang Z., He B., and Chang K.C.C. Light-weight domain-based

form assistant: querying web databases on the fly. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 97–108.

Degrees of Consistency

▶ SQL Isolation Levels

Degrees of Consistency D 239

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

DEMs

▶Digital Elevation Models

Degrees of Cosistency

▶ SQL Isolation Levels

Dendrogram

▶Visualizing Clustering Results

Dense Index

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1Federal University of Rio Grande do Sul, Porte Alegre,

Brazil
2University of California-Riverside, Riverside, CA, USA

Definition
Consider a tree-based index on some numeric attribute

A of a relation R. This index is called dense if every

search-key value of attribute A in relation R also

appears in the index. Hence for every search-key

value x in A, there is an index record of the form

<x, pointer>, where pointer points to the first record

(if many such exist) in relation R that has R.A = x.

Key Points
Tree-based indices are built on numeric attributes

and maintain an order among the indexed search-key

values. Hence, they provide efficient access to the

records of a relation by attribute value. Consider for

example an index built on attribute A of relation R.

The leaf pages of the index contain index-records of

the form <search-key, pointer>, where search-key cor-

responds to a value from the indexed attribute A and

pointer points to the respective record in the indexed

relation R with that attribute value. If all distinct values

that appear in R.A also appear in index records, this

index is dense, otherwise it is called sparse. If there are

many records in relation R that have R.A = x, then the

index record <x, pointer> points to the first of these

records. If relation R is ordered on attribute A, the rest

of these records are immediately following after the

first accessed record (in the same page of the relation

file). If relation R is not ordered according to attribute

A, the remaining records can be accessed from a list of

pointers after this first record.

Tree-indices are further categorized by whether

their search-key ordering is the same with the relation

file’s physical order (if any). Note that a relation file

may or may not be ordered. For example, if a relation R

is ordered according to the values on the A attribute,

the values in the other attributes will not be in order. If

the search-key of a tree-based index is the same as the

ordering attribute of a (ordered) file then the index is

called primary. An index built on any non-ordering

attribute of a file is called secondary. If an index is

secondary then it should also be dense. Since the

index is secondary, the relation is not ordered accord-

ing to the search-key value of this index. As a result,

finding a given record in the file by this index requires

that all search-key values of the indexed attribute are

present in the index, i.e. it is a dense index.

A dense index is typically larger than a sparse index

(since all search-key values are indexed) and thus

requires more space. It also needs to be updated for

every relation update that involves the attribute value

being indexed.

Cross-references
▶Access Methods

▶Bþ-Tree

▶ Indexing

▶ ISAM

Recommended Reading
1. Elmasri R. and Navathe S.B. Fundamentals of Database Systems,

5th edn. Addisson-Wesley, Boston, MA, 2007.

2. Manolopoulos Y., Theodoridis Y., and Tsotras V.J. Advanced

Database Indexing. Kluwer, Dordecht, 1999.

3. Silberschatz A., Korth H.F., and Sudarshan S. Database System

Concepts, 5th edn. McGraw-Hill, New York, 2006.

Dense Pixel Displays

DANIEL A. KEIM, PETER BAK, MATTHIAS SCHÄFER

University of Konstanz, Konstanz, Germany

Synonyms
Data visualization; Information displays; Pixel orient-

ed visualization techniques; Visual data exploration;

240D DEMs

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

Information visualization; Visualizing large data sets;

Visualizing multidimensional and multivariate data;

Visual data mining

Definition
Dense Pixel Displays are a visual data exploration tech-

nique. Data exploration aims at analyzing large

amounts of multidimensional data for detecting

patterns and extracting hidden information. Human

involvement is indispensable to carry out such a

task, since human’s powerful perceptual abilities and

domain knowledge are essential for defining interesting

patterns and interpreting findings. Dense pixel displays

support this task by an adequate visual representation

of as much information as possible while avoiding

aggregation of data-values. Data is shown using every

pixel of the display for representing one data point.

Attributes of the data are mapped in separate sub-

windows of the display, leaving one attribute for one

sub-window. The data point’s value for an attribute is

mapped to the pixel’s color. The arrangement of pixels

in sub-windows is determined by the mapping of the

data-sequence into a two dimensional space preserving

the pixel’s neighborhood relations.

A number of different pixel-oriented visualizat-

ion techniques have been proposed in recent years and

shown to be useful for visually exploring data in many

applications. These techniques differ mainly in their

approach to arrange individual pixels in relation to

each other, and in their choice of shaping the sub-

windows to make maximal use of space.

Historical Background
Scientific, engineering and environmental databases

containing automatically collected data have grown to

an overwhelming size, which need to be analyzed and

explored. The desire to augment human’s perceptual

abilities and understandmultidimensional data inspired

many scientists to develop visualization methodologies.

The progress in information technology offers more and

more options to visualize data, in particular multidi-

mensional data. Detecting information in low dimen-

sions (1D, 2D, 3D) by taking advantage of human’s

powerful perceptual abilities is crucial to understand

the higher dimensional data set. This assumption is

fundamental in all visualization techniques.

One important thing in analyzing and exploring large

amounts of data is to visualize the data in a way that

supports the human. Visual representations of the data

are especially useful for supporting a quick analysis of

large amounts ofmulti-modal information, providing the

possibility of focusing on minor effects while ignoring

known regular features of the data. Visualization of data

which have some inherent two- or three-dimensional

semantics has been done even before computers were

used to create visualizations. In the well-known books

[12,13], Edward R. Tufte provides many examples of

visualization techniques that have been used for many

years. Since computers are used to create visualizations,

many novel visualization techniques have been developed

by researchers working in the graphics field. Visualization

of large amounts of arbitrary multidimensional data,

however, is a fairly new research area. Early approaches

are scatterplot matrices and coplots [5], Chernoff faces

[4], parallel coordinates [6], and others [1,3]. Researchers

in the graphics/visualization area are extending these

techniques to be useful for large data sets, as well as

developing new techniques and testing them in different

application domains. Newer approaches for dense pixel

displays are developed for several applications for visua-

lizing data, i.e. geospatial data [9], financial data [14], text

[10], and neuroscience data [11].

Foundations

Dense Pixel Displays as Optimization Problem – Pixel

Arrangement

One of the first questions in creating a dense pixel display

is how the pixels are arranged within each of the sub-

windows. Therefore, only a good arrangement will allow

a discovery of clusters and correlations among the attri-

butes. It is reasonable to distinguish between data sets

where a natural ordering of the items is given, such as in

time-series data or a production-line, and between data

sets without inherent ordering, such as results of search-

queries. In all cases, the arrangement has to consider the

preservation of the distance of the one-dimensional or-

dering in the two-dimensional arrangement.

Mappings of ordered one-dimensional data sets

to two dimensions have been attracted the attention

of mathematicians already long before computer came

into existence.

So called space-filling curves attempt to solve this

problem. The Peano-Hilbert curve provides one possi-

ble solution. However, with this method it is often

difficult to follow the flow of items. The Morton

curve is an alternative proposed to overcome this

problem, which has a simpler regularity.

Dense Pixel Displays D 241

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

The general idea, as first proposed in [8] is based

on the idea of a line and column-wise arrangement of

the pixels. If simple left-right or top-down arrange-

ments are used on pixel level, the resulting visualiza-

tions do not provide useful results, since it creates

random neighborhoods that bias user’s perception

of correlations and clusters.

One possibility to improve the visualizations is to

organize the pixels in small groups and arrange the

groups to form some global pattern, as suggested by

recursive pattern visualizations. The basic idea of re-

cursive pattern visualization technique is based on a

scheme which allows lower-level patterns to be used as

building blocks for higher-level patterns. In the sim-

plest case the patterns for all recursion levels are iden-

tical. In many cases, however, the data has some

inherent structure which should be reflected by the

pattern of the visualization. In order to create an ap-

propriate visualization of patterns in a recursive man-

ner, the algorithm must allow users to provide

parameters for defining the structure for the low and

high recursion levels.

Therefore, one major difference between the ‘‘re-

cursive pattern’’ technique and other visualization

techniques is that it is based on a generic algorithm

allowing the users to control the arrangement of pixels.

By specifying the height and width for each of the

recursion levels, users may adapt the generated visua-

lizations to their specific needs. This allows the ‘‘recur-

sive pattern’’ technique to be used for a wide range of

tasks and applications.

A schematic example for a highly structured ar-

rangement is provided in the Fig. 1 The visualization

shows the financial data of four companies for eight

years. The subspaces are subdivided into different time

intervals. A sub-window represent the whole time

period, which is further divided into single years,

months, weeks and days. Since days represent the low-

est recursion level, they correspond to one single pixel

(as schematically shown in Fig. 1 Left). This structure

is preserved in the visual representation of the dense

pixel display allowing fast extraction detailed informa-

tion (Fig. 1 Right). One of the tasks that would benefit

from such a representation is detecting a strong corre-

lation for example between IBM stock-prices and the

dollar’s exchange rate in the first 2.5 years.

Dense Pixel Displays as Optimization Problem – Shape

of Sub-windows

The second important question concerns how the shapes

of the sub-windows should be designed. Sub-windows

are used to represent single attributes of the dataset. In

the optimization functions used in the past, the distance

between the pixel-attributes belonging to the same data

object was not taken into account. This, however, is

necessary in order to find appropriate shapes for the

sub-windows. In many cases a rectangular partitioning

of the display was suggested. The rectangular shape of

the sub-windows allows a good screen usage, but at the

same time it leads to a dispersal of pixels belonging to

one data object over the whole screen, especially for data

sets with many attributes. Because the sub-windows for

the attributes are rather far apart, it might be difficult to

detect correlating patterns.

An idea for an alternative shape of the sub-

windows is the circle segments technique. The technique

Dense Pixel Displays. Figure 1. Left: Schematic representation of a highly structured arrangement. Right:

Recursive arrangement of financial data (September 1987–February 1995: above left IBM, above right DOLLAR,

below left: DOW JONES, below right GOLD) (adopted from [8]).

242D Dense Pixel Displays

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

tries to minimize the average distance between the pixels

that belong to the dimensions of one data object.

The fundamental idea of the ‘‘circle segments’’ visu-

alization technique is to display the data dimensions as

segments of a circle (as shown in Fig. 2). If the data

consists of k attribute-dimensions, the circle is parti-

tioned into k segments, each representing one dimen-

sion. The data items within one segment are arranged

in a back and forth manner orthogonal to the line that

halves the two border lines of the segment (cf. Fig. 2).

The drawing starts in the centre of the circle and draws

the pixels from one border line of the segment to the

other. Whenever the drawing hits one of the border

lines, it is moved towards the outside of the circle by

changing the direction. When the segment is filled out

for one attribute, the next segment will start, until all

dimensions are visualized. A schematic representation

is shown in Fig. 2 (left). The results for such a repre-

sentation is shown for 50 stock prices from the Frank-

furt stock index, representing about 265,000 data

values (Fig. 2 Right). The main advantage of this

technique is that the overall representation of the

whole data set is better perceivable – including poten-

tial dependencies, analogies, and correlations between

the dimensions.

Another arrangement of sub-windows is the ar-

rangement as bar chart, and resulting technique is called

Pixelbarcharts (see Fig. 4). The basic idea of Pixelbarch-

arts is to use the intuitive and widely used presentation

paradigm of bar charts, but also use the available

screen space to present more detailed information.

By coloring the pixels within the bars according to

the values of the data records, very large amounts of

data can be presented to the user. To make the display

more meaningful, two parameters of the data records

are used to impose an ordering on the pixels in the

x- and y-directions. Pixel bar charts can be seen as a

generalization of bar charts. They combine the general

idea of xy-plots and bar charts to allow an overlap-free,

non-aggregated display of multi-attribute data.

Dense Pixel Displays as Optimization Problem –

Ordering of Dimensions

The final question to consider is the ordering of attri-

butes. This problem is actually not just a problem of

pixel-oriented techniques, but a more general problem

which arises for a number of other techniques such as

the parallel coordinates technique. The idea is that the

data attributes have to be positioned in some one- or

two-dimensional ordering on the screen, and this is

usually done more or less by chance – namely in the

order in which the dimensions happen to appear in

the data set. The ordering of dimensions, however,

has a major impact on the expressiveness of the visual-

ization. One solution for finding an effective order of

dimensions is to arrange the dimensions according to

their similarity. For this purpose, the technique has

to define measures which determine the similarity of

two dimensions. Data mining algorithms, such as re-

gression models or clustering tools, but also statistical

approaches, such as inter-correlation matrixes, can

provide solutions for such a problem.

Dense Pixel Displays. Figure 2. Left: Circle segment technique schema for eight attribute-dimensions. Right: Twenty

years of daily data of the FAZ Index (January 1974–April 1995) (adopted from [1]).

Dense Pixel Displays D 243

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

Key Applications
Dense Pixel Displays have a wide range of applications.

They are especially important for very large high dimen-

sional data sets, which occur in a number of applications.

Example applications include financial data analysis like

the ‘‘financial matrix’’ [14], business data analysis

like ‘‘Pixelbarcharts’’ [7], text analysis like ‘‘literature

fingerprinting’’ [10] and geospatial analysis like

Dense Pixel Displays. Figure 3. Top: Shows 51 various funds of the same financial institution and their performance

over time, green means plus, red minus. Good and bad performing funds are visible easily. Bottom: Shows 65 various

funds of another financial institution and their performance over time, green means plus, red minus. Good and bad

performing funds are visible easily. Summed up, it is also visible that funds of the below financial institution are

more continuous and have less volatility.

Dense Pixel Displays. Figure 4. Illustrates an example of a multi-pixel bar chart of 405,000 multi-attribute web sales

transactions. The dividing attribute is product type; the ordering attributes are number of visits and dollar amount.

The colors in the different bar charts represent the attributes dollar amount, number of visits, and quantity

(adopted from[7]).

244D Dense Pixel Displays

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:41

‘‘PixelMaps’’ [9]. The following sections show a few

examples of the techniques.

Financial Matrix

‘‘Financial matrix’’ visualization is a relevance driven

visualization technique of financial performance

measures. Standard statistical measures for technical

financial data analysis often produce insufficient and

misleading results that do not reflect the real perfor-

mance of an asset.

The technique for visualizing financial time series

data eliminates these inadequacies, offering a complete

Dense Pixel Displays. Figure 5. Analysis of the discrimination power of several text measures for authorship attribution.

Each pixel represents a text block and the pixels are grouped into books. Color is mapped to the feature value, e.g. in c) to

the average sentence length. If a measure is able to discriminate between the two authors, the books in the first line (that

have been written by J. London) are visually set apart from the remaining books (written by M. Twain). This is true for

example for the measure that was used in c) and d) but not for the measure that was used to generate f). Outliers (such as

the book Huckleberry Finn in the middle of the third line in c)) stick out immediately. The technique allows a detailed

analysis of the development of the values across the text (adopted from [10].

Dense Pixel Displays D 245

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:42

view on the real performance of an asset. The tech-

nique is enhanced by relevance and weighting func-

tions according to the user’s preferences in order to

emphasize specific regions of interest. Figure 3 shows

an example of the visualization technique, the perfor-

mance of funds is highlighted green or red over various

buying and selling points over the time.

Pixelbarcharts

Pixelbarcharts retain the intuitiveness of traditional

bar charts while allowing very large data sets to be

visualized in an effective way. For an effective pixel

placement, it solves the complex optimization prob-

lem. In Fig. 4 the following facts can be observed:

� Product type 10 and product type 7 have the top

dollar amount customers (dark colors of bar 7 and

10 in Fig. 4a).

� The dollar amount spent and the number of visits

are clearly correlated, especially for product type 4

(linear increase of dark colors at the top of bar 4 in

Fig. 4b).

� Product types 4 and 11 have the highest quantities

sold (dark colors of bar 4 and 11 in Fig. 4 c).

� By clicking on a specific pixel (A), one may find out

that customer A visited 25 times, bought 500 items,

and spent $345,000 on product type 5.

Literature Fingerprinting

In computer-based literary analysis different types of

features are used to characterize a text. Usually, only a

single feature value or vector is calculated for the whole

text. ‘‘Literature fingerprinting’’ combines automatic

literature analysis methods with an effective visualiza-

tion technique to analyze the behavior of the feature

values across the text. For an interactive visual analysis,

a sequence of feature values per text is calculated and

presented to the user as a characteristic fingerprint.

The feature values may be calculated on different hier-

archy levels, allowing the analysis to be done on differ-

ent resolution levels. Figure 5 gives an impression of

the technique.

Cross-references
▶Data Visualization

▶Text Visualization

▶Visual Analytics

▶Visual Data Mining

▶Visualizing Categorical Data

▶Visualizing Clustering Results

▶Visualizing Hierarchical Data

▶Visualizing Network Data

▶Visualizing Quantitative Data

Recommended Reading
1. Anderson E. A semigraphical method for the analysis of complex

problems. Proc. Nat. Acad. Sci. USA, 13:923–927, 1957.

2. Ankerst M., Keim D.A., and Kriegel H.-P. Circle segments: a

technique for visually exploring large multidimensional data

sets. In Proc. IEEE Symp. on Visualization, 1996.

3. Brissom D. Hypergraphics: Visualizing Complex Relationships

in Art, Science and Technology (AAAS Selected Symposium;

24). Westview Press, 1979.

4. Chernoff H. The use of faces to represent points in k-dimensional

space graphically. J. Am. Stat. Assoc., 68(342):361–368, 1973.

5. Cleveland W.S. Visualizing Data. Hobart Press, Summit, NJ,

1993.

6. Inselberg A. N-Dimensional Graphics Part I: Lines and Hyper-

planes, IBM LA Science Center Report, # G320–2711, 1981.

7. Keim D.A., Hao M.C., Dayal U., and Hsu M. Pixel bar charts: a

visualization technique for very large multi-attribute data sets.

Inf. Visualization, 1(1):20–34, 2001.

8. Keim D.A., Kriegel H.-P., and Ankerst M. Recursive pattern: a

technique for visualizing very large amounts of data. In Proc.

IEEE Symp. on Visualization, 1995, pp. 279–286.

9. Keim D.A., North S.C., Panse C., and Sips M. PixelMaps: a new

visual data mining approach for analyzing large spatial data sets. In

Proc. 2003 IEEE Int. Conf. on Data Mining, 2003, pp. 565–568.

10. Keim D.A. and Oelke D. Literature fingerprinting: a new method

for visual literary analysis. IEEE Symp. on Visual Analytics and

Technology (VAST 2007), 2007.

11. Langton J.T., Prinz A.A., Wittenberg D.K., and Hickey T.J. Lever-

aging layout with dimensional stacking and pixelization to

facilitate feature discovery and directed queries, Visual Informa-

tion Expert Workshop (VIEW2006), 2006.

12. Tufte E.R. The Visual Display of Quantitative Information. Gra-

phics Press, Cheshire, CT, 1983.

13. Tufte E.R. Envisioning Information. Graphics Press, Cheshire,

CT, 1990.

14. Ziegler H., Nietzschmann T., Keim D.A. Relevance driven visuali-

zation of financial performance measures. In EuroVis 2007:

Eurographics/IEEE-VGTC Symposium on Visualization, 2007,

pp. 19–26.

Density-based Clustering

MARTIN ESTER

Simon Fraser University, Burnaby, BC, Canada

Definition
Density-based clusters are dense areas in the data

space separated from each other by sparser areas.

246D Density-based Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:42

Furthermore, the density within the areas of noise is

lower than the density in any of the clusters. Formaliz-

ing this intuition, for each core point the neighborhood

of radius Eps has to contain at least MinPts points, i.e.,

the density in the neighborhood has to exceed some

threshold. A point q is directly-density-reachable from a

core point p if q is within the Eps-neighborhood of p,

and density-reachability is given by the transitive clo-

sure of direct density-reachability. Two points p and q

are called density-connected if there is a third point o

from which both p and q are density-reachable. A clus-

ter is then a set of density-connected points which

is maximal with respect to density-reachability. Noise

is defined as the set of points in the database not

belonging to any of its clusters. The task of density-

based clustering is to find all clusters with respect to

parameters Eps and MinPts in a given database.

Historical Background
In the 1990s, increasingly large spatial databases

became available in many applications. This drove

not only the development of techniques for efficiently

managing and querying these databases, it also pro-

vided great potential for data mining. The application

of clustering algorithms to spatial databases raised the

following requirements:

1. Discovery of clusters with arbitrary shape, because

the shape of clusters in spatial databases may be

spherical, drawn-out, linear, elongated etc.

2. Good efficiency on large databases, i.e., on data-

bases of significantly more than just a few thousand

objects.

3. Minimal requirements of domain knowledge to

determine the input parameters, because appropri-

ate values are often not known in advance when

dealing with large databases.

Due to the local nature of density-based clusters, this

new clustering paradigm promised to address all of

these requirements. As required, dense connected

areas in the data space can have arbitrary shape.

Given a spatial index structure that supports region

queries, density-based clusters can be efficiently com-

puted by performing at most one region query per

database object. Different from clustering algorithms

that optimize a certain objective function, the number

of clusters does not need to be specified by the user.

Foundations
The paradigmof density-based clusteringwas introduced

in [4]. Let D be a database of points. The definition of

density-based clusters assumes a distance function dist

(p, q) for pairs of points. The Eps-neighborhood of a

point p, denoted by NEps(p), is defined by NEps

(p) = {q 2 D | dist(p, q)� Eps}. A point p is directly

density-reachable from a point q w.r.t. Eps, MinPts if

(1) p 2 NEps(q) and (2) |NEps(q)|MinPts. A point

p is density-reachable from a point q w.r.t. Eps and

MinPts if there is a chain of points p1,. . .,pn, p1 = q,

pn = p such that pi + 1 is directly density-reachable

from pi. Density-reachability is a canonical extension

of direct density-reachability. Since this relation is not

transitive, another relation is introduced. A point

p is density-connected to a point q w.r.t. Eps andMinPts

if there is a point o such that both, p and q are density-

reachable from o w.r.t. Eps and MinPts. Figure 1 illus-

trates these concepts.

Intuitively, a density-based cluster is a maximal set

of density-connected points. Formally, a cluster C wrt.

Eps and MinPts is a non-empty subset of D satisfying

the following two conditions:

1. 8p; q : if p 2 C and q is density-reachable from

p w.r.t. Eps and MinPts, then q 2 C. (maximality)

Density-based Clustering. Figure 1. Density-reachability and connectivity.

Density-based Clustering D 247

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:42

2. 8p; q 2 C : p is density-connected to q w.r.t. Eps

and MinPts. (connectivity)

Let C1, ..., Ck be the clusters of the database D w.r.t. Eps

and MinPts. The noise is defined as the set of points in

D not belonging to any cluster Ci, i.e.,

noise ¼ fp 2 Dj 8i : p =2Cig.
Density-based clustering distinguishes three differ-

ent types of points (see Fig. 2):

1. Core points, i.e., points with a dense neighborhood

(|NEps(p)|MinPts)

2. Border points, i.e., points that belong to a cluster,

but whose neighborhood is not dense, and

3. Noise points, i.e., points which do not belong to any

cluster

In the right part of Fig. 1, e.g., o is a core point, p and q

are border points, and n is a noise point.

Density-based clusters have two important proper-

ties that allow their efficient computation. Let p be a

core point in D. Then the set O = {o | o2 D and o is

density-reachable from p wrt. Eps and MinPts} is a

cluster with regard to Eps and MinPts. Let C be a

cluster in D. Each point in C is density-reachable

from any of the core points of C and, therefore,

a cluster C contains exactly the points which are

density-reachable from an arbitrary core point of C.

Thus, a cluster C with regard to Eps and MinPts is

uniquely determined by any of its core points. This is

the foundation of the DBSCAN algorithm for density-

based clustering [5].

DBSCAN

To find a cluster, DBSCAN starts with an arbitrary data-

base point p and retrieves all points density-reachable

from p wrt. Eps andMinPts, performing region queries

first for p and if necessary for p’s direct and indirect

neighbors. If p is a core point, this procedure yields a

cluster wrt. Eps andMinPts. If p is not a core point, no

points are density-reachable from p. DBSCAN assigns

p to the noise and applies the same procedure to the

next database point. If p is actually a border point of

some cluster C, it will later be reached when collecting

all the points density-reachable from some core point

of C and will then be (re-)assigned to C. The algorithm

terminates when all points have been assigned to a

cluster or to the noise.

In theworst case,DBSCANperforms one region query

(retrieving the Eps-neighborhood) per database point.

Assuming efficient index support for region queries, the

runtime complexity of DBSCAN is Oðn log nÞ, where n
denotes the number of database points. In the absence

of efficient index structures, e.g., for high-dimensional

databases, the runtime complexity is Oðn2Þ. Ester et al.
[4] show that a density-based clustering can be updated

incrementally without having to re-run the DBSCAN

algorithm on the updated database. It examines which

part of an existing clustering is affected by an update of

the database and presents algorithms for incremental

updates of a clustering after insertions and deletions.

Due to the local nature of density-based clusters, the

portion of affected database objects tends to be small

which makes the incremental algorithm very efficient.

GDBSCAN

The basic idea of density-based clusters can be gene-

ralized in several important ways [8]. First, any notion

of a neighborhood can be used instead of a distance-

based Eps-neighborhood as long as the definition of the

neighborhood is based on a predicate NPred(p, q)

which is symmetric and reflexive. The neighborhood

N of p is then defined as the set of all points q satis-

fying NPred(p, q). Second, instead of simply counting

Density-based Clustering. Figure 2. Reachability-plot for data set with hierarchical clusters of different sizes, densities

and shapes.

248D Density-based Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:42

the elements in a neighborhood, a more general predi-

cate MinWeight(N) can be used to determine whether

the neighborhood N is ‘‘dense,’’ ifMinWeight is mono-

tone in N, i.e., if MinWeight is satisfied for all super-

sets of sets that satisfy N. Finally, not only point-like

objects but also spatially extended objects such as

polygons can be clustered. When clustering polygons,

for example, the following predicates are more natural

than the Eps-neighborhood and the MinPts cardi-

nality constraint: ‘‘NPred (X, Y) iff intersect (X, Y)’’

and ‘‘MinWeight(N) iff
P
P2N

populationðPÞ MinPop.’’

The GDBSCAN algorithm [8] for finding generalized

density-based clusters is a straightforward extension of

the DBSCAN algorithm.

Denclue

Denclue [6] takes another approach to generalize the

notion of density-based clusters, based on the concept

of influence functions that mathematically model the

influence of a data point in its neighborhood. Typical

examples of influence functions are square wave func-

tions or Gaussian functions. The overall density of the

data space is computed as the sum of the influence

functions of all data points. Clusters can then be deter-

mined by identifying density-attractors, i.e., local max-

ima of the overall density function. Most data points

do not contribute to the density function at any given

point of the data space. Therefore, the Denclue algo-

rithm can be implemented efficiently by computing

only a local density function, guaranteeing tight error

bounds. A cell-based index structure allows the algo-

rithm to scale to large and high-dimensional datasets.

OPTICS

In many real-life databases the intrinsic cluster struc-

ture cannot be characterized by global density para-

meters, and very different local densities may be needed

to reveal clusters in different regions of the data space. In

principle, one could apply a density-based clustering al-

gorithmwith different parameter settings, but there are an

infinite number of possible parameter values. The basic

idea of theOPTICS algorithm [2] to address this challenge

is to produce a novel ‘‘cluster-ordering’’ of the database

objects with respect to its density-based clustering struc-

ture containing the information about every clustering

level of the data set (up to a ‘‘generating distance’’ Eps).

This ordering is visualized graphically to support in-

teractive analysis of the cluster structure.

For a constantMinPts-value, density-based clusters

with respect to a higher density (i.e., a lower value for

Eps) are completely contained in clusters with respect

to a lower density (i.e., a higher value for Eps). Conse-

quently, the DBSCAN algorithm could be extended to

simultaneously cluster a database for several Eps

values. However, objects which are density-reachable

with respect to the lowest Eps value would always have

to be processed first to guarantee that clusters with

respect to higher density are finished first. OPTICS

works in principle like such an extended DBSCAN

algorithm for an infinite number of distance para-

meters Epsi which are smaller than a ‘‘generating dis-

tance’’ Eps. The only difference is that it does not assign

cluster memberships, but stores the order in which

the objects are processed (the clustering order) and

the following two pieces of information which would

be used by an extended DBSCAN algorithm to assign

cluster memberships. The core-distance of an object p is

the smallest distance Eps’ between p and an object in

its Eps-neighborhood such that p would be a core

object with respect to Eps’ if this neighbor is contained

in NEps (p). The reachability-distance of an object

p with respect to another object o is the smallest dis-

tance such that p is directly density-reachable from o if

o is a core object. The clustering structure of a data set

can be visualized by a reachability plot (see Fig. 2) that

shows the reachability-distance values r for all objects

sorted according to the clustering order. ‘‘Valleys’’ in

the reachability plot correspond to clusters, which can

be hierarchically nested. In Fig. 2, e.g., cluster A can be

decomposed into subclusters A1 and A2.

Grid-Based Methods

Sheikholeslami et al. [9] present a grid-based approach

to density-based clustering, viewing the dataset as a

multi-dimensional signal and applying signal proces-

sing techniques. The input data is first discretized, and

then a wavelet transform is applied to convert the

discretized data into the frequency space, in which

the natural clusters become more distinguishable.

Clusters are finally identified as dense areas in the

transformed space. A strength of the WaveCluster al-

gorithm is that, due to the multi-resolution property

of wavelet transforms, clusters can be discovered at

multiple resolutions. The runtime complexity of

WaveCluster is Oðn �mdÞ, where m denotes the num-

ber of discrete intervals per dimension and d denotes

the number of dimensions, i.e., it is linear in the

Density-based Clustering D 249

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:42

dataset size and exponential in the number of

dimensions.

In high-dimensional datasets, clusters tend to reside

in lower-dimensional subspaces rather than in the full-

dimensional space, which has motivated the task of

subspace clustering. As a prominent algorithm for this

task, the CLIQUE algorithm [1] discretizes the data

space and defines a subspace cluster as a set of neighbor-

ing dense cells in an arbitrary subspace. Such subspace

clusters can be efficiently discovered in a level-wise man-

ner, starting with 1-dimensional clusters, and extending

clusters by one dimension at every level. In CLIQUE,

as in all grid-based approaches, the quality of the

results crucially depends on the appropriate choice of

the number and width of the grid cells. To address this

problem, Hinneburg and Keim [7] suggest a method

of contracting projections of the data space to deter-

mine the optimal cutting hyperplanes for partitioning

the data. Dimensions are only partitioned if they have

a good partitioning plane. It can be shown analytically

that the OptiGrid algorithm finds all center-defined

clusters, which roughly correspond to clusters generated

by a Gaussian distribution.

Key Applications

Geographic Information Systems (GIS)

GIS manage spatial data including points, lines and

polygons and support a broad range of applications. In

geo-marketing, one may want to find clusters of homes

with a given characteristic, e.g., high-income homes,

while in crime analysis one of the goals is to detect

crime hotspots, i.e., clusters of certain types of crimes.

Density-based clustering is a natural choice in these

applications.

Image Data

Clustering is an important tool to discover objects in

image data. Clusters in such data can have non-spherical

shapes and varying density, and they can be hierarchi-

cally nested. Density-based clustering has been success-

fully applied to generate landusemaps from satellite data

and to detect celestial sources from astronomical images.

Future Directions
While the driving applications for density-based clus-

tering were geographic information systems, recently

other applications of density-based clustering have

emerged, in particular in data streams and graph data,

which create interesting challenges for future research.

For density-based clustering of data streams, Cao et al.

[3] introduces the concepts of core-micro-clusters, po-

tential core-micro-clusters and outlier micro-clusters

tomaintain the relevant statistical information. A novel

pruning strategy is designed based on these concepts,

which allows accurate clustering in the context of lim-

ited memory. One of the major tasks in social network

analysis is the discovery of communities, which can be

understood as dense subnetworks. As the first algo-

rithm adopting the paradigm of density-based cluster-

ing to networks, SCAN [10] efficiently detects not only

communities, but also hubs and outliers, which play

prominent roles in social networks.

URL to Code
The open source data mining software Weka includes

Java implementations of DBSCAN and OPTICS, see

http://www.cs.waikato.ac.nz/~ml/weka/index.html.

Cross-references
▶Clustering Overview and Applications

▶ Indexing and Similarity Search

Recommended Reading
1. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Auto-

matic subspace clustering of high dimensional data for data

mining applications. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 94–105.

2. Ankerst M., Breunig M.M., Kriegel H-P., and Sander J. OPTICS:

Ordering Points To Identify the Clustering Structure. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999, pp.

49–60.

3. Cao F., Ester M., Qian W., and Zhou A. Density-based clustering

over an evolving data stream with noise. In Proc. SIAM Conf. on

Data Mining (SDM), 2006.

4. Ester M., Kriegel H-P., Sander J., Wimmer M., and Xu X.

Incremental Clustering for Mining in a Data Warehousing

Environment. In Proc. 24th Int. Conf. on Very Large Data

Bases, 1998, pp. 323–333.

5. Ester M., Kriegel H-P., Sander J., and Xu X. A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases

with Noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and

Data Mining, 1996, pp. 226–231.

6. Hinneburg A. and Keim D.A. An Efficient Approach to Cluster-

ing in Large Multimedia Databases with Noise. In Proc. 4th

Int. Conf. on Knowledge Discovery and Data Mining, 1998,

pp. 58–65.

7. Hinneburg A. and Keim D.A. Optimal Grid-Clustering: Towards

Breaking the Curse of Dimensionality in High-Dimensional

Clustering. In Proc. 25th Int. Conf. on Very Large Data Bases,

1999, pp. 506–517.

250D Density-based Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:43

8. Sander J., Ester M., Kriegel H-P., and Xu X. Density-based

clustering in spatial databases: the algorithm GDBSCAN and

its applications. Data Min. Knowl. Discov., 2(2):169–194, 1998.

9. Sheikholeslami G., Chatterjee S., and Zhang A. WaveCluster:

A Multi-Resolution Clustering Approach for Very Large Spatial

Databases. In Proc. 24th Int. Conf. on Very Large Data Bases,

1998, pp. 428–439.

10. Xu X., Yuruk N., Feng Z., Thomas A., and Schweiger J. SCAN:

a structural clustering algorithm for networks. In Proc. 13th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2007, pp. 824–833.

Dependencies

▶ FOL Modeling of Integrity Constraints

(Dependencies)

Derived Event

▶Complex Event

Description Logics

ALEXANDER BORGIDA

Rutgers University New Brunswick, NJ, USA

Synonyms
Terminologic languages; KL-ONE style languages;

Concept languages

Definition
Description Logics (DLs) are a family of knowledge

representation languages providing features for defin-

ing and describing concepts. The associated formal

logics answer such questions as ‘‘Is concept C or knowl-

edge base T consistent?’’ and ‘‘Is concept A more specific

(subsumed by) concept B ?.’’

DLs view the world as being populated by indivi-

duals, grouped into classes (‘‘concepts’’), and related by

binary relationships (‘‘roles’’). DLs define concepts

recursively starting from atomic identifiers by using

concept and role constructors. A key characteristic of

every DL’s expressiveness is therefore the set of con-

structors it supports. The collection of constructors

considered has been determined empirically, by expe-

rience with a variety of tasks in Natural Language

processing and other subfields of Artificial Intelligence.

Considerable research has been devoted to finding the

complexity of reasoning with various DLs. The result is

a family of logics that is intermediate in expressive

power between propositional logic and first order

logic, with emphasis on decidable fragments.

DLs are particularly useful in the field of databases

for conceptual modeling and the specification of

ontologies used for information integration or in the

Semantic Web.

Historical Background
Semantic Networks and Frame Systems, as originally

used for representing knowledge in Artificial Intelli-

gence, were faulted for lack of precise semantics, and

Brachman [4] was the first to suggest a (graphical)

notation, called KL-ONE, for structured networks

based on so-called ‘‘epistemologic primitives,’’ with a

precise intended meaning. Brachman and Levesque [5]

introduced the more logical compositional syntax and

semantics for a restricted DL, and considered for the

first time the famous expressiveness vs. complexity

trade-off: more expressive concept constructors often

require provably harder reasoning.

DLs have recently attracted considerable attention

since they form the basis of the OWL web ontology

language, and there are several widely available

implementations.

The Description Logic Handbook [1] is the definitive

reference book on this topic, covering the theory, im-

plementation and application of Description Logics.

Foundations

Concept and Role Constructors

Consider the concept ‘‘objects that are related by loca-

tedIn to some City, an d by ownedBy to some Person’’.

Much like one can build a complex type in a program-

ming language by using type constructors, or a com-

plex boolean formula using connectives that can be

viewed as term constructors (e.g., p ∧¬q written as

the term and(p,not(q))), so in a DL one could specify

this concept using a term-like syntax

andðsomeðlocatedIn;CityÞ; some ðownedBy; PersonÞÞ

The conventional notation used for this in the research

literature is actually

ð9locatedIn:City u 9ownedBy:PersonÞ

Description Logics D 251

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:43

where ∃r. A denotes all object with at least one r-role

filler being in concept A, and u intersects the set of

instances of its argument concepts. A variety of other

syntactic notations for complex concepts exist, including

one for the OWLweb ontology language, based on XML.

Other frequently used concept constructors include:

so-called ‘‘boolean connectives’’ for unioning t ,

or complementing ¬ concepts; value restrictions 8p.C,
as in 8locatedIn.SmallTown denoting individuals

related by locatedIn only to instances of SmallTown;

cardinality constraints such as n p.C , as in 2own-

edBy.RichPerson denoting objects that are owned by

at least two instances of concept RichPerson; enumera-

tions {J1, J2, . . .}, as in {ROMULUS,REMUS} denoting

the set of these two individuals. Other constructors

can often be defined in terms of these e.g., objects

with RED hair color value (hair_color : RED) is just

∃hair_color.{RED}
Useful role constructors include: role inversion r�,

as in ownedBy� denoting what might be called the

‘‘ownerOf ’’ relationship; role restriction rjC, as in

childOf jMale denoting what might be called ‘‘sonOf ’’;

and role composition , as in (childOf ∘childOf), denot-
ing what might be called ‘‘grandchildOf.’’

Of particular utility for database applications are

concept constructors that concern role fillers that are

‘‘concrete types’’ such as integers and strings (e.g., 8age.
min(15) denotes objects whose age value is at least 15),

and those that select individuals for whom combina-

tions of roles act as unique identifiers (‘‘keys’’).

Summarizing, the following properties are notable

and distinguishing features of DLs as far as concept

constructors:

� Although concepts resemble programming lan-

guage record types, roles are multi-valued, in

contrast to record fields; e.g., a house may be own-

edBy by more than person.

� Although symbols like 8 and ∃ are used in the

mathematical notation of DLs, there are in fact

no variables (free or bound) appearing in concept

specifications.

� Complex concepts can be constructed by nesting, as

in ∃ownedBy.(Person u (3childOf �.Teenager)),

with intended meaning ‘‘objects which are owned

by a person that is the parent of at least three teen-

agers’’; and they need not be given names, acting

as complex noun phrases with relative clauses.

Formal Semantics

The precise meaning/denotation of concepts is usually

specified by an interpretation I = (DI ,:I), which

assigns to every concept name a subset of the domain

DI , to every role name a subset of DI� DI , and to

every individual name some object in DI . Table 1

shows how this is extended from atomic identifiers to

complex terms for some of the concept and role con-

structors. (The others can be defined from these using

complement.) It is often possible to achieve the same

effect indirectly by providing a translation from con-

cepts/roles to Predicate Calculus formulas with one/

two free variables.

Using Concepts in Knowledge Bases

Concepts and roles do not actually make any assertions –

they are like formulas with free variables. The follow-

ing are some of the possible uses for them.

First, one can make assertions about necessary

properties of atomic concepts, e.g., ‘‘every house is

located in some city and is owned by some person,’’

by using a syntax like

Description Logics. Table 1. Semantics of composite concepts and roles

Term Interpretation Translation to FOPC

C u D CI \ DI C(x)∧D(x)

¬ C DI ∖CI ¬C(x)

∃p.C {d 2DI j pI (d)\CI 6¼;} ∃y p(x,y)∧C(y)

np.C {d 2DI jjpI (d)\CI jn} ∃z1,. . .,∃zn p(x,z1)∧. . .∧ p(x,zn) ∧ zi 6¼ zj ∧
C(zi)

{b1, . . .,bm} {bI1 , . . ., b
I
m} x¼b1 ∨ . . .∨x¼bm

p� {(d,d0)j(d0,d) 2RI } p(y,x)

pjC {(d,d0) 2pI jd0 2CI } p(x,y)∧C(y)

p∘q pI ∘qI ∃z p(x,z)∧q(z,y)

252D Description Logics

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:43

House v ð9 locatedIn:City u 9 ownedBy:PersonÞ

wherev is read as ‘‘is subsumed by.’’ An assertion such

as A v B is satisfied only in interpretations where AI is

a subset of BI .

Second, one can give definitions to atomic names;

e.g., ‘‘a French house’’ can be defined to be a house

located in a French city, using the syntax

FrenchHouse
 ðHouse u 8locatedIn:FrenchCityÞ

For database cognoscenti, definitions will be familiar

as views.

If one allows general inclusion axioms of the form

a v b, the definition above is equivalent to two state-

ments

FrenchHouse v ðHouse u 8locatedIn:FrenchCityÞ
ðHouse u 8locatedIn:FrenchCityÞ v FrenchHouse

Such assertions about concepts form part of the termi-

nology of a domain, and hence are gathered in a so-

called TBox T . Other assertions in a TBox may specify

properties of roles, such as role inclusion (e.g., own-

edBy vcanSell) or whether a role is transitive.

Given a terminology T , one can then ask whether

some subsumption a v b follows from it, written as

T � a v b, i.e., whether the subsumption holds in

all interpretations satisfying T . This is the basis of

a number of standard services that are provided by a

DL reasoner, such as automatically classifying all iden-

tifiers into a subsumption taxonomy, or checking

whether concepts or the entire knowledge base are

(in)coherent. Other, non-standard but useful reasoning

services include computing the least common subsu-

mer of a pair of concepts (a non-trivial task if one

excludes concept union t as a constructor), rewriting

concepts using definitions in a TBox for goals such

as abbreviation, and pinpointing errors/reasoning in

inconsistent terminologies.

In order to describe specific states of a world, one

uses formulas of two forms: (i) LYON : City, expressing

that the individual LYON is an instance of concept

City; and (ii) locatedIn(LYON,EUROPE), indicating

that LYON and EUROPE are related by the locatedIn

relationship. A collectionA of such assertions about the

state of the world is called an ABox. A reasoner can then

determine whether a particular concept membership

(resp. role relationship) follows from an (ABox, TBox)-

pair: ðA; T Þ � d : b (resp. ðA; T Þ � rðd; eÞ). For ex-
ample, from the above facts about LYON, and the

definition EuropeanCity
 (City u locatedIn : EUR-

OPE), one can conclude that LYON : EuropeanCity.

Based on the above judgment, DL reasoners can deter-

mine the (in)consistency of an ABox A with respect to

a TBox T , and can classify individuals in A under the

most specific concept in the taxonomy. It is important

to note that, unlike standard databases, DLs do not

adopt the so-called ‘‘closed-world assumption,’’ so

that from the above facts one cannot conclude that

LYON is located in only one place; i.e., to obtain this

conclusion, (LYON:� 1locatedIn) needs to be explicitly

added to the previous collection of assertions.

Mathematical Properties

The formal complexity of reasoning with a DL-based

knowledge base is determined by the concept and role

constructors allowed, and the form of the axioms (e.g.,

Are axioms permitted to create cyclic dependencies

among concept names? Are there role subsumption

axioms?). Also, interesting connections have been

found between DLs and epistemic propositional

logic, propositional dynamic logic, and various re-

stricted subsets of First Order Logic. Many of these

results have been summarized in [1].

Implementations

Unlike the earliest implemented systems (KL-ONE and

LOOM), the second generation of systems (BACK,

KANDOR, and CLASSIC), took seriously the notion

of computing all inferences with respect to some seman-

tic specification of theDL, and in fact tried to stay close to

polynomial time algorithms for judgments such as sub-

sumption, often by finding a normal form for concepts.

In contrast, the DLs implemented in the past decade

have been considerably more expressive (theoretically,

the worst-case complexity of deciding subsumption

ranges from PSPACE to non-deterministic exponential

space complete), and are implemented using so-called

‘‘tableaux techniques,’’ whichhave beenhighlyoptimized

so thatperformanceonpracticalKBs is acceptable.

Key Applications

Conceptual Modeling

As knowledge representation languages, with concept

constructors that have been found to be empirically

useful for capturing real-world domains of discourse,

DLs are relevant to databases as conceptual modeling

languages, used in the first step of database design; and

Description Logics D 253

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:43

for database integration, as the mediated conceptual

schema seen by external users. The advantages of DLs

over other notations such as Extended ER diagrams

and UML is their greater expressive power and the

existence of implemented reasoners that are provably

correct, and that can, for example, detect inconsisten-

cies in domain models. In fact, it has been shown that

EER and UML class diagrams can be translated into

the SHIQ DL [2,6], for which multiple implementa-

tions exist currently.

Ontology Specification

DLs have been adopted as the core (OWL-DL) of the

OWL web ontology language proposed by W3C [8].

Ontologies, and reasoning with them, are predicted to

play a key role in the Semantic Web, which should

support not just data integration but also web service

composition, orchestration, etc.

Management and Querying of Incomplete Information

Because of open-world reasoning, and the ability tomake

assertions about objects not explicitly present in the

knowledge base (e.g., VLDB09 : 8takesPlaceIn.(City u
locatedIn : ASIA u8hasPopulation.min(1000000)) says

that wherever VLDB09 will be held, the city will be in

Asia, and it will have population over 1 million), DLs

are particularly well suited to represent and reason

with partial knowledge [3]. Among others, DLs face

and resolve aspects of the view update problem. Indus-

trial applications of this have been found in configura-

tion management. Research has also addressed issues

related to more complex queries, with a flurry of recent

results concerning conjunctive query answering over

ABoxes, starting with [7].

Query Organization and Optimization

Since a complex concept C can be used to return all

individuals b classified under it (i.e., b : C), C can be

thought of as a query, though one of somewhat limited

power since it cannot express all conditions that might

be stated in SQL, nor can it return sets of tuples. In

exchange, query containment (which is just subsump-

tion) is decidable, and sometimes efficiently comput-

able. This can be used to organize queries, and help

answer queries using results of previous queries.

In addition, DL-based conceptual models of data-

base schemata can be used to enable advanced seman-

tic query optimization, in particular when combined

with DL-based description of the physical layout of

data. In this setting, identification constraints, such

as keys and functional dependencies, are often added

to DLs [9] and subsequently used to enable rewriting

of queries for purposes such as removing the need for

duplicate elimination in query answers.

Future Directions
In addition to continued work on extending the ex-

pressive power of DLs, and various forms of imple-

mentations, important topics of current concern

include (i) representation and reasoning about actions,

(ii) extracting modules from and otherwise combining

DL ontologies, (iii) restricted expressive power DLs

that are tractable or of low complexity yet can handle

important practical ontologies in the life sciences and

conceptual models, (iv) combining rules with DLs,

and, (v) conjunctive query processing over DL ABoxes.

URL to Code
http://www.dl.kr.org/ The Description Logics web site.

Among others, look for links to the Description Logic

Workshops (containing the most up-to-dateresearch in

the field), the ‘‘navigator’’ for the complexity of reasoning

with variousDLs, and for DL implementations.

Cross-references
▶Conceptual Modeling

▶Data Integration

▶ Semantic Web

Recommended Reading
1. Baader F., Calvanese D., McGuinness D.L., Nardi D., and Patel-

Schneider P.F. The Description Logic Handbook: Theory, Imple-

mentation, and Applications, 2nd edn. Cambridge University

Press, 2003.

2. Berardi D., Calvanese D., and De Giacomo G. Reasoning on

UML class diagrams. Artif. Intell. J., 168(1-2): 70–118, 2005.

3. Borgida A. Description logics in data management. IEEE Trans.

Knowl. Data Eng., 7(5): 671–682, 1995.

4. Brachman R.J. What’s in a concept: structural foundations for

semantic networks. Int. J. Man-Machine Studies, 9(2): 127–152,

1997.

5. Brachman R.J. and Levesque H.J. The tractability of subsump-

tion in frame-based description languages. In Proc. AAAI. 1984,

pp. 34–37.

6. Calvanese D., Lenzerini M., and Nardi D. Unifying class-based

representation formalisms. J. Artif. Intell. Res. (JAIR),

11199–240, 1999.

7. Horrocks I. and Tessaris S. A conjunctive query language

for description logic aboxes. In Proc. 12th National Conf. on

AI, 2000, pp. 399–404.

254D Description Logics

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:43

8. OWL Web Ontology Language Reference, http://www.w3.org/

TR/owl-ref/

9. Toman D. and Weddell G. On keys and functional dependencies

as first-class citizens in description logics. J. Auto. Reason.,

40(2–3): 117–132, 2008.

Design for Data Quality

CARLO BATINI, ANDREA MAURINO

University of Milan Bicocca, Milan, Italy

Synonyms
Schema normalization; Design for quality

Definition
The design for data quality (DQ) is the process of

designing data artifacts, such as information systems,

databases, and data warehouses where data quality

issues are considered relevant.

In information systems different types of data are

managed; these may be structured such as relational

tables in databases, semi-structured data such as XML

documents, and unstructured data such as textual

documents. Information manufacturing can be seen

as the processing system acting on raw data of different

types, whose aim is to produce information products.

According to this approach, the design for data quality

aims to design information-related processes (e.g.,

creation, updating, and delivering of information) tak-

ing into account data quality dimensions.

In the database field, the design for data quality has

the objective of producing good (with respect to a

given set of quality dimensions) conceptual and rela-

tional schemas and corresponding good data values.

Concerning schema design, the most important qua-

lity dimensions are:

� Correctness with respect to the model concerns the

correct use of the categories of the model in repre-

senting requirements

� Correctness with respect to requirements concerns

the correct representation of the requirements in

terms of the model categories

� Minimality requires that every part of the require-

ments is represented only once in the schema

� Completeness measures the extent to which a con-

ceptual schema includes all the conceptual elements

necessary to meet some specified requirement

� Pertinence measures how many unneeded concep-

tual elements are included in the conceptual

schema

� Readability imposes that the schema is expressed in

a clear way for the intended usage

It is worth noting that the quality of data is strongly

influenced by the quality of the schema that dictates

the structure of these data. Consequently, the design

for data quality can be seen as the first activity in a DQ

management program. In fact, let consider a schema

composed of the two relations: Movie(Title, Director,

Year, DirectorDateOfBirth) and Director(Name, Sur-

name, DateOfBirth). The schema does not satisfy the

minimality dimension due to the duplication of the

DateOfBirth attribute. This design error will reflect on

the data values that could suffer from consistency and

accuracy problems.

The design for data quality is a relevant problem

also for data warehouse systems. The data warehouse

design process has to consider several dimensions.

The completeness dimension is concerned with the

preservation of all the entities in data sources in the

data warehouse schema. The minimality dimension

describes the degree up to which undesired redun-

dancy is avoided during the source integration process.

The traceability dimension is concerned with the fact

that all kinds of data processing of users, designers,

administrators and managers should be traceable in

the data warehouse system. The interpretability dimen-

sion ensures that all components of the data warehouse

schema are well described.

Historical Background
The problem of designing for data quality was consid-

ered relevant to the area of information systems since

the late 1980s. The total data quality management

methodology (TDQM) [11] introduces the information

product (IP) approach, which considers information as

one of the products that an organization produces. As a

consequence, traditional manufacturing design for

quality strategies can be applied to IPs also. Within the

TDQM methodology, the IP conceptual definition

phase is in charge of defining an Entity-Relationship

(ER) schema enhanced with quality features, which

defines the IP, its information quality (IQ) require-

ments, an information manufacturing system that

describes how the IP is produced, and the interactions

among information suppliers (vendors), manufacturers,

Design for Data Quality D 255

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:43

consumers, and IP managers. In this way, many IQ

requirements can be enforced into the new information

manufacturing system, resulting in design for informa-

tion quality procedures analogous to that of design for

quality in product manufacturing.

From a historical viewpoint, early methodologies

for database design did not consider data quality issues

as a relevant problem. Subsequently, design methodol-

ogies incorporated DQ issues by extending concep-

tual and logical models with quality features. Several

solutions have been proposed for extending the Entity-

Relationship model with quality characteristics. In [8],

a methodology for modeling the quality of attribute

values as another attribute of the same entity is

described. A different approach is proposed in the

Quality Entity-Relationship (QER) model [9], which

extends the ER model by providing a mechanism to

embed quality indicators into conceptual schemas.

QER introduces two generic entities, DQ_Dimension

and DQ_Measure. DQ_Dimension, with attributes

Name and Rating, models all possible quality dimen-

sions (e.g., accuracy) for an attribute (e.g., Addr-

ess) and its values (e.g., accuracy = ‘‘0.8’’). The

entity DQ_Measure is used to represent metrics for

corresponding data quality measurement values (e.g.,

in a [0,1] scale, ‘‘0’’ for very inaccurate, ‘‘1’’ for very

accurate). For what concerns logical database models,

[13] presents an attribute based model that extends the

relational model by adding an arbitrary number of

underlying quality indicator levels to attributes. Attri-

butes of a relational schema are expanded into ordered

pairs, called quality attributes, consisting of the attri-

bute and a quality key. The quality key is a reference to

the underlying quality indicator(s). Other extensions

of the relational model are presented in [14,15]. Stud-

ies on normal forms, and more in general on the

normalization process provide techniques for avoiding

certain anomalies such as duplication of values or

updates. These techniques can be considered as evalu-

ation techniques for measuring the quality of logical

schemas.

More recently, [5] presents a new design for data

quality methodology for incorporating data quality

requirements into database schemas by means of

goal-oriented requirement analysis techniques. The

proposal extends existing approaches for addressing

data quality issues during database design in two

ways. First, authors consider data quality requirements

(including descriptive, supportive and reflective

requirements). Second, a systematic way to move

from high-level, abstract quality goals into quality as-

surance requirements is presented.

For what concerns data warehouse design, research

on designing schemas with quality properties is limited.

One of the most important results in this field is the

DWQ framework proposed in [3], where a general-

purpose model of quality has been defined to capture

the set of quality factors associated to the various data

warehouse objects, and to perform their measurement

for specific quality goals. In particular, it is shown that

the refreshment process and the selection of the materi-

alized views are demonstrative examples where quality

can drive the design process [10].

Foundations
In the design of information systems the term infor-

mation quality refers to processes involving the infor-

mation life-cycle (creation, updating, and delivering

of information). In particular, two important quality

dimensions can be defined: efficiency, which measures

process by comparing the production with costs and

resources, and effectiveness, which measures the process

outcome; namely the real result of the process for

which the process has been conceived. The most pop-

ular model for designing quality information systems

is IP-MAP [7].

IP-MAP is a graphical model designed to help

people to comprehend, evaluate, and describe how an

information product such as an invoice, a customer

order, or a prescription is assembled in a business

process. The IP-MAP is aimed at creating a systematic

representation for capturing the details associated

with the manufacturing of an information product.

IP-MAP models (hereafter IP-MAPs) are designed to

help analysts visualize the information production

process, identify ownership of the process phases, un-

derstand information and organizational boundaries,

and estimate time and quality metrics associated with

the production process to be considered. Figure 1

shows an example of IP-MAP representing high

schools and universities of a district that have agreed

to cooperate in order to improve their course offering

to students, avoiding overlapping and becoming more

effective in the education value chain. To this end, high

schools and universities have to share historical data

on students and their curricula. Therefore, they per-

form a record linkage activity that matches students in

their education life cycle. To reach this objective, high

256D Design for Data Quality

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:44

schools periodically supply relevant information on

students; in case it is in paper format the information

has to be converted into electronic format. At this

point, invalid data are filtered and matched with the

database of university students. Unmatched student

records are sent back to high schools for clerical checks,

and matched student records are analyzed; the results

of the analysis on curricula and course topics are sent

to the advisory panel of universities.

Typical activities for database design that are influ-

enced by data quality include (see Fig. 2):

1. DQ requirements elicitation

2. Conceptual modeling

3. Logical modeling

4. Data processing and Physical modeling

The process starts with the data quality requirements

elicitation. Here there is a similarity between softw-

are development processes and the design for data

quality in databases. In fact, in software development

processes, functional requirements describe what the

software does, while the non-functional properties de-

scribe qualities that functionalities need to support. In

the design for data quality process, data requirements

describe the Universe of Discourse that the design has

to represent in the database, while data quality require-

ments model quality dimensions by which a user eval-

uates DQ and quality processes related to data

acquisition, and update. Furthermore, quality attri-

butes are considered at two levels: quality parameters,

model quality dimensions by which a user evaluates

DQ (e.g., accuracy and currency); quality indicators

capture aspects of the data manufacturing process

(e.g., when, where, how data is produced) and provide

information about the expected quality of the data

produced. The data quality requirements elicitation

phase produces quality requirements that are inputs

to the conceptual modeling phase.

During the conceptual modeling phase, concepts

and their attributes are elicited and organized into a

conceptual schema. Moreover, quality parameters are

identified and associated to attributes in the schema.

Finally, each parameter is refined into one or more

quality indicators. There are two possible design

choices. A first possibility is to model the quality of

attribute values as another attribute of the same entity

for each attribute [8,9]. As an example, in order to add

a quality dimension (e.g., accuracy or completeness)

for the attribute Address of an entity Person, it is

possible to add (see Fig. 3) a new attribute Address-

QualityDimension to the entity.

The drawback of this solution is that now the entity

is no longer normalized. Another drawback is that if

there is the need to define several dimensions, a new

attribute for each dimension has to be added, resulting

in a proliferation of attributes. The second possibility

Design for Data Quality. Figure 1. Example of IP-MAP.

Design for Data Quality D 257

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:44

is to add specified data quality entities, and to create a

many-to-many relationship among these entities and

application entities.

The conceptual schema is the input of the next

phase, concerned with logical modeling. In the process

of translation from the conceptual schema to the

logical schema, normalization has to be achieved. Nor-

mal forms guarantee the absence of data processing

anomalies; as such normal forms are a relevant concept

in design for data quality. The same holds true for

intra-relational and inter-relational integrity con-

straints defined in the logical modeling phase; integrity

constraints are the fundamental means to guarantee

the consistency dimension for data.

The logical schema is an input for the physical mod-

eling and data processing phase. Data processing activ-

ities are one of the most critical tasks from a data quality

perspective. A careful design of the data processing pro-

cedures can significantly reduce data quality problems.

For example, if the domain of an attribute is composed of

a fixed set of values (e.g., the educational degrees), the use

of predefined lists to insert values in attributes reduce

possible typos and increases the syntactic accuracy.

The design of distributed databases especially

when independently developed databases are consid-

ered, raises more challenges in the design for data

quality. In this case, in fact, existing schemas cannot

be modified and issues related to the quality of schema

cannot be dealt with. The only possibility to partially

work out the quality issues is the definition of effective

schema integration techniques. Schema level conflicts

include: i) heterogeneity conflicts, occurring when dif-

ferent data models are used; ii) semantic conflicts,

regarding the relationship between model element

extensions, iii) description conflicts, concerning con-

cepts with different attributes, and iv) structural con-

flicts, regarding different design choices within the

same data model. Instance level conflicts are another

typical problem of distributed databases and occur

when conflicting data values are provided by distinct

sources for representing the same objects. At design

time, it is possible to plan conflict resolution selecting

suitable aggregation functions [2]; such functions take

two (or more) conflicting values of an attribute as

input and produce a value as output that must be

returned as the result of the posed query. Common

resolution functions are MIN, MAX, AVG. Other tech-

niques are discussed and compared in [1]. Techniques

for instance level conflict resolution at design time

have a major optimization problem. Consider two

relations EmployeeS1 and EmployeeS2 defined in

two different databases, representing information

about employees of a company. Also assume that no

schema conflict is detected. Suppose that the two rela-

tions have instance level conflicts for the Salary attri-

bute. Moreover, suppose that at design time it is

specified that in case of conflicts the minimum salary

must be chosen. Given the global schema, Employee

(EmployeeID, Name, Surname, Salary, Email), let con-

sider the following query:

SELECT EmployeeID, Email

FROM Employee

WHERE Salary < 2000

Design for Data Quality. Figure 2. Design for data

quality process.

Design for Data Quality. Figure 3. Representing quality

dimensions in the entity-relationship model.

258D Design for Data Quality

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:44

Since the Salary attribute is involved in the query, all

employees must be retrieved in order to compute the

minimumsalary, not only employeeswith Salary< 2000,

even if no conflicts on salary occur. Therefore conflict

resolution at design time may be very inefficient.

Future Directions
The problem of measuring and improving the quality

of data has been dealt with in the literature as an

activity to be performed a posteriori, instead of during

the design of the data. As a consequence, the design for

data quality is still a largely unexplored area. In partic-

ular, while the data quality elicitation and the transla-

tion of DQ requirement into conceptual schemas have

been investigated; there is a lack of comprehensive

methodologies covering all the phases of design of

information systems/databases/data warehouse sys-

tems. Moreover, easy-to-use and effective design tools

could help the database designer.

Open areas of research concern the definition of

quality information dimensions for semi-structured

and unstructured data. In particular, while the use of

XML technologies is growing within organizations, the

research on design of the XML quality schemas is at an

early stage.

Cross-references
▶Data Profiling

▶Data Provenance

▶Data Quality Assessment

▶ Information Quality

▶Quality Data Management

▶Quality in Data Warehouses

Recommended Reading
1. Batini C. and Scannapieco M. Data Quality: Concepts, Meth-

odologies and Techniques, Springer, New York, 2006.

2. Dayal U. Query processing in a multidatabase system. In Query

Processing in Database Systems, W. Kim, D.S. Reiner, D.S.

Batory (eds.). Springer, 1985, pp. 81–108.

3. Jarke M., Jeusfeld M.A., Quix C., and Vassiliadis P. Architecture

and quality in data warehouses: an extended repository ap-

proach. Inf. Syst. 24(3):229–253, 1999.

4. Jeusfeld M.A., Quix C., and Jarke M. Design and analysis

of quality information for data warehouses. In Proc. 17th Int.

Conf. on Conceptual Modeling, 1998, pp. 349–362.

5. Jiang L., Borgida A., Topaloglou T., and Mylopoulos J. Data

quality by design: a goal-oriented approach. In Proc. 12th

Conf. on Information Quality, 2007.

6. Navathe S.B., Evolution of data modeling for databases.

Commn. ACM, 35(9):112–123, 1992.

7. Shankaranarayanan G., Wang R.Y., and Ziad M. IP-MAP: repre-

senting the manufacture of an information product. In Proc.

2000 Conf. on Information Quality, 2000.

8. Storey V. and Wang R.Y. Extending the ER model to represent

data quality requirements. In Data Quality, R. Wang, M. Ziad,

W. Lee (eds.). Kluwer Academic, Boston, MA, 2001.

9. Storey V.C. and Wang R.Y. Modeling quality requirements in

conceptual database design. In Proc. Third Conf. on Informa-

tion Quality, 1998, pp. 64–87.

10. Vassiliadis P., Bouzeghoub M., and Quix C. Towards quality-

oriented data warehouse usage and evolution. In Proc. 11th

Conf. on Advanced Information Systems Engineering

(CAiSE’99), LNCS, vol. 1626, 1999, pp. 164–179.

11. Wang R.Y. A product perspective on total data quality manage-

ment. Commn. ACM, 41(2):58–65, 1998.

12. Wang R.Y., Kon H.B., and Madnick S.E. Data quality require-

ments analysis and modeling. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 670–677.

13. Wang R.Y., Reddy M.P., and Kon H.B. Toward quality data:

an attribute-based approach. Decision Support Syst., 13

(3–4):349–372, 1995.

14. Wang R.Y., Storey V.C., and Firth C.P. A framework for analysis

of data quality research. IEEE Trans. Knowl. Data Eng., 7

(4):623–640, 1995.

15. Wang R.Y., Ziad M., and Lee Y.W. Data Quality. Kluwer Aca-

demic, Boston, MA, 2001.

Design for Quality

▶Design for Data Quality

Desktop Metaphor

▶Direct Manipulation

Detail-in-Context

▶Distortion Techniques

Deviation from Randomness

▶Divergence from Randomness Models

Dewey Decimal Classification

▶Dewey Decimal System

Dewey Decimal Classification D 259

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:44

Dewey Decimal System

PRASENJIT MITRA

Pennsylvannia State University, University Park,

PA, USA

Synonyms
Dewey decimal classification

Definition
The Dewey Decimal Classification (DDC) System is

a system primarily used in libraries to classify books.

In general, the system claims to provide a set of cate-

gories for all human knowledge. The system consists of

a hierarchy of classes. At the top level, there are ten

main classes, that are divided into 100 divisions which

are sub-divided into 1,000 sections. The system was

conceived by Melvil Dewey in 1873 and published in

1876. DDC uses Arabic numerals to number the classes

and explicates the semantics of a class and its relation

to other classes.

Key Points
Since its first publication in 1876 by Melvil Dewey [2],

the Dewey Decimal Classification (DDC) has been

updated to accommodate changes to the body of

human knowledge. The current version, DDC 22, was

published in mid-2003 [3] (http://www.oclc.org/

dewey/versions/ddc22print/). Currently, the Online

Computer Library Center (OCLC) (http://www.oclc.

org) of Dublin Ohio owns the copyrights associated

with the Dewey Decimal system. Each new book is

assigned a DDC number by the Library of Congress.

As of the date this article was written, the OCLC has

accepted all assignments of DDC numbers made by the

Library of Congress. The OCLC claims that libraries in

more than 135 countries use the DDC and it has been

translated to over 30 languages (http://www.oclc.org/

dewey/versions/ddc22print/intro.pdf).

The DDC has ten main classes: Computer Science,

information and general works; Philosophy and psychol-

ogy; Religion; Social Sciences; Language; Science; Tech-

nology; Arts and recreation; Literature; and History and

geography [1]. Consequently, all fiction books fall

under the category Literature (800). To avoid a large

number of rows in the 800 range, libraries separately

stack non-fiction and fiction books in different sec-

tions. To allow for further subdivision of classes, the

DDC number for a class can contain further subdivi-

sions of ten after the three digit number. After the three

digits for a class number, the classes can be further

subdivided. While determining the subject of a work,

the editor, at the Dewey editorial office at the Decimal

Classification Division of the Library of Congress, tries

to determine the author’s intent. The entire content of

the book is taken into account along with reviews,

reference works, and opinions of subject experts.

The DDC forms the basis for the more expressive

Universal Decimal Classification. Alternatives to the

DDC are the Library of Congress Classification. The

construction of the DDC was top down (designed

by one person, Dewey) and is somewhat inflexible to

accommodating changes in human knowledge. In

contrast, the Library of Congress Classification has 21

classes at the top-level of the hierarchy and was developed

by domain experts in a bottom-up fashion. The simple

numbering system of the DDC makes it easy to use.

Cross-references
▶ Library of Congress Classification

Recommended Reading
1. Chan L.M. Dewey Decimal Classification: A Practical Guide.

Forest, 1994.

2. Dewey M. Dewey; Decimal classification and relative index for

libraries, clippings, notes. Library Bureau, 1891.

3. Mitchell J.S. Summaries DDC 22: Dewey Decimal Classification.

OCLC, 2003.

DHT

▶Distributed Hash Table

Diagram

CARLO BATINI

University of Milan Bicocca, Milan, Italy

Synonyms
Diagram; Diagrammatic Representation; Graph;

Graphic

Definition
A diagram is (i) a set of symbols selected in an alphabet

of elementary shapes, such as rectangles, circles, and

260D Dewey Decimal System

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:44

complex shapes, built by composing elementary shapes,

and (ii) a set of connections linking symbols, such as

straight lines, curved lines, directed lines, etc. Dia-

grams are used to visualize in all aspects of data base

design and usage a wide set of concepts, artifacts, sche-

mas, values, such as conceptual schemas, logical schemas,

UML diagrams, database instances, queries, results of

queries.

The visual representation made possible by a dia-

gram expresses a functional relationship between

concepts represented and symbols/connections repre-

senting them. e.g. in the diagrammatic representation

of Entity Relationship schemas, a rectangle is asso-

ciated to an entity, a diamond is associated to a

relationship.

When drawing a diagram, human beings and

display devices adopt suitable drawing conventions,

aesthetic criteria, and drawing constraints. Drawing

conventions express general constraints on the geo-

metric representation of symbols and connections.

Diagram. Figure 1. Examples of unpleasant and good diagrams.

Diagram D 261

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:44

The geometric representation is characterized by the

number of spatial dimensions; the usual representation

adopted is 2-dimensional (2D), other representations

are 1D, 3D, 2–3D. Other drawing conventions refer to

general rules on symbols and connections, for exam-

ple, polyline drawing correspond to connections made

of sequences of straight lines and orthogonal drawing

use connections made of horizontal and vertical lines.

Aesthetic criteria concern the shape of the diagram,

independently from the meaning of symbols, and try

to capture universal criteria for expressing the idea of

beauty. Drawing constraints refer to the semantics of

the underlying represented schema or instance.

Key Points
The above concepts are explained by means of Fig. 1.

Concerning drawing conventions, both diagrams

adopt a 2D representation. Diagram b adopts a further

drawing convention, namely, symbols are inscribed in

a rectangular grid. Drawing conventions may express

some characteristic of the semantics of the diagram; for

example, upward drawings visualize hierarchical rela-

tionships, such as generalization hierarchies in concep-

tual schemas.

Examples of aesthetic criteria are: (i) minimization

of crossing between connections, (ii) minimization of

the number of bends in connections, (iii) minimization

of the area occupied by the diagram, (iv) maximization

of the display of symmetries. The above comment to

‘‘try to capture universal criteria’’ is based upon recog-

nition that an expression of beauty in Chinese culture,

for example, is asymmetry, and not symmetry. Consid-

ering criterion (i), diagram a. has 6 crossings, while

diagram b. has no crossing. In diagram b. Employee is

symmetric with respect to Vendor, Worker, and Engi-

neer. Note that one cannot simultaneously optimize

aesthetic criteria, as intuitively understood considering,

for example, previous criteria (i) and (iii).

Examples of drawing constraints are (i) place a

given symbol in the centre of the drawing (e.g., Em-

ployee in Fig. 1b), keep a group of symbols close

together.

Graph drawing is the research area that investigates

algorithms that, having in input a nonvisual specifica-

tion of a diagram, produce a corresponding diagram

respecting a given set of drawing conventions, aesthetic

criteria, and drawing constraints (see [1] and [2]).

Diagrams can be extensively used for displaying visual

information [3].

Cross-references
▶Chart

▶Data Visualization

▶Graph

▶Visual Formalism

▶Visual Representation

Recommended Reading
1. Cruz I.F. and Tamassia R. Graph Drawing Tutorial, http://www.

cs.brown.edu/~rt/

2. Di Battista G., Eades P., Tamassia R. and Tollis I.G. Graph

Drawing. Prentice-Hall, Englewood Cliffs, NJ, 1999.

3. Tufte E.R. The Visual Display of Quantitative Information.

Graphic Press, Cheshire, CT, 1998.

Diagrammatic Representation

▶Diagram

Difference

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Synonyms
Set-difference

Definition
The difference of two relation instances R1 and R2 over

the same set of attributes U, denoted by R1 � R2, is

another relation instance overU containing precisely the

set of tuples occurring in R1 and not occurring in R2.

Key Points
The difference is one of the primitive operators of the

relational algebra. It coincides with the notion of set

difference, with the additional restriction that it can be

applied only to relations over the same set of attributes.

However the difference of two arbitrary relations hav-

ing the same arity can be obtained by first renaming

attributes in one of the two relations.

As an example, consider a relation Students over

attributes (number, name), containing tuples {(1001,

Black),(1002,White)}, and a relation Employees over

attributes (number, name), containing tuples {(1001,

Black),(1003,Brown)}. Then the difference Students �

262D Diagrammatic Representation

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

Employees is a relation over attributes (number, name)

containing the only tuple (1002,White).

In the absence of attribute names, the difference is

defined on two relations with the same arity: the out-

put is a relation with the same arity as the input,

containing the difference of the the sets of tuples in

the two input relations.

The number of tuples in the output relation is

bounded by the the number of tuples in R1.

Cross-references
▶Relation

▶Renaming

▶Relational Algebra

Digital Archives and Preservation

REAGAN W. MOORE

University of California-San Diego, La Jolla, CA, USA

Synonyms
Persistent archives

Definition
Preservation is the set of processes that maintain the

authenticity, integrity, and chain of custody of records

for long periods of time. Authenticity is defined as the

management of provenance information about the

creation of the record. Integrity is defined as the ability

to create an authentic copy. Chain of custody tracks all

processing done to the record, including migration to

new storage systems or to new data encoding formats.

Digital preservation addresses the challenge of technol-

ogy evolution by managing preservation properties

independently of the choice of software and hardware

systems. Preservation properties include the names

used to identify archivists, records, and storage sys-

tems, and the preservation metadata which includes

provenance information and administrative infor-

mation about record management. The display and

manipulation of digital data is maintained through

the use of representation information that describes

how the record can be parsed and interpreted. Digital

preservation environments implement trustworthiness

assessment criteria, enabling verification that the pres-

ervation properties are maintained over time.

Historical Background
The preservation community bases digital preservation

upon the same concepts that are used to preserve paper

records. The preservation environment manages the

authenticity, integrity, and chain of custody of the

digital records. At least four approaches have been

implemented that define the digital preservation pro-

cesses and policies that are needed to maintain authen-

ticity and integrity. (i) Diplomatics defines the

required provenance information that describes the

institution, event, and ingestion information asso-

ciated with the documentation of an event. Examples

of events are treaties and government communiqués.

The records are assumed to be held forever. (ii) The US

National Archives and Records Administration associ-

ates records with a life-cycle data requirements guide.

Each record is associated with a record group (institu-

tion), a record series (the set of records governed by a

submission agreement), a file unit, and an entity. Each

record series has a defined retention and disposition

schedule. The arrangement of the records is governed

by the submission order in the record series. Standard

preservation processes include appraisal, accession,

arrangement, description, preservation, and access.

(iii) The digital library community manages preserva-

tionwithin the context of a collection, with the required

preservation metadata and the arrangement governed

by the purpose under which the collection was formed.

(iv) The continuum model manages records within an

active access environment. Records that are generated

for one record series may be used as the basis for

generating a new record series. The relationships be-

tween records within the multiple record series are

tracked as part of their provenance. Each of these four

communities imposes the preservation processes and

preservation policies required to enforce their goals.

The OAIS standard defines a model for preservation

that focuses on record submission, record preservation

and record access. The information required for each

process is aggregated respectively into a Submission

Information Package (SIP), an Archival Information

Package (AIP), and a Dissemination Information Pack-

age (DIP). An information package contains content (the

digital record) and representation information (all infor-

mation needed to understand the record). The OAIS

representation information includes the structure and

semantics of the record and links to a knowledge base

of a designated community for interpreting the semantic

term. TheOAIS standard stores Preservation Description

Digital Archives and Preservation D 263

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

Information within an AIP that includes Fixity informa-

tion, Provenance information, Context information, and

Reference information. This approach attempts to pro-

vide the context needed both to understand how to

display and manipulate a record, and to interpret the

meaning of the record.

The management of technology evolution is a

major concern for digital data that is addressed outside

of the OAIS model [3]. The storage technology may

impose a proprietary referencing mechanism on the

data that locks the record onto a single vendor’s sys-

tem. When that vendor goes out of business, access to

the records may be lost. Display applications may no

longer be available for reading a record. Even though

the record can be accessed, it may not be possible to

interpret the internal structure correctly. A preserva-

tion environment is the interface between the fixed

records and the changing external world. A digital

archive must ensure that the records can be viewed in

the future, while maintaining authenticity, integrity,

and chain of custody.

Foundations
Preservation is an active process, starting with the

extraction of records from the environment in which

they were created. Each record documents an event,

or the materials upon which decisions have been made,

or the material that is used to support a research or

business or legislative objective. The extraction pro-

cesses start with appraisal, the determination of which

records are worthy of preservation. A formal accession

process documents the ingestion of the records into

the preservation environment, along with the prove-

nance information needed to identify the source of the

records, the representation information needed to in-

terpret and understand the records, and the adminis-

trative information needed to document the ingestion

process. Once the records are under the control of

the archivist, a description process organizes the prov-

enance information and an arrangement process orga-

nizes the records. A preservation process creates

archival information packages that link the preserva-

tion information to the record and stores the records.

An access process provides mechanisms to discover,

display, and manipulate the records.

Preservation is a form of communication with

the future. Since the technology that will be used in

the future is expected to be more sophisticated and

more cost effective than present technology, this appears

to be an intractable situation. How can records that are

archived today be accessible through arbitrary choices of

technology in the future? By viewing preservation as an

active process, this challenge can be addressed. At the

point in time when new technology is being assimilated

into the preservation infrastructure, both the old and

new technologies are present. Infrastructure that sup-

ports interoperability across multiple versions of soft-

ware and hardware systems make it possible to evolve

preservation environments over time. The approach is

called infrastructure independence, and is based on data

virtualization, trust virtualization, andmanagement vir-

tualization. The preservation environment is the set of

software that enables management of persistent archives

independently of the choice of storage system, infor-

mation syntax, access protocol, discovery mechanism,

and display service. Preservation environments insulate

records from changes in the environment, while holding

fixed the set of standard preservation processes and the

name spaces used to identify records, archivists, and

storage systems.

Data virtualization consists of two components:

(i) persistent name spaces for identifying records, pres-

ervation metadata, archivists, and storage systems,

(ii) standard operations for interacting with storage

repository protocols. Data grid technology provides

both components, enabling the integration of new

storage technology into a preservation environment,

the use of new access protocols for interacting with

records, and the migration of records to new encoding

syntax.

Trust virtualization is the management of authori-

zation independently of the choice of preservation

technology. Data grids provide access controls that

enforce relationships between any pair of persistent

name spaces. For example, authorization may be a

constraint imposed on the archivist identity and the

record identity, or a constraint imposed on preserva-

tion metadata and the archivist identity, or a constraint

based on record identity and storage identity. The

constraints may be applied across multiple types of

data management environments (file systems, tape

archives, databases). Since the name spaces are man-

aged by the data grid, the constraints remain invariant

as the records are moved between storage systems

within the preservation environment.

Preservation manages communication from the

past in order to make assertions about preservation

properties such as authenticity, integrity, and chain of

264D Digital Archives and Preservation

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

custody. For an assertion to be verifiable, a preserva-

tion environment must document the preservation

processes that have been applied to each record, and

the preservation policies that controlled the appli-

cation of the preservation processes. Unless both pro-

cesses and policies can be tracked over time, an

assertion cannot be verified. The outcome of the appli-

cation of each preservation process on a record should

be recorded as state information that is linked to the

record. Assertions can then be validated as queries on

the state information that verify that the desired prop-

erty has been conserved. The processes, policies, and

state information constitute representation informa-

tion about the preservation environment.

To manage the evolution of data formats, three

approaches are pursued: Emulation inwhich the original

display application is ported to future operating systems;

transformative migration in which the encoding format

of the record is changed to a future encoding format; and

persistent objects in which the structure and relation-

ships present within the record are characterized and

migrated to future information and knowledge repre-

sentations. Operations that can be performed upon rela-

tionships defined between structures can be applied in

the future by any application that knows how to manip-

ulate that specific relationship. An example is a query

on time track change relationships embedded in a

Microsoft Word document.

Key Applications
Multiple technologies can be used to implement the

preservation environment. However no single technol-

ogy provides all of the capabilities that are required.

A preservation environment is an integration of man-

agement systems, software systems, and hardware sys-

tems that isolate records from changes in technology,

while preserving authenticity, integrity, and chain of

custody. Technologies that implement subsets of the

capabilities needed for infrastructure independence

include:

� SRB – Storage Resource Broker data grid (http://

www.sdsc.edu/srb). The SRB implements the name

spaces needed for infrastructure independence, and

manages descriptive metadata that can be associated

with each collection and file. Collections stored in

the SRB include observational data, simulation out-

put, experimental data, educational material, office

products, images, web crawls, and real-time sensor

data streams. The SRB data grid enables the creation

of shared collections from data distributed across

multiple administrative domains, institutions, and

nations. Data may be stored in file systems, archives,

object-relational databases, and object ring buffers.

International data grids have been based on the

SRB technology through which hundreds of tera-

bytes of data have been replicated.

The system is designed to scale to petabytes

of data and hundreds of millions of files. Applica-

tions of the technology include use as data grids for

sharing data, digital libraries for publishing data,

and persistent archives for preserving data.

The set of standard operations that are per-

formed upon remote storage systems include

Posix file system I/O commands (such as open,

close, read, write, seek, stat, . . .) and operations

needed to mask wide-area network latencies. The

extended operations include support for aggrega-

tion of files into containers, bulk operations for

moving and registering files, parallel I/O streams,

and remote procedures that parse and subset files

directly at the remote storage system.

� LOCKSS-Lots of Copies Keep Stuff Safe (http://

www.lockss.org/lockss/Home). The LOCKSS system

manages attributes on files that may be distributed

across multiple storage systems. The original design

of the system focused on management of data dis-

tributed by publishers. The original copy of the file

was downloaded from a publisher through a security

module that supported the publisher authentication

requirements. Attributes were then associated with

each file to track the publication source. LOCKSS

systems that had retrieved data from the same pub-

lisher could then provide disaster recovery copies to

each other. Types of access that are supported include

file retrieval. The system is designed to scale to about

20 Tera bytes of archived data.

� IBP – Internet Backplane Protocol (http://loci.cs.

utk.edu/ibp/). The IBP was designed to enable

applications to treat the Internet as if it were a

processor backplane. The IBP replicates or caches

blocks of data across distributed storage systems at

multiple sites. A file system such as LSTORE (http://

www.lstore.org/pwiki/pmwiki.php) is implemented

on top of the IBP protocol to support the required

persistent file naming.

� DSpace (http://www.dspace.org/). This is a digital

library that provides standard preservation services

Digital Archives and Preservation D 265

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

for accessing, managing and preserving scholarly

works. DSpace can store files on the local file sys-

tem, or in the SRB data grid.

� FEDORA – Flexible Extensible Digital Object

and Repository Architecture (http://www.fedora-

commons.org/). This is digital library middleware

that supports the characterization of relationships

between records. The relationships may be queried

to identify desired data subsets. Services support

the creation, management, publication, sharing,

annotation, and preservation of digital content.

� UVC-Universal Virtual Computer (http://en.wiki

pedia.org/wiki/Universal_Virtual_Computer). Thi

s is a software system that provides standard oper-

ations that can be migrated onto future operating

systems. The environment supports a Logical Data

Schema for type description, a format decoder, and a

Logical Data Viewer for displaying the parsed files.

� ADORE (http://african.lanl.gov/aDORe/projects/

adoreArchive/). This is a write-once/read-many

preservation system for digital objects. XML-

based representations of digital objects are conca-

tenated into a single, valid XML file called

XMLtape. The associated data streams are aggre-

gated into Internet Archive ARC files. Each

XMLtape is accessed through the Open Archives

Initiative – Protocol for Metadata Harvesting. The

ARC files are accessed through OpenURL.

Most of the above systems support discovery and ac-

cess to the record. A subset supports updates to the

records, schema extension for provenance metadata,

replicas, and bulk operations. The system managing

the largest amount of material is the SRB. The SRB is

used in the NARA Transcontinental Persistent Archive

Prototype (http://www.sdsc.edu/NARA/) as a research

tool for the investigation of properties that should be

supported by a preservation environment.

Systems that manage representation information

characterize records by file format type. The display

and access of the record are accomplished by identify-

ing an application that is capable of parsing the record

format. Example systems range from stand alone envir-

onments to web services to highly integrated environ-

ments. Examples include:

� MVD – Multivalent Document (http://elib.cs.ber-

keley.edu/ib/about.html). This system presumes

that a single document comprises multiple layers

of related material. Media adaptors parse each

layer. Behaviors that manipulate the parsed data

are dynamically loaded program objects. It is pos-

sible to add new behaviors independently of the

media adaptors to provide new operations for

manipulating or viewing the layers.

� DFDL-Data Format Description Language (http://

forge.ggf.org/sf/projects/dfdl-wg). This is an Open

Grid Forum standards effort that characterizes

the mapping of bit-steams to structures through

creation of an associated XML file. This is the

essential capability needed to interpret an arbitrary

file. The structures can be named.

� EAST (http://nssdc.gsfc.nasa.gov/nssdc_news/mar02/

EAST.html). EAST is a data description language

that supplies information about the format of the

described data. EAST is designed for building

descriptions of data that are maintained separately

from the data itself.

� CASPAR – Cultural, Artistic and Scientific knowl-

edge for Preservation, Access and Retrieval (http://

www.casparpreserves.eu/). This is a research project

to identify the representation information required

to understand digital objects. This includes not

only the data format types, but also the designated

community that will use the data, and the knowl-

edge base that defines the required semantic terms.

� METS–Metadata Encoding and Transmission Stan-

dard (http://www.loc.gov/standards/mets/). This is

a standard for encoding descriptive, administrative,

and structural metadata regarding objects within a

digital library.

As pointed out by the CASPAR project, the ability to

interpret the representation information can require ad-

ditional representation information. In order to close

this recursion, a designated community is defined that

understands how to interpret the semantics of the final

set of representation information by accessing a commu-

nity knowledge base.

Future Directions
Rule-based data management systems have the potential

to virtualize management policies by providing infra-

structure that guarantees the application of the policies

directly at the remote storage systems independently of

the remote administrative domain. The iRODS

(integrated Rule Oriented Data Systems) data grid

(http://irods.sdsc.edu) installs software middleware

(servers) at each remote storage system. Each server

266D Digital Archives and Preservation

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

includes a rule engine that controls the execution of

micro-services at that storage system. The rules are

expressed as event: condition: action-sets: recovery-

sets, where the condition can include operations

on any of the persistent state information that is man-

aged by the data grid. The action-sets can include

micro-services or rules, enabling the aggregation of

micro-services into an execution hierarchy. For each

action, a recovery procedure is specified to enable the

tracking of transaction semantics. Additional name

spaces are required that include:

� The names of the micro-services that aggregate the

standard operations into well-defined functions.

� The names of the rules that control the execution of

the micro-services.

� The persistent state information that tracks the

results of applying the operations (think of the

location of a replica as persistent state that must

be saved).

Rule-based systems support asynchronous operations.

Micro-services can be queued for deferred or perio-

dic operations. Thus a recovery-set might include

the scheduling of a deferred attempt to complete

the operation, followed by an e-mail message if that

attempt does not succeed, or it might roll-back any

changed state information and report failure.

Rule-based systems make it possible to characterize

explicitly the set of management policies that control

the preservation environment. This includes the rules

that govern data integrity (replication, data distribu-

tion, media migration), the rules that assert the pres-

ence of required descriptive or provenance metadata

(including the extraction of the required metadata

from an authoritative source), and the rules that gov-

ern chain of custody (assignment of access controls

and parsing of audit trails to verify the enforcement).

Rule-based systems also explicitly characterize the

preservation processes as sets of named micro-services

that can be ported to new operating systems. In effect,

a rule-based data management system is able to build

an emulation environment for the set of management

policies and preservation processes that the archivist

wants to apply. The environment guarantees that the

desired policies and processes will continue to control

the preservation environment even when new technol-

ogy is incorporated into the system.

The identification of standard preservation manage-

ment policies is being attempted through theRLG/NARA

trustworthiness assessment criteria [4]. A mapping of

these assessment criteria to iRODS rules is possible, and

identifies some 105 rules that are required to enforce and

verify preservation criteria. The NARA Electronic

Records Archive has defined the set of capabilities that

they require for long-term preservation [1]. These cap-

abilities have also been mapped to iRODS rules and

micro-services. The goal is to build the set of manage-

ment principles and fundamental preservation processes

required for long term preservation [2].

When representation information for preservation

environments is available, it may be possible to design

a theory of digital preservation. The components will

include:

▶ Characterization of the representation information

for the preservation environment

� Definition of the properties that the preserva-

tion environment should conserve

� Definition of the management policies that en-

force the conservation of the desired properties

� Definition of the capabilities (preservation pro-

cesses) needed to apply the management policies

▶ Analysis that the system is complete

� Demonstration that assessment criteria can be

mapped to queries on persistent state informa-

tion that are managed independently of the

choice of technology

� Demonstration that these management policies

can be mapped to well-defined rules

� Demonstration that the rules control the exe-

cution of well-defined micro-services that are

independent of the choice of preservation

technology

▶ Analysis that the system is closed

� Demonstration that the state persistent infor-

mation required to validate assessment criteria

are generated by each micro-service

� Demonstration that for every micro-service

the associated persistent state information is

updated on each successful operation

A theory of digital preservation defines the processes

required to assert that the preservation environment

has been implemented correctly and will successfully

enable long-term preservation.

Cross-references
▶Archiving Experimental Data

▶Data Warehouse

Digital Archives and Preservation D 267

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

▶Disaster Recovery

▶ Information Lifecycle Management

▶ LOC METS

▶Metadata Repository

▶ Provenance

▶Replication

Recommended Reading
1. Electronic Records Archive capabilities list defines a com-

prehensive set of capabilities needed to implement a preserva-

tion environment, and can be examined at http://www.archives.

gov/era/pdf/requirements-amend0001.pdf.

2. Moore R. Building preservation environments with data grid

technology. Am Archivist, 69(1):139–158, 2006.

3. OAIS, Reference Model for an Open Archival Information Sys-

tem, ISO 14721:2003.

4. RLG/NARA TRAC – Trustworthy Repositories Audit and Certi-

fication: Criteria and Checklist. http://wiki.digitalrepositoryau

ditandcertification.org/pub/Main/ReferenceInputDocuments/

trac.pdf.

Digital Curation

GREG JANÉE

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Stewardship

Definition
Digital curation is the activity of maintaining and

adding value to a trusted body of digital information

for current and future use.

Key Points
Left unattended, digital information degrades over

time. Even if the information’s bits are correctly pre-

served (a difficult task in itself) the technological

context surrounding the bits – the computing plat-

forms, programming languages, applications, file for-

mats, and so forth – will change sufficiently over time

until the information is no longer usable. Changes in

the information’s social context are just as significant.

The communities and organizations involved in the

information’s initial creation and use may attach dif-

ferent values and interpretation to the information

over time, or cease to exist altogether. And the passage

of time only exacerbates contemporary problems

such as establishing the authenticity, quality, and prov-

enance of the information.

Curation is the activity of maintaining a body

of information so that it remains usable over time.

Curation covers the entire lifecycle of the information,

from creation to contemporary use, from archival to

reuse. Specific curation activities include: selection

and appraisal; capture of metadata and the informa-

tion’s larger technological, scientific, and social con-

texts; conversion to archival formats; establishment

and maintenance of authenticity and provenance;

annotation and linkage; provisioning for secure and

redundant storage; transformation, migration, and

emulation as needed over time; discoverability in

contemporary search systems; creation of meaningful

access mechanisms; and recontextualization.

Different types of information bring different cura-

tion requirements and present different challenges. Infor-

mation intended for direct human consumption, such as

many textual and multimedia documents, may only need

to be migrated to new formats as older formats fall out of

favor. But data, particularly scientific data, may require

significant reprocessing and transformation. For exam-

ple, climatalogical observations may need to be periodi-

cally recalibrated to support long-term longitudinal

studies, a process requiring deep understanding and em-

ulation of the original calibration.

Cross-references
▶ Preservation

Recommended Reading
1. Beagrie N. Digital curation for science, digital libraries, and

individuals. Int. J. Digital Curat., 1(1), 2006.

2. Consultative Committee for Space Data Systems. Reference

Model for an Open Archival Information System (OAIS). ISO

14721:2003, 2002.

3. Trustworthy Repositories Audit and Certification: Criteria and

Checklist. Center for Research Libraries, 2007.

Digital Elevation Models

LEILA DE FLORIANI, PAOLA MAGILLO

University of Genova, Genova, Italy

Synonyms
Digital Terrain Model (DTM); Digital Surface Model

DEMs

268D Digital Curation

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

Definition
A Digital Elevation Model (DEM) represents the 3D

shape of a terrain in a digital format. A terrain is

mathematically modeled as a function z = f(x, y)

which maps each point (x, y) in a planar domain D

into an elevation value f(x, y). In this view, the terrain

is the graph of function f over D.

In practice, a terrain is known at a finite set of

points within D, which may (i) lie at the vertices of a

regular grid, (ii) be scattered, or (iii) belong to contour

lines (also known as isolines), i.e., the intersections of

the terrain surface with a sequence of horizontal

planes.

In case (i), the DEM consists of the grid structure

plus elevation values at its vertices. This is called a

Regular Square Grid (RSG). Within each grid cell,

terrain elevation either is defined as constant, or it is

modeled by a function, which can be linear (this

involves cell decomposition in two triangles), or qua-

dratic (usually, bilinear).

In case (ii), usually the DEM is defined based on a

triangle mesh joining the data points in D and by a

piecewise-linear function interpolating elevations at

the three vertices of each triangle. This gives a Trian-

gulated Irregular Network (TIN) (see Fig. 1).

In case (iii), the DEM consists of the polygonal lines

forming each contour, plus the corresponding eleva-

tion, and the containment relation between contours

at consecutive elevations. This provides a contour map.

Historical Background
Historically, terrain models were represented as three-

dimensional relief maps, generally constructed for

military or educational purposes from plaster, papier-

marché, or vinyl plastic. For instance, such models

were used extensively by military forces during World

War II. Contour maps drawn on sheets of paper have

probably been the most common form of terrain

model. In the early ages of computer-based Geographic

Information Systems, these maps were converted into

digital format through scanning devices. DEMs based

on contour lines are a way for representing a terrain,

but not for performing computations, or simulations.

For other applications, they are usually converted into

triangulated models (TINs) by connecting two consec-

utive contour lines through a set of triangles.

The first DEMs of the computer age were Regular

Square Grids (RSGs). Very large and accurate gridded

DEMs are usually acquired through remote sensing

techniques, and are built from aerial or satellite raster

Digital Elevation Models. Figure 1. A triangle-based terrain representation.

Digital Elevation Models D 269

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

images. Thanks to the regular structure of an RSG,

both storing and processing an RSG is simple from

the point of view of design, but the huge size of such

models may cause serious inefficiency in both storage

and manipulation. This problem can be addressed by

applying techniques for terrain generalization, or

multi-resolution models. Generalization means deci-

mating data to achieve smaller memory size and faster

processing time, at the expense of less accuracy. This

can be achieved through grid subsampling or selection

of meaningful vertices to build a TIN. Multi-resolution

refers to the capability of maintaining multiple accura-

cy levels at the same time, and selecting the most

appropriate one for the current working session. This

latter aspect is covered in.

Triangulated Irregular Networks (TINs) are the

most general model from the point of view of model-

ing power, since they do not assume any spatial distri-

bution of the data. TINs can encompass morphological

terrain features, point features (e.g., peaks, pits and

passes) and line features (e.g., coast lines, rivers, con-

tour lines). On the other hand, the internal represen-

tations for TINs and the algorithms for their

construction are more complex than those for RSGs.

These latter have been extensively studied within the

field of computational geometry. Storing and manipu-

lating TINs require more computational resources

than RGSs, for the same number of vertices, but

they may need much fewer vertices to achieve the

same accuracy. This is especially true for terrains

with an irregular morphology, since a TIN can adapt

the density of the mesh to the local complexity of

the terrain.

Foundations
There are two major categories of DEMs: Regular

Square Grids (RSGs) and Triangulated Irregular Net-

works (TINs).

RSGs are based on a domain subdivision into a

square grid. There are two major ways of approximat-

ing a terrain based on a grid. In a stepped model, each

data point lies at the center of a grid cell, and its

elevation is assigned to the whole cell. The resulting

terrain model has the shape of a 2D histogram, and

thus the surface presents jump discontinuities at cell

edges. The second approach produces a continuous

surface. The data points are the vertices of the grid

cells. Within each cell, the elevation is approximated

through a function that interpolates the known

elevations of the four cell vertices. Let (x0, y0) be the

coordinates of the lower left corner of the cell, (Dx, Dy)

be the cell size and z0,0,z0,1,z1,0 and z1,1 be the elevations

of its four corners (lower-left, upper-left, lower-right,

upper-right, respectively; see Fig. 2).

A bilinear interpolant estimates the elevation at a

point P = (x, y) within the cell as:

z ¼ z0;0 þ ðz0;1 � z0;0Þðy � y0Þ=Dyþ
ðz1;0 � z0;0Þðx � x0Þ=Dxþ
ðz1;1 � z0;1 � z1;0 þ z0;0Þðx � x0Þðy � y0Þ=DxDy

and provides a continuous (but not differentiable)

surface approximation.

RSGs are stored in a very simple data structure that

encodes just a matrix of elevation values, the grid being

implicitly represented. All other information (includ-

ing interpolating functions and neighbor relations

among cells) can be reconstructed in constant time.

Moreover, the regular structure of RSGs makes them

well suited to parallel processing algorithms.

The RSG is the main format for distributing eleva-

tion data. Many existing DEMs are provided in this

format, including USGS (United States Geological Sur-

vey [11]) data as well as many proprietary GIS formats

(and the interchange Arc/Info ASCII grid). Usually, the

file contains a header followed by the elevations values

listed in either row or column order. The header con-

tains the information needed to decode the given

values and to locate the grid on the Earth surface

(geo-referencing) An RGS could also be encoded in a

standard image format by mapping the elevation range

to a grey level value, but this format does not support

geo-referencing.

The main disadvantage of an RSG is its uniform

resolution (i.e., the same cell size) over the whole

domain. This may imply undersampling in raw areas

and oversampling in flat areas for a terrain with irreg-

ular morphology. Uniformly increasing the resolution

Digital Elevation Models. Figure 2. A cell in an RSG.

270D Digital Elevation Models

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:45

produces huge matrices and thus high storage and

processing costs. Adaptive nested grids have been pro-

posed to overcome this problem.

A TIN is based on an irregular domain subdivision,

in which the cells are triangles, i.e., a triangle mesh with

vertices at the set S of data points. Usually, a linear

interpolating function is defined on the triangles of the

mesh, thus providing a continuous terrain approxima-

tion.More precisely, a triangle mesh T consists of a set of

triangles such that: (i) the set of vertices of T coincides

with S, (ii) the interiors of any two triangles of T do

not intersect, (iii) if the boundaries of two triangles

intersect, then the intersection is either a common

vertex, or a common edge (see Fig. 3). Each triangle

of T is mapped in the three-dimensional space by consid-

ering the elevation values at its three vertices and the plane

passing through the resulting three points in 3D space.

The quality of the terrain approximation provided

by a TIN depends on the quality of the underlying

triangle mesh, since the triangulation of a set of points

is not unique. The most widely used triangle mesh is

the Delaunay one. A Delaunay mesh is the one among

all possible triangle meshes joining a given set of points

in which the circumcircle of each triangle does not

contain any data point in its interior. This means that

the triangles of a Delaunay mesh are as much equian-

gular as possible, within the constraints imposed by the

distribution of the data points [9]. It has also been

proved that the use of a Delaunay mesh as the basis

for a TIN improves the quality of the terrain approxi-

mation and enhances numerical stability in computa-

tions. Other triangulation criteria have been proposed

which consider not only the 2D triangulation, but also

the corresponding triangles in 3D space [4].

In many practical cases, a TIN must embed not only

points, but also lines representing morphological terrain

features (coast lines, rivers, ridges), man-made structures

(roads, railways, gas lines), political or administrative

boundaries, contour lines. The Delaunay criterion has

been modified to deal with such lines in two different

ways: (i) in the constrained Delaunay triangulation, the

given lines appear as triangle edges [3]; (ii) in the

conforming Delaunay triangulation, each line is discre-

tized as a dense set of points [5] (see Fig. 4). The

constrained Delaunay triangulation may present sliver

triangles when segments are too long. Conforming

Digital Elevation Models. Figure 3. (a) A set of data points; (b) a triangle mesh; (c) Delaunay triangle mesh.

Digital Elevation Models. Figure 4. (a) A set of data points and lines; (b) Constrained Delaunay triangulation; (c) A

conforming Delaunay triangulation.

Digital Elevation Models D 271

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:46

triangulations may add a very large number of points

in order to force the lines to be included in the result-

ing mesh.

The simplest storage format for a TIN is a triangle

soup: each triangle is represented separately by listing

the nine coordinates of its three vertices. The indexed

format has been designed to avoid replicating the coor-

dinates of vertices shared by several triangles incident

in the same vertex. It stores each vertex of the TIN, as

three coordinates, in a list of vertices, and each triangle

as three vertex indices within such a list. This latter

format can be enriched by adding the adjacency rela-

tion linking each triangle with the three triangles its

shares an edge with. Triangle adjacency links support

efficient navigation inside a TIN. To support an effi-

cient traversal of the mesh passing through vertices, it

is convenient to attach to each vertex the index of one

of its incident triangles. The encoding of a TIN in an

indexed format requires one half of the space of a

triangle soup. The indexed format with adjacencies

requires about 2/3 of the space of a triangle soup.

Data structures and algorithms for TINs [1,3,12]

are more complex than those for RSGs. But, in many

cases, a TIN can reach the same approximation error as

an RGS in terrain representation with a much smaller

number of vertices. The main advantage of a TIN is its

flexibility in adapting the density of sampling in the

case of a terrain with irregular morphology, to include

relevant lines or points, and fit to irregularly shaped

domains. Many multi-resolution terrain models are

TIN-based.

Key Applications
Visualization of terrains is needed in many fields

including environmental sciences, architecture,

entertainment.

Morphology analysis, which is concerned with the

extraction of ridges, rivers, water basins, is important

in environmental monitoring and planning.

Visibility analysis of a terrain is concerned with the

computation of visible, or invisible, areas from a set of

viewpoints, with the computation of hidden or scenic

paths, with the extraction of networks of mutually

visible points. This is useful in many applications

such as communication, surveillance, visual impact of

infrastructures, etc.

Applications may require computing paths or point

networks of minimum cost according to some criteria

combining visibility, length, height variation, etc. A

wide range of simulations (e.g. flood, erosion, pollu-

tion, etc.) are also possible on a terrain model.

For details, see [3,7,10].

Future Directions
Some geographical applications need to represent

not only the surface of the earth, but also its internal

structure. This requires modeling 3D volumes as well

as 2D surfaces (e.g., boundaries between two rock

layers), and their adjacency relations. 3D extensions

of digital elevation models, such as RSGs and

TINs, leads to regular volume models and irregular

tetrahedral meshes, respectively. Regular volume mod-

els are grids of hexahedral cells connecting the

data points, while irregular tetrahedral meshes are

meshes formed by tetrahedra joining the data points.

Thus, challenging issues arise here, such as the devel-

opment of compact and effective data structures for

encoding digital volumetric models and of efficient

algorithms for building and manipulating such

models.

Another field for 3D terrain modeling is urban

terrain modeling, which provides the integration be-

tween elevation and urban data, i.e., laying buildings

and other landscape or vegetation elements over

a terrain. With urban terrain models, high-quality

photorealistic rendering of 3D geovirtual environ-

ments can be achieved. These are used in common

products like GoogleEarth [11] or Virtual Earth [6].

Urban terrain modeling has also important applica-

tions to 3D town maps for business and entertainment,

and also for city administration and urban develop-

ment planning.

Another challenging field is incorporating time in a

DEM. This will allow modeling the evolution of a

terrain over time and it is relevant for both historical

record and simulation. From a mathematical point of

view, the reference model is no longer a 2D surface

embedded in 3D space, but a 3D volume embedded in

4D space (where the last dimension is time). Here, it is

necessary to define and develop digital volumetric

models, like regular models and irregular tetrahedral

meshes, but embedded in 4D space.

In all such applications, multi-resolution models

will play an important role, because of the even larger

size of the data sets and of the corresponding volumet-

ric models.

272D Digital Elevation Models

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:46

URL to Code
United States Geological Survey (USGS) home page,

http://www.usgs.gov/

Google Earth home page, http://earth.google.com/

Microsoft Virtual Earth home page, http://www.

microsoft.com/virtualearth/

Spatial Data Transfer Standard (SDTS) home page,

http://mcmcweb.er.usgs.gov/sdts/

Cross-references
▶GIS for Geological Applications

▶Regular Entry on Multiresolution Terrain Modeling

▶Three-Dimensional GIS

▶Triangulated Irregular Networks (TIN)

Recommended Reading
1. de Berg M., van Kreveld M., Overmars M., and Schwarzkopf O.

Computational Geometry – Algorithms and Applications. 2nd

edn. Springer, Berlin, 2000.

2. De Floriani L., Magillo P., and Puppo E., Applications of compu-

tational geometry to Geographic Information Systems. In Hand-

book of Computational Geometry, Chap. 7, J.R. Sack, J. Urrutia

(eds.). Elsevier Science, 1999, pp. 333–388.

3. De Floriani L. and Puppo E. An On-line Algorithm for Con-

strained Delaunay Triangulation, CVGIP: Graphical Models and

Image Processing, 54(4): Academic, July 1992, pp. 290–300,

Academic, Orlando, FL.

4. Dyn N., Levin D., and Rippa S. Data dependent triangulations

for piecewise linear interpolation, IMA J. Numer. Analy.,

10:137–154, 1990.

5. Edelsbrunner H. and Tan T.S. An upper bound for conforming

Delaunay triangulation: Discrete Comput. Geom., 10:197–213,

1993.

6. Google Earth home page, http://earth.google.com/

7. Longley P.A., Goodchild M.F., Maguire D.J., and Rhind D.W.

(eds.) Geographical Information Systems, 2nd edn. Whiley, New

York, 1999.

8. Microsoft Virtual Earth home page, http://www.microsoft.com/

virtualearth/

9. O’Rourke J., Computational Geometry in C, 2nd edn.

Cambridge University Press, Cambridge, 1998.

10. Peckham R.J. and Jordan G. (eds.). Digital Terrain Modelling –

Development and Applications in a Policy Support Environ-

ment, Lecture Notes in Geoinformation and Cartography,

Springer, Berlin, 2007.

11. United States Geological Survey (USGS) home page, http://

www.usgs.gov/

12. van Kreveld M. Digital elevation models and TIN algorithms. In

Algorithmic Foundations of Geographic Information Systems,

number 1340 in Lecture Notes in Computer Science (tutorials),

M. van Kreveld, J . Nievergelt, T. Roos, and P. Widmayer (eds.).

Springer, Berlin, 1997, pp. 37–78.

Digital Image

▶ Image

Digital Libraries

VENKAT SRINIVASAN, SEUNGWON YANG,

EDWARD A. FOX

Virginia Tech, Blacksburg, VA, USA

Synonyms
Electronic libraries

Definition
Digital libraries (DLs) are complex information sys-

tems that have facilities for storage, retrieval, delivery,

and presentation of digital information. They are com-

plex in nature because of the broad range of activities

they may need to perform, and because they may

need to serve multiple types of audiences. Thus, the

broadest definitions include the people and agents/actors

involved, as well as the software, content, structure/

organization(s), services, policies, procedures, etc.

Historical Background
One of the earliest detailed works about digital libraries

(DLs) was prepared by Licklider [8], who envisioned a

network of computers with digitized versions of all of

the literature ever published. However, the term ‘‘digi-

tal library’’ became widely used only around 1991, in

connection with a series of workshops funded by the

US National Science Foundation, which later led to

significant NSF support of R&D DL projects (http://

www.dli2.nsf.gov/), e.g., Informedia, which focused on

digital video [2].

In a Delphi study of digital libraries, Kochtanek et al.

[7] defined a digital library as an ‘‘organized collection

of resources, mechanisms for browsing and searching,

distributed networked environments, and sets of ser-

vices objectified to meet users’ needs.’’ The President’s

Information Technology Advisory Committee (PITAC)

report [12] mentioned ‘‘These new libraries offer digital

versions of traditional library, museum, and archive

holdings, including text, documents, video, sound, and

images. But they also provide powerful new technologi-

cal capabilities that enable users to refine their inquiries,

Digital Libraries D 273

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:46

analyze the results, and change the form of the informa-

tion to interact with it. . .’’.

Starting in 2005, the European Union, through the

DELOS Network of Excellence on Digital Libraries

(http://www.delos.info/) worked to develop a reference

model for the digital library field. Their DL manifesto

[1] defines a digital library as ‘‘a (potentially virtual)

organization that comprehensively collects, manages,

and preserves for the long term rich digital content and

offers to its user communities specialized functionality

on that content, of measurable quality, and according

to prescribed policies.’’

Foundations
While the DELOS Reference Model [1] has aimed to

identify the key constructs of a DL, in order to allow

standardization and interoperability, there is one other

effort that has tried to develop a formal foundation for

the DL field. The 5S framework [4,5] was developed in

the Digital Library Research Laboratory at Virginia

Tech as a scientific base for digital libraries. There are

five elements that underlie DL systems; these can be

described (informally) as:

1. Streams: all types of content, as well as communi-

cations and flows over networks or into sensors, or

sense perceptions. Examples include: text, video,

audio, and image. These can be formalized as a

sequence.

2. Structures: organizational schemes, including data

structures, databases, and knowledge representations.

Examples include: collection, catalog, hypertext, and

document metadata. These can be formalized as a

graph, with labels and a labeling function.

3. Spaces: 2D and 3D interfaces, GIS data, and repre-

sentations of documents and queries. Examples in-

clude: storage spaces used in indexing, browsing, or

searching services, as well as interfaces. These can be

formalized as a set with operations (vector, topolog-

ical, measurable, measure, and probability spaces).

4. Scenarios: system states and events, or situations of

use by human users or machine processes, yielding

services or transformations of data. Examples in-

clude: searching, browsing, and recommending.

These can be formalized as a sequence of related

transition events on a state set.

5. Societies: both software ‘‘service managers’’ and

fairly generic ‘‘actors’’ who could be (collaborating)

human users. Examples include: service managers

(software), actors (learners, teachers, etc.) [1,4,5].

These can be formalized as a pair (i.e., a set of

communities and a set of relationships).

A formal description can be found in [4].

DL systems encompass all the five Ss. The 5 Ss are

also used in a formal definition of a minimal DL [5],

which has the key constructs that most would agree

must be found in any DL system. Of course, most real

DLs are extended well beyond what constitutes a min-

imal DL, to better suit the needs of the users. Accord-

ingly, the 5S framework has led to a growing set of

meta-models for different types of DLs, each formally

defined from a minimalist perspective: archaeological

DL, image DL, personal DL, practical DL, and super-

imposed information DL (supporting annotations and

knowledge management of the annotations and base

information).

DLs also can be understood as a triad (see Fig. 1),

which consists of content, societies, and scenarios.

Digital libraries preserve and provide the ‘‘content’’

which is stored in various formats (Streams). The

contents have certain ‘‘Structures’’ to help DLs effi-

ciently serve their patrons and to help the administra-

tors manage them. ‘‘Spaces’’ are required to store the

content in a DL system. A DL system’s user interface is

the ‘‘Space’’ in which the patrons and the system inter-

act, to submit, download, share, and discuss about the

digital contents.

To perform a certain task, a series of steps is need-

ed. The interaction between the system and its patrons

involves ‘‘Scenarios,’’ which often are described as

workflows. Processes to be performed by the system

also belong to this category. For the ‘‘Societies’’ in the

Digital Libraries. Figure 1. 5S framework [4,5]

represented as a triad.

274D Digital Libraries

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:46

triad, the people involved with any kind of DL activity

would fit into this category.

Building Digital Libraries

Building a DL is not an exact science. The historical

absence of formal models to guide the development of

DLs has led to divergence and duplication of efforts. Also,

interoperability has been a problem. There have been

many distributed, heterogeneous, and federated DLs,

e.g., NCSTRL (http://www.ncstrl.org) or the Alexan-

dria Digital Library [14], which were built using ad

hoc principles, wherein interoperability was achieved

only on a case by case basis. Standards have been defined

to help achieve interoperability, for example the Open

Archives Initiative (OAI), (http://www.openarchives.

org/) Protocol for Metadata Harvesting. Clearly there

are tradeoffs between encouraging innovation and

technological improvement, between functionality en-

hancement and autonomy in creating DLs – and com-

promises made so as to achieve interoperability.

Fortunately, a number of toolkits have been devel-

oped to aid those developing DLs. One of the first was

the EPrints system (http://www.eprints.org), initially

supporting electronic pre-prints, but later enhanced

to assist with the growing movement toward institu-

tional repositories.

Two other popular systems used to build DLs are

DSpace (http://www.dspace.org/) Greenstone (http://

www.greenstone.org) and Fedora (http://www.fedora.

info/). DSpace can simply be used out of the box to

build a DL. Figure 2 gives a high-level summary of the

parts and architecture of DSpace.

Digital library systems support access through an

application layer (see top of Fig. 2), which typically

includes a User Interface (UI). Also important is sup-

port to load content in batch mode, to aid the sharing

of metadata (e.g., through the OAI protocols), and to

facilitate access to particular digital objects by way of

their unique identifiers (e.g., their handles).

The main operations of a DL can be thought of as

the business logic (see middle of Fig. 2), including key

operations like searching (typically, with DSpace, using

Lucene, see http://lucene.apache.org/) and browsing.

For more flexibility, DLs can manage complex work-

flows. They can support authentication and authoriza-

tion, protecting privacy, management of user groups,

and broad suites of services to access and preserve

content. Ultimately, the content of a DL must be sup-

ported through a storage subsystem (see bottom of

Fig. 2), which typically makes use of database technol-

ogy, as well as handling of multimedia files.

Key Applications
DLs generally are effective content management sys-

tems, offering a broad range of services such as archiv-

ing, digital preservation, browsing, searching, and

presentation. Electronic libraries, virtual libraries, in-

stitutional repositories, digital repositories, courseware

management systems, and personalized information

systems are all considered to be different types of

DLs. Any research in the area of DLs is thus inherently

interdisciplinary in nature, encompassing especially

computer science (CS) areas like database manage-

ment (especially for the underlying storage layer),

information retrieval, multimedia, hypertext, human-

computer interaction, and library and information

science (LIS).

DLs can be applied to a variety of needs. Many DLs

of today are suitable for personal content management

systems, institutional repositories, or distributed glob-

al systems. DLs can be used to preserve documents

(e.g., electronic theses and dissertations, as coordinated

by NDLTD, at http://www.ndltd.org), to manage mul-

timedia content (e.g., Informedia [2], which focuses

on video), to support content-based retrieval of images

(e.g., in connection with the needs of archaeologists in

the ETANA DL, at http://www.etana.org), or to handle

a combination of digital formats (e.g., ADEPT [6],

which connects with GIS and mapping efforts).

One example of a highly visible and successful DL

initiative is the Perseus project (http://www.perseus.

tufts.edu/) which digitized ancient Greek literature

and makes it available as an online repository, with

many added services and additional information based

on careful analysis and use of powerful tools. This

project has completely changed the way classics are

taught in universities across the world. Thus, DLs

generally go well beyond archiving, providing value

added services as well.

Another example is the Traditional Knowledge

Digital Library (TKDL) [13], supported by the govern-

ment of India, to digitize traditional Indian medical

literature (relating to Ayurveda) in order to prevent

bio-piracy and patents.

Future Directions
The DL community continues to spread and grow.

Work on curricular resources [3,9,10,11] will help on

Digital Libraries D 275

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:46

the education side. Publishing at conferences and on-

line magazines (e.g., http://www.dlib.org/) will help

with dissemination of findings related to research,

development, practice, and policy. Work on standards

and open access (http://www.openarchives.org/) will

facilitate interoperability. Improvement of systems

like DSpace will help with more widespread utilization

of effective software solutions, including support for

preservation. Additional help with archiving and pres-

ervation, beyond just preserving the bits (see, for ex-

ample, the LOCKSS effort, http://www.lockss.org/), is

required (see for example, http://home.pacbell.net/

hgladney/ddq.htm).

It is hoped that further work on foundations, in-

cluding the 5S framework and the DELOS Reference

Model, will lead to a firm theoretical and practical

base for the field. For example, work to apply 5S

to the growing need for personal DLs seems particu-

larly promising, supporting Personal Information

Management.

Greater efficiency and effectiveness of DL systems

can help address problems associated with the ‘‘infor-

mation glut,’’ and work on DL quality metrics can help

those who select or maintain DL systems and installa-

tions. More tools are needed for digital librarians, to

assist them as they address fundamental questions like

what to store, how to preserve, how to protect intellec-

tual property, how to display, etc. These, and many

similar questions, arising from technical, economical,

and sociological perspectives, also will need to be

addressed, as DLs are more widely employed. Then,

efforts in the research, development, deployment, and

operational sectors will better support the growing

community of digital librarians, who aim to provide

interested societies with cyberinfrastructure, which

incorporates suitable organizational structures and ap-

propriate services.

Experimental Results
See http://www.dli2.nsf.gov/

Digital Libraries. Figure 2. DSpace institutional repository architecture (from: http://www.dspace.org).

276D Digital Libraries

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

Data Sets
See http://www.dli2.nsf.gov/

Url to Code
See http://www.eprints.org/, http://www.dspace.org/,

and http://www.fedora.info/

Cross-references
▶Browsing

▶ Searching

Recommended Reading
1. Candela L., Castelli D., Ioannidis Y., Koutrika G., Pagano P., Ross

S., Schek H.-J., and Schuldt H. Setting the foundations of digital

libraries: the DELOS manifesto. D-Lib Mag., 13(3/4), ISSN

1082–9873, 2007.

2. Christel M., Wactlar H., and Stevens S. Informedia. In Proceed-

ings of the ACM Multimedia Conference, New York, pp. 480–

481.

3. Digital Library Curriculum Development Project homepage

(2007). http://curric.dlib.vt.edu/.

4. Gonçalves M.A. Streams, Structures, Spaces, Scenarios, and

Societies (5S): A Formal Digital Library Framework and Its

Applications. Computer Science Doctoral Dissertation. Blacks-

burg, VA: Virginia Tech, 161pp, 2004.

5. Gonçalves M., Fox E., Watson L., and Kipp N. Streams, struc-

tures, spaces, scenarios, societies (5S): a formal model for digital

libraries. ACM Trans. Inf. Syst., 22:270–312, 2004.

6. Janée G. and Frew J. The ADEPT digital library architecture. In

Proceedings of the Second ACM/IEEE-CS Joint Conference on

Digital Libraries (JCDL’02), 2002.

7. Kochtanek T. and Hein K.K. Delphi study of digital libraries. Inf.

Process. Manage., 35(3):245–254, 1999.

8. Licklider J.C.R. Libraries of the Future. The MIT Press,

Cambridge, MA, 1965.

9. Pomerantz J., Oh S., Wildemuth B., Yang S., and Fox E.A. Digital

library education in computer science programs. In Proceedings

of the Seventh ACM/IEEE-CS Joint Conference on Digital

Libraries (JCDL’07), 2007.

10. Pomerantz J., Oh S., Yang S., Fox E.A., and Wildemuth B. The

Core: Digital Library Education in Library and Information

Science Programs. D-Lib Magazine, 12(11), 2006.

11. Pomerantz J., Wildemuth B., Oh S., Fox E.A., and Yang S.

Curriculum development for digital libraries. In Proceedings

of the Sixth ACM/IEEE-CS Joint Conference on Digital

Libraries, 2006, pp. 175–184.

12. Reddy R. and Wladawsky-Berger I. Digital Libraries: Universal

Access to Human Knowledge – A Report to the President. Pre-

sident’s Information Technology Advisory Committee (PITAC),

Panel on Digital Libraries 2001.

13. Sen N. TKDL - A safeguard for Indian traditional knowledge.

Curr. Sci., 82(9):1070–71, 2002.

14. Smith T.R. and Frew J. Alexandria digital library. Commn. of the

ACM, 38(4):61–62, 1995.

Digital Rights Management

RADU SION

Stony Brook University, Stony Brook, NY, USA

Synonyms
DRM

Definition
Digital rights management (DRM) is a term that

encompasses mechanisms and protocols deployed by

content publishers and rights holders to enforce access

licensing terms. This entry discusses mainly DRM for

relational data, specifically such methods as database

watermarking. General DRM techniques are discussed

elsewhere [19].

Historical Background
Historically, DRM methods have found ample applica-

tion in consumer entertainment and multimedia indus-

tries since the late 1980s. More recently, with the advent

of massive relational data management and warehous-

ing systems, increasingly, valuable data has been pro-

duced, packaged and delivered in relational form. In

such frameworks, DRM assurances have become an

essential requirement. As traditional multimedia DRM

mechanisms are ill-suited for the new data domain,

starting in 2001, researchers developed mechanisms for

relational data rights protection [1,5,10,11,12,13,14,15]

mainly centered around the concept of deploying stega-

nography in hiding copyright ‘‘watermarks’’ in the un-

derlying data. While initial efforts focused on basic

numeric data [5,11,14,6], subsequent work handled cat-

egorical [9,10,14], and streaming [16,18] data types.

Foundations

Overview

As increasing amounts of data are produced, packaged

and delivered in digital form, in a fast, networked envi-

ronment, one of itsmain features threatens to become its

worst enemy: zero-cost verbatim copies. The ability to

produce duplicates of digitalWorks at almost no cost can

now bemisused for illicit profit. Thismandates mechan-

isms for effective rights assessment and protection. Dif-

ferent avenues are available, eachwith its advantages and

drawbacks. Enforcement by legal means is usually inef-

fective, unless augmented by a digital counterpart such

Digital Rights Management D 277

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

as steganography (information hiding). Digital Water-

marking as a method of rights assessment deploys

information hiding to conceal an indelible ‘‘rights wit-

ness’’ (‘‘rights signature’’, watermark) within the digital

Work to be protected – thus enabling ulterior court-

time proofs associating particular works with their

respective rights holders. The soundness of such a

method relies on the assumption that altering the

Work in the process of hiding the mark does not

destroy the value of the Work, while it is difficult for

a malicious adversary (‘‘Mallory’’) to remove or alter

the mark beyond detection without doing so. The

ability to resist attacks from such an adversary, mostly

aimed at removing the watermark, is one of the major

challenges.

Watermarking for Rights Protection

But how does the ability to prove rights in court relates

to the final desiderata, namely to protect those rights?

The ability to prove/assess rights convincingly in court

constitutes a deterrent to malicious Mallory. It thus

becomes a tool for rights protection if counter-incentives

and legal consequences are set high enough. Such a

method only works however if the rightful rights-holder

(Alice) actually knows about Mallory’s misbehavior

and is able to prove to the court that: (i) Mallory

possesses a certain Work X and (ii) X contains a ‘‘con-

vincing’’ (e.g., very rare with respect to the space of all

considered similar Works) and ‘‘relevant’’ watermark

(e.g., the string ‘‘(c) by Alice’’). This illustrates the

game theoretic nature at the heart of the watermarking

proposition and of information security in general.

Watermarking is a game with two adversaries, Mallory

and Alice. At stake lies the value inherent in a certain

Work X, over which Alice owns certain rights. When

Alice releases X, to the public or to a licensed but

potentially untrusted party, she deploys watermarking

for the purpose of ensuring that one of the following

holds: (i) she can always prove rights in court over

any copy or valuable derivative of X (e.g., segment

thereof), (ii) any existing deviate Y of X, for which

she cannot prove rights, does not preserve any sign-

iicant value (derived from the value in X), (iii) the cost

to produce such an un-watermarked derived Y of X

that is still valuable (with respect to X) is higher than

its value.

Once outsourced, i.e., out of the control of the

watermarker, data might be subjected to a set of attacks

or transformations; these may be malicious – e.g., with

the explicit intent of removing the watermark – or

simply the result of normal use of the data. An effective

watermarking technique must be able to survive such

use. In a relational data framework some of the impor-

tant attacks and transformations are:

1. Sampling. The attacker (Mallory) can randomly

select and use a subset of the watermarked data

set that might still provide value for its intended

purpose (‘‘subset selection’’). More specifically,

here the concern is with both (1a) horizontal and

(1b) vertical data partitioning – in which a valuable

subset of the attributes are selected by Mallory.

2. Data addition. Mallory adds a set of tuples to the

watermarked set. This addition is not to signifi-

cantly alter the useful properties of interest to

Mallory.

3. Alteration. Altering a subset of the items in the

watermarked data set such that there is still value

associated with the result. In the case of numeric

data types, a special case needs to be outlined here,

namely (3a) a linear transformation performed

uniformly to all of the items. This is of particular

interest as it can preserve significant valuable data-

mining related properties of the data.

4. Ulterior claims of rights. Mallory encodes an addi-

tionalwatermark in the alreadywatermarked data set

and claims rights based upon this second watermark.

5. Invertibility attack. Mallory attempts to establish a

plausible (watermark,key) pair that matches the

data set and then claims rights based on this

found watermark [2,3].

Consumer Driven Watermarking

An important point about watermarking should be

noted. By its very nature, a watermark modifies the

item being watermarked: it inserts an indelible mark in

the work such that (i) the insertion of the mark does not

destroy the value of the work, i.e., it is still useful for the

intended purpose; and (ii) it is difficult for an adversary

to remove or alter the mark beyond detection without

destroying this value. If the work to be watermarked

cannot be modified without losing its value then a

watermark cannot be inserted. The critical issue is

not to avoid alterations, but to limit them to acceptable

levels with respect to the intended use of the work.

Naturally, one can always identify some use that is

278D Digital Rights Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

affected by even a minor change to any portion of

the data. It is therefore important that (i) the main

intended purpose and semantics that should be

preserved be identified during watermarking and that

(ii) the watermarking process not interfere with the final

data consumer requirements. This paradigm is called

consumer-driven watermarking. In consumer-driven

watermarking the rights holder andMallory play against

each other within subtle trade-off rules aimed at keep-

ing the quality of the result within acceptable bounds.

The data itself (its quality requirements) acts as an im-

partial referee moderating each and every ‘‘move’’.

In [4] Gross-Amblard introduce interesting theo-

retical results investigating alterations to relational

data (or associated XML) in a consumer-driven frame-

work in which a set of parametric queries are to be

preserved up to an acceptable level of distortion. The

author first shows that the main difficulty preserving

such queries ‘‘is linked to the informational complexity

of sets defined by queries, rather than their computa-

tional complexity’’ [4]. Roughly speaking, if the family

of sets defined by the queries is not learnable [20], no

query-preserving data alteration scheme can be

designed. In a second result, the author shows that

under certain assumptions (i.e., query sets defined by

first-order logic and monadic second order logic on

restricted classes of structures – with a bounded degree

for the Gaifman graph or the tree-width of the struc-

ture) a query-preserving data alteration scheme exists.

Numerical Data Types

This section explores some of the watermarking solu-

tions in the context of relational data in which one or

more of the attributes are of a numeric type. Among

existing solutions one distinguishes between single-bit

(the watermark is composed of a single bit) and multi-

bit (the watermark is a string of bits) types. Orthogo-

nally, the encoding methods can be categorized into

two: direct-domain and distribution encodings. In a

direct-domain encoding, each individual bit alteration

in the process of watermarking is directly correlated to

(a part of) the encoded watermark. In distribution

encodings, the encoding channel lies often in higher

order moments of the data (e.g., running means, hier-

archy of value averages). Each individual bit alteration

impacts these moments for the purpose of watermark

encoding, but in itself is not directly correlated to any

one portion of the encoded watermark.

Single-bit encodings. In [1,5] Kiernan, Agrawal et al.

propose a direct domain encoding of a single bit wa-

termark in a numeric relational database. Its main

algorithm proceeds as follows. A subset of tuples are

selected based on a secret criteria; for each tuple, a

secret attribute and corresponding least significant

(x) bit position are chosen. This bit position is then

altered according to yet another secret criteria that is

directly correlated to the watermark bit to be encoded.

The main assumption is, that changes can be made to

any attribute in a tuple at any least significant x bit

positions. At watermark detection time, the process

will re-discover the watermarked tuples and, for each

detected accurate encoding, become more ‘‘confident’’

of a true-positive detection.

The authors discuss additional extensions and

properties of the solution including incremental

updatability, blind properties, optimization of para-

meters, as well as handling relations without primary

keys. To handle the lack of primary keys, the authors

propose to designate another attribute, or a number of

most significant bit-portions of the currently consid-

ered one, as a primary key. This however presents a

significant vulnerability due to the very likely existence

of duplicates in these values. Mallory could mount a

statistical attack by correlating marked bit values

among tuples with the same most significant bits.

This issue has been also considered in [7] where a

similar solution has been adopted.

Multi-bit encodings. While there likely exist appli-

cations whose requirements are satisfied by single-bit

watermarks, often it is desirable to provide for ‘‘rele-

vance’’, i.e., linking the encoding to the rights holder

identity. This is especially important if the watermark

aims to defeat against invertibility attacks (5). In a

single-bit encoding this can not be easily achieved.

Additionally, while the main proposition of water-

marking is not covert communication but rather rights

assessment, there could be scenarios where the actual

message payload is of importance. One apparent direct

extension from single-bit to multi-bit watermarks

would be to simply deploy a different encoding, with

a separate watermark key, for each bit of the watermark

to be embedded. This however, might not be possible,

as it will raise significant issues of inter-encoding in-

terference: the encoding of later bits will likely distort

previous ones. This will also make it harder to handle

ulterior claim of rights attacks (4).

Digital Rights Management D 279

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

In [6] Li et al. extend the work by Kiernan, Agrawal

et al. [1,5] to provide for multi-bit watermarks in a

direct domain encoding. The scheme functions as fol-

lows. The database is parsed and, at each bit-encoding

step, one of the watermark bits is randomly chosen for

embedding; the solution in [1,5] is then deployed to

encode the selected bit in the data at the ‘‘current’’

point. The ‘‘strength of the robustness’’ of the scheme

is claimed to be increased with respect to [1,5] due

to the fact that the watermark now possesses an addi-

tional dimension, namely length. This should guaran-

tee a better upper bound for the probability that a valid

watermark is detected from unmarked data, as well

as for the probability that a fictitious secret key is

discovered from pirated data (i.e., invertibility attacks

(5)). This upper bound is said to be independent of

the size of database relations thus yielding robustness

against attacks that change the size of database rela-

tions. In [8] the same authors propose to use the

multi-bit watermarking method [6] for ‘‘fingerprint-

ing’’ relational data in order to track copyright

violators.

Multi-bit distribution encoding. Encoding water-

marking information in resilient numeric distribution

properties of data presents a set of advantages over

direct domain encoding, the most important one

being its increased resilience to various types of nu-

meric attacks. In [10,11,12,13,14,15], Sion et al. intro-

duce a multi-bit distribution encoding watermarking

scheme for numeric types. The scheme was designed

with both an adversary and a data consumer in mind.

More specifically the main desiderata were: (i) water-

marking should be consumer driven – i.e., desired

semantic constraints on the data should be preserved

– this is enforced by a feedback-driven rollback mech-

anism, and (ii) the encoding should survive important

numeric attacks, such as linear transformation of the

data (3.a), sampling (1) and random alterations (3).

The solution starts by receiving as user input

a reference to the relational data to be protected, a

watermark to be encoded as a copyright proof, a secret

key used to protect the encoding and a set of data

quality constraints to be preserved in the result. It

then proceeds to watermark the data while continu-

ously assessing data quality, potentially backtracking

and rolling back undesirable alterations that do not

preserve data quality.

Watermark encoding is composed of two main

parts: in the first stage, the input data set is securely

partitioned into (secret) subsets of items; the second

stage then encodes one bit of the watermark into

each subset. If more subsets (than watermark bits) are

available, error correction is deployed to result in an

increasingly resilient encoding. Each single bit is

encoded/represented by introducing a slight skew bias

in the tails of the numeric distribution of the

corresponding subset. The encoding is proved to be

resilient to important classes of attacks, including sub-

set selection, linear data changes and random item(s)

alterations.

In [10,14,15] the authors discuss a proof of concept

implementation. It is worth mentioning here due to

its consumer-driven design. In addition to a water-

mark to be embedded, a secret key to be used for

embedding, and a set of relations/attributes to water-

mark, the software receives as input also a set of exter-

nal usability plugin modules. The role of these plugins is

to allow user defined query metrics to be deployed

and queried at run-time without re-compilation

and/or software restart. The software uses those

metrics to re-evaluate data usability after each atomic

watermarking step.

To validate this consumer driven design the authors

perform a set of experiments showing how, for exam-

ple, watermarking with classification preservation can

be enforced through the usability metric plugin

mechanisms. Moreover, the solution is proved experi-

mentally on real data to be extremely resilient to ran-

dom alterations and uninformed alteration attacks.

This is due to its distribution-based encoding which

can naturally survive such alterations. For example,

altering the entire watermarked data set within 1% of

its original values only yields a distortion of less than

5% in the detected watermark.

Categorical Data Types

Categorical data is data drawn from a discrete distri-

bution, often with a finite domain. By definition, it is

either non-ordered (nominal) such as gender or city,

or ordered (ordinal) such as high, medium, or low

temperatures. There are a multitude of applications

that would benefit from a method of rights protection

for such data.

Additional challenges in this domain derive

from the fact that one cannot rely on arbitrary small

(e.g., numeric) alterations to the data in the embed-

ding process. Any alteration has the potential to be

significant, e.g., changing DEPARTURE_CITY from

280D Digital Rights Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

‘‘Chicago’’ to ‘‘Bucharest’’ is likely to affect the data

quality of the result more than a simple change in a

numeric domain. There are no ‘‘epsilon’’ changes in

this domain. This completely discrete characteristic of

the data requires discovery of fundamentally new

bandwidth channels and associated encoding algo-

rithms. Moreover, the ability of the adversary to simply

re-map attributes values to a new domain needs to be

considered.

In [9,17] Sion et al. introduce a method of water-

marking relational data with categorical types, based on

a set of new encoding channels and algorithms. More

specifically, two domain-specific watermark embedding

channels are used, namely (i) inter-attribute associa-

tions and (ii) value occurrence frequency-transforms of

values. The mechanism starts with an initial user-level

assessment step in which a set of attributes to

be watermarked are selected. In its basic version,

watermark encoding in the inter-attribute association

channel is deployed for each attribute pair (K,A) in

the considered attribute set. A subset of ‘‘fit’’ tuples

is selected, as determined by the association between

A and K. These tuples are then considered for mark

encoding. Mark encoding alters the tuple’s value

according to secret criteria that induces a statistical

bias in the distribution for that tuple’s altered value.

The detection process then relies on discovering this

induced statistical bias. The authors validate the solu-

tion both theoretically and experimentally on real

data (Wal–Mart sales). They demonstrate resilience to

both alteration and data loss attacks, for example being

able to recover over 75% of the watermark from under

20% of the data.

The authors further discuss additional extensions

and properties of the solution, including a consumer-

driven design, incremental updatability, its blind nature,

optimizations for minimizing alteration distances, as

well as the ability to survive extreme vertical partition-

ing, handle multiple data sources as well as attribute

re-mapping.

Key Applications
Rights protection for relational data is important in

scenarios where it is sensitive, valuable and about to be

outsourced. A good example is a data mining applica-

tion, where data is sold in pieces to parties specialized

in mining it, e.g., sales patterns database, oil drilling

data, financial data. Other scenarios involve for exam-

ple online B2B interactions, e.g., airline reservation

and scheduling portals, in which data is made available

for direct, interactive use.

Watermarking in relational frameworks is a rela-

tively young technology that has begun its maturity

cycle towards full deployment in industry-level appli-

cations. Many of the solutions discussed above have

been prototyped and validated on real data. Patents

have been filed for several of them, including Agrawal

et al. [1,5] and Sion et al. [9,10,11,12,13,14,15,17]. In

the next few years one expects these solutions to be-

come available commercially, tightly integrated within

existing DBMS or as stand-alone packages that can be

deployed simultaneously on top of multiple data types

and sources. Ultimately, the process of resilient infor-

mation hiding will become available as a secure mech-

anism for not only rights protection but also data

tracing and authentication in a multitude of discrete

data frameworks.

Future Directions
Amultitude of associated future research avenues pres-

ent themselves in a relational framework, including:

the design of alternative primary or pseudo-primary

key independent encoding methods, a deeper theoreti-

cal understanding of limits of watermarking for a

broader class of algorithms, the ability to better defeat

additive watermark attacks, an exploration of zero-

knowledge watermarking, etc.

Moreover, while the concept of on-the-fly quality

assessment for a consumer-driven design has the po-

tential to function well, another interesting avenue for

further research would be to augment the encoding

method with direct awareness of semantic consistency

(e.g., classification and association rules). This would

likely result in an increase in available encoding band-

width, thus in a higher encoding resilience. One idea

would be to define a generic language (possibly subset

of SQL) able to naturally express such constraints and

their propagation at embedding time.

Additionally, of particular interest for future re-

search exploration are cross-domain applications of

information hiding in distributed environments such

as sensor networks, with applications ranging from

resilient content annotation to runtime authentication

and data integrity proofs.

Cross-references
▶ Steganography

Digital Rights Management D 281

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

Recommended Reading
1. Agrawal R., Haas P.J., and Kiernan J. Watermarking relational

data: framework, algorithms and analysis. VLDB J., 12

(2):157–169, 2003.

2. Craver S., Memon N., Yeo B.-L., and Yeung M.M. Resolving

rightful ownerships with invisible watermarking techniques:

Limitations, attacks, and implications. IEEE J. Select. Areas

Commun., 16(4):573–586, 1998.

3. Cox I., Bloom J., and Miller M. Digital watermarking. In Digital

Watermarking. Morgan Kaufmann, 2001.

4. Gross-Amblard D. Query-preserving watermarking of relational

databases and xml documents. In Proc. 22nd ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems.

2003, pp. 191–201.

5. Kiernan J. and Agrawal R. Watermarking relational

databases. In Proc. 28th Int. Conf. on Very Large Data Bases,

2002.

6. Li Y., Swarup V., and Jajodia S. A robust watermarking scheme

for relational data. In Proc. Workshop on Information Technol-

ogy and Systems (WITS), 2003, pp. 195–200.

7. Li Y., Swarup V., and Jajodia S. Constructing a virtual primary key

for fingerprinting relational data. In Proc. 2003 ACM Workshop

on Digital Rights Management, 2003, pp. 133–141.

8. Li Y., Swarup V., and Jajodia S. Fingerprinting relational data-

bases: Schemes and specialties. IEEE Transactions on Depend-

able and Secure Computing, 2(1):34–45, 2005.

9. Sion R. Proving ownership over categorical data. In Proc. 20th

Int. Conf. on Data Engineering, 2004.

10. Sion R. wmdb.*: A suite for database watermarking (demo). In

Proc. 20th Int. Conf. on Data Engineering, 2004.

11. Sion R., Atallah M., and Prabhakar S. On watermarking numeric

sets CERIAS TR 2001-60.

12. Sion R., Atallah M., and Prabhakar S. On watermarking

numeric sets. In Proc. Int. Workshop on Digital Water-

marking IWDW, Lecture Notes in Computer Science. Springer,

2002.

13. Sion R., Atallah M., and Prabhakar S. Watermarking Databases

CERIAS TR 2002-28.

14. Sion R., Atallah M., and Prabhakar S. Rights protection for

relational data. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2003.

15. Sion R., Atallah M., and Prabhakar S. Relational data rights

protection through watermarking. IEEE Transactions on Knowl-

edge and Data Engineering TKDE. 16(6), June 2004.

16. Sion R., Atallah M., and Prabhakar S. Resilient rights protection

for sensor streams. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004.

17. Sion R., Atallah M., and Prabhakar S. Ownership proofs for

categorical data. IEEE Transactions on Knowledge and Data

Engineering TKDE, 2005.

18. Sion R., Atallah M., and Prabhakar S. Rights protection for

discrete numeric streams. IEEE Transactions on Knowledge

and Data Engineering TKDE. 18(5), May 2006.

19. Wikipedia. Digital Rights Management. http://en.wikipedia.org/

wiki/Digital_rights_management.

20. Valiant L.G. A theory of the learnable. In Proc. Symp. on the

Theory of Computing. 1984, pp. 436–445.

Digital Signatures

BARBARA CARMINATI

University of Insubria, Varese, Italy

Synonyms
Signatures

Definition
Informally, given a message M, the digital signature of

M generated by a signer S is a bit string univocally

bound to M and some secret key known only by S.

More precisely, since digital signature schemes are

based on asymmetric cryptography, it is possible to

define the digital signature of M generated by S as a

bit string dependent on M and the private key of S.

Digital signature schemes have the property that sig-

natures generated with a private key can be validated

only by the corresponding public key. This ensures the

authenticity of the message. Moreover, any modifica-

tion on the signed message will invalidate the signature

itself. This means that if the signature is validated

it provides an evidence that the message has not

been altered after the digital signature has been applied

on it. This ensures the integrity of the message.

Historical Background
The notion of digital signature appeared in 1976 in

a paper by Diffie and Hellman [1]. In this paper,

authors introduced for the first time the concept

of asymmetric cryptography and discussed how it

could be combined with one-way functions to ensure

message authentication. However, the first digital sig-

nature scheme with a practical implementation

appeared only in 1978, proposed by Rivest et al. [7],

and still represents one of the most exploited signature

technique. Later on, several other schemes have been

proposed with an improved efficiency and/or offering

further functionalities (see [4] for a survey). An exam-

ple of these schemes are one-time signatures, that is,

digital signature schemes where keys can be used to

sign, at most, one message. These schemes have the

benefit that are very efficient, making them particularly

useful in applications requiring a low computational

complexity. Other examples are, for instance, arbitrated

digital signatures, where signatures are generated and

verified with the cooperation of a trusted third party,

or blind signature schemes devised in such a way that a

282D Digital Signatures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

signer is not able to observe the message it signs. This

latter scheme are useful in digital cash protocols or

electronic voting systems.

Foundations
Digital signatures have been introduced to obtain, in

a digital form, the benefits of handwritten signatures.

In general, by appending a handwritten signature to a

document, the signer provides evidence that he or she

has validated the document. This could mean that the

document has been generated, modified, or at least

simply read for approval by the person who claims to

have done it. In a similar way, digital signatures aim to

provide evidence that the signer has really elaborated

the message. To achieve this result, digital signatures

exploit asymmetric cryptography and collision-resistant

hash functions. This implies that a user A willing to

digitally sign a message has to be provided with a key

pair consisting of a private key, SKA, and a public key,

PKA. The security of the digital signature relies on

the assumption that the private key is kept secret by

the owner itself, whereas the public key is available to

all users. Note that various digital signature schemes

have been proposed, with differen signature and verifi-

cation algorithms, which will be discussed later on.

However, independently from the adopted algorithms,

the overall process to generate an validate a digital

signature is always the same. As an example, assume

that Alice wishes to send Bob a messag M completed

with its digital signature, denoted a DSAðMÞ. The
procedure to sign and verify the signature is described

in what follows.

Digital signature generation. To sign a message M,

Alice first generates a condensed version of M, called

digest of the message, which is obtained by a collision

resistant hash function h(). Then, the digest is signed

using Alice’s private key (cf. Fig. 1a). Notice that ‘‘sign-

ing’’ a digest implies to apply on it a set of transforma-

tions according to the digital signature scheme

adopted.

Digital signature verification. Assuming that Bob

receives the message M0 from Alice. To validate its

digital signature, i.e., to verify whether M0 is equal to

M, he first computes the digest of M0 by using the

same hash function used for signature generation.

Then, using Alice’s public key and the new digest

value he can verify whether the digital signature is

valid or not (cf. Fig. 1b).

Digital signatures provide several benefits. The first is

related to the property of asymmetric cryptography

ensuring that it is computationally infeasible to vali-

date a signature DSA(M) with a public key PKx differ-

ent from the one corresponding to the private key used

for signature creation. Thus, if the signature is verified,

it guarantees that the message has been really generated

by the owner of the private key, that is, it ensures the

authenticity of the message. This property entails as

further benefits, the non repudiation of the message.

Indeed, in case of a lying signer A claiming that the

message was not generated by him or her, the digital

signature DSA(M) acts like an evidence of the oppo-

site, making thus A not able to repudiate the message.

A further benefit is given by properties of hash func-

tions, which ensures that it is computationally infeasi-

ble to find two different messagesM andM0such that

h(M) ¼ h(M). Thus, if the signature is validated, it

means that the digest computed on the received

message matches the digest extracted during the

Digital Signatures. Figure 1. (a) Digital signature generation. (b) Digital signature verification.

Digital Signatures D 283

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:47

verification process. A validated signature provides,

therefore, evidence that the message has not been

altered after the digital signature has been applied on

it. This ensures the integrity of the message.

In the following, two of the most used digital

signature schemes, that is, the DSA and RSA algo-

rithms, are illustrated (see [4] for a detailed description

of them). However, for a more comprehensive

overview of digital signatures, besides cryptographic

details it is interesting to have also an example of

how they can be used in real world scenarios. Given

its relevance, it is considered the Web as reference

scenario. For this reason, in the second part of

this entry it is presented the standard proposed by

W3C for digital signature encoding, called XML

Signature [8].

Digital Signature Schemes

In general, a digital signature scheme is defined accord-

ing to three algorithms:

1. Key generation algorithm that randomly computes a

pair of keys (SKA, PKA) for the signer A.

2. Signature generation algorithm S(), which receives

as input the messagM to be digitally signed (Here-

after, the discussion refers to a generic message M.

However, it is important to recall that the signature

process usually requires to digitally sign the digest

of the original message.), the private key SKA of the

signer and generates the digital signature DSA(M)

of the message M.

3. Signature verification algorithm V(), that takes as

input the digital signature DSA(M) of the message

M, the public key PKA of the signer and, optional-

ly, the message M, and returns whether the verifi-

cation succeeds or not.

It is possible to organize the many schemes proposed

in the literature into two main classes, that is, digital

signature schemes with appendix and digital signature

schemes with message recovery, which are described in

what follows.

Digital Signature Schemes with Appendix

The main characteristic that distinguishes these

schemes with regard to those with message recovery

is that they require the original message during the

verification process. Thus, together with the signer’s

public key and the digital signature, the verification

algorithm takes as input also the original message. This

implies that the signer A has to send to the intended

verifier B the original message complemented with its

digital signature as ‘‘appendix.’’

In the literature, there exist several digital signature

schemes with appendix. However, the most relevant

and recognized is the one proposed in 1991 by the U.S.

National Institute of Standards and Technology

(NIST). The scheme, called Digital Signature Algo-

rithm (DSA) [3], became an U.S. Federal Information

Processing Standard (FIPS 186) in 1993, with the aim

to be the first digital signature scheme recognized by

any government (i.e., a Digital Signature Standard –

DSS) (In 2000, NIST extended the standard to three

FIPS-approved algorithms: Digital Signature Algo-

rithm (DSA), RSA (as specified in ANSI X9.31), and

Elliptic Curve DSA (ECDSA; as specified in ANSI

X9.62).).

A summary of DSA algorithms is given in the

following (the interested reader can refer to [6] for

more details).

DSA – Key generation algorithm. Let A be the entity

for which public and private keys are generated. PKA

and SKA are calculated as follows:

1. Select a prime number p, where 2L�1 < p < 2L, L is

multiple of 64, and 512 � L � 1024;

2. Select q, a prime divisor of p � 1, where 2159 < q <

2160;

3. Select g, a number whose multiplicative order

modulo p is q. (This can be calculated by g =

h(p�1)∕q mod p, where h is any integer with 1 <

h < p � 1 such that h(p�1)∕q mod p > 1);

4. Generate a random or pseudorandom integer x,

where 0 < x < q;

5. Calculate y = gx mod p;

6. Set PKA = (p, q, g, y) and SKA = (x);

DSA – Signature algorithm. LetM be the message to be

signed with PKA, and h() be an hash function (FIPS

186–2 uses SHA-1 as hash function [5]. The forthcom-

ing FIPS 186–3 uses SHA-224/256/384/512.), the digi-

tal signature DSA(M) is generated as follows:

1. Generate a random or pseudorandom integer k,

where 0 < k < q;

2. Calculate r = gk mod p;

3. Calculate s = (k�1(h(m) + xr)) mod q, where k�1 is

the multiplicative inverse of k;

4. Set DSA(M) = (r,s);

284D Digital Signatures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:48

DSA-Signature verification algorithm. Let M 0, r 0, and

s 0 be the received versions ofM, r, and s. To validate the

digital signature, an entity B should do the following:

1. Obtain the public key of A, PKA = (p, q, g, y);

2. Verify that 0 < r 0 < q and 0 < s 0 < q, if not the

signature shall be rejected;

3. Compute w = (s 0)�1 mod q;

4. Compute u1 = (h(M 0)w) mod q and u2 = (r 0w)

mod q;

5. Compute v ¼ ðððgÞu1ðyÞu2Þ mod p) mod q;

6. If v = r 0, then the signature is verified.

Digital Signature Schemes with Message Recovery

Differently to the previous signature schemes, these

schemes do not require the original message during

the verification process. In contrast, by taking as input

only the digital signature and the public key of the

signer, the verification algorithm V() recovers the orig-

inal message M directly from the digital signature. The

main advantage of these schemes is that they minimize

the length of the message to be transmitted, in that

only the digital signature has to be sent. This makes the

digital signatures with message recovery particularly

tailored to applications where the bandwidth is one

of the main concern.

However, it is important to notice that adopting

these schemes in the digital signature process depicted

in Fig. 1 requires to send the original message even

if V() is able to recover the message. Indeed, if the

message is hashed before signing it, these schemes are

not able to recover the original message, rather they

recover only its digest. Having the digest without the

original message makes the receiver not able to verify

the message integrity, in that it is not possible to match

the two hash values. For this reason, when these

schemes are adopted in the standard digital signature

process (see Fig. 1) they are used like schemes with

appendix, i.e., the digital signature is appended to the

corresponding message.

One of the most known digital signature scheme

with message recovery is the RSA algorithm [7], which

is the first one in public-key cryptography to be suit-

able for signature as well as encryption. RSA algo-

rithms are briefly illustrated in what follows, by

focusing only on signatures. An interested reader

should refer to [4] for a deeper discussion on RSA

public key cryptography, and to PKCS#1 standard [2]

for details on RSA implementation.

RSA – Key generation algorithm. Let A be the entity

for which public and private keys are generated. PKA

and SKA are calculated as follows:

1. Generate two large random or pseudorandom

prime numbers p and q;

2. Compute n = pq and f = (p � 1)(q � 1);

3. Select a random integer e, 1 < e < f, such that gcd

(e; f) = 1;

4. Compute the unique integer d, 1< d< f, such that
ed
 1(mod f);

5. Set PKA = (n, e) and SKA = (n, d);

RSA - Signature algorithm. Let M be the message to be

signed with SKA. The digital signature DSA(M) is gen-

erated as follows:

1. Compute s = Md mod n;

2. Set DSA(M) = (s).

RSA – Signature verification algorithm. Let s0 be the

received versions of s. To validate the digital signature

an entity B should do the following:

1. Compute M 0 = s 0e mod n;

2. If M = M0, then the signature is verified.

XML Signature

In conjunction with IETF, the W3C XML Signature

Working Group has proposed a recommendation,

called XML Signature [8], with the twofold goal of

defining an XML representation for digital signatures

of arbitrary data contents, as well as a description of

the operations to be performed as part of signature

generation and validation. The proposed XML syntax

has been designed to be very flexible and extensible,

with the result that a single XML Signature can sign

more that one type of digital content. For instance, a

single XML Signature can be used to sign an HTML file

and all the JPEG files containing images linked to the

HTML page. The overall idea is that data to be signed

are digested, each digest value is placed into a distinct

XML element with other additional information need-

ed for the validation. Then, all the resulting XML

elements are inserted into a parent element, which is

digested and digitally signed.

Additionally, the standard supports a variety of

strategies to locate the data being signed. These data

can be either external or local data, that is, a portion of

the XML document containing the signature itself. In

particular, the XML Signature recommendation

Digital Signatures D 285

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:48

supports three different kinds of signatures, which

differ for the localization of the signed data with regard

to the XML element encoding its signature (see Fig. 2):

the Enveloping Signature, where the signed data is em-

bedded into the XML Signature; the Enveloped Signa-

ture, in which the signed data embeds its signature; the

Detached Signature, where the signed data is either an

external data, or a local data included as a sibling

element of its signature.

In what follows, a brief overview of the process

needed for XML Signature generation is given. In

describing these steps the basic structure of an

XML Signature, reported in Fig. 3, is referred, where

symbol ‘‘?’’ denotes zero or one occurrences; ‘‘þ’’

denotes one or more occurrences; and ‘‘∗’’ denotes

zero or more occurrences.

The first step in the generation of an XML signa-

ture requires to specify which are the data to be signed.

To this purpose, an XML Signature contains a Refer-

ence element for each signed data, whose URI attri-

bute stores the address of the signed data (In the case of

enveloping signatures, URI attribute is omitted since

the data is contained in the signature element itself,

whereas for enveloped signature the URI attribute

denotes the element being signed via a fragment iden-

tifier.). Then, the digest of the data is calculated and

placed into the DigestValue supplement. Informa-

tion on the algorithm used to generate the digest

are stored into the DigestMethod element. The Ref-

erence element may contain an optional Trans-

forms subelement specifying an ordered list of

transformations (such as for instance canonicalization,

compression, XSLT/XPath expressions) that have been

applied to the data before it was digested. The next step

is to collect all the Reference elements into a Sign-

edInfo element, which contains the information that

is actually signed. Before applying the digital signature,

the SignedInfo element is transformed into a stan-

dard form, called canonical form. The aim of such

transformation is that of eliminating from the element

additional symbols eventually introduced during the

processing (for instance, spaces introduced by an XML

parser and so on), that may cause mistakes during the

signature validation process. After the canonical form

has been generated, the digest of the whole Signe-

dInfo element is computed and signed. The resulting

value is stored into the SignatureValue element,

whereas information about the algorithm used for

Digital Signatures. Figure 2. Taxonomy of XML Signatures.

Digital Signatures. Figure 3. Basic structure of an XML

Signature.

286D Digital Signatures

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:48

generating the digital signature is contained in the

SignatureMethod element. The Signature ele-

ment can also give the recipient additional information

to obtain the keys to validate the signature. Such infor-

mation is stored into the optional KeyInfo subele-

ment. The last step is to wrap the SignedInfo,

SignatureValue, and KeyInfo elements into a

Signature element. In the case of enveloping signa-

ture the Signature element also contains the data

being signed, wrapped into the Object subelement.

Key Applications
Digital signatures are widely adopted in scenarios

where assurances of message authenticity and integrity

are crucial. Examples of these scenarios are email

applications. Due to the relevance of these applica-

tions, two different recommendation for applying dig-

ital signatures to email have been proposed (i.e., PGP

and S/MIME). Other scenarios are those requiring the

authenticity and integrity of messages exchanged dur-

ing protocols execution, like, for instance, the SSL

protocol which exploits digital signatures to create

secure Web sessions. A further relevant scenario is

given by Public Key Infrastructure (PKI). PKIs have

been introduced to univocally bind public keys to the

respective owners. PKI assumes the existence of one

or more trusted Certificate Authorities (CAs) in charge

of generating public key certificates containing infor-

mation about the identity of the key owner. To provide

evidence that a public key certificate has been gener-

ated by a CA, PKI requires that certificates are digitally

signed by CA.

Cross-references
▶Asymmetric Cryptography

▶Blind Signatures

▶Hash Functions

▶XML

Recommended Reading
1. Diffie W. and Hellman M. New directions in cryptography. IEEE

Trans. Inf. Theory, IT-22(6):644–654, 1976.

2. Jonsson J. and Kaliski B. Public-Key Cryptography Standards

(PKCS) No. 1: RSA Cryptography. Request for Comments 3447,

February 2003.

3. Kravitz D.W. (1993) Digital Signature Algorithm. U.S. Patent

No. 5, 231, 668.

4. Menezes A.J., van Oorschot P.C., and Vanstone S.A. Handbook

of Applied Cryptography. CRC, 1996.

5. National Institute of Standards and Technology. Secure Hash

Standard. Federal Information Processing Standards Publica-

tion, FIPS 180–1, 1995.

6. National Institute of Standards and Technology. Digital Signa-

ture Standard (DSS). Federal Information Processing Standards

Publication, FIPS 186–2, 2000.

7. Rivest R.L., Shamir A., and Adleman L.M. A method for obtain-

ing digital signatures and public-key cryptosystems. Commun.

ACM, 21:120–126,1978.

8. World Wide Web Consortium. XML-Signature Syntax and Pro-

cessing. W3C Recommendation, 2002.

Digital Surface Model

▶Digital Elevation Models (DEMs)

Digital Terrain Model (DTM)

▶Digital Elevation Models (DEMs)

Digital Video Retrieval

▶Content-Based Video Retrieval

Digital Video Search

▶Content-Based Video Retrieval

Dimension

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Definition
A dimension is a hierarchically organized set of dimen-

sion values, providing categorical information for

characterizing a particular aspect of the data stored in

a multidimensional cube.

Key Points
As an example, a three-dimensional cube for capturing

sales may have a Product dimension, a Time dimension,

Dimension D 287

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:48

and a Store dimension. The Product dimension captures

information about the product sold, such as textual

description, color, weight, etc., as well as groupings of

products (product groups, product families, etc.). The

Time dimension captures information about the time

of the sale, at the Date level or finer, as well as groupings

of time such as Week, Month, Weekday, Quarter and

Year. It may also contain application-specific time-

related information, e.g., what the temperature was on

the particular day (interesting for ice cream sellers) or

whether there was a special event in town on that day,

e.g., a big sports event. The Store dimension captures

information about stores (Name, Size, Layout), as well as

various groupings of Stores (City, State, Sales District).

The notion of a dimension is an essential and

distinguishing concept for multidimensional cubes,

where dimensions are a first-class object. Dimensions

are used for two purposes: the selection of data and

the grouping of data at a desired level of detail. A

dimension is organized into a containment-like hierar-

chy composed of a number of levels, each of which

represents a level of detail that is of interest to the

analyses to be performed. The instances of the dimen-

sion are typically called dimension values. Each such

value belongs to a particular level.

In some multidimensional models, a dimension

level may have associated with it a number of level

properties that are used to hold simple, non-hierarchical

information. For example, the Weekday of a particular

date can be a level property in the Date level of

the Time dimension. This information could also be

captured using an extra Weekday dimension. Using

the level property has the effect of not increasing the

dimensionality of the cube.

Unlike the linear spaces used in matrix algebra,

there is typically no ordering and/or distance metric

on the dimension values in multidimensional models.

Rather, the only ordering is the containment of lower-

level values in higher-level values. However, for some

dimensions, e.g., the Time dimension, an ordering

of the dimension values is available and is used for

calculating cumulative information such as ‘‘total sales

in year to date.’’

When implemented in a relational database, a di-

mension is stored in one or more dimension tables

using either a so-called star schema (one table per

dimension, with a surrogate key and one column

per dimension level or level property) or a so-called

snowflake schema (one table per dimension level, each

with a surrogate key and an attribute for the textual

name of the dimension value, as well as one attribute

per level property).

Cross-references
▶Cube

▶Hierarchy

▶Multidimensional Modeling

▶ Snowflake Schema

▶ Star Schema

Recommended Reading
1. Kimball R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit. Wiley Computer, 1998.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation for

capturing and querying complex multidimensional data. Inf.

Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional Infor-

mation Systems. Wiley, New York, 1997.

Dimensional Modeling

▶Multidimensional Modeling

Dimensionality Curse

▶Curse of Dimensionality

Dimensionality Reduction

HENG TAO SHEN

The University of Queensland, Brisbane, QLD,

Australia

Synonyms
DR

Definition
From database perspective, dimensionality reduction

(DR) is to map the original high-dimensional data into

a lower dimensional representation that captures the

content in the original data, according to some criteri-

on. Formally, given a data point P = {p1, p2,. . .,pD} in

288D Dimensional Modeling

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:48

D- dimensional space, DR is to find a d-dimensional

subspace, where d < D, such that P is represented

by a d-dimensional point by projecting P into the

d-dimensional subspace.

Key Points
Advances in data collection and storage capabilities

have led to an information overload in most sciences.

Many new and emerging data types, such as multime-

dia, time series, biological sequence, have been studied

extensively in the past and present new challenges

in data analysis and management due to their high

dimensionality of data space. One known phenome-

non of ‘‘dimensionality curse’’ leads traditional data

access methods to fail [3]. High-dimensional datasets

present many mathematical challenges as well as

some opportunities. In many cases, not all dimensions

are equally ‘‘important’’ for understanding the under-

lying data. It is of interest in many applications to

reduce the dimension of the original data prior to

any modelling and indexing of the data, due to effi-

ciency and effectiveness concerns. Generally, di-

mensionality reduction can be used for the following

purposes:

Simplifying complex data: for many applications,

particularly in database and information retrieval, high

dimensionality of feature space leads to high complex-

ity of data representation. The dimensionality has to be

reduced to achieve satisfactory performance for an

indexing structure. Typical methods include tradition-

al Discrete Fourier transform (DFT) and Discrete

Wavelet Transform (DWT), Adaptive Piecewise Con-

stant Approximation (APCA), Principle Component

Analysis (PCA) and its various improvements, Latent

Semantic Indexing and its variants, and Locality Pres-

ervation Projection (LPP) etc. For these types of appli-

cations, the dimensionality reduction method must

have an explicit mapping function to map the query

points into the low-dimensional subspace for simi-

larity search [2].

Modeling and analyzing data: for many applications,

particularly in classification and pattern recognition, the

underlying data structure is often embedded in a much

lower-dimensional subspace. The task of recovering the

meaningful low-dimensional structures hidden in high-

dimensional data is also known as ‘‘manifold learning’’.

Typical methods include Independent Component

Analysis (ICA), Multidimensional Scaling (MDS),

Isometric feature Mapping (Isomap) and its improve-

ments, Locally Linear Embedding (LLE), Laplacian

Eigenmaps, Semantic Subspace Projection (SSP), etc.

For these types of applications, the dimensionality re-

duction is typically a very expensive process and per-

formed on a small set of sample points for learning

purpose. Since they are defined only on the sample/

training data and have no explicit mapping function,

they are not applicable to information retrieval and

database applications [1].

Dimensionality reduction methods can be categor-

ized to be linear or non-linear. Linear techniques are

based on the linear combination of the original dimen-

sions, while non-linear methods are mainly used to

find an embedded non-linear manifold within the

high dimensional space.

Cross-references
▶Discrete Fourier Transform (Dft)

▶Discrete Wavelet Transform (Dwt)

▶ Independent Component Analysis (Ica)

▶ Isometric Feature Mapping (Isomap)

▶ Latent Semantic Indexing (Lsi)

▶ Locality Preservation Projection (Lpp)

▶ Locally Linear Embedding (Lle) Laplacian Eigenmaps

▶Multidimensional Scaling (Mds)

▶ Principle Component Analysis (Pca)

▶ Semantic Subspace Projection (Ssp)

Recommended Reading
1. Roweis S.T. and Saul L.K. Nonlinear dimensionality reduction

by locally linear embedding. Science, 290(5500):2323–2326,

2000.

2. Shen H.T., Zhou X., and Zhou A. An adaptive and dynamic

dimensionality reduction method for high-dimensional

indexing. VLDB J, 16(2):219–234, 2007.

3. Weber R., Schek H.-J., Blott S. A quantitative analysis and

performance study for similarity-search methods in high-

dimensional spaces. In: Proc. 24th Int. Conf. on Very Large

Data Bases, 1998, pp. 194–205.

Dimensionality Reduction for
Clustering, Attribute Selection for
Clustering

▶ Feature Selection for Clustering

Dimensionality Reduction for Clustering, Attribute Selection for Clustering D 289

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:48

Dimension Reduction Techniques
for Clustering

CHRIS DING

University of Texas at Arlington, Arlington, TX, USA

Synonyms
Subspace selection; Graph embedding

Definition
High dimensional datasets is frequently encountered in

data mining and statistical learning. Dimension reduc-

tion eliminates noisy data dimensions and thus and

improves accuracy in classification and clustering, in

addition to reduced computational cost. Here the

focus is on unsupervised dimension reduction. The

wide used technique is principal component analysis

which is closely related to K-means cluster. Another

popular method is Laplacian embedding which is

closely related to spectral clustering.

Historical Background
Principal component analysis (PCA) was introduced

by Pearson in 1901 and formalized in 1933 by Hotell-

ing. PCA is the foundation for modern dimension

reduction. A large number of linear dimension reduc-

tion techniques were developed during 1950–1970s.

Laplacian graph embedding (also called quadratic

placement) is developed by Hall [8] in 1971. Spectral

graph partitioning [6], is initially studied in 1970s; it

is fully developed and becomes popular in 1990s for

circuit layout in VLSI community (see a review [1]),

graph partitioning [10] and data clustering [3,7,11]. It

is now standard technique [2,9].

Foundations
High dimensional datasets is frequently encountered in

applications, such as information retrieval, image pro-

cessing, computational biology, global climate re-

search, For example, in text processing, the dimension

of a word vector is the size of the vocabulary of

a document collection, which is typically tens of

thousands. In molecular biology, human DNA gene

expression profiles typically involve thousands of

genes, which is the problem dimension. In image pro-

cessing, a typical 2D image has 1282 = 16,384 pixels

or dimensions.

Clustering data in such high dimension is a chal-

lenging problem. Popular clustering methods such as

K-means and EM methods suffer from the well-known

local minima problem: as iterations proceed, the

system is often trapped in the local minima in the

configuration space, due to the greedy nature of these

algorithms. In high dimensions, the iso-surface (where

the clustering cost function remains constant) is very

rugged, the system almost always gets trapped some-

where close to the initial starting configuration. In

other words, it is difficult to sample through a large

configuration space. This is sometimes called curse of

dimension. Dimension reduction is widely used to

relieve the problem. In this direction, the principal

component analysis (PCA) is the most widely adopted.

PCA is an example of linear dimension reduction or

mapping.

A related problem is graph clustering. Given a

graph with n nodes (objects) and a square matrix of

pairwise similarities as the edge weights, the task is to

cluster nodes into disjoint clusters. The state-of-the-art

algorithm is spectral clustering using graph Laplacian

eigenvectors. An effective implementation is to embed

the graph in metric space and use the K-means algo-

rithm to cluster the data. Here the graph embedding is

a key step, reducing a problem of n(n� 1) ∕2 data items

(pairwise similarities) into a problem of nK data items

where K is the dimension of the metric space. In this

direction, the Laplacian embedding is the most widely

adopted. Laplacian embedding is an example of non-

linear dimension reduction or mapping.

Dimension Reduction Versus Feature Selection

Dimension reduction often finds combinations of

many variables which satisfy certain global optimal

conditions. Feature selection (also called variable selec-

tion) considers individual variables separately, or com-

binations of small number variables. Although they

share similar goals for clustering and classification,

their approaches differ greatly. Only dimension reduc-

tion will be discussed here.

PCA and Other Linear Dimension Reduction

Linear dimension reduction seek linear combinations

of variables that optimizes certain criteria. PCA seek

linear combinations that maximizes the variances.

Consider a set of input data vectors X = (x1,. . .,xn)

where xi is a p-dimensional vector. Let �x ¼
Pn

i¼1 xi ∕n

290D Dimension Reduction Techniques for Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:49

be the center of the data. The covariance matrix is

CX = (1∕n
Pn

i¼1 (xi��x)(xi��x)T. Let U = (u1,. . .,uk) be

the eigenvectors of CX associated with the k largest

eigenvalues of CX. The PCA is the linear transforma-

tion of the original p-dimensional data (x1,. . .,xn) into

k-dimensional data Y = (y1,. . .,yn) with

yi ¼ UTxi: ð1Þ

The most important property of the transformed data

Y is that they are uncorrelated:

CY ¼ 1

n

Xn
i¼1

ðyi � �yÞðyi � �yÞT ¼ UTCXU

¼
l1

. .
.

lk

0
BB@

1
CCA:

ð2Þ

Because of this, each dimension j of Y has a clean

variance lj. The second important property of the

transformed data is that dimensions of Y with small

variances are ignored. Note that in the original data X,

because different dimensions are correlated, there is no

clear way to identify a dimension with small variance

and eliminate it.

A third benefit is the relation to K-means cluster-

ing. The cluster centroids of the global solution of the

K-means clustering form a subspace. This subspace is

identical to the PCA subspace formed by transformed

data (u1,. . .,uk) when k is the number of clusters,

according to the theory of the equivalence [4] between

PCA and K-means clustering. In other words, PCA

automatically bring us to the narrow subspace contain-

ing the global solution of K-means clustering – a good

starting place to find near global solutions. For this

reason, PCA+K-means clustering is one of the most

effective approach for clustering.

Linear Discriminant Analysis

PCA performs the unsupervised dimension reduction,

without prior knowledge of class labels of each

data object. If the class information is known, more

appropriate dimension reduction can be devised.

This is call linear discriminant analysis (LDA). In

LDA, the optimal subspace G = (g1,. . .,gk) is obtained

by optimizing

max
U

Tr
GTSbG

GTSwG
; ð3Þ

where the between-class (Sb) and within-class (Sb)

scatter matrices are defined as

Sb ¼
X
k

nkðmk �mÞðmk �mÞT ;

Sw ¼
X
k

X
i2Ck

ðxi �mkÞðxi �mkÞT ; CX ¼ Sb þ Sw ;

ð4Þ

where mk is the mean of class Ck and m is the global

total mean. The central idea is to separate different

classes as much as possible (maximize the between-

class scatter Sb) while condense each class as much as

possible (minimize the within-class scatter Sw). The

solution of G is given the k eigenvectors of Sw
�1Sb

associated with the largest eigenvalues. The dimension

k of the subspace is set to k = C � 1 where C is

the number of classes.

Once G is computed, the transformed data is

yi = GTxi or Y = GTX. An important property of Y is

that components of Y are uncorrelated.

ðCY Þk‘ ¼ ðGTCXGÞk‘ ¼ gTk CXg‘ ¼ gTk Swg‘

þ gTk Sbg‘ ¼ 0; k 6¼ ‘: ð5Þ

When the data dimension p is greater than n, the

number of data points, Sw has zero eigenvalues and

Sw
�1 does not exist. This problem can resolved by first

project data into PCA subspace with a dimension less

than p � C and then perform LDA on the projected

data. LDA is very popularly in image processing where

the data dimension is very high.

Adaptive Dimension Reduction – Combining Dimension

Reduction and Clustering

The PCA subspace is not always the best subspace for

data clustering; Figure 1 shows an example. LDA sub-

space is more suitable for data clustering; but LDA

requires the knowledge of class labels. This dilemma

is resolved by the adaptive dimension reduction

(ADR).

ADR start with the PCA subspace and then adap-

tively compute the subspace by (A) clustering to gen-

erate class labels and (B) doing LDA to obtain the most

discriminant subspace. (A) and (B) are repeated until

convergence. Figure 2 shows the process: the computed

1D subspace (the direction) gradually moves towards

the most discriminative direction. Theoretically, ADR

optimizes the LDA objective function

Dimension Reduction Techniques for Clustering D 291

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:49

max
G;H

Tr
GTSbG

GTSwG
ð6Þ

to obtain simultaneously the subspace G and the

clusters represented by the cluster membership indica-

tor matrix H, where Hik = 1 ∕ jCkj1 ∕ 2 if data point xi
belongs to cluster Ck ; Hik = 0 otherwise. jCkj is the size
of Ck.

Metric Scaling

Metric scaling is the simplest form of multidimensional

scaling and is also widely used in applications. Given a

square matrix of pairwise distances (dij), the task is to

embed the objects onto a lower dimensional embed-

ding space where jjyi �yjjj � dij.

Metric scaling is computed as the following. Let

A ¼ ðaijÞ; aij ¼ � 1
2
d2ij . Compute B matrix: B = (bij),

bij¼aij� 1
n

Pn
i¼1aij� 1

n

Pn
j¼1aijþ 1

n2

Pn
i¼1

Pn
j¼1aij : Com-

pute the eigenvalues lk and eigenvectors uk, i.e.,

B¼
Pn

k¼1 lkuku
T
k . If lk 0, 8k, then the coordinates

of object i in the embedding space is given by

yi¼½l1=21 u1ðiÞ;...;l1=2m umðiÞ�
T

m is the embedding dimension. It can be verified that

jjyi �yjjj = dij. In general, only a fraction of the largest

lk 0, and only positive eigenvalue subspace is em-

bedded into these.

Most linear dimension reduction techniques are

developed in early days from 1940s to 1970s. PCA,

LDA, metric scaling are the most widely techniques.

Many other techniques were also developed. Canonical

correlation analysis extract linear dimensions that best

capture the correlation between two set of variables.

Independent component analysis extract linear dimen-

sions one after another, using non-Gaussian criteria.

Partial least squares constructs subspace similarly to

PCA, but uses class label information.

Laplacian Embedding and Other Nonlinear

Dimension Reduction

Laplacian Embedding The input is a square matrix W

of pairwise similarities among n objects. We view W

Dimension Reduction Techniques for Clustering. Figure 1. A 2D dataset with 600 data points. Green dots are the

centroids of each cluster. The line indicates the subspace U. Top: K-means clustering results PCA subspace. Middle: After

two ADR iterations. Bottom: ADR converges after two more iterations. The subspace is the most discriminant.

292D Dimension Reduction Techniques for Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:49

as the edge weights on a graph with n nodes. The task

is to embed the nodes of the graph in 1D space, with

coordinates (x1,. . .,xn). The objective is that if i, j are

similar (i.e., wij is large), they should be adjacent in

embedded space, i.e., (xi � xj)
2 should be small. This

is achieved by minimizing [8]

min
x

JðxÞ ¼
X
ij

ðxi � xjÞ2wij ¼ 2
X
ij

xiðD�W Þijxj

¼ 2xT ðD�W Þx;

ð7Þ

where D = diag(d1,. . .,dn) and di == ∑jWij. The mini-

mization of ∑ij(xi � xj)
2wij would get xi = 0 if there

is no constraint on the magnitude of the vector x.

Setting the normalization ∑ixi
2 = 1, and the constraint

∑xi = 0 (xi is centered around 0), the solution is given

by the eigenvectors of

ðD�W Þf ¼ lf : ð8Þ

L = D � W is called graph Laplacian. The solution is

given by f2 associated with the second smallest eigen-

value (also called the Fiedler vector in recognition of

his contribution to the graph connectivity).

This can be generalized to embedding in k-D space,

with coordinates ri 2 <k . Let jjri�rjjj be the Euclidean
distance between nodes i, j. The embedding is obtained

by optimizing

min
R

JðRÞ¼
Xn
i;j¼1

jjri� rj jj2wij ¼ 2
Xn
i;j¼1

rTi ðD�W Þij

rj ¼ 2 Tr RðD�W ÞRT ; R
ðr1; . . . ;rnÞ: ð9Þ

With the normalization constraints RRT = I, the solu-

tion is given by eigenvectors: R = (f2,. . .,fk+1)
T.

In solving (7) for 1D embedding, we may impose

the normalization ∑idixi
2 = 1, where di = ∑jwij. With

this condition, the solution for x of is given by the

generalized eigenvalue problem

ðD �W Þu ¼ lDu: ð10Þ

For k-dimensional embedding of (9), the normaliza-

tion is RDRT = I. The solution is given by the eigenvec-

tors: R = (u2,. . .,uk+1)
T. This approach is motivated by

the normalized cut clustering (see (12) below).

Figure 2 gives two examples of the Laplac-

ian embedding. The left panel [5] shows that the

Laplacian embedding can effectively separate two

Dimension Reduction Techniques for Clustering. Figure 2. Left (upper panel): Dataset A in 3D space. 700 data

points distributed on two interlocking rings. Left (lower panel): Dataset A in eigenspace (f2, f3). Middle: Dataset B as shown

in 2D space. Right: Dataset B in eigenspace (f2, f3).

Dimension Reduction Techniques for Clustering D 293

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:49

interlocking data rings. It also shows that the embed-

ding is not topology preserving. The right panel shows

the self-aggregation property [5] of the embedding:

data points of the same cluster self-aggregate and col-

lapse onto a single centroid.

Relation to Spectral Clustering The most interesting

aspect of Laplacian embedding is related to graph cluster-

ing, and its predecessor, the graph partitioning. In early

1990s, high performance computing is a very active re-

search. One of the challenging task is to partition amesh/

graphintoequal-sizepartitionsothattheproblemcouldbe

solvedondistributedprocessors.Thepopulartechniqueof

spectralgraphpartitioning[10]utilizes the eigenvectors of

the Laplacian (the Fiedler vector f2). Specifically, a graph

can be effectively partitioned into two equal parts

depending on the sign f2: node i belongs to partition

A if f2(i) 0; it belongs to partition B if f2(i) < 0.

Soon it is recognized [7] that the 2-way Ratio Cut

clustering objective function

Jratio-cut ¼
sðA;BÞ
jAj þ sðA;BÞ

jBj ; sðA;BÞ

X
i2A

X
j2B

wij

ð11Þ

can be solved by the same Fiedler vector f2. This 2-way

clustering is generalized tomulti-way clustering [3] using

K � 1 eigenvectors (f2,. . .,fK). f1 = (1,. . .,1) ∕n1 ∕ 2 is a

constant vector. Later it was realized that using the

sum of node degree to balance clusters has some

advantages. This is the normalized cut [11]

Jnormalized�cut ¼
sðA;BÞ
dA

þ sðA;BÞ
dB

; dA ¼
X
i2A

di;

dB ¼
X
i2B

di; di ¼
X
j

wij : ð12Þ

The solution to this problem is given by the second

eigenvector u2 in (10). The K-way clustering uses

eigenvectors (u2,. . .,uK). By 2001, the Laplacian based

clustering methodology is fully developed.

Other Nonlinear Embedding Methods

Nonlinear embedding is a rather diverse and

rapidly growing research area. They include (i) Multi-

dimensional scaling, which embed a set of objects in in

a lower-dimensional space while preserving the given

pair-wise distance; (ii) Extension of PCA to nonlinear

case, such as principal curves, kernel PCA, etc; (iii)

Manifold learning, which uncovers a low-dimensional

manifold embedded in the high-dimensional data

space; isomap, local linear embedding, tangent space

alignment, etc. (iv) Many other approaches, such as

neuronal network based approach, called nonlinear

PCA, etc.

A short description for some approaches. Isomap

uses geodesic distances along the manifold by con-

structing the kNN subgraphs as the lower-dimensional

manifold. It then use metric scaling to map objects into

metric space. Local Tangent Space Alignment is a rigor-

ous approach by building the local tangent spaces

(which are local PCAs) and alignment them into a

global system. Kernel PCA computes principal eigen-

vectors of the kernel matrix and embed in the eigen-

vector space. It should noted that even though

manifold learning algorithm uncover nonlinear data

structures, their primary goal is not necessarily data

clustering.

Key Applications
PCA is used widely in a broad range of applications,

from computer vision to text mining, gene expression

profiles. Any data with high dimensions are often pre-

processed with PCA. Laplacian embedding is used for

network analysis, graph clustering.

Cross-references
▶Dimensionality Reduction

▶K-Means and K-Medoids

▶Multi-Dimensional Scaling

▶ Principal Component Analysis

▶ Social Networks

Recommended Reading
1. Alpert C.J. and Kahng A.B. Recent directions in netlist partition-

ing: a survey. Integ. VLSI J., 19:1–81, 1995.

2. Belkin M. and Niyogi P. Laplacian eigenmaps and spectral tech-

niques for embedding and clustering. NIPS, 2001.

3. Chan P.K., Schlag M., and Zien J.Y. Spectral k-way ratio-cut

partitioning and clustering. IEEE Trans. CAD-Integ. Circuit.

Syst., 13:1088–1096, 1994.

4. Ding C. and He X. K-means clustering and principal component

analysis. Int’l Conf. Machine Learning (ICML), 2004.

5. Ding C., He X., Zha H., and Simon H. Unsupervised learning:

self-aggregation in scaled principal component space. Proc.

Sixth European Conf. on Principles of Data Mining and Knowl-

edge Discovery (PKDD), 2002, pp. 112–124.

6. Fiedler M. Algebraic connectivity of graphs. Czech. Math. J.,

23:298–305, 1973.

294D Dimension Reduction Techniques for Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:50

7. Hagen M. and Kahng A.B. New spectral methods for ratio cut

partitioning and clustering. IEEE. Trans. Comput. Aided Desig.,

11:1074–1085, 1992.

8. Hall K.M. R-dimensional quadratic placement algorithm. Man-

age. Sci., 17:219–229, 1971.

9. Ng A.Y., Jordan M.I., and Weiss Y. On spectral clustering: Anal-

ysis and an algorithm. In Proc. Neural Information Processing

Systems (NIPS 2001), 2001.

10. Pothen A., Simon H.D., and Liou K.P. Partitioning sparse matri-

ces with egenvectors of graph. SIAM J. Matrix Anal. Appl.,

11:430–452, 1990.

11. Shi J. and Malik J. Normalized cuts and image segmentation.

IEEE. Trans. Pattern Anal. Mach. Intell., 22:888–905, 2000.

Dimension-Extended Topological
Relationships

ELISEO CLEMENTINI

University of L’Aquila, L’Aquila, Italy

Definition
This definition includes a group of models for topo-

logical relationships that have in common the use of

two topological invariants – the set intersection empty/

non empty content and the dimension – for distin-

guishing various relationships between spatial objects.

These models had a strong impact in database technol-

ogy and the standardization process.

Historical Background
Early descriptions of topological relationships (e.g.,

[10]) did not have enough formal basis to support a

spatial query language, which needs formal definitions

in order to specify exact algorithms to assess relation-

ships. The importance of defining a sound and com-

plete set of topological relationships was recognized in

[13]. The first formal models were all based on point-

set topology. In [12], the authors originally described

the 4-intersection model (4IM) for classifying topolog-

ical relationships between one-dimensional intervals.

In [8], the authors adopted the same method for clas-

sifying topological relationships between regions. The

9-intersection model (9IM) is an extension of the 4IM

based on considering the exterior of objects, besides

interior and boundary [9]. In [6], the authors de-

scribed the dimension-extended method (DEM), so

called because they extended the 4IM with the dimen-

sion of the intersections. In the same paper, they intro-

duced the Calculus-Based Method (CBM), made up

of five relations and three boundary operators. A com-

bination of the DEM and the 9IM was called the

DE + 9IM in [1]. In this latter paper, the authors

proved that the CBM was more expressive than

the 4IM, 9IM, and DEM and was equivalent to

the DE + 9IM. By expressive power they meant the

number of topological relationships the models were

able to distinguish. Later on, several extensions of all

these models were developed: for example, the extension

of the CBM to composite regions [5] and complex

objects [2], and the extension of the 4IM to regions

with holes [7].

Foundations
In the following, simple objects of the plane are con-

sidered, that is, regularly closed regions with connected

interior and exterior, curved lines with only two end-

points and without self-intersections, and single

points. The symbol l will be used to denote any geo-

metric object (simple region, simple line, or point),

and ∂l, l�, l, l�will denote the boundary, the interior,
the closure, and the exterior of l, respectively. The
function dimðlÞreturns the dimension of l, with pos-

sible values in the two-dimensional space of 0, 1, 2 or

nil (�) for the empty set. In case the object l consists

of multiple parts, the highest dimension is returned.

To assess the relationship between two geometric

objects, various point-sets can be considered, which

can be empty or non-empty. This is generally called

the content invariant and can be calculated for several

sets: intersections, set differences, symmetric differ-

ences [11]. The most convenient one is the intersec-

tion, since it gives a comprehensive categorization of

topological relationships. Six groups of relationships

can be distinguished: region/region (R/R), line/region

(L/R), point/region (P/R), line/line (L/L), point/line

(P/L), and point/point (P/P).

Definition 1. The 4IM is a 2 � 2 matrix of the inter-

sections of the interiors and boundaries of the two

objects l1 and l2:

l�1 \ l�2 l�1 \ @l2
@l1 \ l�2 @l1 \ @l2

� �

Each intersection may be empty (Ø) or non-empty

(¬Ø), resulting in a total of 24 ¼ 16 combinations.

Each case is represented by a matrix of values. It is

possible to apply some simple geometric constraints to

assess that not all combinations are possible. For

Dimension-Extended Topological Relationships D 295

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:50

example, for the R/R group the 4IM is able to recognize

eight different relationships. All 16 combinations are

instead possible for the L/L group. The geometric

criteria to discover real cases are discussed in [1].

Overall, 43 real cases can be identified (see Table 1).

Definition 2. The 9IM is a 3� 3 matrix containing the

empty/non-empty values for interior, boundary, and

exterior intersections:

l�1 \ l�2 l�1 \ @l2 l�1 \ l�2
@l1 \ l�2 @l1 \ @l2 @l1 \ l�2
l�1 \ l�2 l�1 \ @l2 l�1 \ l�2

0
@

1
A

By considering the empty or nonempty content of such

nine sets, the total is 29 ¼ 512 theoretical combina-

tions. Excluding the impossible cases, 68 possible cases

are remaining, as shown in Table 1.

The introduction of other invariants allows finer

topological distinctions. A refinement of the con-

tent invariant is given by the dimension of each inter-

section set.

Definition 3. The DEM is a 2 � 2 matrix containing

the dimension of the intersections of the interiors and

boundaries of the two objects l1 and l2:

dimðl�1 \ l�2Þ dimðl�1 \ @l2Þ
dimð@l1 \ l�2Þ dimð@l1 \ @l2Þ

� �

Theoretically, with the four possible values for the

dimension the DEM matrix might result into 44 ¼
256 different cases. Geometric criteria can be adopted

to reduce this number of cases by referring to specific

groups of relationships, for a total of 61 real cases (see

Table 1).

Definition 4. The DEþ 9IM is a 3� 3 matrix contain-

ing the dimension of interior, boundary, and exterior

intersections:

dimðl�1 \ l�2Þ dimðl�1 \ @l2Þ dimðl�1 \ l�2 Þ
dimð@l1 \ l�2Þ dimð@l1 \ @l2Þ dimð@l1 \ l�2 Þ
dimðl�1 \ l�2Þ dimðl�1 \ @l2Þ dimðl�1 \ l�2 Þ

0
@

1
A

There are in general for this method 49 ¼ 262144

different cases. Reducing this number with geometric

criteria, 87 real topological relationships are obtained

(see Table 1).

The CBM is made up of five relations and three

boundary operators. In [1], the authors proved that

the CBM is equivalent to the DE + 9IM regarding the

number of topological relationships these two models

are able to express. The model was extended for com-

plex objects in [2]. The definitions for simple objects

are the following.

Definition 5. The touch relationship (it applies to the

R/R, L/L, L/R, P/R, P/L groups of relationships, but not

to the P/P group):

< l1; touch; l2 >, ðl�1 \ l�2 ¼ �Þ ^ ðl1 \ l2 6¼ �Þ:

Definition 6. The in relationship (it applies to every

group):

< l1; in; l2 >, ðl1 \ l2 ¼ l1Þ ^ ðl�1 \ l�2 6¼ �Þ:

Definition 7. The cross relationship (it applies to the

L/L and L/R groups):

< l1; cross; l2 >, ðdimðl�1 \ l�2Þ
< maxðdimðl�1Þ; dimðl�2ÞÞÞ

^ ðl1 \ l2 6¼ l1Þ ^ ðl1 \ l2 6¼ l2Þ:

Definition 8. The overlap relationship (it applies to R/

R and L/L groups):

< l1;overlap; l2 >, ðdimðl�1Þ ¼ dimðl�2Þ
¼ dimðl�1 \ l�2ÞÞ

^ ðl1 \ l2 6¼ l1Þ ^ ðl1 \ l2 6¼ l2Þ:

Definition 9. The disjoint relationship (it applies to

every group):

< l1; disjoint ; l2 >, l1 \ l2 ¼ �:

Dimension-Extended Topological Relationships. Table 1. A summary of topological relationships for all models and for

all groups between simple objects

Model/group R/R L/R P/R L/L P/L P/P Total

4IM 8 11 3 16 3 2 43

9IM 8 19 3 33 3 2 68

DEM 12 17 3 24 3 2 61

DE + 9IM
 CBM 12 31 3 36 3 2 87

296D Dimension-Extended Topological Relationships

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:50

Definition 10. The boundary operator b for a region A:

The pair (A, b) returns the circular line ∂A.
Definition 11. The boundary operators from and to for

a line L: The pairs (L, f) and (L, t) return the two

endpoints of the set ∂L.
To illustrate some of the relationships, Fig. 1 shows

the list of the 31 L/R cases for the DE + 9IM.

Key Applications
The various models illustrated so far have been used

by the Open Geospatial Consortium (OGC) for the

definition of topological relationships in spatial data-

bases. The same definitions have been adopted by the

International Organization for Standardization (ISO).

Various spatial database systems (e.g. Oracle, IBM

DB2, PostgreSQL) have adopted the definitions sug-

gested by OGC or slight variations of them to define

the topological operators included in their spatial

query language.

Future Directions
The process of adding granularity to topological relation-

ships could be further extended by introducing more

refined topological invariants [3]. Another direction for

further research on the side of adding spatial operators to

query languages is to consider other categories of spatial

relationships besides topological, such as projective and

metric [4].

Cross-references
▶Topological Relationships

▶Vague Spatial Data Types

Recommended Reading
1. Clementini E. and Di Felice P. A comparison of methods for

representing topological relationships. Inf. Sci., 3(3):149–178,

1995.

2. Clementini E. and Di Felice P. A model for representing topo-

logical relationships between complex geometric features in

spatial databases. Inf. Sci., 90(1–4):121–136, 1996.

Dimension-Extended Topological Relationships. Figure 1. The 31 different L/R relationships of the DE + 9IM model.

Each box contains cases belonging to the same DEM case.

Dimension-Extended Topological Relationships D 297

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:50

3. Clementini E. and Di Felice P. Topological invariants for lines.

IEEE Trans. Knowl. Data Eng., 10:38–54, 1998.

4. Clementini E. and Di Felice P. Spatial operators. ACM SIGMOD

Rec., 29:31–38, 2000.

5. Clementini E., Di Felice P., and Califano G. Composite regions

in topological queries. Inf. Syst., 20(7):579–594, 1995.

6. Clementini E., Di Felice P., and van Oosterom P. A small set of

formal topological relationships suitable for end-user interac-

tion. In Advances in Spatial Databases – Third Int. Symp., SSD

‘93. LNCS, vol. 692, 1993, pp. 277–295.

7. Egenhofer M.J., Clementini E., and Di Felice P. Topological

relations between regions with holes. Int. J. Geogr. Inf. Syst.,

8:129–142, 1994.

8. Egenhofer M.J. and Franzosa R.D. Point-set topological spatial

relations. Int. J. Geogr. Inf. Syst., 5:161–174, 1991.

9. Egenhofer M.J. and Herring J.R. 1Categorizing Binary Topologi-

cal Relationships Between Regions, Lines, and Points in Geo-

graphic Databases. Department of Surveying Engineering,

University of Maine, Orono, ME, 1991.

10. Freeman J. The modelling of spatial relations. Comput. Graph.

Image Process, 4:156–171, 1975.

11. Herring J.R. The mathematical modeling of spatial and non-

spatial information in geographic information systems. In

Cognitive and Linguistic Aspects of Geographic Space,

D. Mark and A. Frank (eds.). Kluwer Academic, Dordrecht,

1991, pp. 313–350.

12. Pullar D.V. and Egenhofer M.J. Toward the definition

and use of topological relations among spatial objects.

In Proc. Third Int. Symp. on Spatial Data Handling, 1988,

pp. 225–242.

13. Smith T. and Park K. Algebraic approach to spatial reasoning.

Int. J. Geogr. Inf. Syst., 6:177–192, 1992.

Direct Attached Storage

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
DAS

Definition
Direct Attached Storage is a dedicated storage device

which is directly connected to a server. The term Direct

Attached Storage is often abbreviated to DAS. Derived

from the original meaning, the term sometimes refers

to a conventional server-centric storage system in

which DAS devices are mainly connected; this defini-

tion is used in the context of explaining and comparing

storage network architectures.

Key Points
A typical DAS device is a SCSI storage device such as an

internal disk drive, a disk array or a tape library that is

connected only to a single server by a SCSI bus cable.

Such a DAS device is accessed only by the server to

which the device is directly connected. SCSI storage

devices sometimes have two or more SCSI interfaces

which can connect to different servers. But such a

storage device is also considered a DAS device rather

than a SAN device, because only one server can actually

access the storage device and the other servers are

merely prepared for fault tolerance. Recently small

servers sometimes accommodate Advanced Technology

Attachment/Integrated Drive Electronics (ATA/IDE)

disk drives and Universal Serial Bus (USB) disk drives,

which can be also considered DAS devices.

Cross-references
▶Network Attached Storage

▶ Storage Area Network

▶ Storage Network Architecture

Recommended Reading
1. Storage Network Industry Association. The Dictionary of

Storage Networking Terminology. Available at: http://www.

snia.org/.

2. Troppens U., Erkens R., and Müller W. Storage Networks

Explained. Wiley, New York, 2004.

Direct Manipulation

ALAN F. BLACKWELL
1, MARIA FRANCESCA COSTABILE

2

1University of Cambridge, Cambridge, UK
2University of Bari, Bari, Italy

Synonyms
Graphical interaction; Desktop metaphor

Definition
The term direct manipulation was introduced by

Shneiderman [2,3] to describe user interfaces that

offer the following desirable properties:

1. Visibility of the objects and actions of interest

2. Physical actions on the object of interest instead of

complex syntax

3. Effects of those actions that are rapid, incremental

and reversible

298D Direct Attached Storage

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

Direct manipulation is generally associated with

Graphical User Interfaces, although the above proper-

ties are also beneficial in interfaces where the user is

working with text or numeric data. Direct manipula-

tion has been most popularly applied in the ‘‘desktop

metaphor’’ for managing disk files, a visual representa-

tion where the objects of interest are the user’s files,

and they are therefore continuously presented on the

screen. This was an improvement over disk operating

system consoles in which file listings were only tran-

sient results of a directory listing command.

The currently most common direct manipulation

interfaces are called WIMP interfaces, referring to the

interaction devices they use, namely windows, icons,

menus and pointers. However, direct-manipulation

ideas are at the core of many advanced non-desktop

interfaces. Virtual reality, augmented reality, tangible

user interfaces are newer concepts that extend direct

manipulation.

Key Points
The main alternatives to direct manipulation are com-

mand line interfaces and programming languages. These

are characterized by abstract syntax, representation of

computational processes rather than data of interest, and

effects that will take place in the future rather than

immediately, perhaps suddenly and irreversibly. Some

GUIs (e.g. modal dialog boxes) have these latter proper-

ties, in which case they will not provide the benefits of

direct manipulation. For many database users, the object

of interest is their data, rather than the computational

features of the database. This offers a challenge to

designers of interactive database systems, for whom the

system itself might be an object of interest.

Direct manipulation interfaces represent a second

generation, which evolved from the first generation of

command line interfaces. DM interfaces often make

interaction easier for users who are not computer

science experts, by allowing them to point at and

move objects rather than instructing the computer by

typing commands in a special syntax.

Hutchins, Hollan and Norman [1] proposed a gen-

eralization of the direct manipulation principles, in

terms of minimizing the cognitive effort that is re-

quired to bridge the gulf between the user’s goals and

the way those goals must be specified to the system.

They drew attention to a gulf of execution, which must

be bridged by making the commands and mechanisms

of the system match the thoughts and goals of the user,

and a gulf of evaluation, bridged by making the output

present a good conceptual model of the system that is

readily perceived, interpreted, and evaluated. Both

gulfs can be bridged to some degree by use of an

appropriate visual metaphor.

Cross-references
▶Usability

▶Visual Interaction

▶Visual Interfaces

▶Visual Metaphor

Recommended Reading
1. Hutchins E.L., Hollan J.D., and Norman D.A. Direct manipula-

tion interfaces. In User Centered System Design, New Perspec-

tives on Human-Computer Interaction, 1Norman, D.A. Draper

(eds.). S.W. Lawrence Erlbaum, Hillsdale, NJ, 1986.

2. Shneiderman, B. The future of interactive systems and the

emergence of direct manipulation. Behav. Inf. Technol.,

1:237–256, 1982.

3. Shneiderman, B. Direct manipulation: a step beyond program-

ming languages. IEEE Comput., 16(8):57–69, 1983.

Direct Manipulation Interfaces

▶Visual Interfaces

Directional Relationships

▶Cardinal Direction Relationships

Dirichlet Tessellation

▶Voronoi Diagram

Disaster Recovery

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Definition
The recovery of necessary data, access to that data, and

associated processing through a comprehensive

Disaster Recovery D 299

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

process in which a redundant site (including both

equipment and work space) is set up, and operations

are recovered to enable business operations to continue

after a loss of all or part of a data center by disaster

including fire, earthquake, hurricane, flood, terrorism

and power grid failure. Such a recovery involves not

only an essential set of data but also all the hard-

ware and software needed to continue processing of

the data.

Key Points
Disaster recovery should be a key focus of an organiza-

tion’s business continuity plan in case of disaster the

following are key metrics:

RPO (Recovery Point Objective): The maximum

acceptable time period prior to a failure or disaster

during which changes to data may be lost as conse-

quence of recovery. At a minimum, all data changes

that occur before this period preceding the failure

or disaster will be available after data recovery. RTO

(Recovery Time Objective): The maximum acceptable

time period required to bring one or more applications

and associated data back from an outage to a correct

operational state.

The most common disaster recovery plans include

the following strategies:

� Backups are made to tape and sent off-site at regu-

lar intervals.

� Backups are made to disk on-site and automatically

copied to an off-site disk, or made directly to an

off-site disk.

� Data is replicated to an off-site location, using

replication method including database replication,

file system replication and replication by storage

system.

Cross-references
▶Backup and Restore

▶Replication

Disclosure Risk

JOSEP DOMINGO-FERRER

The Public University of Tarragona, Tarragona, Spain

Synonyms
Re-identification risk; Attribute disclosure; Identity

disclosure

Definition
In the context of statistical disclosure control, disclo-

sure risk can be defined as the risk that a user or an

intruder can use the protected dataset V0 to derive

confidential information on an individual among

those in the original dataset V. This approach to dis-

closure risk was formulated in Dalenius [1].

Key Points
Disclosure risk can be regarded from two different

perspectives, according to Paass [2]:

1. Attribute disclosure. Attribute disclosure takes

place when an attribute of an individual can be deter-

mined more accurately with access to the released

statistic than it is possible without access to that

statistic.

2. Identity disclosure. Identity disclosure takes place

when a record in the protected dataset can be linked

with a respondent’s identity. Two main approaches are

usually employed for measuring identity disclosure

risk: uniqueness and re-identification.

2.1. Uniqueness Roughly speaking, the risk of

identity disclosure is measured as the probability

that rare combinations of attribute values in the

released protected data are indeed rare in the origi-

nal population the data come from. This approach

is typically used with nonperturbative statistical

disclosure control methods and, more specifically,

sampling. The reason that uniqueness is not used

with perturbative methods is that, when protected

attribute values are perturbed versions of original

attribute values, it makes no sense to investigate the

probability that a rare combination of protected

values is rare in the original dataset, because that

combination is most probably not found in the

original dataset.

2.2. Re-identification This is an empirical app-

roach to evaluate the risk of disclosure. In this

case, software is constructed to estimate the num-

ber of re-identifications that might be obtained by a

specialized intruder. The use of re-identification

methods as a way to measure disclosure risk goes

back, at least, to Spruill [3]. Re-identification

methods provide a more unified approach than

uniqueness methods because the former can be

applied to any kind of masking and not just to

non-perturbative masking. Moreover, re-identifi-

cation can also be applied to synthetic data (see

e.g., [4]).

300D Disclosure Risk

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

Cross-references
▶ Inference Control in Statistical Databases

▶ Information Loss Measures

▶Microdata

▶Record Matching

▶ SDC Score

Recommended Reading
1. Dalenius T. Towards a methodology for statistical disclosure

control. Statistisk Tidskrift, 5:429–444, 1977.

2. Paass G. Disclosure risk and disclosure avoidance for microdata.

J. Bus. Econ. Stat., 6:487–500, 1985.

3. Spruill N.L. The confidentiality and analytic usefulness of

masked business microdata. In Proc. Section on Survey Research

Methods, Alexandria, VA. American Statistical Association,

1983, pp. 602–607.

4. Winkler W.E. Re-identification methods for masked microdata.

In Privacy in Statistical Databases, vol. 3050, J. Domingo-Ferrer

and V. Torra (eds.). LNCS, Springer, Berlin Heidelberg, 2004, pp.

216–230.

DISCO

▶Discovery

Discounted Cumulated Gain

KALERVO JÄRVELIN, JAANA KEKÄLÄINEN

University of Tampere, Tampere, Finland

Synonyms
Normalized discounted cumulated gain (nDCG);

Discounted cumulated gain (DCG)

Definition
Discounted Cumulated Gain (DCG) is an evaluation

metric for information retrieval (IR). It is based on

non-binary relevance assessments of documents ranked

in a retrieval result. It assumes that, for a searcher, highly

relevant documents are more valuable than margi-

nally relevant documents. It further assumes, that the

greater the ranked position of a relevant document (of

any relevance grade), the less valuable it is for the search-

er, because the less likely it is that the searcher will ever

examine the document – and at least has to pay more

effort to find it. DCG formalizes these assumptions by

crediting a retrieval system (or a query) for retrieving

relevant documents by their (possibly weighted) degree

of relevance which, however, is discounted by a factor

dependent on the logarithm of the document’s ranked

position. The steepness of the discount is controlled by

the base of the logarithm and models the searcher’s

patience in examining the retrieval result. A small base

(say, 2) models an impatient searcher while a large base

(say, 10) a patient searcher.

In its normalized form, as Normalized Discounted

Cumulated Gain (nDCG), the actual DCG performance

for a query is divided by the ideal DCG performance for

the same topic, based on the recall base of the topic in a

test collection.

Historical Background
Modern large retrieval environments tend to overwhelm

their users by their large output. Since all documents

are not equally relevant, highly relevant documents, or

document components, should be identified and ranked

first for presentation to the users. In order to develop IR

techniques in this direction, it is necessary to develop

evaluation approaches andmethods that credit IRmeth-

ods for their ability to retrieve highly relevant documents

and rank them higher. For this goal, non-binary or

graded relevance assessments and evaluation measures

are needed.Most traditional IR evaluationmeasures, e.g.

precision and recall, are based on binary relevance. The

nDCG measure family presented in this entry is one

solution for measuring IR effectiveness with graded

relevance.

Foundations

Ranked Retrieval Result

In an IR experiment, using a test collection, a topic set

and a recall base for each topic, the retrieval system gives

for each query representing a topic a ranked output,

which in the DCG based evaluation is examined from

ranked position 1 to position n for each query.

Document Relevance Scores and Weights

Documents have non-binary relevance scores given in

the recall base. Their range may be any continuous

scale of real numbers, e.g. [�10.0, +10.0], [�1.0,

+1.0], or [0.0, 1.0], or a discreet integer scale, say

{�3,. . . ,+3} or {0,. . . ,10}. In the evaluation, the rele-

vance scores may be reweighed if one wishes to em-

phasize the differences of relevance scores from the

user point of view. In the following it is assumed that

the relevance scores 0–3 are used (3 denoting high

value, 0 no value).

Discounted Cumulated Gain D 301

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

Gain Vector

In the DCG evaluation, the relevance score of each

document, or its reweighed value, is used as a gained

value measure for its ranked position in the result.

Assuming relevance scores 0–3 and result lists up to

rank 200, one obtains corresponding gain vectors of

200 components each having the value 0, 1, 2 or 3.

For example: G’ = <3, 2, 3, 0, 0, 1, 2, 2, 3, 0,. . .>.

Cumulated Gain Vector

The cumulated gain at ranked position i is computed

by summing from position 1 to i when i ranges

from 1 to n, e.g., n = 200. Formally, the position i

in the gain vector G is denoted by G[i]. Now the

cumulated gain vector CG is defined recursively as

the vector CG where:

CG½i� ¼ G½1�; if i ¼ 1

CG½i � 1� þ G½i�; otherwise

	

For example, from G’ the vector CG’=<3, 5, 8, 8, 8,

9, 11, 13, 16, 16, . . .> is obtained. The cumulated gain

at any rank may be read directly, e.g., at rank 7 it is 11.

Discounting Principle

The discounting principle states that the greater the

rank of a document in the retrieval result, the smaller

share of the document score is added to the cumulated

gain. A discounting function is needed which progres-

sively reduces the document score as its rank increases

but not too steeply (e.g., as division by rank) to allow

for searcher persistence in examining further docu-

ments. A simple way of discounting with this require-

ment is to divide the document score by the log of its

rank. By selecting the base of the logarithm, sharper or

smoother discounts can be computed to model varying

searcher behavior.

Discounted Cumulated Gain Vector

Formally, if b denotes the base of the logarithm, the

cumulated gain vector with discount is defined recur-

sively as the vector DCG where:

DCG½i� ¼ CG½i�; if i < b

DCG½i � 1� þ G½i�= logbi; if i b

	

One must not apply the logarithm-based discount

at rank 1 because logb1 = 0. Moreover, the discount is

not applied for ranks less than the logarithm base (that

would give them a boost). This is also realistic, since

the larger the base, the smaller the discount and the

more likely the searcher is to examine the results at

least up to the base rank (say 10).

For example, let b = 2. From G’ given in the pre-

ceding section one obtains DCG’ = <3, 5, 6.89, 6.89,

6.89, 7.28, 7.99, 8.66, 9.61, 9.61, . . .>.

Average Vector

In an IR experiment, tests on IR methods are typically

run with a set of test topics. To obtain an understand-

ing of the average performance of an IR method, one

needs average vectors across a query set. To compute

the averaged vectors, one needs the vector sum opera-

tion and vector multiplication by a constant. Let

V = <v1, v2,. . .,vk> and W = <w1, w2,. . .,wk> be

two vectors. Their sum is the vector V + W = <v1+

w1, v2+ w2,. . .,vk+ wk>. For a set of vectorsν = {V1,

V2,. . .,Vn}, each of k components, the sum vector is

generalised as SV 2 V V = V1 + V2+ . . . + Vn. The

multiplication of a vector V = <v1, v2,. . .,vk> by a

constant r is the vector r*V = <r*v1, r*v2,. . .,r*vk>.

The average vector AV based on vectors ν= {V1,

V2,. . .,Vn}, is given by the function avg-vect(V):

avg-vect Vð Þ ¼ jVj�1 �SV 2VV

Now the average CG and DCG vectors for vector

sets CG and DCG, over a set of test queries, are com-

puted by avg-vect(CG) and avg-vect(DCG).

Ideal Vector

In order to normalize the actual CG and DCG vectors

one compares them to the theoretically best possible

vectors for each topic. The latter vectors are con-

structed by arranging the recall base of each topic in

descending order by relevance and then turning it into

a gain vector, CG vector and DCG vector as described

above. A sample ideal gain vector is: I’ = <3, 3, 3, 2, 2,

2, 1, 1, 1, 1, 0, 0, 0, . . .> and its CG vector is CGI’ =<3,

6, 9, 11, 13, 15, 16, 17, 18, 19, 19, 19, 19, . . .>.

Normalized Vector

The (D)CG vectors for each IR technique can be nor-

malized by dividing them by the corresponding ideal

(D)CG vectors, component by component. In this

way, for any vector position, the normalized value 1

represents ideal performance, and values in the range

[0,1) the share of ideal performance cumulated by

each technique. Given an (average) (D)CG vector

302D Discounted Cumulated Gain

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

V = <v1, v2,. . . ,vk> of an IR technique, and the (aver-

age) (D)CG vector I = <i1, i2,. . .,ik> of ideal perfor-

mance, the normalized performance vector n(D)CG is

obtained by the function:

norm -vect V;Ið Þ¼< v1=i1; v2=i2; . . . ;vk=ik>

Normalized Discounted Cumulated Gain (nDCG) Vector

To assess whether two IR methods are significantly

different in effectiveness from each other or not,

when measured by DCG, one uses the normalized

vectors because the (D)CG vectors are not relative to

an ideal. Given an (average) DCG vector V of an IR

method, and the (average) DCG vector I of ideal per-

formance, the normalized performance vector nDCG

is obtained by norm-vect(V, I).

For example, based on CG’ and CGI’ from above,

one obtains the normalized CG vector nCG’ = norm-

vect(CG’, CGI’) = <1, 0.83, 0.89, 0.73, 0.62, 0.6, 0.69,

0.76, 0.89, 0.84, . . .>.

The Average Normalized Discounted Cumulated

Gain Indicator

The average of a (n)(D)CG vector, up to a given ranked

position, summarizes the vector (or performance) and

is analogous to the non-interpolated average precision

of a document cut-off value (DCV) curve up to the

same given ranked position. The average of a (n)

(D)CG vector V up to the position k is given by:

avg-pos V; kð Þ ¼ k�1�
X
i¼1...k

V i½ �

These vector averages can be used in statistical

significance tests in the same way as average precision

in IR evaluation.

Properties of (n)(D)CG

The strengths of the proposed CG, DCG, nCG, and

nDCG measures can now be summarized as follows:

� They combine the degree of relevance of docu-

ments and their rank (affected by their probability

of relevance) in a coherent way.

� At any number of retrieved documents examined

(rank), CG and DCG give an estimate of the cumu-

lated gain as a single measure no matter what is the

recall base size.

� They are not heavily dependent on outliers (rele-

vant documents found late in the ranked order)

since they focus on the gain cumulated from the

beginning of the result up to any point of interest.

� They are obvious to interpret, they are more direct

than precision-recall curves by explicitly giving the

number of documents for which each n(D)CG value

holds. Precision-recall curves do not make the num-

ber of documents explicit for given performance and

may therefore mask bad performance [7].

In addition, the DCG measure has the following fur-

ther advantages:

� It realistically weights down the gain received

through documents found later in the ranked

results.

� It allows modeling searcher persistence in examin-

ing long ranked result lists by adjusting the dis-

counting factor.

Further, the normalized nCG and nDCG measures

support evaluation:

� They represent performance as relative to the ideal

based on a known (possibly large) recall base of

graded relevance assessments.

� The performance differences between IR techni-

ques are also normalized in relation to the ideal

thereby supporting the analysis of performance

differences.

The following issues concerning the (n)(D)CG mea-

sure have been discussed in the literature:

1. Averaging over topics is not statistically reliable

because the number of relevant documents (recall

base size) varies by topics.

2. DCG does not discount the gain when the rank is

smaller than the logarithm base.

3. Interpretation of non-normalized versions of the

measure (CG, DCG) is difficult.

4. The measures should be robust when relevance

judgements are incomplete.

These issues are discussed briefly below.

1. Averaging. This issue is discussed by, e.g., Hull [2]

and Sakai [9]. Averaging over topics has been con-

sidered problematic when a fixed length for the result

list (i.e. a fixed cut-off value, DCV) is used. Say, one

evaluates effectiveness at DCV 5. One topic has five

relevant documents with relevance score 3 retrieved

at positions 1–5; another topic has 100 relevant

documents with relevance score 3 and five of them

Discounted Cumulated Gain D 303

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

are retrieved at positions 1–5. The (n)DCG values for

the topics will be the same at DCV 5. From the point

of view of searcher’s effort this is correct; however, if

the system-oriented effectiveness as an equal share of

the relevant documents is aimed at, evaluation with

fixed DCV should be avoided. With high DCVs,

e.g. 500 or 1,000, the problem is less acute but the

user-orientation is also lost.

A related problem is caused by the variation in

the number of documents of different relevance

level: As the number of most relevant documents

tends to be low, weighting them strongly might

lead to instability in evaluation (a loss of one highly

relevant document in the top ranks hurts effective-

ness badly) [11]. As a remedy large topic pools with

varying recall bases could be used in evaluation.

One should also bear in mind the difference

between (n)DCG curves and averaging the scores

over topics at a given rank. The curves visualize the

performance over a range of ranks and are useful to

reveal crossovers concealed in averages. The single

figure averages are needed to give concise informa-

tion and for statistical testing.

2. Discounting. The original formulation of the

(n)DCG, given above, does not perform discount-

ing for ranks less than the base of the discount

logarithm. When the base is relatively large, say

10, modeling a patient searcher, the 10 first

ranks avoid discounting. Some scholars have been

concerned about this feature [10]. It can be solved

by modifying the discounting factor logbi to the

form (1 + logb i) [8]. By doing so the first case

(with the condition i < b) of the DCG formula can

be omitted: all ranks are consistently discounted.

3. Interpretation of the scores. The CG and DCG

measures are comparable only within one test

setting and relevance weighting scheme. The rele-

vance grades and their weights should be reported

in order to make CG and DCG curves interpretable.

Further, topics with large recall bases yield high

CG and DCG figures and affect averages over all

topics. The normalized versions are recommend-

able when averaging over topics or comparing over

test settings is needed.

4. Robustness. An evaluation measure should be ro-

bust with relation to missing relevance judgements

since, in practice, the whole test collection is sel-

dom assessed for relevance. The pooling method

for gathering documents for relevance judgement,

and the later reuse of the test collection with new

systems or methods leads unavoidably to a situa-

tion where all documents in the result lists are not

assessed for relevance. The (n)DCG measure has

been found robust in this respect, see [1,10].

Key Applications
The (n)(D)CG measures have been applied in tradi-

tional laboratory oriented evaluation with stable test

Discounted Cumulated Gain. Figure 1. (a) DCG curves. (b) nDCG curves.

304D Discounted Cumulated Gain

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

collections when graded relevance assessment are avail-

able. They have also gained popularity in web IR eval-

uation, and interactive IR test settings.

Sample (n)DCG curves for three TREC 7 runs

(A, B, C) are given in Fig. 1a and b. The measures use

graded relevance with four relevance levels. The levels

from non-relevant to the most relevant are weighted

0–1–10–100; logarithm base for discounting is 2.

Future Directions

Session-Based DCG

IR evaluation by (n)(D)CG assumes one query per

topic/session. In real life however, interactive searchers

often use multiple queries through reformulation and/

or relevance feedback until they are satisfied or give up

and move on to other means of information access.

Evaluation metrics assuming one query per topic are

insufficient in multiple query session evaluation, where

the searcher’s reformulation and feedback effort mat-

ters. Moreover, due to various reasons, the first queries

often are unsuccessful. In real life, also stopping deci-

sions are individual and variable and depend on many

factors, including personal traits, task, context, and

retrieval results. To overcome this limitation, it is pos-

sible to extend the (n)(D)CG into a session-based met-

ric for multiple interactive queries. Such an extended,

session-based DCG metric would incorporate query

sequences as a further dimension in evaluation scenar-

ios, allowing one to further discount any relevant docu-

ments found only after additional searcher effort, i.e.,

feedback or reformulation. The rationale here is that an

IR system (or searcher-system combination) should be

rewarded less for relevant results found by later queries.

Cross-references
▶ Information Retrieval

▶ Precision

▶Recall

▶ Standard Effectiveness Measures

Recommended Reading
1. Bompada T., Chang C., Chen J., Kumar R., and Shenoy R.

On the robustness of relevance measures with incomplete

judgments. In Proc. 33rd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2007,

pp. 359–366.

2. Hull D. Using statistical testing in the evaluation of retrieval

experiments. In Proc. 26th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1993,

pp. 329–338.

3. Järvelin K. and Kekäläinen J. IR evaluation methods for retriev-

ing highly relevant documents. In Proc. 23rd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2000, pp. 41–48.

4. Järvelin K. and Kekäläinen J. Cumulated gain-based evaluation

of IR techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

5. Kekäläinen J. Binary and graded relevance in IR evaluations –

comparison of the effects on ranking of IR systems. Information

Process. Manag., 41(5):1019–1033, 2005.

6. Kekäläinen J. and Järvelin K. Using graded relevance assess-

ments in IR Evaluation. J. Am. Soc. Inf. Sci. Technol.,

53(13):1120–1129, 2002.

7. Losee R.M. Text retrieval and filtering: Analytic models of per-

formance. Kluwer Academic, Boston, MA, 1998.

8. Sakai T. Average gain ratio: A simple retrieval performance

measure for evaluation with multiple relevance levels. In Proc.

26th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2003, pp. 417–418.

9. Sakai T. On the reliability of information retrieval metrics

based on graded relevance. Inf. Process. Manag. 43(2):531–548,

2007.

10. A suggestion by Susan Price (Portland State University, Portland,

OR, USA), May 2007, (private communication).

11. Voorhees E. Evaluation by highly relevant documents. In Proc.

24th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2001, pp. 74–82.

Discovery

SCHAHRAM DUSTDAR
1, CHRISTIAN PLATZER

1

BERND J. KRÄMER
2

1Technical University of Vienna, Vienna, Austria
2Distance University of Hagen, Hagen, Germany

Synonyms
WS-discovery; DISCO

Definition
The term discovery, as far as Web services (WS) are

concerned, refers to the process of finding WS that

match certain computational needs and quality req-

uirements of service users or their software agents.

More technically speaking, WS discovery mechanisms

take a specification of certain functional or non-

functional criteria characterizing a service and try to

locate machine-readable descriptions of Web services

that meet the search criteria. The services found may

have been previously unknown to the requester.

Discovery D 305

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:51

Historical Background
Since Web services were introduced in the early

1990’s, service-oriented architectures had to deal with

the discovery problem, and it still persists. Initially, the

possibilities to describe Web services properly were

limited. XML remote procedure calls (XML-RPCs),

which were used early on to connect WS, offered no

proper way of describing a Web service’s capabilities

and therefore forced system designers to find other

ways to publish this information. These early services

were typically used to achieve a platform independent

communication between remote peers, nothing more.

This requirement was met with an XML-structured

messaging protocol that evolved later to SOAP, a

standard protocol of today’s Web technology. For the

act of discovering services, the actually used protocol

made no difference. Services description files were

propagated mostly by artificial means, by sending the

file per e-mail for instance. In some cases, the develop-

er of the Web service also worked on the client-side

implementation.

A proper service description mechanism was only

introduced when application developers realized

that Web service technology had to be leveraged to a

level that obviated the need of service consumer and

provider to interact closely with each other prior to

using a service. With the definition of the Web service

description language (WSDL), it was finally possible

to describe the interface of a WS in a standardized

manner. The discovery problem, however, still per-

sisted because no means existed to publish a service

description in a widely known index or registry,

once the implementation on the provider side was

completed.

To overcome this barrier, a first draft of the Univer-

sal Description, Discovery and Integration, short

UDDI, standard was released in 1999. UDDI was

designed as a vendor-independent specification of an

XML-based registry for service descriptions maintained

in the form of WSDL documents. The standard was

completed in 2002. Its purpose was to enable service

providers and consumers to find each other if service

request and service offer matched and to provide infor-

mation aboutmessage formats and protocols accepted by

a Web service. Apart from defining data models and

registry structure, UDDI was also designed to offer sim-

ple search capabilities to help service consumers find

Web services. Thus UDDI contributed to solve the dis-

covery issue.

As a WSDL description of a Web service interface

just lists the operations the service may perform and

the messages it accepts and produces, the discovery

mechanism of UDDI was constrained to match func-

tionality only. If several candidate services could be

found, the service consumer was unable to distinguish

between them. Therefore people felt the need to be able

to express semantic properties or quality aspects of

requested services as well. But search mechanisms tak-

ing into account semantics and quality-of-service

properties require richer knowledge about a registered

Web service than WSDL can capture.

To complement the expressiveness of WSDL and fa-

cilitate service discovery, DAML-S, an ontology language

for Web services, was proposed to associate computer-

readable semantic informationwith service descriptions.

Semantic service descriptions are seen as a potential

enabler to enhance automated service discovery and

matchmaking in various service oriented architectures.

For the time being, however, services widely used in

practice lack semantic information because no easy

to use or even automated method to attach semantic

information to service descriptions exists.

Foundations
The service discovery process encompasses several

steps. Each step involves specific problems that have

to be solved independently. The following list will

discuss these steps in ascending order, beginning with

the most generic step.

Enabling Discovery

At a first glance, the act of discovering a service descrip-

tion matching a set of terms characterizing a service,

resembles a search processes for Web pages. Well-

known search engines like Google or Live utilize a crawl-

ing mechanism to retrieve links to Web documents and

create a index that can be searched effectively as users

enter search terms. A crawler just analyzes a given Web

page for hyperlinks and grinds through the tree structure

generated by such hyperlinks to find other Web docu-

ments. For Web services, or more precisely Web service

descriptions, the case is similar except for one major

difference: WSDL files do not contain links to other

services. Approaches to write crawlers that search web

pages for possibly published service descriptions will

produce very poor results, in general [4]. UDDI regis-

tries are just designed to eliminate the need for crawlers

or alike. As a matter of fact, open UDDI registries

306D Discovery

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:52

for public Web services are increasingly loosing impor-

tance. Especially after the two largest UDDI registries

from IBM and Microsoft were shut down in 2005, the

vision of public services suffered immensely. Suddenly

the starting point to find a public Web service was lost,

leaving the possibility to query common Web search

engines for Web services as the only alternative. There

are, of course, some other registries but they usually do

not implement the UDDi specification, which suggests

that UDDI may not be an optimal solution for public

service registries.

In a corporate environment, however, the initial

discovery step is not a real issue. Web service descrip-

tions can easily be published on an internal Web page

or in a UDDI registry and are, therefore, easily accessi-

ble from within the institution.

Searching in Service Registries

Assuming that a comprehensive collection of service

descriptions has already been established, the question

is how to retrieve the closest match to a user query in

an efficient manner.

As the title suggests, searching is usually performed

by humans and not by software automatically. The

challenge is how to create an index of services

such that the addition and retrieval of service descrip-

tions can be achieved accurately and fast. Common

information retrieval methods are often used for this

purpose, ranging from the vector space model for

indexing and searching large repositories to graph

theoretical approaches for fast processing of a rich

data collection.

More or less every registry-based solution encom-

passes such a facility. Especially UDDI registries

often come with a rudimentary interface to query the

database for contained services. Unfortunately, the

general structure of UDDI with its tModel compo-

nent-layout, which serves as a container to store de-

tailed service information, complicates data retrieval.

Furthermore, most UDDI entries do not maintain a

complete service description but include links to such

descriptions kept elsewhere. But these links could be

broken or inaccessible at search time. As a result,

UDDI queries are usually processed on the business

data related to a service and not the service description

itself. This fact alone limits the usability of UDDI-

based search mechanisms enormously or more precise-

ly: it leaves most of the index quality in the hand of

the users.

This area on the other hand is heavily investigated

throughout the research community and several

approaches have been presented that aim at improving

search capabilities on service collections. Those

approaches are mostly designed to handle natural

language queries like ‘‘USA weather service’’ and are

supposed to provide a user interface for various regis-

try implementations.

Querying Repositories

A more detailed form of search in service descriptions

is entitled as querying. Unlike direct search, in which a

user simply provides a set of search terms, queries are

formal expressions using some sort of query language.

In the case of relational databases, SQL is typically used

as a query language. Through a query expression it is

possible to search for a specific service signature in a set

of service descriptions. Assume, for example, that a

user wants to find a weather service and can provide

three bits of information: country, zip_code, and the

desired scale for presenting the temperature. Assume

further that the user wants to express certain quality

requirements. Then, a query expression in a language

alike SQL might read as follows:

SELECT description FROM services s WHERE

s.input.COMPOSEDOF(country AND zip_code

AND useCelsiusScale)

AND s.response_time < 200ms AND s.downtime

< 1%

This example also reveals a weakness of service

descriptions as their signatures are usually not speci-

fied using exact type information such as city or coun-

try but rather basic types like string, integer etc. are

used. Hence, it seems more appropriate to search for

signatures in terms of basic data types only. But this

would likely result in mismatches. Re-considering the

query above, a corresponding signature using the basic

types [string, integer, boolean] can easily be met by

other services. There is no way to distinguish positive

matches from unwanted ones without additional infor-

mation or a richer index. These problems are addressed

by introducing semantics and domain knowledge. For

the values of response_time and downtime in this ex-

ample, there already exist approaches that constantly

monitor and invoke the services in a registry to create

a statistical profile of the quality of such a service (QoS).

These approaches require a more sophisticated reg-

istry type than UDDI represents and are therefore

mostly implemented in research prototypes.

Discovery D 307

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:52

Domain-Specific Knowledge in Service Descriptions

Another requirement that has to be met by more pow-

erful discovery mechanisms is domain-specific knowl-

edge about a service. To take on the sample above, a

discovery mechanism able to match the terms city,

zip_code and temperature with the semantic categories

location and weather would select just the intersection

of services dealing with location and temperature. Al-

though domain information is semantic information in

certain respects, it does not mean that the information

has to be provided upon service registration. Certain

approaches exist that are able to group service reposi-

tories according to their most probable domain. The

grouping can, for instance, be achieved by using statis-

tical cluster analysis and discover strongly related ser-

vice descriptions.

On the other hand, domain-knowledge can also be

gained by letting the service provider add this infor-

mation. In practice however, it proved to be problem-

atic to let users define semantic information for a

service. Once, this is due to the fact that a certain

amount of domain knowledge is needed by the pro-

grammer of the Web service but mostly because the

categorization assigned by indexers cannot be vali-

dated and could therefore be incorrect. This field, just

like the following, is still heavily investigated, e.g.

under the heading ‘‘faceted search.’’ It addresses a

broad spectrum of issues but also bears a high potential

for innovation.

Semantic Annotations

The next logical step towards enhancing service dis-

covery is a complete semantic description of a Web

service. A multitude of approaches exist, in which

semantic annotations are used to define the concepts

behind operations of Web services and their input and

output messages. Those approaches use the widely

known resource description framework (RDF) to add

custom-designed semantic markup to service descrip-

tions. A good example for such a semantic markup

language is called DAML-S. It is a DAML-based Web

service ontology, which supplies Web service providers

with a core set of markup language constructs for

describing the properties and capabilities of their

Web services in unambiguous, computer-interpretable

form. An example for such a markup is shown in

Listing 1. This very short listing basically shows a

Web service called BookstoreBuy and defines it as

a process and therefore as a subclass of the class Process

in the corresponding ontology. The second part shows

an input to BookstoreBuy which is it is a subprop-

erty of the property input of Process, from the process

model. With this example, some of the limitations for

semantic annotations become more obvious. First of

all, the creator of the Web service is required to have

additional knowledge about semantic annotations and

ontologies. Furthermore, the appended information

causes an additional amount of work. Secondly, the

ontology used defines sharp boundaries for the level of

detail that can be reached through the usage of such

annotations. In addition, the problem of misused or

erroneous annotations mentioned in the previous step

persists. Put together, semantic Web services are seen

as a technology with the potential to facilitate more

powerful service discovery and machine-readable

descriptions. Practical experience, however, showed

that an exploitation of semantic information is diffi-

cult and still leaves room for further improvements.

Quality-of-Service Properties

The consideration of quality-of-service (QoS) proper-

ties in discovery attempts requires the definition of

scales of measurements and metrics to qualify the

properties per domain. The scales can be of different

Discovery. Listing 1. DAML-S Sample.

308D Discovery

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:52

kinds including nominal, ordinal, interval or ratio.

They are used to assign appropriate QoS property

values to a service. Here, a service provider has the

choice to associate precise values or just value ranges

with service property descriptions. The metrics are

needed to rank services that match the functional and

semantic requirement of a search according their de-

gree of fulfillment of required QoS properties.

These issues and related modifications to service

discovery schemes are still subject to a number of re-

search projects. Wang et al. [6], for example, proposes a

services discovery approach in which functional, se-

mantic and QoS requirements are taken into account

by iteratively applying related filters.

Key Applications
Some of the concepts presented above, especially the

first, more general layers are already used in real world

implementations. Service registries, especially those

not strictly conforming to the UDDI specification are

the main area of application for innovative discovery

mechanisms. Search and matchmaking on the other

hand is particularly required by IDEs. Especially service

composition environments enormously benefit from

fast and exact discovery mechanisms. Finding substi-

tutes and alternatives for services in compositions is an

important topic in service-oriented architectures.

Future Directions
Future directions show considerable tendencies towards

the semantic web to enhance service discovery for Web

services. This fact, however, creates a diversion among

researchers on this particular area. Some argue that se-

mantic descriptions are too complicated to be of any

practical use, while others argue that they are the only

way to leverage Web service discovery and search to a

point where they can be processed automatically. Both

views are valid and which direction proves to be themost

promisingwill be decided by the work that is yet to come.

Some recent works have proposed a recommenda-

tion service and suggest to apply it to collaborative web

service discovery. Experiments with such solutions are

underway in research labs.

URL to Code
A Vector-space based search engine for Web services

including a clustering algorithm: http://copenhagen.

vitalab.tuwien.ac.at/VSMWeb/

AWeb service registry with invocation capabilities:

http://www.xmethods.net

Another Web service search engine: http://www.

esynaps.com/search/default.aspx

WSBen, a Web service discovery and composition

benchmark developed at Penn State: http://pike.psu.

edu/sw/wsben/

Cross-references
▶Business Process Management

▶ Publish/Subscribe

▶ Service-Oriented Architecture (SOA)

▶Web Services

Recommended Reading
1. Benatallah B., Hacid M.-S., Leger A., Rey C., and Toumani F. On

automating web services discovery. Int. J. VLDB, 14(1):84–96,

2005.

2. Bussler C., Fensel D., and Maedche A. A conceptual architecture

for semantic web enabled web services. SIGMOD Rec., 2002.

3. Kokash N., Birukou A., and D’Andrea V. Web service discovery

based on past user experience. In Proc. Int. Conf. on Business

Information Systems (BIS). LNCS 4439. 2007, pp. 95–107.

4. Platzer C. and Dustdar S. A vector space search engine for Web

services. In Proc. Third European IEEE Conf. on Web Services

(ECOWS’05). 2005.

5. Rosenberg F., Platzer C., and Dustdar S. Bootstrapping perfor-

mance and dependability attributes of web services. In Proc.

IEEE Int. Conf. on Web Services (ICWS’06), 2006, pp. 205–212.

6. Wang X., Vitvar T., Kerrigan M., and Toma I. Synthetical evalu-

ation of multiple qualities for service selection. In Proc. Fourth

Int. Conf. on Service Oriented Computing. Springer, 2006,

pp. 1–12.

Discrete Wavelet Transform and
Wavelet Synopses

MINOS GAROFALAKIS

Technical University of Crete, Chania, Greece

Definition
Wavelets are a useful mathematical tool for hierar-

chically decomposing functions in ways that are both

efficient and theoretically sound. Broadly speaking, the

wavelet transform of a function consists of a coarse

overall approximation together with detail coefficients

that influence the function at various scales. The wave-

let transform has a long history of successful applica-

tions in signal and image processing [11,12]. Several

recent studies have also demonstrated the effectiveness

Discrete Wavelet Transform and Wavelet Synopses D 309

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:52

of the wavelet transform (and Haar wavelets, in partic-

ular) as a tool for approximate query processing over

massive relational tables [2,7,8] and continuous data

streams [3,9]. Briefly, the idea is to apply wavelet

transform to the input relation to obtain a compact

data synopsis that comprises a select small collection of

wavelet coefficients. The excellent energy compaction

and de-correlation properties of the wavelet transform

allow for concise and effective approximate representa-

tions that exploit the structure of the data. Further-

more, wavelet transforms can generally be computed in

linear time, thus allowing for very efficient algorithms.

Historical Background
A growing number of database applications require

on-line, interactive access to very large volumes of

data to perform a variety of data-analysis tasks. As an

example, large Internet Service Providers (ISPs) typi-

cally collect and store terabytes of detailed usage infor-

mation (NetFlow/SNMP flow statistics, packet-header

information, etc.) from the underlying network to

satisfy the requirements of various network-manage-

ment tasks, including billing, fraud/anomaly detection,

and strategic planning. This data gives rise to massive,

multi-dimensional relational data tables typically

stored and queried/analyzed using commercial data-

base engines (such as, Oracle, SQL Server, DB2). To

handle the huge data volumes, high query complex-

ities, and interactive response-time requirements

characterizing these modern data-analysis applica-

tions, the idea of effective, easy-to-compute approxi-

mate query answers over precomputed, compact data

synopses has recently emerged as a viable solution. Due

to the exploratory nature of most target applications,

there are a number of scenarios in which a (reasonably-

accurate) fast approximate answer over a small-footprint

summary of the database is actually preferable over an

exact answer that takes hours or days to compute. For

example, during a ‘‘drill-down’’ query sequence in ad-

hoc data mining, initial queries in the sequence fre-

quently have the sole purpose of determining the

truly interesting queries and regions of the database.

Providing fast approximate answers to these initial

queries gives users the ability to focus their explora-

tions quickly and effectively, without consuming in-

ordinate amounts of valuable system resources.

The key behind such approximate techniques

for dealing with massive data sets lies in the use of

appropriate data-reduction techniques for constructing

compact synopses that can accurately approximate the

important features of the underlying data distribution.

The Haar wavelet decomposition is one such technique

with deep roots in the fields of signal and image pro-

cessing, that has recently found its way into database

applications as an important approximate query pro-

cessing tool.

Foundations

Haar Wavelet Basics

Haar wavelets are conceptually simple, easy to com-

pute, and have been found to perform well in practice

for a variety of applications, ranging from image edit-

ing and querying to database selectivity estimation

tasks. Consider a one-dimensional data vector A con-

taining the N¼8 data values A¼[2,2,0,2,3,5,4,4].

The Haar wavelet transform of A can be computed as

follows. The values are first averaged together pairwise

to get a new ‘‘lower-resolution’’ representation of the

data with the following average values [2,1,4,4]. To

restore the original values of the data array, additional

detail coefficients must be stored to capture the infor-

mation lost due to this averaging. In Haar wavelets,

these detail coefficients are simply the differences of

the (second of the) averaged values from the computed

pairwise average, that is, [2�2,1�2,4�5,4�4]¼
[0,�1,�1,0]. No information has been lost in this

process – it is simple to reconstruct the eight values

of the original data array from the lower-resolution

array containing the four averages and the four

detail coefficients. Recursively applying the above pair-

wise averaging and differencing process on the lower-

resolution array containing the averages, gives the

following full transform:

The wavelet transform WA of A is the single coeffi-

cient representing the overall average of the data

values followed by the detail coefficients in the order

of increasing resolution, i.e., WA¼[11 ∕4,�5 ∕4,1 ∕2,0,
0,�1,�1,0] (each entry is called a wavelet coefficient).

For vectors containing similar values, most of the

detail coefficients tend to be very small; thus, eliminat-

ing them from the wavelet transform (i.e., treating

them as zeros) introduces only small errors when

reconstructing the original data, resulting in a very

effective form of lossy data compression [12].

A helpful tool for conceptualizing the recursive

Haar wavelet transform process is the error tree struc-

ture (shown in Fig.1a for the example array A). Each

310D Discrete Wavelet Transform and Wavelet Synopses

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:52

internal node ci (i¼0, . . .,7) is associated with a wave-

let coefficient value, and each leaf di (i¼0, . . .,7) is

associated with a value in the original data array; in

both cases, the index i denotes the positions in the

(data or wavelet transform) array. For instance, c0
corresponds to the overall average of A. The resolution

levels l for the coefficients (corresponding to levels in

the tree) are also depicted.

Given an error tree T and an internal node t of T,

t6¼c0, leftleaves(t) (rightleaves(t)) denotes the

set of leaf (i.e., data) nodes in the subtree rooted at t’s

left (resp., right) child. Also, given any (internal or

leaf) node u, path(u) is the set of all (internal) nodes

in T that are proper ancestors of u (i.e., the nodes on

the path from u to the root of T, including the root but

not u) with non-zero coefficients. Finally, for any two

leaf nodes dl and dh, d(l : h) denotes the range sumPh
i¼l di. Using the error tree representation T, the

following important reconstruction properties of the

Haar wavelet transform can be outlined.

� (P1) The reconstruction of any data value di
depends only on the values of the nodes in path(di).

Morespecifically,di ¼
P

cj2pathðdiÞdij � cj , where dij¼þ1

if di 2leftleaves(cj) or j¼0, and dij¼�1

otherwise; for example, d4¼c0�c1þc6 =
11
4
� ð� 5

4
Þ þ ð�1Þ ¼ 3.

� (P2) An internal node cj contributes to the range

sum d(l : h) only if cj2path(dl) [path(dh). More

specifically, dðl : hÞ ¼
P

cj2pathðdlÞ[pathðdhÞxj , where

xj ¼
ðh�lþ1Þ�cj ; if j¼ 0

ðjleftleavesðcj ; l : hÞj �rightleavesðcj ; l : hÞjÞ�cj ; otherwise:

n
where leftleaves(cj, l : h)¼leftleaves(cj) \{ dl,
dlþ1, . . .,dh} (i.e., the intersection of leftleaves(cj)

with the summation range) and rightleaves(cj, l : h)

is defined similarly. (Clearly, coefficients whose sub-

tree is completely contained within the summation

range have a net contribution of zero, and can be

safely ignored.) For example, d(2 : 6)¼5c0þ(2�3)

c1�2c2¼5� 11
4
� ð� 5

4
Þ � 1 = 14.

Thus, reconstructing a single data value involves

summing at most log Nþ1 coefficients and recon-

structing a range sum involves summing at most

2 log Nþ1 coefficients, regardless of the width of the

range. The support region for a coefficient ci is defined

Discrete Wavelet Transform and Wavelet Synopses. Figure 1. (a) Error-tree structure for the example data array A (N¼
8). (b) Support regions and signs for the 16 nonstandard two-dimensional Haar basis functions.

Resolution Averages Detail coefficients

3 [2, 2, 0, 2, 3, 5, 4, 4] –

2 [2, 1, 4, 4] [0,�1,�1, 0]

1 [3/2, 4] [1/2, 0]

0 [11/4] [�5 ∕4]

Discrete Wavelet Transform and Wavelet Synopses D 311

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

as the set of (contiguous) data values that ci is used

to reconstruct.

The Haar wavelet transform can be naturally

extended to multi-dimensional data arrays using two

distinct methods, namely the standard and nonstan-

dard Haar transform [12]. As in the one-dimensional

case, the Haar transform of a d-dimensional data array

A results in a d-dimensional wavelet-coefficient array

WA with the same dimension ranges and number of

entries. Consider a d-dimensional wavelet coefficient

W in the (standard or nonstandard) wavelet-coefficient

array WA. W contributes to the reconstruction of a

d-dimensional rectangular region of cells in the origi-

nal data array A (i.e.,W ’s support region). Further, the

sign of W ’s contribution (þW or�W) can vary along

the quadrants of W ’s support region in A.

As an example, Fig.1b depicts the support regions

and signs of the sixteen nonstandard, two-dimensional

Haar coefficients in the corresponding locations of a

4 � 4 wavelet-coefficient array WA. The blank areas

for each coefficient correspond to regions of A whose

reconstruction is independent of the coefficient, i.e.,

the coefficient’s contribution is 0. Thus, WA[0,0] is

the overall average that contributes positively (i.e.,‘‘þ
WA[0,0]’’) to the reconstruction of all values in A,

whereas WA[3,3] is a detail coefficient that contributes

(with the signs shown) only to values in A’s upper

right quadrant. Each data cell in A can be accurately

reconstructed by adding up the contributions (with

the appropriate signs) of those coefficients whose sup-

port regions include the cell. Error-tree structures

for d-dimensional Haar coefficients are essentially

d-dimensional quadtrees, Ewhere each internal node

t corresponds to a set of (at most) 2d�1 Haar coeffi-

cients, and has 2d children corresponding to the quad-

rants of the (common) support region of all

coefficients in t ; furthermore, properties (P1) and (P2)

can also be naturally extended to the multi-dimensional

case [2,7,8].

Data Reduction and Approximate Query Processing

Consider a relational table R with d data attributes X1,

X2, . . . Xd. The information in R can be represented as a

d-dimensional array AR, whose jth dimension is

indexed by the values of attribute Xj and whose cells

contain the count of tuples in R having the corre-

sponding combination of attribute values. AR is essen-

tially the joint frequency distribution of all the data

attributes of R. Given a limited amount of storage for

building a wavelet synopsis of an input relation R, a

thresholding procedure retains a certain number

B << N of the coefficients in the wavelet transform

of AR as a highly-compressed approximate representa-

tion of the original data (the remaining coefficients are

implicitly set to 0). (The full details as well as efficient

transform algorithms can be found in [2,13].) The goal

of coefficient thresholding is to determine the ‘‘best’’

subset of B coefficients to retain, so that some overall

error measure in the approximation is minimized – the

next subsection discusses different thresholding strate-

gies proposed in the database literature.

The construction of wavelet synopses typically

takes place during the statistics collection process,

whose goal is to create concise statistical approxima-

tions for the value distributions of either individual

attributes or combinations of attributes in the rela-

tions of a Database Management System (DBMS).

Once created, a wavelet synopsis is typically stored

(as a collection of B wavelet coefficients) as part of the

DBMS-catalog information, and can be exploited for

several different purposes. The primary (and, more

conventional) use of such summaries is as a tool

for enabling effective (compile-time) estimates of the

result sizes of relational operators for the purpose of

cost-based query optimization. (Accurate estimates of

such result sizes play a critical role in choosing an

effective physical execution plan for an input SQL

query.) For instance, estimating the number of data

tuples that satisfy a range-predicate selection like l �
X � h is equivalent to estimating the range summation

f (l : h)¼
Ph

i¼l fi , where f is the frequency distribution

array for attribute X. As mentioned earlier, given a

B-coefficient synopsis of the f array, computing f

(l : h) only involves retained coefficients in path(fl)[
path(fh) and, thus, can be estimated by summing

only min{B, 2 log Nþ1} synopsis coefficients [13].

A B-coefficient wavelet synopsis can also be easily

expanded (in O(B) time) into an O(B)-bucket histo-

gram (i.e., piecewise-constant) approximation of the

underlying data distribution with several possible uses

(e.g., as a data visualization/approximation tool).

More generally, wavelet synopses can enable very

fast and accurate approximate query answers [6] dur-

ing interactive data-exploration sessions. As demon-

strated by Chakrabarti et al. [2], an approximate

query processing algebra (which includes all conven-

tional aggregate and non-aggregate SQL operators,

such as select, project, join, sum, and average)

312D Discrete Wavelet Transform and Wavelet Synopses

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

can operate directly over the wavelet synopses of rela-

tions, while guaranteeing the correct relational

operator semantics. Query processing algorithms for

these operators work entirely in the wavelet-coefficient

domain. This allows for extremely fast response times,

since the approximate query execution engine can

do the bulk of its processing over compact wavelet

synopses, essentially postponing the (expensive) expan-

sion step into relational tuples until the end-result of the

query.

Conventional and Advanced Wavelet Thresholding

Schemes

Recall that coefficient thresholding achieves data

reduction by retaining B << N of the coefficients in

the wavelet transform of AR as a highly-compressed,

lossy representation of the original relational data. The

goal, of course, is to minimize the amount of ‘‘loss’’

quantified through some overall approximation error

metric. Conventional wavelet thresholding (the meth-

od of choice for most studies on wavelet-based data

reduction) greedily retains the B largest Haar-wavelet

coefficients in absolute value after a simple normaliza-

tion step (that divides each coefficient value at resolu-

tion level l by
ffiffiffiffi
2l

p
). It is a well-known fact that this

thresholding method is in fact provably optimal with

respect to minimizing the overall root-mean-squared

error (i.e., L2-norm error) in the data compression

[12]. More formally, letting d̂i denote the (approxi-

mate) reconstructed data value for cell i, retaining

the B largest normalized coefficients implies that the

resulting synopsis minimizes L2ðd̂Þ ¼
ffiP

iðd̂i � diÞ
2

q
(for the given amount of space B).

Conventional wavelet synopses optimized for over-

all L2 error may not always be the best choice for

approximate query processing systems. The quality of

the approximate answers such synopses provide can

vary widely, and users have no way of knowing the

accuracy of any particular answer. Even for the sim-

plest case of approximating a value in the original data

set, the absolute and relative errors can show wide

variation. Consider the example depicted in Table 1.

The first line shows the 16 original data values (the

exact answer), whereas the second line shows the 16

approximate answers returned when using conven-

tional wavelet synopses and storing eight coefficients.

Although the first half of the values is basically a mirror

image of the second half, all the approximate answers

for the first half are 65, whereas all the approximate

answers for the second half are exact! Similar data

values have widely different approximations, e.g., 30

and 31 have approximations 30 and 65, respectively.

The approximate answers make the first half appear as

a uniform distribution, with widely different values,

e.g., 3 and 127, having the same approximate answer

65. Moreover, the results do not improve when one

considers the presumably easier problem of approxi-

mating the sum over a range of values: for all possible

ranges within the first half involving x ¼ 2 to 7 of the

values, the approximate answer will be 65 � x, while the
actual answers vary widely. For example, for both the

range d0 to d2 and the range d3 to d5, the approximate

answer is 195, while the actual answer is 285 and 93,

respectively. On the other hand, exact answers are

provided for all possible ranges within the second half.

The simple example above illustrates that conven-

tional wavelet synopses suffer from several important

problems, including the introduction of severe bias in

the data reconstruction and wide variance in the quality

of the data approximation, as well as the lack of non-

trivial guarantees for individual approximate answers.

To address these shortcomings, recent work has pro-

posed novel thresholding schemes for building wavelet

synopses that try to minimize different approximation-

error metrics, such as the maximum relative error (with

an appropriate sanity bound s) in the approximation

of individual data values based on the synopsis; that is,

minimize maxi
jd̂i�di j

max jdi j;sf g

n o
. Such relative-error

metrics are arguably the most important quality mea-

sures for approximate query answers. (The role of the

sanity bound is to ensure that relative-error numbers

are not unduly dominated by small data values.)

More specifically, Garofalakis and Gibbons [7]

introduce probabilistic thresholding schemes based on

ideas from randomized rounding, that probabilistically

Discrete Wavelet Transform and Wavelet Synopses. Table 1. Errors with conventional wavelet synopses

Original data values 127 71 87 31 59 3 43 99 100 42 0 58 30 88 72 130

Wavelet answers 65 65 65 65 65 65 65 65 100 42 0 58 30 88 72 130

Discrete Wavelet Transform and Wavelet Synopses D 313

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

round coefficients either up to a larger rounding value

(to be retained in the synopsis) or down to zero.

Intuitively, their probabilistic schemes assign each

non-zero coefficient fractional storage y 2 [0,1] equal

to its retention probability, and then flip independent,

appropriately-biased coins to construct the synopsis.

Their thresholding algorithms are based on Dynamic-

Programming (DP) formulations that explicitly mini-

mize appropriate probabilistic metrics (such as the

maximum normalized standard error or the maximum

normalized bias) in the randomized synopsis construc-

tion; these formulations are then combined with a

quantization of the potential fractional-storage allot-

ments to give combinatorial techniques [7].

In more recent work, Garofalakis and Kumar [8]

show that the pitfalls of randomization can be avoided

by introducing efficient schemes for deterministic

wavelet thresholding with the objective of optimizing

a general class of error metrics (e.g., maximum or mean

relative error). Their optimal and approximate thresh-

olding algorithms are based on novel DP techniques

that take advantage of the Haar transform error-tree

structure. In a nutshell, their DP algorithms tabulate

the optimal solution for the subtree rooted at each

error-tree node cj given the error contribution that

‘‘enters’’ that subtree through the choices made at all

ancestor nodes of cj in the tree (i.e., the choice of coeffi-

cients on path(cj)). The key observation here is that,

since the depth of the error tree is O(log N), all such

possible selections can be tabulated while still keeping

the running-time of the thresholding algorithm in the

low-polynomial range. This turns out to be a fairly

powerful idea for wavelet synopsis construction that

can handle a broad, natural class of distributive error

metrics (which includes several useful error measures for

approximate query answers, such as maximum or mean

weighted relative error and weighted Lp-norm error) [8].

The above wavelet thresholding algorithms for

non-L2 error metrics consider only the restricted ver-

sion of the problem, where the algorithm is forced to

select values for the synopsis from the standard Haar

coefficient values. As observed by Guha and Harb [10],

such a restriction makes little sense when optimizing

for non-L2 error, and can, in fact, lead to sub-optimal

synopses. Their work considers unrestricted Haar

wavelets, where the values retained in the synopsis are

specifically chosen to optimize a general (weighted) Lp
error metric. Their proposed thresholding schemes rely

on a DP over the error tree (similar to that in [8]) that

also iterates over the range of possible coefficient values

for each node. To keep time and space complexities

manageable, techniques for bounding these coeffi-

cient-value ranges are also discussed [10].

Extended and Streaming Wavelet Synopses

Complex tabular data sets with multiple measures

(multiple numeric entries for each table cell) introduce

interesting challenges for wavelet-based data reduc-

tion. Such massive, multi-measure tables arise natural-

ly in several application domains, including OLAP

(On-Line Analytical Processing) environments and

time-series analysis/correlation systems. As an exam-

ple, a corporate sales database may tabulate, for each

available product (i) the number of items sold,

(ii) revenue and profit numbers for the product, and

(iii) costs associated with the product, such as shipping

and storage costs. Similarly, real-life applications that

monitor continuous time-series typically have to deal

with several readings (measures) that evolve over time;

for example, a network-traffic monitoring system takes

readings on each time-tick from a number of distinct

elements, such as routers and switches, in the underly-

ing network and typically several measures of interest

need to be monitored (e.g., input/output traffic num-

bers for each router or switch interface) even for a fixed

network element. Deligiannakis et al. [4] show that

obvious approaches for building wavelet synopses for

such multi-measure data can lead to poor synopsis-

storage utilization and suboptimal solutions even in

very simple cases. Instead, their proposed solution is

based on (i) extended wavelet coefficients, the first adap-

tive, efficient storage scheme for multi-measure wave-

let coefficients; and, (ii) novel algorithms for selecting

the optimal subset of extended coefficients to retain for

minimizing the weighted sum of L2 errors across all

measures under a given storage constraint.

Traditional database systems and approximation

techniques are typically based on the ability to make

multiple passes over persistent data sets, that are stored

reliably in stable storage. For several emerging applica-

tion domains, however, data arrives at high rates and

needs to be processed on a continuous (24 � 7) basis,

without the benefit of several passes over a static,

persistent data image. Such continuous data streams

arise naturally, for example, in the network installa-

tions of large Telecom and Internet service providers

314D Discrete Wavelet Transform and Wavelet Synopses

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

where detailed usage information (Call-Detail-Records

(CDRs), SNMP/RMON packet-flow data, etc.) from

different parts of the underlying network needs to be

continuously collected and monitored for interesting

trends and phenomena (e.g., fraud or Denial-of-

Service attacks). Efficiently tracking an accurate wave-

let synopsis over such massive streaming data, using

only small space and time (per streaming update),

poses a host of new challenges. Recently-proposed

solutions [3, 9] rely on maintaining small-space, pseu-

do-random AMS sketches (essentially, random linear

projections) over the input data stream [1]. These

sketches can then be queried to efficiently recover the

topmost wavelet coefficients of the underlying data

distribution within provable error guarantees [3].

Key Applications
Wavelet synopses are a general data-reduction tool

with several important applications, including statis-

tics for query optimization, lossy data compression,

OLAP cube summarization, and interactive data

exploration, mining, and query processing.

Data Sets
Several publicly-available real-life data collections have

been used in the experimental study of wavelet

synopses (and other data-reduction methods); exam-

ples include the US Census Bureau data sets (http://

www.census.gov/), the UCI KDD Archive (http://kdd.

ics.uci.edu/), and the UW Earth Climate and Weather

Data Archive (http://www-k12.atmos.washington.edu/

k12/grayskies/).

Future Directions
The area of wavelet-based data reduction is still rife with

interesting algorithmic questions, including, for instance

(i) designing efficient methods for building wavelet

synopses that optimize different error metrics under

general streamingmodels (e.g., allowing both item inser-

tions and deletions), and (ii) developing a sound foun-

dation and appropriate summarization tools for

approximate set-valued (i.e., non-aggregate) queries.

Dealing with the curse of dimensionality that invariably

haunts space-partitioning techniques (such as wavelets

and histograms) is another big open issue; some initial

ideas based on combining these techniques with statis-

tical-correlation models appear in [5]. And, of course,

from a systems perspective, the problem of incorpor-

ating wavelets and other approximate query processing

tools in an industrial-strength database engine (that

can, e.g., select and optimize the appropriate tools for

each scenario) remains wide open.

Cross-references
▶Approximate Query Processing

▶Data Compression

▶Data Reduction

▶Data Sketch/Synopsis

▶ Synopsis Structures

▶Wavelets on Streams

Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29.

2. Chakrabarti K., Garofalakis M.N., Rastogi R., and Shim K.

Approximate query processing using wavelets. VLDB J.,

10(2-3): 199–223, September 2001.

3. Cormode G., Garofalakis M., and Sacharidis D. Fast app-

roximate wavelet tracking on streams. In Proc. 10th Int. Conf.

on Extending Database Technology, 2006.

4. Deligiannakis A., Garofalakis M., and Roussopoulos N.

Extended wavelets for multiple measures. ACM Trans. Database

Syst., 32(2), June 2007.

5. Deshpande A., Garofalakis M., and Rastogi R. Independence

is good: dependency-based histogram synopses for high-

dimensional data. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2001.

6. Garofalakis M. and Gibbons P.B. Approximate query processing:

taming the terabytes. Tutorial in 27th International Conference

on Very Large Data Bases, 2001.

7. Garofalakis M. and Gibbons P.B. Probabilistic wavelet synopses.

ACM Trans. Database Syst., 29(1), March 2004.

8. Garofalakis M. and Kumar A. Wavelet synopses for general error

metrics. ACM Trans. Database Syst., 30(4), December 2005.

9. Gilbert A.C., Kotidis Y., Muthukrishnan S., and Strauss M.J.

One-pass wavelet decomposition of data streams. IEEE Trans.

Knowl. Data Eng., 15(3): 541–554, May 2003.

10. Guha S. and Harb B. Wavelet synopsis for data streams:

minimizing non-euclidean error. In Proc. 11th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2005, pp.

88–97.

11. Jawerth B. and Sweldens W. An overview of wavelet based multi-

resolution analyses. SIAM Rev., 36(3): 377–412, 1994.

12. Stollnitz E.J., DeRose T.D., and Salesin D.H. Wavelets for com-

puter graphics – theory and applications. Morgan Kaufmann,

San Francisco, CA, 1996.

13. Vitter J.S. and Wang M. Approximate computation of multi-

dimensional aggregates of sparse data using wavelets. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 193–204.

Discrete Wavelet Transform and Wavelet Synopses D 315

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

Discretionary Access Control

GAIL-JOON AHN

Arizona State University, Tempe, AZ, USA

Synonyms
DAC; Identity-based Access Control; etc.

Definition
Discretionary access control (DAC) provides for

owner-controlled administration of access rights to

objects. DAC, as the name implies, permits the grant-

ing and revocation of access permissions to be left to

the discretion of the individual users. A DAC mecha-

nism allows users to grant or revoke access to any of the

objects under their control.

Historical Background
Trusted computer system evaluation criteria (TCSEC)

published by the US Department of Defense, com-

monly known as the Orange Book, defined two impor-

tant access control modes for information systems:

discretionary access control (DAC) and mandatory

access control (MAC). As the name implies, DAC

allows the creators or owners of files to assign access

rights. Also, a user (or subject) with discretionary

access to information can pass that information on

to another user (or subject). DAC has its genesis in

the academic and research setting from which time-

sharing systems emerged in the early 1970s.

Foundations
As defined in the TCSEC and commonly implemented,

DAC policy permits system users (or subjects) to allow

or disallow other users (or subjects) access to the

objects under their control. The TCSEC DAC policy

is defined as follows [1]:

A means of restricting access to objects based on the

identity of subjects or groups, or both, to which they

belong. The controls are discretionary in the sense

that a subject with a certain access permission is cap-

able of passing that permission (perhaps indirectly) on

to any other subject.

DAC is a means of restricting access to objects

based on the identity of users or the groups to which

they belong. The controls are discretionary in the sense

that a user or subject given discretionary access to a

resource is capable of passing that information on to

another subject. To provide this discretionary control,

DAC is based on the notion that individual users are

‘‘owners’’ of objects and therefore have complete dis-

cretion over who should be authorized to access the

object and in which access mode [2]. Ownership is

usually acquired as a consequence of creating the object

[3]. In other words, DAC policies govern the access of

users to the information on the basis of the user’s iden-

tity and authorizations (or rules) that specify the access

modes the user is allowed on the object. Each request of a

user to access an object is checked against the specified

authorizations. If there exists an authorization stating

that the user can access the object in the specific mode,

the access is granted, otherwise it is denied.

DAC mechanisms tend to be very flexible. The

flexibility of discretionary policies makes them suitable

for a variety of systems and applications. For these

reasons, they have been widely used in a variety of

implementations, especially in the commercial and

industrial environments.

DAC policies based on explicitly specified authoriza-

tion are said to be closed, in that the default decision of

the reference monitor is denial. Similar policies, called

open policies, could also be applied by specifying denials

instead of permissions [4,5]. In this case, the access

modes the user is forbidden on the object are specified.

Each access request by a user is checked against the

specified authorizations and granted only if no author-

izations denying the access exist. The use of positive

and negative authorizations can be combined, allowing

the specification of both the accesses to be authorized

as well as the accesses to be denied to the users. The

combination of positive and negative authorizations can

become enormously complicated. In addition, for many

enterprises within industry and government, their users

do not own the information to which they are allowed

access as is claimed by DAC policies. For such organiza-

tions, the organization is the actual owner of system

objects and it may not be appropriate to allow users to

manipulate access rights on the objects.

However, even though DACmechanisms are in wide

commercial use today, they are known to be inherently

weak since theydonot provide real assurance on the flow

of information in a system. Granting read access is

transitive so nothing stops a user from copying the

contents of other’s file to an object that s/he controls.

For example, a user who is able to read data can pass it to

other users not authorized to read it without the cogni-

zance of the owner. Therefore, it is easy to bypass the

access restrictions stated through the authorizations.

316D Discretionary Access Control

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

The reason is that discretionary policies do not impose

any restriction on the usage of information by a user

once the user has got it. In other words, further dissemi-

nation of information is not governed.

In addition, access rights need to be assigned ex-

plicitly to users who need access. Programs executed by

a user have the same access rights as the user who is

invoking it. This means that the security of the data-

base system depends on the applications that are being

executed. That is, a security breach in an application

can affect all the objects to which the user has access as

well. This makes DAC mechanisms vulnerable to ‘‘Tro-

jan Horse’’ attacks. Because programs inherit the iden-

tity of the users who are invoking them, a user may

write a program for other user that performs some

legitimate system activities, while at the same time

reads the contents of other user’s files and writes the

contents of the files to a location that both users can

access. The user may then move the contents of the files

to a location not accessible to the other user [6].

In summary, DAC is very flexible and suitable for

various applications but it has an inherent weakness

that information can be copied from one object to

another, so access to a copy is possible even if the

owner of the original does not provide access to the

original. Moreover, such copies can be propagated by

Trojan Horse software without explicit cooperation of

users who are allowed access to the original [7,8].

DAC in Relational Database

The SQL standard includes the access control facilities

to support DAC features. The creator of a relation in

an SQL database becomes an owner of the relation.

The owner also has the fundamental ability to grant

other users access to that relation. The access privi-

leges recognized in SQL correspond explicitly to the

CREATE, SELECT, INSERT, DELETE and UPDATE

statements. There is also a REFERENCES privilege to

control the foreign keys to a relation. SQL does not

require direct privilege for a user to create a relation,

unless the relation is defined to have a foreign key to

another relation. For the latter case the user must have

the REFERENCES privilege for the relation. To create a

view a user should have the SELECT privilege on every

relation mentioned in definition of the view. If a user

has access privileges on these relations, corresponding

privileges are obtained on the view as well.

In addition, the owner of a relation can grant one

or more access privileges to another user. This can be

done with or without the GRANT OPTION. If the

owner grants, say, SELECTwith the GRANT OPTION

the user receiving this grant can further grant SELECT

to other users. The general format of a grant operation

in SQL is as follows.

The GRANT command applies to base relations as

well as views. The ON and WITH clauses denote that

these are optional and may not be present in every

GRANT command. INSERT, DELETE and SELECT

privileges apply to the entire relation as a unit. INSERT

and DELETE are operations on entire rows so this is

appropriate. SELECT, however, allows users to select

on all columns. Selection on a subset of the columns

can be achieved by defining a suitable view, and grant-

ing SELECT on the view. The UPDATE privilege in

general applies to a subset of the columns. For exam-

ple, a user could be granted the privilege to update the

ADDRESS but not the GRADE of an STUDENT.

Also, the REVOKE statement is necessary to take

away a privilege that has been granted by a GRANT. It

is often required that revocation should cascade. In a

cascading revoke, not only is the revoked privilege

taken away, but also all GRANTs based on the revoked

privilege are accordingly revoked. For example say that

user Alice grants Bob SELECT on relation R with the

GRANT OPTION. Furthermore, Bob subsequently

grants Chris SELECTon R. Now suppose Alice revokes

SELECTon R from Bob. The SELECTon R privilege is

taken away not only from Bob, but also from Chris.

The precise methods of a cascading revoke is somewhat

complicated. Suppose Bob had received the SELECT

on R privilege not only from Alice, but also from David

before Bob granted the SELECT to Chris. In this case

Alice’s revocation of the SELECT from R privilege

from Bob will not cause either Bob or Chris to loose

this privilege. This is because the GRANT from David

remains legitimate.

Cascading revocation is not always desirable. A

user’s privileges to a given table are often revoked

because the user’s job functions and responsibilities

GRANT privileges

[ON relation]

TO users

[WITH GRANT OPTION]

Discretionary Access Control D 317

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:53

have changed. Thus the Head of a Division may move

on to a different assignment. His/her privileges to that

Division’s data need to be revoked. However, a cascad-

ing revoke may cause lots of employees of that Division

to loose their privileges. These privileges should be

reassigned to maintain the business continuity.

Several database products take the approach that a

database is always created with a single user, usually

called the Database Administrator (DBA). The DBA

essentially has all privileges with respect to this data-

base. The DBA is also responsible for enrolling users

and creating relations. Some systems recognize a spe-

cial privilege which can be granted to other users at the

initial DBA’s discretion and allows these users to suc-

cessfully act as the DBA [9,10].

Key Applications
Database systems, operating systems, and owner-

centered web applications.

Future Directions
There are many subtle issues in DAC such as multi-step

grant, cascading revocation, and so on. All these

subtleties of DAC are still being discussed, debated

and refined in the literature. The driving principle of

DAC is ownership and such an owner-based access

control can be applied to preserve privacy attributes

in database systems. Nevertheless DAC has the inher-

ent weakness, DAC’s flexibility and suitability are need-

ed to be further studied to support emerging critical

applications.

Cross-references
▶Access Control

▶Access Control Administration Policies

▶Access Control Policy Languages

▶Mandatory Access Control

▶Role-Based Access Control

Recommended Reading
1. Bertino E., Samarati P., and Jajodia S. Authorizations in rela-

tional database management systems. In Proc. First ACM Conf.

on Computer and Communications Security, 1993, pp. 130–139.

2. Bishop M. Computer Security: Art and Science. Addison-

Wesley, Reading, MA, 2003.

3. Castano S., Fugini M.G., Martella G., and Samarati P. Database

Security. Addison Wesley, Reading, MA, 1994.

4. Fagin R. On an authorization mechanism. ACM Trans. Database

Syst., 3(3):310–319, 1978.

5. Ferraiolo D.F., Gilbert D.M., and Lynch N. An examination of

federal and commercial access control policy needs. In Proc.

NIST–NCSC National Computer Security Conference, 1993,

pp. 107–116.

6. Graham G.S. and Denning P.J. Protection: principles and

practice. In Proc. AFIPS Spring Joint Computer Conference.

40:417–429, 1972.

7. Griffiths P.P. and Wade B.W. An authorization mechanism for

a relational database system. ACM Trans. Database Syst.,

1(3):242–255, 1976.

8. Lampson B.W. Protection. In Proc. Fifth Princeton Symp. on

Information Science and Systems, 1971, pp. 437–443. Reprinted

in ACM Operat. Syst. Rev., 8(1):18–24, 1974.

9. Rabitti F., Bertino E., Kim W., and Woelk D. A model of autho-

rization for next-generation database systems. ACM Trans.

Database Syst., 16(1), 1991.

10. Sandhu R.S. and Samarati P. Access control: principles and

practice. IEEE Commun., 32(9):40–48, 1994.

Disk

PETER BONCZ

Database Architectures and Information Access, CWI,

Amsterdam, The Netherlands

Synonyms
Hard disk; Magnetic disk; Disk drive

Definition
In disk storage, data is recorded on planar, round and

rotating surfaces (disks, discs, or platters). A disk drive

is a peripheral device of a computer system, connected

by some communication medium to a disk controller.

The disk controller is a chip, typically connected to the

CPU of the computer by the internal communication

bus. Main implementations are hard disks, floppy

disks and optical discs, of which the first is the usual

interpretation.

Recently, Solid State Disks have been introduced;

though the term ‘‘disc’’ is a misnomer for these devices,

as internally they consist of NAND Flash memory

chips. Similarly, the term RAM Disk is used for a

storage device consisting of volatile DRAM memory.

Both offer the same data storage abstraction as a hard

disk at the operating system level, though their price,

size, performance and persistence characteristics are

very different from a hard disk.

Key Points
The history of the hard disk started at IBM in San Jose,

California, when Rey Johnson created a rotating drum

that was coated in a magnetically polarizable film that

318D Disk

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

could be used to store data by changing and sensing

magnetic polarization.

Hard disks nowadays consist of a number of platters

connected by a single axis, spinning at a fixed number

of rotations per minute (rpm). Data is on a platter

organized by track (distance from the center) and sector

(angular region on a track). The disk head, one for each

platter, mounted on a disk arm that moves in and out,

therefore cover more distance per unit of time on an

outer track than on an inner track. To read or write data,

the head must be moved to the correct position above

the track (seek time), and then wait until the region of

interest spins past it (rotational delay). Therefore, the

average random access latency of hard disks is seek

time plus rotational delay divided by two. The band-

width of a disk is determined by both communication

infrastructure with the controller as well as rotation

speed and data density, which determine the amount

of bits that pass the head per second. Data density is

closely related to disk capacity and has increased enor-

mously, surpassing the historical development of any

other performance factor in computer architecture (i.e.,

orders of magnitude faster than latency and quite a bit

faster than CPU MHz as well as disk bandwidth). The

historical development of disk performance parameters

is shown in the below table. For comparison, the last

column shows characteristics of a solid statedrive.

The consequence of these developments is that rela-

tively speaking, disk latency currently is much slower

with respect to all other performance factors than it

was a few decades ago, whichmeans that fast and scalable

algorithms involving I/Omust focus more on sequential

bulk access than fine-grained random access. Managing

and optimizing I/O access is one of the primary tasks

of a database system. In order to counter the trend of

expensive random disk access latency, modern database

systems (should) make use of asynchronous I/O to

amortize disk arm movements over multiple requests,

multi-disk or RAID systems to increase the I/O opera-

tion throughput, larger page sizes, as well as compres-

sion, clustered indices and efficient cooperative scan

techniques to profit more from efficient sequential I/O.

Cross-references
▶CPU

▶Non-Volatile Memory (Flash)

▶ Primary Storage (RAM)

▶RAID

▶Tertiary Storage (tape)

Disk Array

▶Redundant Array of Independent Disks (RAID)

Disk Drive

▶Disk

Disk Power Saving

HAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
The term Disk Power Saving refers to the function of

reducing the electric power that is consumed in a disk

drive. Typically, Disk Power Saving cuts power supply

to a particular component of the disk drive or slows

down the component. In most cases, the disk drive

RPM 3,600 5,400 7,200 10,000 15,000 Solid state

Disk model CDC wrenl
94145–3

Seagate
ST41600

Seagate
ST15150

Seagate
ST39102

Seagate
ST373453

Samsung
MCBOE

Year 1983 1990 1994 1998 2003 2008

Capacity (GB) 0.03 1.4 4.3 9.1 73.4 32

Seq. bandwidth
(MB/s)

0.6 4 9 24 86 80

Read latency (ms) 48.3 17.1 12.7 8.8 5.7 0.3

Write latency (ms) 40

Disk Power Saving D 319

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

cannot respond to input/output requests while it is in

such a power saving mode.

Key Points
Power modes of modern disk drives are often classified

as normal and stand-by. A disk drive in the normal

mode is either processing read/write requests or ready

to immediately start processing read/write requests.

In this mode, all the components are almost fully

operating. The disk drive thus consumes higher elec-

tric power than in the other modes. In contrast, a disk

drive in the other modes cannot start processing read/

write requests immediately. In the stand-by mode, the

spindle motor is spun down and the head assembly is

unloaded to the ramp and powered off; only the con-

troller or a partial circuit of the controller remains

operational. The disk drive thus consumes much less

power than in the normal mode. Yet, when a disk drive

accepts a read/write request, the controller needs to spin

up the spindle motor and power on the head assembly

again so as to transition to the normal mode. This

process is often time- and energy-consuming.

Many commercial disk drives support stand-by

commands such that operating systems and applica-

tions running on host computers can control disk

power modes. In addition, some of the disk drives

have the capability of threshold-based hibernation;

those disk drives can automatically change to the

stand-by mode when a specified time has elapsed

after the last read/write access.

The difficulty of power management of disk drives

is due to the significant penalties of mode changing.

Many commercial disk drives need more than 10 sec

and over one hundred joules to change from the stand-

by mode to the normal mode.

Some manufacturers are providing more flexibility

by introducing new types of power saving modes such

as unloaded and low-rpm. In the unloaded mode, the

head assembly is merely unloaded to the ramp and the

other components are normally operating. In the low-

rpm mode, the head assembly is unloaded to the ramp

and powered off, but the spindle motor is spinning at

lower rotational speeds. These new modes can save less

power but give also smaller penalties than the tradi-

tional stand-by mode.

In another approach, some research groups are

studying the possibility of multi-speed disk drives,

which have the capability of dynamically changing

rotational speeds in the normal mode. The use of

the multi-speed disk drives sounds effective, but only

several prototypes have been reported so far.

Cross-references
▶Massive Array of Idle Disks

▶ Storage Power Management

Recommended Reading
1. Gurumurthi S., Sivasubramaniam A., Kandemir M., and

Franke H. Reducing disk power consumption in servers with

DRPM. IEEE Comput., 36(12):59–66, 2003.

2. HGST Inc. Quietly cool. White Paper, HGST, 2004.

3. Yada H., Ishioka H., Yamakoshi T., Onuki Y., Shimano Y.,

Uchida M., Kanno H., and Hayashi N. Head positioning servo

and data channel for HDDs with multiple spindle speeds. IEEE

Trans. Magn., 36(5):2213–2215, 2000.

Disk Process

▶ Storage Manager

Disk-based Model

▶ I/O Model of Computation

Disks

▶ Storage Devices

Distance between Streams

▶ Stream Similarity Mining

Distance Indexing

▶ Indexing Metric Spaces

Distance Space

▶Metric Space

320D Disk Process

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

Distance-preserving Mapping

▶ Space Filling Curves

▶ Space-Filling Curves for Query Processing

Distillation

▶ Summarization

Distortion Techniques

CARPENDALE SHEELAGH

University of Calgary, Calgary, AB, Canada

Synonyms
Fisheye views; Nonlinear magnification; Multiscale

views; Detail-in-context; or Focus-plus-context

Definition
While the word ‘‘distortion’’ often has unfavorable

connotations in terms of data, a distortion technique

in digital information viewing or data exploration is

the use of deformation of some aspect of the informa-

tion or data in order to provide a better view or better

access to some other aspect of the data.

Historical Background
The uses of distortion in digital information explora-

tion interfaces have two independent starting points:

Spence and Apperley’s Bifocal Display [18] and Furnas’

Generalized Fisheye Views [5]. From these origins,

research initially focused on developing algorithmic

solutions for distortion techniques. Well-known exam-

ples include: Sarkar and Brown’s Graphical Fisheyes

[16], which expand upon Furnas’ approach creating

spatial reorganizations of visual representations;

Hyperbolic Display [9], which uses mathematical

function to create detail-in-context presentations;

Perspective Wall [11], and Document Lens [15],

which make use of 3D perspective projection to create

detail-in-context presentations; and Elastic Presenta-

tion [3], which also uses 3D manipulations and per-

spective projection to offer a mathematical framework

that encompassed distortion techniques to date. Other

methods [1,5,8,12,16] create distortion presentations

by using a 2D-to-2D transformation function to spa-

tially adjust a given two-dimensional layout (for survey

see [10]).

Though many varieties exist and there continues to

be interest further developing the domain within the

research community, distortion techniques have not

yet received widespread acceptance. This may be due

to a general discomfort with the use of distortion and

fears that distortion might lead to misinterpretation of

data. There is still room for significant research into

the relative merit among differing distortion techni-

ques and it is likely that this kind of evaluation will be

dependent on the type of task, the nature of the infor-

mation, and the preferences and skills of the person

using it.

Foundations
With regard to data presentation, access, navigation,

and exploration, the development of distortion tech-

niques has not been the goal in itself. Instead, these

techniques are used to achieve, aid, or ease a data- or

task-related goal. As such, the discussion and concepts

that motivate the development of distortion techni-

ques are important and remain relevant.

The primary motivation has always been a lack of

display space. Whether it is because of the sheer size

of the data to be displayed or because of the number of

related windows needed to accomplish a task, it seems

that there is never enough display space. While the

amount of available display space is expanding – note

current interest in high-resolution, large displays – it is

not keeping up with either the computing power

or the deluge of data. The response to this trend has

been through interaction – zooming, scrolling, and

panning – and various distortion techniques. Different

types of distortion techniques were initially motivated

independently.

Spence and Apperley [18] started by noting the

frequency of both crowding and navigation problems

in interfaces in general. Their response was based on an

understanding of how human memory is often less

than precise and can lead to fuzzy search practices.

They discuss how searching in physical space is sup-

ported by several factors including spatial memory,

memory of previous actions, and visual and verbal

clues and can be reinforced by a reasonable degree of

constancy. They suggest that interfaces might better

support these factors by maintaining a full context in

which spatial constancy is preserved. Spatial constancy

Distortion Techniques D 321

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

requires ensuring that all items stay present, and that

all parts or regions stay in the same positions relative

to each other. This thinking led to integrated views

with two distinct levels of magnification, called Bifocal

Displays [18].

Furnas [5] studied how people retain and present

information in various subject areas and workplaces

such as geography, history, and newspapers and noted

that people usually know the details about their own

interests, set in enough domain knowledge to provide

context. His widespread evidence led him to suggest

that Generalized Fisheye Views may be a useful and

intuitive way to present information. A Generalized

Fisheye View has a focus or center of interest about

which detail is displayed, gradually decreasing in detail

as the distance from the focus increases, with the

exception that some specific items of noted impor-

tance within the domain should be included regardless

of the distance from the focus. To achieve this, Furnas

proposed filtering the context by using a degree of

interest (DOI) function. A DOI is based upon the

distance from the current focus and a domain-specific

a priori importance (API) function. These concepts led

to a variety of filtered and variant magnification

presentations.

Another much-discussed point is the importance of

visual integration in reducing cognitive load. If a partic-

ular data presentation is too large to fit the available

display space, it can be compressed uniformly to fit

(Fig. 1). This can result in a presentation that is too

dense to discern detail. For instance, in Fig. 1 one

cannot see the two airports, which should show as

white lines on a green background. To obtain a better

view of these details one can zoom in, as in Fig. 2, and

see one of the airports. The viewer must now either flip

between views to know which airport is being displayed

or view both the compressed and detailed view side by

side and work out how the two views relate to each other.

In this case, this is not too difficult, but does impose some

additional attentional costs. Local magnification or an

inset-in-place can be used, as in Fig. 3, but now the

actual connections are occluded. Alternatively, an

integrated detail-in-context view can be used (Fig. 4).

Note that while visual integration is maintained, it

makes use of a distortion technique [3].

Several researchers noted that temporal continuity

was also important [3,17]. Misue et al. [12] raised the

issue of developing techniques that support a viewer’s

mental map. In particular, they note that the

Distortion Techniques. Figure 1. This image shows a

land usage map of Champaign, Illinois compressed

uniformly to fit.

Distortion Techniques. Figure 2. Magnifying one region

of the land use map of Champaign Illinois reveals details of

airport runways not previously visible.

322D Distortion Techniques

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

mathematical concepts of proximity, orthogonality,

and topology should be algorithmically ensured. Car-

pendale et al. [2] noted that viewing cues can aid in the

general readability of data presentations that utilize

distortion techniques.

In summary, the issues and considerations around

the development of distortion techniques include:

� Maintenance of spatial constancy to support spatial

memory;

� Maintenance of full context, that all items maintain

some visual evidence of presence;

� Introduction of more than one magnification scale

in a unified presentation;

� Reduction of cognitive effort needed for reintegra-

tion of information across separate views;

� Support for setting detail in its context, as is com-

mon practice in human memory patterns;

� Maintenance of sufficient context;

� Providing for varying needs for domain significant

data within a reduced context;

� Varying the amount of detail needed around the

focus;

� Exploring the possibility of more than one area of

interest, or foci;

� Utilizing degree of interest (DOI) functions, as

appropriate;

� Providing visual continuity;

� Providing temporal continuity; and

� Supporting the mental map by maintaining prox-

imity, orthogonally, and topology.

Three frameworks emerged from the great variety

of distortion techniques developed. Leung and Apper-

ley [10] categorized existing methods and unified them

by showing how to derive 2D-to-2D transformations

for 3D-based techniques. However, these are complex

formulations and have not been implemented.

There is also a family of 2D-to-2D distortion tech-

niques. In these, a 2D data representation is transformed

through use of a distortion technique to create an

adjusted presentation that provides magnified detail

in the foci, which are set in their context via distorted

regions. Of these techniques, Magnification Fields [8]

is probably the most general. It describes an approxi-

mate integration based approach that, given a pattern

to strive for, can create a magnification pattern. A 2D

distortion transformation function performs adjust-

ments in x and/or y. The resulting pattern of mag-

nification and compression is the derivative of the

Distortion Techniques. Figure 3. Magnified inset

occludes local context.

Distortion Techniques. Figure 4. Distortion technique

provides integrated detail-in-context view.

Distortion Techniques D 323

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

transformation function. Magnification Fields deter-

mines the transformation function from the magni-

fication function [8]. This would allow a person

to create a multiscale view by requesting the pattern

magnification that suits their task. Their approach

starts with a grid and a set of desired magnifi-

cation amounts. The grid is adjusted iteratively,

ensuring that no grid points overlap until the diffe-

rence between the magnification provided by the

adjusted grid and the desired magnification is suffi-

ciently small [8].

Elastic Presentation Framework (EPF) [3] unifies

many individual distortion techniques, allowing

the seamless inclusion of more than one distortion

technique in a single interface. By interpolating

between the methods it describes, EPF identified

new variations. EPF achieved previous 2D-to-2D

approaches using an intermediate 3D step. The

3D-based approaches are quite different algorithmic-

ally than their 2D counterparts. The plane or sur-

face that holds the two-dimensional representation

is manipulated in three dimensions, and then vie-

wed through single-point perspective projection. The

transformation function results from the combinat-

ion of the manipulation of the surface and the perspec-

tive projection. This combination simplifies the

mathematics of the relationship between magnifica-

tion and transformation to the geometry of similar

triangles.

In EPF, data are placed on a 2D plane, which is then

placed in a 3D viewing volume on the baseplane, par-

allel to the viewplane at a distance along the z axis from

the viewpoint which defines unit magnification. The

next step is to provide the focal regions with the

intended magnification. What is needed is an asymp-

totic function that relates degree of magnification to z-

translation that also guarantees fine control as the

viewpoint is approached. This function can be derived

from similar triangles shown in Fig. 5 as follows:

xm

xi
¼ db

ds

mag ¼ xm

yi

hf ¼ db � ds

where xi is a point on the baseplane that is raised to a

height hf providing a magnification of mag. The

position xm is the apparent location after the displace-

ment of the point xi to a height hf :

hf ¼ db �
�

db

mag

�

This function offers infinite magnification control,

which is limited only by the numerical resolution

of the computer. The coordinates (xm, ym) allow the

option of performing transformations directly by

translating the point in x and y, or through perspective

by adjusting the height. To ensure full visibility

for multiple foci, the foci are viewer-aligned. That

is the focal center is aligned to the viewpoint. To ensure

uniform magnification response throughout the

display the translation vectors are normalized in z

(see [3]).

Now that focal magnification is obtained, an appro-

priate distortion that will link the foci to the context is

needed. This is achieved through a drop-off function.

Points on the surface are translated depending on the

value of the drop-off function when applied to the

distance of the point from the focal region. The extent

of the spread of the distortion into the context can be

controlled by the viewer through adjustments to the

domain and range of the drop-off function. In Figure 6,

the focal point fc is raised to height hf according to the

Distortion Techniques. Figure 5. The relationships

between the displaced points and the apparent

magnification.

324D Distortion Techniques

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:54

magnification required. The height hp of any point pi at

a distance dp from the focal point fc can be calculated.

Many drop-off functions are effective. Perhaps the

simplest is a linear drop-off. In an EPF linear drop-off

function, the surface height hp of a point p, that is a

distance dpfrom the focal centre fc with a lens radius lr ,

and a focal height hf is calculated by:

hp ¼ hf � ð1� ðdp=lrÞÞ

Varying the lens radius lr affects the limits of the lens

and the resulting slope. A Gaussian drop-off function

offers a smooth visual integration with its bell curve.

hp ¼ hf � exp�ððd2p=sÞ

An inverse power function offers a very good drop-

off function for achieving high focal magnifications

while still offering full visual integration in the dis-

torted region.

hp ¼ hf � ð1� ðdp=lrÞÞk

Note that if k = 1, this is the equivalent to the linear

drop-off function. Alternatively, setting k = 2.7 results

in high-magnification focal regions. Having chosen the

focal magnification and the drop-off, the manipulated

surface is then viewed through perspective projection.

Single-point perspective projection preserves angles,

proximity, and parallelism on all x, y planes.

Many other possibilities exist for varying the dis-

tortion technique. For instance, different distance

metrics can be used. An Lp metric offers a continuum

between radial and orthogonal layouts (See Fig. 7). For

2D distances between points p1(x1, y2) and p2(x2, y2),

Lp metrics are defined as:

LðPÞ ¼
ffi
x1 � x2j jPþ y1 � y2j jPP

q
where L(2) is Euclidean distance.

The L(1) metric is:

Lð1Þ ¼
ffi
x1 � x2j j1þ y1 � y2j j11

q
which resolves to:

Lð1Þ ¼ maxð x1 � x2j j; y1 � y2j jÞ

While there is continued interest in developing

better distortion techniques – a recent new framework

[14] offers an image-based approach and incorporates

transparency blending into distortion techniques – the

focus within the research community has increasingly

shifted to empirical work. Distortion techniques have

been shown to offer advantages for command and

control [17], web navigation [13], and menu selection

[1]. However, usability problems have also been shown

to exist in important tasks such as targeting, steering,

and layout [6,7].

Key Applications
There has not yet been widespread acceptance of dis-

tortion techniques in readily-available applications

(notable exceptions include the Mac OS X Dock and

www.idelix.com). In considering potential applica-

tions, it is important to return to the definition of

distortion techniques, which involved a willingness

to make use of distortion to achieve a data or task

goal. In this light, it is probable that current distortion

frameworks and lenses will in the future be considered

as relatively crude functions. Consider a practical

Distortion Techniques. Figure 6. Providing an integrated context.

Distortion Techniques D 325

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:55

example: drawing a map in which two quite distant

coastal towns are connected by two roads. One road

runs along the shoreline and the other road runs high

above it along a cliff top. Because of the cliff, there are

no connections between these two roads except at the

towns. Within the available display space, drawing the

map faithfully and to scale would place the roads

overtop each other at several points along the way.

This is a very familiar cartographic problem and dis-

tortion has been used for centuries to solve it. Here, the

data accuracy that is preserved is the fact that no

connection between the roads exists. The spatial dis-

tortion is a small price to pay. However, most current

distortion techniques would not provide a subtle and

graceful adjustment. There is considerable open re-

search space for more subtle and controllable distor-

tion techniques. Also, as Furnas [4] recently noted,

some of the concepts like DOIs lend themselves to

integrated solutions involving data as well as spatial

adjustments.

Cross-references
▶Context

▶Contextualization

▶Data Transformation Methods

▶ Information Navigation

▶Visualization for Information Retrieval

▶Zooming Techniques

Recommended Reading
1. Bederson B. Fisheye menus. In Proc. 13th Annual ACM Symp.

on User Interface Software and Technology, 2000, pp. 217–225.

2. Carpendale S., Cowperthwaite D., and Fracchia F.D. Making

distortions comprehensible. In Proc. 1997 IEEE Symp. on Visual

Languages (VL ’97). 1997, pp. 36–45.

3. Carpendale S. and Montagnese C. A Framework for unifying

presentation space. In Proc. 14th Annual ACM Symp. on User

Interface Software and Technology, 2001, pp. 61–70.

4. Furnas G. A fisheye follow-up: further reflections on focus+con-

text. In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 2006, pp. 999–1008.

5. Furnas G.W. Generalized fisheye views. In Proc. SIGCHI Conf.

on Human Factors in Computing Systems, 1986, pp. 16–23.

6. Gutwin C. Improving focus targeting in interactive fisheye

views. In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 2002, pp. 267–274.

7. Gutwin C. and Fedak C. Interacting with big interfaces on

small screens: a comparison of fisheye, zoom, and panning

techniques. In Proc. Graphics Interface 2006, 2004, pp. 213–220.

8. Keahey A. The generalized detail-in-context problem. In Proc.

IEEE Symp. on Information Visualization, 1998, pp. 44–51.

9. Lamping J., Rao R., and Pirolli P. A focus+context technique

based on hyperbolic geometry for visualising large hierarchies.

In Proc. SIGCHI Conf. on Human Factors in Computing Sys-

tems, 1995, pp. 401–408.

10. Leung Y. and Apperley M. A review and taxonomy of distortion-

oriented presentation techniques. ACM Transactions on Com-

puter Human Interaction, 1(2):126–160, 1994.

11 Mackinlay J., Robertson G., and Card S. Perspective wall: detail

and context smoothly integrated. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 1991, pp. 173–179.

12. Misue K., Eades P., Lai W., and Sugiyama K. Layout adjustment

and the mental map. J. Visual Lang. Comput., 6(2):183–210,

1995.

13. Munzner T. and Burchard P. Visualizing the structure of the

world wide web in 3D hyperbolic space. In ACM VRML ‘95,

1995, pp. 33–38.

14. Pietriga E. and Appert C. Sigma lenses: focus-context transi-

tions combining space, time and translucence. In Proc. SIG-

CHI Conf. on Human Factors in Computing Systems, 2008,

pp. 1343–1352.

15. Robertson G.G. andMackinlay J.D. The Document lens. In Proc.

6th Annual ACM Symp. on User Interface Software and Tech-

nology, 1993, pp. 101–108.

16. Sarkar M. and Brown M.H. Graphical fisheye views. Commun.

ACM, 37(12):73–84, 1994.

17. Schaffer D., Zuo Z., Greenberg S., Bartram L., Dill J., Dubs S.,

and Roseman M. Navigating hierarchically clustered networks

through fisheye and full-zoom methods. ACM Transactions on

Computer Human Interaction. 3(2):162–188, 1996.

18. Spence R. and Apperley M.D. Data base navigation: an office

environment for the professional. Behav. Inform. Technol.,

1(1):43–54, 1982.

Distortion Techniques. Figure 7. L-Metrics.

326D Distortion Techniques

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:55

Distributed Architecture

TORE RISCH

Uppsala University, Uppsala, Sweden

Synonyms
Parallel database; Federated database; Multi-database;

Peer-to-peer database

Definition
A distributed database [3] is a database where data

management is distributed over several nodes (com-

puters) in a computer network. In a central DBMS the

data is managed by one node whereas in a distributed

DBMS the data is managed by several nodes. A

distributed DBMS is a database manager consisting of

several nodes distributed over a network. Each node

is a database manager by itself that communicates with

other nodes in the network. In a regular distributed

DBMS it is up to the database administrator to manu-

ally specify how data collections (e.g. relational tables)

are distributed over the nodes when a distributed data-

base is designed. Queries and updates to the dis-

tributed relations are transparently translated by the

distributed DBMS into data operations on the affected

nodes giving the user the impression of using a single

database, called query and update transparency. Thus

the distributed DBMS provides distribution trans-

parency for database users but not for the database

administrator.

Closely related to distributed DBMSes are parallel

databases where a parallel DBMS engine runs on usu-

ally a cluster. The parallel DBMS automatically deter-

mines how data structures are internally distributed

over the nodes providing distribution transparency

also for the database administrator, called schema

transparency.

The purpose of heterogeneous databases is to be able

to combine data from several independently developed

autonomous databases. Heterogeneous databases can

be divided into federated databases, mediators, and

multi-databases. In a federated database the database

administrator defines a single global integration schema

describing how data in underlying databases are

mapped to the integration schema view. This provides

distribution transparency for integrated data. Media-

tors allow the definition of several views over data from

different data sources. Since it may be difficult to

define integration schemas and views when there are

many participating autonomous databases, multi-

databases relax the distribution transparency also for

the database users who there specify queries and

updates using a multi-database query language where

individual data collections in the participating nodes

can be explicitly referenced.

A related technology is peer-to-peer systems where

networks of files are distributed over the Internet.

Meta-data is associated with the files and the user can

search for files satisfying conditions. Peer-to-peer

search is usually made by propagating queries between

the peers. The consistency and correctness of queries

are relaxed compared to regular databases in order to

provide better performance and node autonomy.

Historical Background
Distributed DBMSs were pioneered by System R and

Ingres* in the beginning of the 1980s. Early distributed

DBMSs assumed slow communication between nodes

having limited amounts of main memory geographi-

cally distributed in a wide area network. The database

administrator instructed the distributed DBMS where

to place data, while the user could specify transparent

queries to the distributed DBMS without detailed

knowledge of where data was placed.

The evolvement of computer clusters provided

hardware resources for very high performing database

servers running on clusters, parallel databases. Since

the communication between cluster nodes is very fast

and not geographically distributed, the database ad-

ministrator need not provide manual placement

rules of distributed data, i.e. the parallel DBMS

provides full distribution transparency also for the

database administrator. With the evolvement of fast

wide area computer networks parallel DBMS technol-

ogy can be used also for some geographically

distributed databases. However, it should be noted

that update latency has to be taken into account for

large geographical distances because of the speed of

light. In general geographically distributed databases

still requires manual distribution.

Not least the development of the Internet has caused

the need to integrate data from many pre-existing

databases. The area of heterogeneous databases [4,2]

deals with tools and methodologies to combine data

Distributed Architecture D 327

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:55

from several autonomous databases. While distributed

and parallel databases assumed all data managed by

one distributed DBMS, heterogeneous databases inte-

grate databases using different DBMS and different

schemas.

There are several flavors of heterogeneous databases:

1. Federated databases require the definition of a glob-

al integration schema containing mappings to the

participating databases’ schemas. The federated

database becomes a central server on top of the

participating autonomous databases.

2. As the number of databases to integrate increases it

becomes very difficult or impossible to define a

global integration schema over the large numbers

of autonomous databases. Multi-databases [2] pro-

vide no global conceptual schemas and instead a

multi-database query language allows specification

of queries searching through many participating

databases.

3. Mediators [5] provide a middle ground between

a single integration schema and no schema at all.

Instead the user can define mediator views that

combine and reconcile data from different data

sources. Such views require a query language that

can express queries over several databases, i.e. a

multi-database query language. The mediator sys-

tem becomes a middleware between users and

wrapped data sources.

While distributed databases could handle transpar-

ent queries and updates for a small number of nodes,

the evolvement of the Internet requires technologies to

deal with geographically distributed databases having

1,000s of nodes. Peer-to-peer systems enable such highly

distributed file access where users search for data

stored in peers. In a peer-to-peer database queries are

propagated between the participating peer nodes.

To improve performance at the expense of query cor-

rectness the propagation may stop after a certain num-

ber of hops. This is sufficient for many modern

applications that do not have strict consistency

requirements; for example Internet search engines do

not guarantee the full correctness of answers.

Foundations

Autonomy and Heterogeneity

Different distributed DBMS architectures provide

different levels of autonomy for the participating

nodes.

A homogeneous distributed database is a distributed

database where all nodes are managed by the same

distributed DBMS. A homogeneous distributed data-

base can be regarded as a central database distributed

over many nodes where data and processing is inter-

nally transparently distributed over several nodes. By

contrast, a heterogeneous database is a (distributed or

central) database where data originates from partici-

pating autonomous databases possibly using different

DBMSs.

Regular distributed and parallel databases are

homogeneous. One distributed DBMS manages all

data. Distributed database design involves designing

the schema in a top-down fashion as for a conven-

tional central database. Parallel databases provide au-

tomatic and transparent data placement without user

intervention, while regular distributed databases re-

quire the database administrator to specify how

data should be distributed over nodes. In regular

distributed and parallel database the nodes have no

autonomy at all.

Federated databases are central database servers that

integrate data from several participating databases.

Federated databases are thus heterogeneous. Global

integration schemas are defined that integrate data ori-

ginated in the participating databases. The design of

the integrated schema needs to deal with data integra-

tion issues on how to combine the same or similar data

represented differently in different participating data-

bases. Different participating databases may use differ-

ent DBMSs. The schemas of the participating databases

are designed before the integrated database schema

is designed. Thus the design process for heterogeneous

databases becomes bottom-up, whereas homogeneous

databases are usually designed top-down. The design

of the integrated schema needs to deal with data inte-

gration issues on how to combine the same or similar

data represented differently in different participating

databases.

Both federated databases, mediators, and multi-

databases are heterogeneous. The main difference be-

tween them is how integration schemas are defined.

Federated database assume one global integration

schema. If there are many different participating data-

bases it is difficult to define such a global integration

schema. This is relaxed in mediators, which allow the

definition of many integration schemas as views over

wrapped underlying data sources of different kinds. In

multi-databases the user is given access to a multi-

database query language where he can specify queries

328D Distributed Architecture

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:55

over many sources. A multi-database query language

provides the basis for defining mediator views.

Finally, the aim of peer-to-peer databases is

distributed queries in a widely distributed network of

heterogeneous nodes. Unlike parallel and distributed

databases the individual nodes are not managed by a

single system, but independently.

Transparency

Distributed databases can be classified according to

what kinds of transparency they provide w.r.t. distri-

bution of data. Three different kinds of transparency

can be identified for different kinds of services

provided by the distributed DBMS, schema transpar-

ency, query transparency, and update transparency.

Schema transparency means that the distributed

DBMS decides completely on its own where to place

data on different nodes. The database administrator

has the impression of using a single database and

specifies the logical schema without considering

any distribution at all. However, often it is desirable

to allow the database administrator to specify how

to distribute data, and thus relax schema transpar-

ency. For example, for performance and to allow local

control, a geographically distributed database for a

large enterprise may need to cluster employee data

according to the countries where departments are

located. Therefore full schema transparency is often

provided only on local area networks or cluster com-

puters where the communication between nodes is

very fast.

With query transparency the distribution of data is

not reflected in user queries. Queries are transparently

translated by a distributed query optimizer into

queries and updates to the affected nodes giving the

user the impression of using a single database. By

analyzing a given user query the distributed query

optimizer can often statically determine which nodes

to access. Query execution plans can execute in parallel

on different nodes with partial results transported

between nodes and combined on other nodes. Query

transparency is very important for distributed data-

bases since it is very difficult and error prone to man-

ually implement distributed communicating execution

plans.

Update transparency allows database updates to

be specified without taking distribution into account.

A distributed transaction manager propagates updates

to affected nodes.

Distributed or Parallel DBMS Provide Update

Transparency

In the classification above, only parallel DBMSs pro-

vide complete transparency for everyone using the

database, database administrators as well as users.

The term regular distributed database refers to a

distributed DBMS with query and update transparency

but without schema transparency.

With naming transparency, users are provided with

a single name for a distributed relation defined in

terms of several internal relations stored on separate

nodes. Regular distributed, parallel, federated, and

peer-to-peer databases provide naming transparency,

which is relaxed for mediators and multi-databases.

Distributed database design involves manual speci-

fication to the distributed DBMS of the distribution of

data collections. The database administrator can tune

the data placement in a wide area computer network.

The two fundamental methods for such manual data

distribution are fragmentation and replication. Frag-

mentation splits a collection (e.g. Table 1) into separate

non-overlapping segments on different nodes, while

replication stores identical copies of a collection on

different nodes. The distributed DBMS guarantees

that queries and updates of fragmented or replicated

collections are transparent so the user need not be

aware of how data is distributed.

Fragmentation (or partitioning) allows the admin-

istrator of a distributed database to manually specify

on which nodes the DBMS should place different sec-

tions of each distributed data collection. In a

distributed relational database tables are fragmented.

For example, the placement of employee records in a

relation can be fragmented according to in which

countries different employees work. Fragmentation

speeds up database queries and updates since it allows

parallel access to distributed fragments. Furthermore,

by analyzing queries and updates the query optimizer

can often determine exactly which nodes are affected

and send the query/update statements only to those

nodes.

Replication allows the DBA to declare to the

DDBMS to place the same data collections on more

than one node. For example, a relational table may be

replicated on several nodes. Replication speeds up data

access at the expense of update cost. However, as

explained below, if consistency is relaxed the update

cot may be reduced.

Federated databases also provide query and update

transparency by allowing the database administrator to

Distributed Architecture D 329

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:55

define a global integration schema that hides the under-

lying integrated databases.

Mediators provide some query transparency by

allowing users to define views over integrated data-

bases. Update transparency is more problematic as it

requires updatable views.

With multi-databases transparency is further re-

laxed so the user can reference individual databases

explicitly in queries and updates.

Finally, peer databases [1] provide query and up-

date transparency in widely distributed systems but do

not require fully correct query answers.

Consistency

If data is widely distributed over many nodes in a

network, the cost of maintaining data consistency may

be very high. The transaction manager must guarantee

that all transactions are atomic and updates propagated

to affected nodes so that the database is kept consistent.

Two and three phase commit protocols are needed

when more than one node is affected by an update to

guarantee full update transparency. These protocols are

expensive when many nodes are involved and relaxed

update transparency may suffice to enable higher trans-

action performance. If the same kind data is present on

many nodes updates must be propagated to all replicas,

which can be very expensive in a geographically

distributed database.

Regular distributed databases usually provide

transaction atomicity as an option. However, because

of the high cost of transaction atomicity modern

distributed DBMS also provide the option to propa-

gate updates lazily, thus compromising the consistency.

In a parallel DBMS running on a cluster, the nodes

inside the cluster run DBMS kernel software which is

completely controlled by the parallel DBMS. From

the user’s point of view it looks like a central DBMS;

the main difference being the higher performance

provided by parallelization of DBMS kernel software.

In regular distributed and parallel DBMSs a single

database kernel manages all distributed data. All indi-

vidual nodes are running the same distributed DBMS

software. Different nodes may have different roles,

e.g. some nodes handle query processing, some nodes

handle locking, some nodes handle recovery, etc. The

DBMS is a monolithic systems distributed over several

nodes controlling the consistency of the individual

nodes.

In general, consistent updates are difficult to

achieve with heterogeneous databases since the parti-

cipating databases are autonomous and the integrating

DBMS may not have access to transaction managers of

the participating databases.

In peer-to-peer databases the data consistency is

relaxed for higher update and query performance.

Data can be partly replicated for efficiency but the

system does not guarantee consistency among the

replicas so updates need not always be propagated

to all replicas at every update. This means that queries

may return less reliable result, which is often acceptable

in a widely distributed database. This is similar to

how search engines compromise query quality for

performance.

Distributed Catalog Management

A particular problem for distributed databases is how

and where to handle catalog data, such as the overall

Distributed Architecture. Table 1. The Architectures of DDBMSs can be Classified Along Different Dimensions. The

Following Table Classifies Different Kinds of Distributed DBMS Architectures

Autonomy
Schema

transparency
Query

transparency
Update

transparency
Naming

transparency
Central
schema

Parallel No Yes Yes Yes Yes Yes

Regular
Distributed

No No Yes Yes Yes Yes

Federated Yes No Yes Limited Yes Yes

Mediators Yes No Yes Limited No No

Multi-
databases

Yes No No No No No

Peer-to-peer Yes No Yes Yes Yes No

330D Distributed Architecture

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:55

schema, statistics about data collections, the location

of data collections, and how data collections are repli-

cated and partitioned. The catalog information is

accessed intensively by database users in queries and

updates. On the other hand, in most DBMSs it is

assumed that schema and catalog information changes

slowly, which, for example, permits pre-compilation

of (distributed) database queries. The assumption

that catalog data changes slowly but is intensively

accessed is a case for replicating catalog information

on many nodes, in particular on those coordinating

nodes with which the users interact. On the other

hand, in a heterogeneous database with many partici-

pating autonomous nodes, the assumption that

schemas and data placements do not change usually

does not hold.

Regular distributed and parallel databases assume

few participating non-autonomous nodes and the cat-

alog is therefore replicated. Federated databases have a

central architecture where all interaction with the da-

tabase is through the global schema and it contains

replications of catalog information from the partici-

pating databases. For mediators, multi-databases, and

peer-to-peer there is no central global schema and the

query processing nodes are autonomous. Therefore

the catalogue data cannot be fully replicated and it

will be up to different nodes to cache catalog data

when needed. The validity of cached catalog data

needs to be properly handled though; otherwise

queries may fail or even return the wrong data.

Cross-references
▶Data partitioning

▶Data dictionary

▶Data replication

▶Distributed concurrecy control

▶Distributed database design

▶Distributed database systems

▶Distributed query optimization

▶Distributed transaction management

▶Distributed DBMS

▶ Information Integration

▶Mediation

▶ Parallel query processing

▶ Parallel Database Management

▶ Peer Data Management System

▶ Shared-Nothing Architecture

▶View-based data integration

Recommended Reading
1. Beng Chin Ooi and Kian-Lee Tan (guest eds.). Introduction:

special section on peer-to-peer-based data management. IEEE

Trans. Knowl. Data Eng., 16(7):785–786, 2004.

2. Litwin W., Mark L., and Roussopoulos N. Interoperability

of multiple autonomous databases ACM Comput. Surv.,

22(3):267–293, 1990.

3. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems (2nd edn.). Prentice Hall, NJ, 1999.

4. Sheth A.P. and Larson J.A. Federated database systems for man-

aging distributed, heterogeneous, and autonomous databases.

ACM Comput. Surv., 22(3):183–235, 1990.

5. Wiederhold G. Mediators in the architecture of future informa-

tion systems. IEEE Comput., 25(3):38–49, 1992.

Distributed Commit Protocol

▶Two-Phase Commit Protocol

Distributed Component Object
Model

▶DCOM

Distributed Computing Environment

▶DCE

Distributed Concurrency Control

MATHIAS WESKE

University of Potsdam, Potsdam, Germany

Synonyms
Synchronizing distributed transactions

Definition
Distributed concurrency control provides concepts

and technologies to synchronize distributed transac-

tions in a way that their interleaved execution does not

violate the ACID properties. Distributed transactions

are executed in a distributed database environm-

ent, where a set of connected data servers host rela-

ted data. A distributed transaction consists of a set of

Distributed Concurrency Control D 331

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

subtransactions, each of which is executed by one data

server. Distributed concurrency control makes sure

that all subtransactions of a set of distributed transac-

tions are serialized identically in all data servers

involved. Therefore, not only local dependencies need

to be taken into account, but also dependencies involv-

ing multiple data servers. Concurrency control techni-

ques known from centralized database systems need to

be extended to cope with the new requirements im-

posed by the distribution aspect.

Historical Background
Distributed concurrency control was an emerging

research topic in the early 1980’s. Based on the seminal

work on concurrency control and locking protocols in

centralized database systems by Eswaran et al. [3], Gray

proposes implementation approaches for transactions

[4], and Spector and Schwarz investigate transactions

in the context of distributed computing [9].

In distributed database environments, data relevant

to a specific application domain is spread across a set

of data servers, each of which hosts a partition of the

data items [2,8]. The data servers form a distributed

database federation. Distributed database federations

are homogenous if they run the same database soft-

ware; they are heterogeneous if they do not.

To explain the core of distributed concurrency con-

trol, homogeneous database federations are addressed

first. Since transactions are representations of applica-

tion programs and data is spread across a set of data

servers in a distributed environment, transactions need

to access multiple data servers. Transactions with this

property are called distributed transactions. Distributed

transactions consist of a set of subtransactions, each of

which runs at one specific data server of the federation.

Distributed transactions – just like centralized

transactions – need to satisfy the ACID properties.

Conflict serializability is a theoretically proven and

practically relevant technique to ensure isolation of

centralized transactions. Given a pair of transactions,

all conflicting data access operations of these transac-

tions occur in the same order, i.e., the serialization

order of the transactions involved.

The complicating factor in the case of distribut-

ion is the lack of global knowledge. Assume transac-

tions t1 and t2 running on data servers Si and Sj.

Subtransactions for t1 and t2 are created and started

in Si and Sj. These subtransactions are executed in the

data sites according to the concurrency control

technique in place. Since each data server is aware of

the transactions and subtransactions that run locally,

any serialization ordering between these transactions is

fine, as long as no cycles in the global serialization

graph are introduced.

As a result different serialization orders might

emerge in the different data servers of the database

federation. This is the case, if, for example, t1 is serial-

ized in Si before t2, while in Sj, t2 is serialized before t1.

The serialization graph in Si contains t1 ! t2, indicat-

ing that t1 is serialized before t2, while in Sj the seriali-

zation ordering is in opposite direction. Due to the

lack of global knowledge, there is a cyclic serialization

dependency, a violation of conflict serializability that

none of the sites involved can detect. The distributed

concurrency control problem is depicted in Fig. 1.

Foundations
In homogeneous database federations, distributed two

phase locking is a variant of centralized two phase

locking: All locks that a distributed transaction holds

need to be held until no more locks need to be acquired

by that transaction. This means, for instance, that a

subtransaction of distributed transaction t1 can only

release its locks, if no subtransaction of t1 will acquire

additional locks. Local knowledge of a particular data

server is insufficient to decide about unlocking data

objects, because there can still be locking operations by

other subtransactions of the transaction that are active

in other data servers.

To provide a solution to this problem, informat-

ion about distributed transaction needs to be

Distributed Concurrency Control. Figure 1. Distributed

concurrency control problem: global serialization graph

contains a cycle, although serialization graphs of data

servers involved are acyclic.

332D Distributed Concurrency Control

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

communicated between the data servers involved.

There are several approaches to providing this infor-

mation. When atomic commitment protocols – such

as the two phase commit protocol – are in place, then

distributed two phase locking can take advantage from

the commit protocols. To commit a distributed trans-

action t, the two phase commit protocol sends

a prepare-to-commit message to all sites that host

subtransactions of t. When a data server receives a

prepare-to-commit message for a transaction t, t will

no longer acquire new locks. When there is agreement

on committing the distributed transaction, each data

server commits the changes of its subtransaction of

t and releases its locks.

While distributed two phase locking solves the

distributed concurrency control problem, the deadlock

problem re-appears. Distributed deadlocks occur if

conflicting locks are set by subtransactions of different

transactions in a cyclic manner, and these locks are

distributed among multiple sites of the database feder-

ation. As a result, no transaction can ever terminate

successfully. In the example introduced above, if the

subtransaction of t1 in Si holds a lock that the sub-

transaction of t2 in Si needs, in Si, t2 waits for the

completion of t1. A distributed deadlock exists if at

the same time, t1 waits for the completion of t2 in Sj.

In this situation, there are local waiting conditions

involving the subtransactions of t1 and t2, but there are

also non-local waiting conditions: the subtransaction

of t1 in Si waits for the completion of its subtransaction

in Sj. Distributed deadlocks involve both local and

non-local waiting conditions. This situation is shown

in Fig. 2, marking local waiting conditions by solid

edges and non-local waiting conditions by dotted

edges.

A simple approach to handling distributed dead-

locks is timeout, where the time span that a lock can

be held by a transaction is limited by a timeout value. If

the timeout expires, the subtransaction is aborted.

While distributed deadlocks are not possible using

time-outs, potentially high abortion rates are intro-

duced due to aborting transactions that are actually

not involved in a deadlock cycle. More elaborate tech-

niques are based on detecting distributed deadlocks,

which is done by communicating information about

waiting conditions between the data servers of a federa-

tion and aborting only those transactions that are actu-

ally involved in a distributed deadlock situation [6].

Timestamp ordering does not suffer from the dead-

lock problem; in this concurrency control technique, a

strict ordering on the set of transactions is introduced.

This ordering defines the order in which the transac-

tions are serialized. Conflicting operations pi[x] and

qj[x] are executed in the order pi[x] qj[x], if and only if

ts(ti) ts(tj), where ts(t) denotes the timestamp of trans-

action t. In the centralized case, assigning timestamps

to transactions is performed by the scheduler that uses

a logical clock to assign unique timestamps to newly

arriving transactions Fig. 3.

In the distributed case, the definition of globally

unique timestamps can be achieved by so called Lam-

port clocks, introduced in [7]. Lamport clocks use the

axiom that a message always arrives after it was sent.

This axiom is used to synchronize clocks in a

distributed system. Each message carries a timestamp

that reflects the local clock value of the sending system

when the message was sent. When a message arrives

with, for instance, timestamp 8, the receiving system

sets its local clock to 9, should it be lower than that

at the time of message arrival. To provide globally

Distributed Concurrency Control. Figure 2. Distributed

deadlock situation due to waiting conditions of

subtransactions involving multiple sites of a database

federation.

Distributed Concurrency Control. Figure 3. Due to

indirect conflicts with local transactions in heterogeneous

database federations, global transaction manager cannot

detect violations of global serialization orderings.

Distributed Concurrency Control D 333

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

unique timestamps for transactions, each timestamp

also contains the identifier of the data server from

which the transaction originated. If these mechanisms

regarding timestamps are in place in the distributed

database federation, concurrency control can be done

by the timestamp ordering technique, just like in the

centralized case.

To summarize, distributed concurrency control in

homogeneous database federations provides synchro-

nization transparency to application programs by

using variations of concurrency control techniques

that are in place in centralized database systems [1].

The situation is more complex in heterogeneous fed-

erations, where data servers run different database

management systems or are legacy systems that pro-

vide their functionality via application programming

interfaces that allow us to access data. Regardless of the

particular system in place, however, it must allow sub-

transactions of distributed transactions to read and

write data items.

The techniques that work well in the case of homo-

geneous federations cannot immediately be used in the

heterogeneous case. To cope with the heterogeneity

issue, a software component is introduced, responsible

for controlling the order in which subtransactions and

their operations are issued to the data servers. This

software component is called global transaction

manager.

While the global transaction manager can control

the ordering of subtransactions and their operations, it

cannot influence the ordering of local transactions and

their operations in the data servers. These local trans-

actions can introduce serialization problems that the

global transaction manager cannot take care of. These

problems are due to indirect conflicts between sub-

transactions of distributed transactions. Indirect con-

flicts involve local transactions, each of which has a

direct conflict with a subtransaction of a distributed

transaction. These conflicts lead to serialization order-

ings between subtransactions that are not visible by the

global transaction manager.

Assume data servers Si and Sj are in place, global

transactions t1,t2, that access both data servers. There

are local transactions ti in Si and tj in Sj. In data server

Si, the local transaction manager can serialize t1tit2,

while data server Sj serializes the transactions as t2,tj,

t1. Assuming that there are no direct conflicts bet-

ween the subtransactions of t1 and t2 in place, the

non-matching serialization cannot be detected by the

global transaction manager.

There are several approaches to deal with this

problem. Global serializability can be achieved by

local guarantees, for instance the property of rigorous-

ness, discussed in [10]. There are also approaches that

introduce direct conflicts between distributed transac-

tions in the data servers and, thus, make sure that

the local serialization orderings of the data servers are

in line.

An approach to solve the distributed concurre-

ncy control problem in heterogeneous federations is

based on global transaction managers creating dir-

ect conflicts between subtransactions of distributed

transactions by introducing additional data access

operations. These operations force local direct conflicts

that are handled by the individual data servers, using

their respective concurrency control techniques. These

data items are known as tickets, and the operations as

take-ticket operations.

To start accessing local data items, each subtransac-

tion of a distributed transactions first needs to take a

ticket and issues the respective operation. This opera-

tion reads the current value of the ticket (a data item

stored in the data server) and increments it, thus forc-

ing direct conflicts between any two subtransactions

accessing data in a particular data server of a heteroge-

neous federation. This technique makes sure that there

are always direct conflicts between subtransactions of

distributed transactions. However, the conflicts can

still have different orientation, and the serialization

orderings might still be different.

The information about the conflicts needs to be

communicated to the global transaction manager;

there are two variants to do so, an optimistic and a

conservative one. In the optimistic variant, there is no

restriction on the order in which subtransactions take

their tickets in the data servers. The global transaction

manager maintains a global ticket graph that repre-

sents the ordering in which distributed transactions

take tickets. This graph contains an edge ti ! tj if and

only if both distributed transactions have subtransac-

tions in one data server, and the ticket of ti has a lower

value than the ticket of tj at that site. In this case ti is

serialized before tj.

On commit of a distributed transaction t, the glob-

al transaction manager checks the global ticket graph.

A loop in this graph indicates a serialization violation,

334D Distributed Concurrency Control

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

leading to aborting t. Just like in the centralized case, if

there is little contention, and few conflicts are in place,

the optimistic method is advantageous. However, high

contention leads to many conflicts, and the probability

of transaction abortions increases.

In the conservative ticketing method, the order in

which tickets are taken is restricted by the global trans-

action manager. A subtransaction is allowed to take a

ticket only if the global serialization ordering is not

violated by this taking a ticket. While at run time there

is additional overhead in checking whether a take-ticket

operation can be permitted, the conservative approach

reduces the number of abort operations. Therefore, the

conservative ticketing method is advantageous in case of

high contention, while the optimistic approach is likely

to perform better in low contention scenarios.

Future Directions
The internet has and is continuing to pose new require-

ments to existing solutions in various areas of database

technology, including distributed concurrency control.

If applications use resources and data provided by dif-

ferent organizations on the internet, transactional prop-

erties are ver/y hard, if not impossible, to satisfy. As a

result, new concepts and technologies are sought to

provide application level consistency. As one represen-

tative of these future directions of research, the work by

Pat Helland in the context of internet scale applications

and their challenges is mentioned [5].

Cross-references
▶ACID Properties

▶Conflict Serializability

▶Timestamp Ordering

▶Two Phase Commit

▶Two Phase Locking

Recommended Reading
1. Bernstein P.A. and Goodman N. Concurrency control in

distributed database systems. ACM Comput Surv., 13

(2):185–221, 1981.

2. Ceri S. and Pelagatti G. Distributed Databases: Principles and

Systems. McGraw-Hill, NY, USA, 1984.

3. Eswaran K.P., Gray J.N., Lorie R.A., and Traiger I.L. The notions

of consistency and predicate locks in a database system. Com-

mun. ACM, 19(11):624–633, 1976.

4. Gray J.N. The transaction concept: virtues and limitations. In

Proc. 7th Int. Conf. on Very Data Bases, 1981, pp 144–154.

5. Helland P. Life beyond distributed transactions: an Apostate’s

opinion In Proc. 3rd Biennial Conf. on Innovative Data Systems

Research, 2007, pp. 132–141.

6. Knapp E. Deadlock detection in distributed databases. ACM

Comput. Surv., 19(4):303–328, 1987.

7. Lamport L. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7):558–565, 1978.

8. Öszu T. and Valduriez P. Principles of distributed database

systems. 2nd edn. Prentice-Hall, 1999.

9. Spector A.Z. and Schwarz P.M. Transactions: a construct for

reliable distributed computing. ACM Operat. Syst. Rev., 17

(2):18–35, 1983.

10. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, 2002.

Distributed Data Streams

MINOS GAROFALAKIS

Technical University of Crete, Chania, Greece

Definition
A majority of today’s data is constantly evolving and

fundamentally distributed in nature. Data for almost

any large-scale data-management task is continuously

collected over a wide area, and at a much greater rate

than ever before. Compared to traditional, centralized

stream processing, querying such large-scale, evolving

data collections poses new challenges, due mainly to the

physical distribution of the streaming data and the com-

munication constraints of the underlying network.

Distributed stream processing algorithms should guar-

antee efficiency not only in terms of space and processing

time (as conventional streaming techniques), but also

in terms of the communication load imposed on the

network infrastructure.

Historical Background
The prevailing paradigm in database systems has been

understanding the management of centralized data:

how to organize, index, access, and query data that is

held centrally on a single machine or a small number

of closely linked machines. Work on parallel and

distributed databases has focused on different notions

of consistency and methods for effectively distributing

query execution plans over multi-node architectures –

the issues of monitoring or querying distributed,

high-speed data streams in a space-, time- and

communication-efficient manner were not addressed

Distributed Data Streams D 335

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

in this realm. Similarly, the bulk of early research on

data-streaming algorithms and systems has concen-

trated on a centralized model of computation, where

the stream-processing engine has direct access to all the

streaming data records. Centralized stream-processing

models can obviously ignore communication-efficiency

issues; still, such models are also painfully inadequate

for many of the prototypical data-streaming applica-

tions, including IP-network and sensornet monitoring.

Foundations
Tracking and querying large-scale, evolving data collec-

tions poses a number of challenges. First, in contrast with

conventional, centralized models of data-stream pro-

cessing, the task is inherently distributed; that is, the

underlying infrastructure comprises several remote

sites (each with its own local data source) that can

exchange information through a communication net-

work. This also means that there typically are important

communication constraints owing to either network-

capacity restrictions (e.g., in IP-network monitoring,

where the volumes of collected utilization and traffic

data can be huge [7]), or power and bandwidthrestric-

tions (e.g., inwireless sensor networks, where communi-

cation overhead is the key factor in determining sensor

battery life [18]). Second, each remote sitemay see ahigh-

speed stream of data and, thus, must solve a local

(centralized) stream-processing problem within its

own local resource limitations, such as space or CPU-

time constraints. This is certainly true for IP routers

(that cannot possibly store the log of all observed

packet traffic at high network speeds), as well as wire-

less sensor nodes (that, even though may not observe

large data volumes, typically have very little memory

on-board). Finally, applications often require continu-

ous monitoring of the underlying streams (i.e., real-

time tracking of measurements or events), not merely

one-shot responses to sporadic queries.

To summarize, the focus is on techniques for pro-

cessing queries over collections of remote data streams.

Such techniques have to work in a distributed setting

(i.e., over a communication network), support one-

shot or continuous query answers, and be space, time,

and communication efficient. It is important to note

that, for most realistic distributed streaming applica-

tions, the naive solution of collecting all the data in a

single location is simply not a viable option: the vol-

ume of data collection is too high, and the capacity for

data communication relatively low. Thus, it becomes

critical to exploit local processing resources to effec-

tively minimize the burden on the communication

network. This establishes the fundamental concept of

‘‘in-network processing :’’ if more computational work

can be done within the network to reduce the commu-

nication needed, then it is possible to significantly

improve the value of the network, by increasing its

useful life and communication capacity, and extending

the range of computations possible over the network.

This is a key idea that permeates the bulk of existing

work on distributed data-stream processing – this

work can, in general, be characterized along three

(largely orthogonal) axes:

1. Querying Model: There are two broad classes of

approaches to in-network query processing, by analo-

gy to types of queries in traditional DBMSs. In the one-

shotmodel, a query is issued by a user at some site, and

must be answered by ‘‘pulling’’ the current state of

data in the network. For simple aggregates, this can

be done in a few rounds of communication where only

small, partial-aggregate messages are exchanged over a

spanning tree of the network. For more complex, ho-

listic aggregates (that depend on the complete data

distribution, such as quantiles, topk-k, count-distinct,

and so on), simple combination of partial results is

insufficient, and instead clever composable summaries

give a compact way to accurately approximate query

answers.

In the continuous model, users can register a query

with the requirement that the answer be tracked contin-

uously. For instance, a special case of such a continuous

query is a distributed trigger that must fire in (near)

real-time when an aggregate condition over a collec-

tion of distributed streams is satisfied (e.g., to catch

anomalies, SLA violations, or DDoS attacks in an ISP

network). This continuous monitoring requirement

raises further challenges, since, even using tree compu-

tation and summarization, it is still too expensive to

communicate every time new data is received by one

of the remote sites. Instead, work on continuous

distributed streams has focused on ‘‘push-based’’ tech-

niques that tradeoff result accuracy for reduced com-

munication cost, by apportioning the error in the

query answer across filter conditions installed locally

at the sites to reduce communication.

Approximation and randomization techniques are

also essential components of the distributed stream

querying model, and play a critical role in minimiz-

ing communication. Approximate answers are often

336D Distributed Data Streams

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

sufficient when tracking the statistical properties of

large-scale distributed systems, since the focus is typi-

cally on indicators or patterns rather than precisely-

defined events. This is a key observation, allowing for

techniques that effectively tradeoff efficiency and ap-

proximation accuracy.

2. Communication Model: The architecture

and characteristics of the underlying communication

network have an obvious impact on the design of

effective distributed stream processing techniques.

Most existing work has focused on hierarchical (i.e.,

tree) network architectures, due to both their con-

ceptual simplicity and their importance for practical

scenarios (e.g., sensornet routing trees [18]). As an

example, Fig. 1a depicts a simple single-level hierarchi-

cal model with m + 1 sites and n (distributed) update

streams. Stream updates arrive continuously at the

remote sites 1,. . .,m, whereas site 0 is a special coordi-

nator site that is responsible for generating answers to

(one-shot or continuous) user queries Q over the n

distributed streams. In this simple hierarchical model,

the m remote sites do not communicate with each

other; instead, as illustrated in Fig. 1a, each remote

site exchanges messages only with the coordinator,

providing it with state information for (sub)streams

observed locally at the site.

More general,multi-level hierarchies have individu-

al substream-monitoring sites at the leaves and inter-

nal nodes of a general communication tree, and the

goal is to effectively answer or track a stream query

Q(S1,. . ., Sn) at the root node of the tree. The most

general setting are fully-distributed models, where

individual monitor sites are connected through an arbi-

trary underlying communication network (Fig. 1b);

Distributed Data Streams. Figure 1. (a) Single-level hierarchical stream-processing model. (b) Fully-distributed model.

Distributed Data Streams D 337

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:56

this is a distinctly different distributed system architec-

ture since, unlike hierarchical systems, no centralized

authority/coordination exists and the end goal is for all

the distributed monitors to efficiently reach some form

of consensus on the answer of a distributed stream

query.

Besides the connectivity model, other important

network characteristics for distributed stream pro-

cessing include: the potential for broadcasting or mul-

ticasting messages to sites (e.g., over a limited radio

range as in wireless sensornets), and the node/link-

failure and data-loss characteristics of the supporting

hardware.

3. Class of Queries: The key dichotomy between

simple, non-holistic aggregate queries (e.g., MIN, SUM,

AVG) and holistic aggregates (e.g., median) has already

been discussed; clearly, holistic aggregates introduce

many more challenges for efficient distributed stream-

ing computation. Another important distinction is

that between duplicate-sensitive aggregates (that sup-

port bag/multi-set semantics, such as median, SUM, or

top-k) and duplicate-insensitive aggregates (that sup-

port set semantics, such as MIN or count-distinct).

Finally, another important class is that of complex

correlation queries that combine/correlate streaming

data across different remote sites (e.g., through a

streaming join computation). Such correlations can

be critical in understanding important trends and

making informed decisions about measurement or

utilization patterns. Different classes of streaming

queries typically require different algorithmic machin-

ery for efficient distributed computation.

The remainder of this section provides a brief over-

view of some key results in distributed data streaming,

for both the one-shot and continuous querying mod-

els, and concludes with a short survey of systems-

related efforts in the area.

One-Shot Distributed Stream Processing. Madden

et al. [18] present simple, exact tree-based aggregation

schemes for sensor networks and propose a general

framework based on generate, fuse, and evaluate func-

tions for combining partial results up the aggregation

tree. They also propose a classification of different

aggregate queries based on different properties, such

as duplicate in/sensitivity, example or summary

results, monotonicity, and whether the aggregate is

algebraic or holistic (which essentially translates to

whether the intermediate partial state is of constant

size or growing). While the exact computation of

holistic aggregates requires linear communication cost,

guaranteed-quality approximate results can be obtained

at much lower cost by approximating intermediate

results through composable data synopses [1,9].

Robustness is a key concern with such hierarchical

aggregation schemes, as a single failure/loss near the

root of the tree can have a dramatic effect on result

accuracy. Multi-path routing schemes mitigate this

problem by propagating partial results along multiple

different paths. This obviously improves reliability and

reduces the impact of potential failures; in addition,

this improved reliability often comes essentially ‘‘for

free’’ (e.g., in wireless sensornets where the network is a

natural broadcast medium). Of course, multi-path

routing also implies that the same partial results can

be accounted for multiple times in the final aggregate.

As observed by Nath et al. [20], this duplication has no

effect on aggregates that are naturally Order and Du-

plicate Insensitive (ODI), such as MIN and MAX; on the

other hand, for non-ODI aggregates, such as SUM and

COUNT, duplicate-insensitive sketch synopses (e.g., based

on the Flajolet-Martin sketch [9]) can be employed to

give effective, low-cost, multi-path approximations

[20]. Hybrid approaches combining the simplicity of

tree aggregation (away from the root node) and the

robustness of multi-path routing (closer to the root)

have also been explored [19].

Gossip (or, epidemic) protocols for spreading infor-

mation offer an alternative approach for robust

distributed computation in the more general, fully-

distributed communication model (Fig. 1b). ODI

aggregates (and sketches) naturally fit into the gossip-

ing model, which basically guarantees that all n nodes

of a network will converge to the correct global ODI

aggregate/sketch after O(logn) rounds of communica-

tion. For non-ODI aggregates/sketches, Kempe et al.

[15] propose a novel gossip protocol (termed push-

sum) that also guarantees convergence in a logarithmic

number of rounds, and avoids double counting by

splitting up the aggregate/sketch and ensuring ‘‘conser-

vation of mass’’ in each round of communication.

Continuous Distributed Stream Processing. The con-

tinuous model places a much more stringent demand

on the distributed stream processing engine, since re-

mote sites must collaborate to continuously maintain a

query answer that is accurate (e.g., within specified

error bounds) based on the current state of the

stream(s). Approximation plays a critical role in the

design of communication-efficient solutions for such

338D Distributed Data Streams

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:57

continuous monitoring tasks. In a nutshell, the key idea

is to tradeoff result accuracy and local processing at

sites for reduced communication costs, by installing

local filters at the remote sites to allow them to only

‘‘push’’ significant updates to the coordinator; of

course, these distributed local filters would have to be

safe, that is, they should guarantee the overall error

bound for the global query result (based on the exact

current state) at the coordinator. This idea of local

traffic filtering for continuous distributed queries is

pictorially depicted in Fig. 2a.

A key concept underlying most continuous

distributed monitoring schemes is that of adaptive

slack allocation – that is, adaptively distributing the

overall ‘‘slack’’ (or, error tolerance) in the query result

across the local filters at different participating sites

based on observed local update patterns. Obviously,

the complexity of such slack-distribution mechanisms

depends on the nature of the aggregate query being

tracked. Olston et al. [21] consider the simpler case of

algebraic aggregates (where breaking down the overall

slack to safe local filters is straightforward), and discuss

adaptive schemes that continuously grow/shrink local

filters based on the frequency of observed local viola-

tions. As expected, the situation is more complicated

in the case of holistic aggregates: Babcock and Olston

[2] discuss a scheme for tracking an approximate glob-

al top-k set of items using a cleverly-built set of local

constraints that essentially ‘‘align’’ the local top-k set at

a site with the global top-k; furthermore, their algo-

rithm also retains some amount of slack at the

coordinator to allow for possible localized resolutions

of constraint violations. Das et al. [8] consider the

problem of monitoring distributed set-expression car-

dinalities and propose tracking algorithms that take

advantage of the set-expression semantics to appropri-

ately ‘‘charge’’ updates arriving at the local sites.

Simple slack-allocation schemes are typically based

on a naive static model of local-site behavior; that is,

the site’s ‘‘value’’ is assumed constant since the last

update to the coordinator, and communication is

avoided as long as this last update value stays within

the slack bounds. Cormode and Garofalakis [5] pro-

pose the use of more sophisticated, dynamic prediction

models of temporal site dynamics in conjunction with

appropriate sketching techniques for communication-

efficient monitoring of complex distributed aggregate

queries. Their idea is to allow each site and the coordi-

nator to share a prediction of how the site’s local

stream(s) (and, their sketch synopses) evolve over

time. The coordinator uses this prediction to provide

continuous query answers, while the remote site checks

locally that the prediction stays ‘‘close’’ to the actual

observed streaming distribution (Fig. 2b). Of course,

using a more sophisticated prediction model can

also impose some additional communication to ensure

that the coordinator’s view is kept in-sync with the

up-to-date local stream models (at the remote sites).

Combined with intelligent sketching techniques and

methods for bounding the overall query error, such

approaches can be used to track a large class of complex,

holistic queries, only requiring concise communication

Distributed Data Streams. Figure 2. (a) Using local filters for continuous distributed query processing: Most updates fall

within the local-filter ranges and require no communication with the coordinator (that can provide approximate

answers with guarantees depending on the filter ‘‘widths’’); only updates outside the local-filter range require new

information to be ‘‘pushed’’ by the local site to the coordinator. (b) Prediction-based approximate query tracking:

Predicted sketches are based on simple prediction models of local-stream behavior, and are kept in-sync between the

coordinator (for query answering) and the remote sites (for tracking prediction error).

Distributed Data Streams D 339

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:57

exchanges when prediction models are no longer accu-

rate [5]. Furthermore, their approach can also be

naturally extended to multi-level hierarchical architec-

tures. Similar ideas are also discussed by Chu et al. [4]

who consider the problem of in-network probabilistic

model maintenance to enable communication-efficient

approximate tracking of sensornet readings.

A common feature of several distributed continu-

ous monitoring problems is continuously evaluating a

condition over distributed streaming data, and firing

when the condition is met. When tracking such

distributed triggers, only values of the ‘‘global’’ contin-

uous query that are above a certain threshold are of

interest (e.g., fire when the total number of connec-

tions to an IP destination address exceeds some value)

[13]. Recent work has addressed versions of this

distributed triggering problem for varying levels of

complexity of the global query, ranging from simple

counts [16] to complex functions [26] and matrix-

analysis operators [12]. Push-based processing using

local-filter conditions continues to play a key role for

distributed triggers as well; another basic idea here is to

exploit the threshold to allow for even more effective

local traffic filtering (e.g., ‘‘wider’’ yet safe filter ranges

when the query value is well below the threshold).

Systems and Prototypes. Simple, algebraic in-

network aggregation techniques have found widespread

acceptance in the implementation of efficient sensornet

monitoring systems (e.g., TAG/TinyDB [18]). On the

other hand, more sophisticated approximate in-network

processing tools have yet to gain wide adoption in

system implementations. Of course, Distributed

Stream-Processing Engines (DSPEs) are still a nascent

area for systems research: only a few research prototypes

are currently in existence (e.g., Telegraph/TelegraphCQ

[25], Borealis/Medusa [3], P2 [17]). The primary focus

in these early efforts has been on providing effective

system support for long-running stream-processing

dataflows (comprising connected, pipelined query

operators) over a distributed architecture (Fig. 3).

For instance, Balazinska et al. [3] and Shah et al. [25]

discuss mechanisms and tools for supporting parallel,

highly-available, fault-tolerant dataflows; Loo et al.

[17] propose tools for declarative dataflow design and

automated optimizations; Pietzuch et al. [22] consider

the problem of distributed dataflow operator place-

ment and propose techniques based on a cost-space

representation that optimize for network-efficiency

metrics (e.g., bandwidth, latency); finally, Xing et al.

[27] give tools for deriving distributed dataflow sche-

dules that are resilient to load variations in the input

data streams. To deal with high stream rates and po-

tential system overload, these early DSPEs typically

employ some form of load shedding [3] where tuples

from operators’ input stream(s) are dropped (either

randomly or based on different QoS metrics). Unfor-

tunately, such load-shedding schemes cannot offer any

hard guarantees on the quality of the resulting query

answers. A mechanism based on revision tuples can be

employed in the Borealis DSPE to ensure that results

are eventually correct [3]. AT&T’s Gigascope streaming

DB for large-scale IP-network monitoring [7] uses ap-

proximation tools (e.g., sampling, sketches) to efficiently

track ‘‘line-speed’’ data streams at the monitoring end-

points, but has yet to explore issues related to the physi-

cal distribution of the streams and holistic queries.

Key Applications
Enterprise and ISP Network Security: The ability to

efficiently track network-wide traffic patterns plays a

Distributed Data Streams. Figure 3. Distributed stream-processing dataflow.

340D Distributed Data Streams

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:57

key role in detecting anomalies and possible malicious

attacks on the network infrastructure. Given the sheer

volume of measurement data, continuously centraliz-

ing all network statistics is simply not a feasible option,

and distributed streaming techniques are needed.

Sensornet Monitoring and Data Collection: Tools

for efficiently tracking global queries or collecting all

measurements from a sensornet have to employ clever

in-network processing techniques to maximize the

lifetime of the sensors.

Clickstream and Weblog Monitoring: Monitoring

the continuous, massive streams of weblog data col-

lected over distributed web-server collections is critical

to the real-time detection of potential system abuse,

fraud, and so on.

Future Directions
The key algorithmic idea underlying the more sophis-

ticated distributed data-stream processing techniques

discussed in this article is that of effectively trading

off space/time and communication with the quality of

an approximate query answer. Exploring some of the

more sophisticated algorithmic tools discussed here in

the context of real-life systems and applications is one

important direction for future work on distributed

streams; other challenging areas for future research,

include:

� Extensions to other application areas and more

complex communication models, e.g., monitoring

P2P services over shared infrastructure (OpenDHT

[23] over PlanetLab), and dealing with constrained

communication models (e.g., intermittent-connec-

tivity and delay-tolerant networks (DTNs) [14]).

� Richer classes of distributed queries, e.g., set-valued

queryanswers,machine-learninginferencemodels[11].

� Developing a theoretical/algorithmic foundation of

distributed data-streaming models: What are fun-

damental lower bounds, how to apply/extend in-

formation theory, communication complexity, and

distributed coding. Some initial results appear in

the recent work of Cormode et al. [6].

� Richer prediction models for stream tracking: Can

models effectively capture site correlations rather

than just local site behavior? More generally, un-

derstand the model complexity/expressiveness tra-

deoff, and come up with principled techniques for

capturing it in practice (e.g., using the MDL prin-

ciple [24]).

� Stream computations over an untrusted distributed

infrastructure: Coping with privacy and authen-

tication issues in a communication/computation-

efficient manner. Some initial results appear in [10].

Data Sets
Publicly-accessible network-measurement data collec-

tions can be found at the Internet Traffic Archive:

(http://ita.ee.lbl.gov/), and CRAWDAD (the Communi-

ty Resource for Archiving Wireless Data at Dartmouth,

http://cmc.cs.dartmouth.edu/data/dartmouth.html).

Cross-references
▶AMS Sketch

▶Continuous Query

▶Count-Min Sketch

▶Data Streams

▶ Load Shedding

▶ Scheduling Strategies

▶ Stream Models

▶ Stream Processing

▶ Stream Sampling

▶ Streaming Applications

▶ Synopsis Structures

Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on the Theory of Computing. Philadelphia, Penn-

sylvania, May 1996, pp. 20–29.

2. Babcock B. and Olston C. Distributed top-K monitoring. In

Proc. 2003 ACM SIGMOD Int. Conf. on Management of Data.

San Diego, California, June 2003.

3. Balazinska M., Balakrishnan H., Madden S., and Stonebraker M.

Fault-tolerance in the borealis distributed stream processing

system. In: Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2005.

4. Chu D., Deshpande A., Hellerstein J.M., and Hong W.

Approximate data collection in sensor networks using probabi-

listic models. In Proc. 22nd Int. Conf. on Data Engineering,

2006.

5. Cormode G. and Garofalakis M. Sketching streams through the

net: distributed approximate query tracking. In: Proc. 31st Int.

Conf. on Very Large Data Bases, 2005.

6. Cormode G., Muthukrishnan S., and Yi K. Algorithms for

distributed functional monitoring. In Proc. 19th Annual ACM-

SIAM Symp. on Discrete Algorithms, 2008.

7. Cranor C., Johnson T., Spatscheck O., and Shkapenyuk V. Giga-

scope: a stream database for network applications. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003.

8. Das A., Ganguly S., Garofalakis M., and Rastogi R. Distributed

set-expression cardinality estimation. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004.

Distributed Data Streams D 341

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:57

9. Flajolet P. and Nigel Martin G. Probabilistic counting algorithms

for data base applications. J. Comput. Syst. Sci., 31:182–209, 1985.

10. Garofalakis M., Hellerstein J.M., and Maniatis P. Proof sketches:

verifiable in-network aggregation. In Proc. 23rd Int. Conf. on

Data Engineering, 2007.

11. Guestrin C., Bodik P., Thibaux R., Paskin M., and Madden S.

Distributed regression: an efficient framework for modeling

sensor network data. Inform. Process. Sensor Networks, 2004.

12. Huang L., Nguyen X., Garofalakis M., Hellerstein J.M.,

Jordan M.I., Joseph A.D., and Taft N. Communication-efficient

online detection of network-wide anomalies. In Proc. 26th An-

nual Joint Conf. of the IEEE Computer and Communications

Societies, 2007.

13. Jain A., Hellerstein J., Ratnasamy S., and Wetherall D. A wakeup

call for internet monitoring systems: The case for distributed

triggers. In Proc. Third Workshop on Hot Topics in Networks

(Hotnets). 2004.

14. Jain S., Fall K., and Patra R. Routing in a delay tolerant network.

In Proc. ACM Int. Conf. of the on Data Communication, 2005.

15. Kempe D., Dobra A., and Gehrke J. Gossip-based computation

of aggregate information. In Proc. 44th Annual IEEE Symp. on

Foundations of Computer Science. 2003.

16. Keralapura R., Cormode G., and Ramamirtham J. Communica-

tion-efficient distributed monitoring of thresholded counts. In -

Proc. 2006 ACM SIGMOD Int. Conf. on Management of Data.

Chicago, Illinois, June 2006, pp. 289–300.

17. Loo B.T., Condie T., Garofalakis M., Gay D.E., Hellerstein J.M.,

Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I.

Declarative networking: language, execution, and optimization.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006.

18. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG:

a tiny aggregation service for ad-hoc sensor networks. In Proc.

5th USENIX Symp. on Operating System Design and Implemen-

tation, 2002.

19. Manjhi A., Nath S., and Gibbons P. Tributaries and deltas:

efficient and robust aggregation in sensor network streams. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005.

20. Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis

diffusion for robust aggrgation in sensor networks. In Proc. 2nd

Int. Conf. on Embedded Networked Sensor Systems. 2004.

21. Olston C., Jiang J., and Widom J. Adaptive filters for continuous

queries over distributed data streams. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003.

22. Pietzuch P., Ledlie J., Schneidman J., Roussopoulos M., Welsh

M., and Seltzer M. Network-aware operator placement

for stream-processing systems. In: Proc. 22nd Int. Conf. on

Data Engineering, 2006.

23. Rhea S., Godfrey B., Karp B., Kubiatowicz J., Ratnasamy S.,

Shenker S., Stoica I., and Yu H.Y. OpenDHT: a public dht service

and its uses. In Proc. ACM Int. Conf. of the on Data Communi-

cation, 2005.

24. Rissanen J. Modeling by shortest data description. Automatica,

14:465–471, 1978.

25. Shah M.A., Hellerstein J.M., and Brewer E. Highly available,

fault-tolerant, parallel dataflows. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2004.

26. Sharfman I., Schuster A., and Keren D. A geometric approach

to monitoring threshold functions over distributed data streams.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 301–312.

27. Xing Y., Hwang J.-H., Cetintemel U., and Zdonik S. Providing

resiliency to load variations in ditributed stream processing.

In Proc. 32nd Int. Conf. on Very Large Data Bases, 2006.

Distributed Database Design

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
Horizontal fragmentation; Vertical fragmentation;

Data replication

Definition
Distributed database design refers to the following

problem: given a database and its workload, how

should the database be split and allocated to sites so as

to optimize certain objective function (e.g., to mini-

mize the resource consumption in processing the query

workload). There are two issues: (i) Data fragmentation

which determines how the data should be fragmented;

and (ii) Data allocation which determines how the

fragments should be allocated. While these two pro-

blems are inter-related, the two issues have traditionally

been studied independently, giving rise to a two-phase

approach to the design problem.

The design problem is applicable when a dis-

tributed database system has to be built from scratch.

In the case when multiple existing databases are to be

integrated (e.g., in multi-database context), there is

no design issue.

Historical Background
In a distributed database system, relations are typically

fragmented and stored at multiple sites. Fragmentation

of a relation is useful for several reasons. First, an appli-

cation typically accesses only subsets of relations. More-

over, different subsets are naturally needed at different

sites. As such, fragmenting a relation to facilitate locality

of accesses of applications can improve performance

(otherwise, the overhead of shipping relations from

one site to another may be unnecessarily high). Second,

342D Distributed Database Design

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:57

as applications may operate on different fragments, the

degree of concurrency is thus enhanced. Even within a

single application, accessing multiple fragments that

are located at different sites essentially facilitates paral-

lelism. Third, for applications that require multiple

fragments from different relations, these fragments can

be colocated to minimize communication overhead.

However, like normalization, decomposing a relation

to fragments may lead to poorer performance when

multiple fragments need to be joined. In addition,

if two attributes with a dependency are split across

fragments, then it becomes more costly to enforce the

dependency. Most of the works on fragmentation were

done in the early 1980s [4,5,11,12,13]. One of the funda-

mental task in vertical fragmentation is to identify attri-

butes that should be grouped together. In [11,9], the

bond energy algorithm (BEA) was first proposed to

cluster together attributes with high affinity for each

other; based on this, the relation is then partitioned

accordingly.

The allocation problem received much more atten-

tion. Initial work dated back to as early as 1969 where

the file allocation problem was investigated [7]. In

[1,2,6], the data allocation problem was shown to be

NP-hard. In a dynamic environment, the workload and

access pattern may change. In [3,8], dynamic data

allocation algorithms were studied. These techniques

change the initial data allocation to adapt to changing

access patterns and workload.

There were also several works that combine both

fragmentation and allocation into an integrated solu-

tion [13,14].

Foundations

Fragmentation

In a distributed database system, a relation R may be

split in a number of fragments F = {R1, R2, ..., Rn} in

such a way that R can be reconstructed from them.

There are essentially three fragmentation schemes.

Distributed Database Design. Figure 1. Fragmentation schemes.

Distributed Database Design D 343

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

In primary horizontal fragmentation, each fragment

is essentially a subset of the tuples in the original

relation (see Fig. 1a). In general, a fragment is defined

as a selection on the original relation, i.e., Ri ¼ sCi
ðRÞ

where Ci is a predicate used to construct Ri. A good

primary horizontal fragmentation of a relation typically

has three desirable properties:

1. Completeness: 8t 2 R, ∃Ri 2 F such that t 2 Ri. This

property states that every tuple in the original rela-

tion must be assigned to a fragment.

2. Disjointness: 8t 2 Ri, ∄Rj such that t 2 Rj, i 6¼ j, Ri,

Rj 2 F. This property states that all fragments are

disjoint, i.e., a tuple is assigned to only one frag-

ment. This property is useful as it leaves the deci-

sion to replicate fragments to the allocation phase.

3. Reconstruction: R =
S

n
i¼1Ri. This property states

that the original relation can be reconstructed by

simply union-ing all its fragments.

In derived horizontal fragmentation, a relation S is

fragmented based on the fragments of another relation

R. R is called the owner relation and S the member

relation. Each fragment of S is obtained using a semi-

join between S and a corresponding fragment of R,

i.e., Si ¼ S ⋉S:k¼Ri :kRi where k is the join attribute

(see Fig. 1b). Derived fragmentation is useful when

the fragments of R need to be combined with the

records of S with matching join keys. As such, the

corresponding derived fragment is the necessary sub-

set, and can be co-located with the R fragment. In

order to ensure completeness, referential integrity con-

straint has to be enforced, i.e., the set of distinct join

attribute values of the member relation must be a

subset of the set of distinct join attribute values of the

owner relation. Moreover, for disjointness property

to be achievable, the join attribute should be the key

of the owner relation.

In vertical fragmentation, a relation R[T] (where T

is the set of attributes in R’s schema) is decomposed

into, say k fragments R1[T1], R2[T2],...Rk[Tk] (where Ti
is the set of attributes in fragment Ri) (see Fig. 1c).

Each fragment Ri is defined as the projection of

the ordinal relation on the set of attributes Ti,

i.e., Ri ¼ pTi
ðRÞ. For completeness, T = [k

i¼1 Ti .

In addition, to reconstruct R from its fragments, the

lossless join property must be enforced, i.e., R

= fflk
i¼1 Ri . One way to achieve the lossless join prop-

erty is to repeat the key attributes in all the fragments,

i.e., 8i, key � Ti.

In practice, a combination of all the above frag-

mentation schemes can be applied on a single table.

For example, the EMP table can be first horizontally

partitioned based on the location, and then the frag-

ment at location S1 (EMP1) may be further vertically

partitioned into P1 = p#, Name, LocEMP1 and P2 = p#,
SalEMP1. Now a query over the original relation EMP

can then be evaluated as a query over the corresponding

fragments (cross-reference Distributed Query Proces-

sing). For example, a query to find the names of employ-

ees in location S1, expressed aspNamesLoc=S1EMP, can be

reduced to a query over one fragment: pNameP1. As can

be seen, fragmentation can lead to more efficient query

processing.

To generate the set of fragments, the following

strategy can be adopted. Given a set of simple predi-

cates P = {P1, P2, ..., Pm} (each Pi is of the form

attribute y value where y 2 {<, �, =, >, }), a

set of minterm predicates M is generated. M is defined

as follows:

M ¼ fmjm ¼ ^Pk2PPk
�; 1 � k � mg

where Pk* is Pk or ¬Pk. After eliminating useless

minterm prediates, the resultant minterm predicates

can be used to produce the set of disjoint fragments:

sm(R) for allm 2M. As an example, suppose P = {A<

10, A > 5, Loc = S1, Loc = S2} is the set of simple

predicates. Moreover, assume that there are only 2 loca-

tions, S1 and S2. Then, there will be a total of 16

minterm predicates; several of these are empty set,

e.g., {A < 10 ∧ A > 5 ∧ Loc = S1 ∧ Loc = S2} and

{A< 10∧¬A> 5∧ Loc = S1∧ Loc = S2}. The resultant

set of minterm predicates consists of 6 predicates: {5<

A< 10∧ Loc = S1}, {5< A< 10∧ Loc = S2}, {A� 5∧
Loc = S1}, {A � 5 ∧ Loc = S2}, {A 10 ∧ Loc = S1},

{A 10∧ Loc = S2}. Each of these predicates will result

in a fragment.

Allocation

Once a database has been fragmented, the fragments are

allocated to the sites. This gives rise to the allocation

problem: Given a set of fragments F = {F1, F2, ..., Fn}

and a number of sites S = {S1, S2, ..., Sm} on which a

number of applicationsQ = {Q1,Q2, ...,Qp} is running,

allocate Fi 2 F to Sj 2 S such that some optimiza-

tion criterion is met (subject to certain constraints,

e.g., available storage at certain sites). Some optimiza-

tion criteria include maximizing throughput, mini-

mizing the average response time or minimizing the

344D Distributed Database Design

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

total cost of serving Q. This (allocation) problem is

complex because the optimal solution depends on

many factors, for example, the location in which a

query originates, the query processing strategies (e.g.,

join methods) that are used, the hardware at the vari-

ous sites and so on. As such, for the problem to be

tractable, the problem is typically simplified with cer-

tain assumptions, e.g., only communication cost is

considered.

As an example, consider the following simple cost

models which determine the read, write and storage

cost of an arbitrary fragment f. (Note that a more

complex model will need to consider other factors

like fragment size, queries involving multiple frag-

ments, and so on.). The read cost of f is given by:

Xm
i¼1

t i �MINm
j¼1Cij

where i is the originating site of the request, ti is the

read traffic at Si and Cij is the cost to access fragment f

(stored) at Sj from Si. If only the transmission cost

is considered, then Cii = 0 if f is stored at site Si, and

Cij = 1 if f is not stored at site Sj. The update cost is

given by:

Xm
i¼1

Xm
j¼1

Xj � ui � Cij

where i is the originating site of the request, j is the site

being updated, Xj = 1 if f is stored at Sj and 0 otherwise,

ui is the write traffic at Si and Cij is the cost to update f

at Sj from Si. Finally, the storage cost is given by:

Xm
i¼1

Xi � di

where Xi = 1 if f is stored at Sj and 0 otherwise, and di is

the storage cost at Si.

Fragments can be allocated to minimize a combi-

nation of the above costs. Based on these cost models,

any optimization algorithm can be easily adapted to

solve it. For example, a randomized algorithm (such

as simulated annealing, iterative improvement) can

allocate fragments to sites and the allocation that

gives the best cost is the winner.

Heuristics have also been developed. For example, a

best-fit heuristic for non-replicated allocation works as

follows: For each fragment f, place it at the site j where

the total cost (for this fragment only) is minimum.

While this scheme is computationally efficient, it

ignores the effect of other fragments which may render

the allocation sub-optimal.

Future Directions
Even though the distributed database design has been

extensively studied, similar data partitioning and place-

ment (allocation) issues continue to be surfaced for

new architectural design. The focus here will be more

on load-balancing and dynamic data migration. For

example, in a highly dynamic and loosely connected

distributed systems like a peer-to-peer system, there

is yet no effective solution to dynamically adapt the

placement of data for optimal performance. Similarly,

in a distributed publish/subscribe environment, the

problem of migrating data (subscriptions) for optimal

performance has not been adequately explored. More-

over, in these systems, the logical network connection

between sites may be dynamically changing, and this

will influence the allocation of data.

Cross-references
▶Data Replication

▶ Parallel Database Management

▶ Peer Data Management System

Recommended Reading
1. Apers P.M. Data Allocation in distributed database systems.

ACM TODS, 13(2):263–304, 1988.

2. Bell D.A. Difficult data placement problems. Comput. J.,

27(4):315–320, 1984.

3. Brunstrom A., Leutenegger S.T., and Simha R. Experimental

evaluation of dynamic data allocation strategies in a distributed

database with changing workloads. In Proc. Int. Conf. on Infor-

mation and Knowledge Management, 1995, pp. 395–402.

4. Ceri S., Negri M., and Pelagatti G. Horizontal data partitioning

in database design. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1982, pp. 128–136.

5. Ceri S. and Pelagatti G. Distributed Databases: Principles

and Systems. McGraw-Hill, NY, USA, 1984. ISBN 0-07-

010829-3.

6. Chang C.C. and Shieh J.C. On the complexity of file allocation

problem. In Proc. Int. Conf. on the Foundations of Data Orga-

nization, 1985, pp. 177–181.

7. Chu W.W. Optimal file allocation in a multiple computer

network. IEEE Trans. Comput., C-18(10):885–889, 1969.

8. Karlapalem K. and Ng M.P. Query-driven data allocation

algorithms for distributed database systems. In Proc. 8th Int.

Conf. Database and Expert Syst. Appl., 1997, pp. 347–356.

9. McCormick W.T., Schweitzer P.J., and White T.W. Problem

decomposition and data reorganization by a clustering techni-

qiue. Oper. Res., 20(5):993–1009, 1972.

Distributed Database Design D 345

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

10. Muri S., Ibaraki T., Miyajima H., and Hasegawa T. Evaluation

of file redundancy in distributed database systems. IEEE

Trans. Software Eng., 11(2):199–205, 1995.

11. Navathe S., Ceri S., Wiederhold G., and Dou J. Vertical

partitioning of algorithms for database design. ACM TODS,

9(4):680–710, 1984.

12. Ozsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. Prentice-Hall, ISBN 0-13-659707-6, 1999.

13. Sacca D. and Wiederhold G. Database partitioning in a cluster

of processors. ACM TODS, 10(1):29–56, 1985.

14. Yoshida M., Mizumachi K., Wakino A., Oyake I., and

Matsushita Y. Time and cost evaluation schemes of multiple

copies of data in distributed database systems. IEEE Trans.

Software Eng., 11(9):954–958, 1985.

Distributed Database Management
System (DDBMS)

▶Distributed DBMS

Distributed Database Systems

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
Homogeneous distributed database systems; Heteroge-

neous distributed database systems; Federated data-

base systems; Multidatabases

Definition
A distributed database (DDB) is an integrated collection

of databases that is physically distributed across sites in a

computer network. A distributed database management

system (DDBMS) is the software system that manages

a distributed database such that the distribution aspects

are transparent to the users. To form a distributed

database system (DDBS), the files must be structured,

logically interrelated, and physically distributed across

multiple sites. In addition, there must be a common

interface to access the distributed data.

Historical Background
There are many reasons that motivated DDBS. First,

distributed databases reflect organizational structure.

Inmany organizations, the data are naturally distributed

across departments/branches where each department/

branch maintains its own local data. Moreover, it is not

alwayspossible tobuild a centralized system to consolidate

these data. In addition, by keeping these data at their

respective remote sites facilitates autonomy where each

site retains controlover thedata that it generates/possesses.

Next,aDDBSisexpectedtoofferbetterperformance–

data are placed at locations where they are frequently

accessed, and hence communication overhead can be

minimized; moreover, parallelism can be exploited

to process a query in parallel. Had data been stored in

a centralized site, the centralized site may become a bot-

tleneck, and the communication overhead may be

significant.

A DDBS also offers better availability – when a site

fails, the other operational sites can potentially still

be available for data retrieval and query processing.

A centralized site is vulnerable to single point of failure.

The concepts behind distributed DBMS were pio-

neered during the late 1970s through several research

projects including SDD-1 [8] developed by Computer

Corporation of America, Distributed INGRES [11]

started at the University of California at Berkeley, and

R*STAR [9] designed at IBM research lab.

The first well-publicized distributed DBMS prod-

uct was INGRES/Star, announced in 1987. Oracle also

announced its distributed DBMS capabilities in 1987,

and the first Oracle product to reasonably support dis-

tributed database processing is Oracle 7. IBM’s distri-

buted DBMS products, based on the distributed

relational data architecture, are largely systems for inte-

grating data sets across the different versions of DB2

that run on AIX, OS/2, OS/400, VM and MVS.

More recent trends have focused on multi-databases

(heterogeneous databases) and distributed systems that

offer more autonomy to individual system [10,12].

Foundations
In a distributed database system, data are distributed

across a number of sites [1,6]. A relation can be horizon-

tallyorvertically fragmented(cross-referenceDistributed

Database Design), and/or replicated. These fragments/

replicas are allocated to the sites to be stored there. In

a multi-database, where multiple databases are to be

integrated, one can view the local database as a fragment

of the integrateddatabase.

One key consideration in the design of a DDBS is

the notion of data transparency. With data transparency,

the user accesses the database thinking that (s)he

is working with one logical centralized database. There

346D Distributed Database Management System (DDBMS)

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

are several forms of transparency: (i) distribution trans-

parency; (ii) replication transparency; (iii) Location

transparency; and (d) Transaction transparency. In dis-

tribution transparency, the user is not aware of how

a relation has been fragmented. In replication trans-

parency, the user sees only one logically unique piece

of data. (S)he is masked from the fact that some frag-

ments may be replicated and that replicas reside at

different locations.

In location transparency, the user is masked from

the use of the location information when issuing the

query. In other words, there is no need for the user to

specify the location of data that (s)he is retrieving. This

follows from the distribution/replication transparen-

cies. In transaction transparency, the user is masked

from coordination activities required to achieve con-

sistency when processing queries. In fact, each transac-

tion maintains database consistency and integrity

across the multiple databases/replicas (without user

knowledge). A global transaction that accesses data

from multiple sites has to be divided into subtransac-

tions that process data at one single site.

A DDBMS comprises a number of components [2]:

(i) The database management component is a centra-

lized DBMS that manages the local database; (ii) The

data communication component handles the commu-

nication between sites in a DDBS; (iii) The data dictio-

nary which is extended to represent information about

the distribution of data (and sites) in the DDBS; (iv) the

distributed database component (DDB) that manages

the DDBS to ensure that the system functions correctly.

In particular, the DDB performs a number of tasks.

First, in processing a global transaction, the DDB needs

to determine a distributed query plan that is most

cost-effective. Distributed query processing algorithms

including semijoins are often used to reduce the com-

munication overhead.

Second, there is a need to synchronize the accesses

from multiple users to the distributed databases in order

to maintain the consistency and integrity of the database.

Unlike centralized database systems, the database con-

sistency has to be guaranteed at each site as well as across

all sites.

Third, as a global transaction may require accessing

data frommultiple sites, the competition for these data

can result in deadlocks (for locking-based synchroni-

zation mechanisms, which is the most commonly

used). In a DDBS, deadlocks may not occur within a

site, but occur across sites. As such, having a ‘‘global’’

view is critical in order to detect and to recover from

deadlocks.

Fourth, atomicity of global transactions is an impor-

tant issue. Clearly, if a subtransaction running at one

site commits while another substransaction running at

another site aborts, then the database will become incon-

sistent. As such, distributed transaction commit pro-

tocols must ensure that such a situation cannot arise.

The two-phase commit protocol is themost widely used.

Finally, as in any distributed systems, sites may fail or

become inaccessible as a result of network problems. As a

result, it is necessary to ensure the atomicity of global

transactions in the midst of failures. Moreover, mechan-

isms must be provided to ensure the consistency of the

database, and to bring the recovered failed nodes up-to-

date.

While DDBS offers a host of promises and advan-

tages, it is very difficult to realize a full-fledge DDBS.

For example, it has been argued that full transparency

makes the management of distributed data very diffi-

cult so much so that it can lead to poor manageability,

poor modularity and poor message performance [3]. As

another example, it is clearlymore complex to design the

DDB component and the respective mechanisms and

protocols for the DDBS to operate as promise and to

ensure consistency and reliability. Being connected to a

network alsomeans that it is more vulnerable to security

threats. Nevertheless, it is an exciting field that offers

many challenges for researchers to work on.

Key Applications
Manyof today’s applications are naturally distributed. For

example, in supply-chain management, there is a need to

access information concerning parts, products, suppliers

which are housed by different organizations. As another

example, in financial applications, a bank typically has

many branches locally or overseas, and each such branch

maintains its own databases to better serve their local

customers; there is, however, a need to have an integrated

viewof the bank aswell. Other applications include airline

reservation, government agencies, health care, and so on.

Future Directions
Distributed databases continue to be an interesting

area of research. In particular, the internet has made

large scale distributed systems possible and practical.

There are still many problems that have not been

adequately addressed. For example, it remains a chal-

lenge to find the optimal query optimization plan

Distributed Database Systems D 347

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

especially when site autonomy are to be enforced.

Some recent works have examined these using micro-

economics principles [7]. Another direction is the se-

mantic interoperability problem [4]. Yet another

direction is in the design of advanced distributed data

management systems, e.g., peer-based data manage-

ment [5] (where peers are highly dynamic and may

join and leave the network anytime), mobile data

management (where nodes are mobile), and sensornet

databases (where sensor nodes are battery-powered,

has limited storage and processing capabilities).

Cross-references
▶Data Replication

▶Distributed Architecture

▶Distributed Database Design

▶Distributed Query Optimization

▶Distributed Query Processing

▶ Parallel Database Management

▶ Peer Data management Systems

Recommended Reading
1. Bell D. and Grimson J. Distributed Database Systems. Addison-

Wesley, 1992.

2. Ceri S. and Pelagatti G. Distributed Databases: Principles and

Systems. McGraw-Hill, 1984.

3. Gray J. Transparency in Its Place – The Case Against Transparent

Access to Geographically Distributed Data. Technical Report

TR89.1, Cupertino, Calif.: Tandem Computers Inc., 1989.

4. Halevy A.Y., Ives Z.G., Suciu D., and Tatarinov I. Schema medi-

ation for large-scale semantic data sharing. VLDB J., 14(1):68–83

2005.

5. Ng W.S., Ooi B.C., Tan K.L., and Zhou A. PeerDB: A P2P-based

System for Distributed Data Sharing. Proc. 19th Int. Conf. on

Data Engineering, 2003, pp. 633–644.

6. Ozsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. Prentice-Hall, 1999.

7. Pentaris F. and Ioannidis Y.E. Query optimization in distributed

networks of autonomous database systems. ACM Trans. Data-

base Syst., 31(2):537–583, 2006.

8. Rothnie Jr., Bernstein P.A., Fox S., Goodman N., Hammer M.,

Landers T.A., Reeve C.L., Shipman D.W., and Wong E. Intro-

duction to a system for distributed databases (SDD-1). ACM

Trans. Database Syst., 5(1):1–17, 1980.

9. Selinger P.G. An architectural overview of R*: a distributed

database management system. Berkeley Workshop, 187, 1981.

10. Sheth A.P. and Larson J.A. Federated database systems for man-

aging distributed, heterogeneous, and autonomous databases.

ACM Comput. Surv., 22(3):183–236., 1990.

11. Stonebraker M. The Design and Implementation of Distributed

INGRES. The INGRES Papers, 1986, pp. 187–196.

12. Stonebraker M., Aoki P.M., Pfeffer A., Sah A., Sidell J., Staelin C.,

and Yu A. Mariposa: a wide-area distributed database system.

VLDB J., 5(1):48–63, 1996.

Distributed Databases

▶ Storage Grid

Distributed DBMS

SAMEH ELNIKETY

Microsoft Research, Cambridge, UK

Synonyms
Distributed Database Management System (DDBMS)

Definition
A distributed DBMS is a software system that manages a

distributed database, which consists of data that are

partitioned and replicated among interconnected server

sites. The primary objective of a distributed DBMS is to

hide data distribution so that it appears as one logical

database system to the clients.

Historical Background
Distributed DBMS started in the late 1970s [2,10,12]

with shared-nothing parallel database systems [13],

which were designed for achieving higher performance

by exploiting parallelism in transaction workloads.

Work on distributed DBMS was mainly motivated by

the need to manage data for large organizations having

different offices and subsidiaries but slow computer

networks hampered the adoption of DDBMS [14]. In

the 1990s, advances in computer networking coupled

with the growing business needs to manage distributed

data fueled the work on distributed database systems.

Foundations
A distributed DBMS (DDBMS) manages a distributed

database that is accessed at multiple sites, where each

site contains a partition of the database. A single parti-

tion can be replicated across multiple sites. At one end

of the spectrum, in a fully-replicated database, each site

has a full copy of the database. At the other end of the

spectrum, a fully-partitioned database is divided into

disjoint partitions, also called fragments, and each is

placed at only one site. Hence, a DDBMS typically

maintains a data directory which maps each data

item to the sites at which the data item is maintained.

This design raises three key challenges for DDBMSs. The

348D Distributed Databases

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

first challenge is the distribution and placement of the

data. Second, the distributed DBMS must update all

copies of modified data items when executing update

transactions. The third challenge arises when a query

needs to access data items at multiple sites, requiring

coordination and communication among the sites. Des-

pite these challenges, there is a potential gain in perfor-

mance due to the proximity of data to applications and

due to inter-transaction and intra-transaction parallel-

ism in the workload.

Data Placement among Sites

As far as data placement is concerned, there is a perfor-

mance tradeoff. Applications running at a site prefer to

access all needed data items locally. At the same time,

this naturally leads to an increasing number of data

replicas, and updates become more expensive as they

need to reach more replicas. This tradeoff makes decid-

ing how the database is distributed one of the main

design decisions. The database designer typically deter-

mines which relations are allocated to which sites. Data

placement and distribution depend primarily on the

applications that access the database as well as on

the server network.More fine-grained data distribution

as used in parallel database systems [3,5] is also possi-

ble. For example, a single relation can be fragmented

horizontally (e.g., using a selection operator) or verti-

cally (e.g., using a projection operator) into several

sub-relations and each sub-relation is allocated to at

least one site.

Data placement can also be performed dynamically

[6]. Most approaches to dynamic data placement are

adaptive. They keep statistics on the workload and

move or copy data at different sites so as to adjust the

data placement to the current workload. For example,

a new copy of a set of data items could be established

to help balance the load among servers, or to reduce

wide-area network communication costs. When a new

copy of a data item is made, the copy is designated

as either a replica or a cache. A replica of a data

item is long-lived and maintained by reflecting the

item’s modification to the copy. On the other hand,

a cache is typically short-lived and invalidated on

changes to the data item. Due to the complexity of

the dynamic data placement problem, some research

work targets using economic models [6] to optimize

dynamic data placement. One can no longer discuss

caching and assume that the DDBMS maintains all

data item copies.

Propagating the Effects of Update Transactions

When an update transaction modifies the value of a

database item, the DDBMS is responsible for reflecting

this change to all copies of the data item; otherwise the

copies become inconsistent and consequently the data-

base servers may diverge, violating system correctness

properties. There is a large body of work on handling

updates, mainly inspired by the work in distributed

systems (e.g., quorum protocols). However, few ideas

have impacted commercial DDBMS products as they

mainly use ROWAA (Read One Write All Available)

protocols. In a ROWAA protocol, the update of a data

item has to reach all copies of that data item. It is,

however, sufficient to access only a single copy to read

any data item. Here the discussion focuses on a key

correctness property for ROWAA protocols: one-copy

semantics.

Whenadistributedsystemoffersone-copysemantics,

clients cannot tell whether they are communicating

with a single DBMS or a distributed DBMS. Without

one-copysemantics,applicationshavetodealwith incon-

sistencies while accessing the database. In practice, some

applications require one-copy semantics (e.g., airline res-

ervation, banking, and e-commerce systems). However,

a large class of applications can tolerate inconsistencies

(e.g., reporting applications).

The process of reflecting the changes of modified

data items is called update propagation, and there are

several protocols that implement it. For example in

eager protocols, all live copies of each modified data

item are changed as part of the update transaction. In

contrast, lazy protocols propagate the changes after the

commit of the update transaction.

One-copy semantics can be implemented using

eager or lazy update propagation protocols, but it

requires a total order on the propagated updates.

This total order is typically the commit order of update

transactions and each site applies its relevant updates

in an order consistent with the total order.

Distributed Query Execution

When a distributed DBMS receives a query, it gener-

ates a query execution plan that may access data at

multiple sites. Each site executes part of the plan and

may need to communicate with other sites. Commu-

nication among sites is expensive and good plans gen-

erally minimize the amount of data exchanged between

sites [8]. In wide-area networks, the cost of communi-

cation is generally higher than the cost of local

Distributed DBMS D 349

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:58

processing. In contrast, the cost of communication is

equal to or less than the cost of local processing in

local-area networks. Optimizing distributed queries is

challenging [6] because the search space is large. It

includes the selection of data fragments to be accessed,

the order of operations in the plan, and the cost of

communication among the sites. The problem

becomes harder when optimizing multiple queries at

a time.

A DDBMS provides global transaction isolation

(e.g., one-copy serializability [9] or generalized snap-

shot isolation [4]) through distributed concurrency

control. To provide global isolation for transactions,

local concurrency control protocols alone are insuffi-

cient. For example, if each site individually ensures

local serializability, the global transaction execution

may violate global serializability since two sites could

locally serialize conflicting global transactions in dif-

ferent orders. Protocols that implement distributed

concurrency control (e.g., distributed two-phase lock-

ing or multi-version timestamp ordering) require

coordination among the sites.

For example in locking-based distributed concur-

rency control protocols, the primary-site [1] method

uses a central lock controller to manage the locks. Alter-

natively, in the primary-copy [15] method each data

item has one copy that is designated as the primary

copy, and only the primary copy is locked. This design

allows locks to be distributed with the data among

several sites.

Coordination among several sites can become a

significant source of overhead. Deadlocks and aborts

become more frequent in a distributed DBMS com-

pared to centralized DBMS because distributed trans-

actions require communication among multiple sites

and therefore take longer to execute.

Handling Failures

Fault-tolerance is an important aspect in any

distributed system. A DDBMS contains multiple sites

and each site can fail independently. TheDDBMS, there-

fore, needs to cope with and recover from site failures.

The DDBMS always guarantees the safety properties –

including atomicity and durability of distributed update

transactions – despite site failures [9,12]. To terminate

an update transaction while ensuring the safety proper-

ties, the DDBMS employs a distributed commit protocol

[1] (e.g., distributed two-phase commit, and three-phase

commit) that are specifically designed to handle site

failures. Liveness properties, which is concerned with

the ability to process transactions, depend on which

and how many sites are still connected and operating

normally. Liveness properties encompass system perfor-

mance and availability and usually require high degree of

DDBMS customization to meet the desired targets. For

example instead of using primitive techniques to recover

from a crash and bring a site’s database up-to-date, data

streaming from multiple sources at several sites sub-

stantially reduces database recovery time and therefore

improves the DDBMS availability.

Key Applications
Today, distributed DBMSs are used to manage dis-

tributed databases, such as in geographically distributed

systems (e.g., hotel chains and multi-plant manufac-

turing systems), and in databases under several admin-

istrative or autonomous domains. Distributed DBMSs

are also used to achieve fault-tolerance and scalability

when a centralized DBMS is not satisfactory, for instance

in financial transaction processing and airline reserva-

tion systems.

In modern data centers that host web services,

DDBMS technology appears in two forms. First in

fully replicated database systems, which consist of a

cluster of servers interconnected through a fast local-

area network. The objective of such replicated data-

bases is to achieve both higher availability since data

is available at several server nodes as well as higher

performance as transactions can be processed in paral-

lel at the database servers.

The second form is partitioned database systems in

which relations are striped (fragmented) among several

servers. A single query can be divided into smaller sub-

queries that execute on the servers, leading to a shorter

response time.

Future Directions
Currently, DDMBS technology is rarely used in large scale

information systems without extensive customization

necessary to obtain adequate performance. At the same

time, networking and storage technologies are advancing

at a pace much higher than the improvement in micro-

processors clock speeds. These trends suggest that

DDBMS use will increase in the future. But further

research is needed to ease the deployment and manage-

ment of DDBMS.

350D Distributed DBMS

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

Cross-references
▶DBMS

▶Distributed Concurrency Control

▶Distributed Database

▶Distributed Database Design

▶ Parallel Database Management

▶Replication for High Availability

▶Replication for Scalability

Recommended Reading
1. Bernstein P. and Goodman N. Concurrency control in

distributed database systems. ACM Comput. Surv., 13

(2):185–221, 1981.

2. Bernstein P., Shipman D., and Rothnie J. Concurrency control

in a system for distributed databases (SDD-1). ACM Trans.

Database Syst., 5(1):18–51, 1980.

3. DeWitt D. and Gray J. Parallel database systems: the future

of high performance database systems. Commun. ACM.,

35(6):85–98, 1992.

4. Elnikety S., Pedone F., and Zwaenepoel W. Database replication

using generalized snapshot isolation. In Proc. 24th Symp. on

Reliable Distributed Syst., 2005.

5. Ghandeharizadeh S., Gao S., Gahagan C., and Krauss R.

High performance parallel database management systems. In

Handbook on Data Management in Information Systems,

J. Blazewicz, W. Kubiak, T. Morzy, M. Rusinkiewicz (eds.).

Springer, 2003, pp. 194–220.

6. Kossmann D. The state of the art in distributed query proces-

sing. ACM Comput. Surv., 32(4):422–469, 2000.

7. Muffin S.M. A Distributed Database Machine. ERL Technical

Report UCB/ERL M79/28, University of California at Berkeley,

CA, 1979.

8. Özsu T. and Valduriez P. Principles of Distributed Database

Systems. Prentice-Hall, Englewood Cliffs, NJ, 1991.

9. Pacitti E., Coulon C., Valduriez P., and Özsu T. Preventive

replication in a database cluster. Distrib. Parallel Databases.,

18(3):223–251, 2005.

10. Papadimitriou C. The theory of database concurrency control.

CS Press, AB, 1988.

11. Ries D. and Epstein R. Evaluation of Distribution Criteria for

Distributed Database Systems. UCB/ERLTechnical Report M78/

22, UC Berkeley, CA, 1978.

12. Skeen D. and Stonebraker M. A formal model of crash recovery

in a distributed system. IEEE Transactions on Software Engi-

neering 9(3):219–228, 1983.

13. Stonebraker M. The case for shared nothing. IEEE Database

Eng. Bull., 9: 4–9, 1986.

14. Stonebraker M. Readings in Database Systems (2nd ed.).

Morgan Kaufmann Publishers, Scan Mateo, CA, 1994.

15. Zaslavsky A., Faiz M., Srinivasan B., Rasheed A., and Lai S.

Primary copy method and its modifications for database repli-

cation in distributed mobile computing environment. In Proc.

15th Symp. on Reliable Distributed Syst., 1996.

Distributed Deadlock Management

WEE HYONG TOK

National University of Singapore, Singapore,

Singapore

Synonyms
Deadlocks in distributed database systems

Definition
In a database that supports locking protocol, accesses

to data are controlled using locks. Whenever a transac-

tion needs to access a shared object, it will be granted

a lock (and hence access) to the object if there is

no other conflicting locks on the object; otherwise,

the requesting transaction has to wait. A deadlock

occurs when transactions accessing shared data objects

are waiting indefinitely in a circular fashion until a

special action (such as aborting one of the transac-

tions) is taken. In a distributed database environment,

deadlocks can occur locally at a single site, or across

sites where a chain of transactions may be waiting for

one another to release the locks over a set of shared

objects.

For example, consider two data objects o1 and o2
stored at site 1 and site 2 respectively. Suppose two

transactions, T1 and T2, initiated at site 1 and site 2, are

updating o1 and o2 concurrently. As T1 is updating o1 at

site 1, it holds a write lock on o1. Similarly, T2 holds a

write lock on o2 at site 2. When T1 attempts to access

o2, it has to wait for T2 to release the lock on o2.

Likewise, T2 has to wait for T1 to release the lock

on o1. This leads to a deadlock as both transactions

cannot proceed.

Three techniques are commonly used to handle

deadlocks: prevention, avoidance, and detection and

resolution. Deadlock prevention methods ensure that

deadlocks will not occur in the database system. This is

achieved by preventing transactions which will cause

deadlocks from being executed. Deadlock avoidance

schemes preemptively detect potential deadlocks dur-

ing the scheduling of multiple transactions. Deadlock

detection protocols detect deadlocks in running trans-

actions by using a transaction wait-for graph. When-

ever deadlocks are detected, a resolution strategy

aborts some of the transactions in order to break the

deadlock.

Distributed Deadlock Management D 351

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

Historical Background
When transactions access shared objects, there is a

dependency relationship between the transactions.

The dependency relationship captures how the trans-

actions wait for one another, and is commonly repre-

sented as a directed graph, called the wait-for graph

(WFG). Each node represents a transaction. An edge

(i.e. arc) in the graph is used to capture the wait-for

relationship. For example, if a directed edge is found

between node A and node B, then the transaction

represented by node A is waiting for another transac-

tion which is represented by node B. In distributed

database systems, the WFG is local if it involves only

the data at a single site, and is global if it involves data

from multiple sites. When a cycle exists in a WFG, a

deadlock occurs.

Deadlock detection algorithms for distributed da-

tabase systems can be categorized as: centralized, hier-

archical, and distributed [12].

Centralized deadlock detection algorithms [5,6]

use a central site for detecting deadlocks in a distributed

database system. This site is referred to as the central

deadlock detection site, C. C is responsible for build-

ing the global WFG. Other sites transmit their local

WFG to C. Subsequently, only the changes to the

local WFG are transmitted to C. These changes include

new or deleted edges in the local WFG. C continuously

checks for cycles in the global WFG and performs

deadlock resolution whenever cycles are detected. The

implementation of centralized deadlock detection

is simple and straightforward. However, due to the

need to continuously transmit new changes in the

local TWG to C, it can cause a high communication

overhead. In addition, the use of a single site makes it

susceptible to overloading and being a single point of

failure. Özsu and Valduriez [12] noted that centralized

two-phase locking (2PL) and deadlock detection is a

good, natural combination. Centralized deadlock de-

tection is implemented in Distributed INGRES [15].

Hierarchical deadlock detection algorithms [10,6]

rely on a hierarchical organization of the sites in a

distributed database system to detect deadlocks. Each

internal node (site) merges the WFG from its child

nodes into a WFG that captures the dependency rela-

tionship among the descendant nodes. It can thus

detect deadlocks in its descendant nodes. It also trans-

mits the combined WFG to its parent node. The key

idea in hierarchical deadlock detection is to ensure that

a deadlock can be detected as early as possible by a

nearby site. This reduces the need to escalate the de-

tection to the root site. As deadlock detection is spread

amongst several sites, hierarchical deadlock detection

algorithms incur less communication overheads com-

pared to centralized algorithms. The implementation

of hierarchical deadlock detection algorithms is more

complex due to the need to coordinate between the

multiple deadlock detectors. Figure 1 shows an exam-

ple of how five sites in a distributed database system is

organized in a hierarchy for deadlock detection. Some

sites might function as the deadlock detector for mul-

tiple levels of the hierarchy. Each deadlock detector is

denoted as DDls, where l and s denote the level and

Distributed Deadlock Management. Figure 1. Hierarchical deadlock detection.

352D Distributed Deadlock Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

the site of the deadlock detector respectively. From the

figure, observe that in cluster 1, site 1 is the control site,

and detects deadlocks for sites 1, 2, and 3. Thus, sites 1,

2, and 3 will need to update the deadlock detector at

the next level (i.e. DD11) with their respective

local WFG. If the deadlock needs to be detected

between site 1 and site 5, then it will be detected by

the deadlock detector at the root of the tree (i.e. DD0s,

where 1 � s � 5).

Distributed deadlock detection algorithms [10,11]

rely on the cooperation of all the sites in the distributed

database system in order to detect deadlocks. Each site

in the distributed database system consists of a dead-

lock detector. Potential deadlock information is trans-

mitted from one site to another. Consequently, the

deadlock detector modifies its local WFG using infor-

mation about the potential deadlocks, as well as

whether a local transaction is waiting for transactions

at another sites. Distributed deadlock detection is

implemented in System R* [11].

In distributed database systems, effective global

deadlock detection rely on the the timely propagation

of local information from all the sites. However, some

sites might be slower in propagating local information.

As a result, this might lead to the detection of phantom

deadlocks. A phantom deadlock is a deadlock which

does not exist. Hence, in order to break the phantom

deadlocks, transactions might be aborted. Both the

centralized and hierarchical algorithms are prone to

the phantom deadlock problem. For example, in Fig. 2,

a global deadlock exists. However, at site 2, the

transaction T5 might be aborted. T5 can aborted due

to the business logic encoded in the transaction. This

changes the local WFG for site 2. Consequently, no

more cycle exists in the global WFG. However, if the

changes in the local WFG are not propagated in a

timely manner to update the global WFG, a phantom

deadlock arises.

The book [12] provides a good overview of

distributed deadlock management techniques. The

surveys [4,7,14,1] provide a good discussion of various

distributed deadlock detection algorithms. Krivokapić

et al. [8] further categorizes deadlock detection app-

roaches as path-pushing [10], probe-based [13] or

having a global state strategy [2,3]. Using the categori-

zation, Krivokapić et al. [8] presented a detailed per-

formance analysis of representative algorithms for each

of the categories.

Foundations
A distributed database system consists of a collection

of database sites. A centralized database system is lo-

cated at each of the sites. The database sites communi-

cate with each other by sending messages via a

communication network. A transaction consists of a

sequence of operations (e.g. read, write) that are per-

formed on the data objects. Whenever a transaction

needs to perform an operation on a data object, it

sends a resource request to a transaction manager

(TM). The resource request can refer to operations

that are performed on local or remote data objects.

Transaction Wait-for Graph

Given N active transactions, T1. . .TN, in a database

system, a directed graph, called a transaction Wait-for

Graph (WFG), can be built. Each vertex of the graph

corresponds to an active transaction. A wait-for rela-

tionship exists between two transactions, Ti and Tj

(i 6¼ j), if Ti is waiting for Tj to release a lock. This is

denoted as a directed edge between two vertices, Vi and

Vj (i 6¼ j) in the graph. In most deadlock detection

algorithms, the WFG is used for analyzing deadlocks.

Deadlocks occur when cycles are detected in the graph.

In order to analyze deadlocks in a distributed

database system, a global transaction wait-for-graph

(WFG) is commonly used. The global WFG is con-

structed by taking the union of the local WFGs for all

the sites in the distributed database system. The

main difference between the local and global WFG is

that the global WFG captures inter-site wait-for

Distributed Deadlock Management. Figure 2. Global

wait-for graph.

Distributed Deadlock Management D 353

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

relationship. Inter-site waiting occurs when a transac-

tion, executing on one site, is waiting for the release of a

lock on a data object by another transaction executing on

another site. For example, in a distributed database

system, five transactions, T1 to T5 are active on two

sites. Figure 2 shows the global WFG, which captures

the wait-for relationship between the transactions. The

dashed lines are used to denote inter-site waiting.

From the figure, several observations can be made.

Firstly, one can observe that at site 1, transaction T1

is waiting for T2. At site 2, T5 is waiting for T4, and T4 is

waiting for T3. In addition, the transaction T2 (site 1)

is waiting for T5 (site 2), and T3 (site 2) is waiting for

T1 (site 1). As a cycle is detected in the global WFG, a

deadlock is detected.

Deadlock Models

Different types of models of deadlock are presented

in [7]. The models are used to capture the type of

resource requests that need to be processed by applica-

tion programs. The models include: one-resource,

AND, OR, AND-OR, (nk), and the unrestricted

model. In the one-resource model, a transaction can

have at most one resource request. Thus, the maxi-

mum outdegree for a WFG vertex is 1. In both the

AND and OR models, a transaction requests for access

to a set of shared data objects (i.e. resources). The main

difference between the two models is that in the AND

model, the transaction blocks until all the requested

resources are available, whereas in the OR model, a

transaction blocks until any one of the resources is

available. The AND-OR deadlock model is a generali-

zation of the AND and OR models. In order to further

generalize the AND-OR model, the (n
k
) model is used.

In this model, a transaction can request for any

k available resources from a set of n available resources.

The unrestricted model does not impose any con-

straints on the number of resources that are requested

by a transaction. In the one resource and AND dead-

lock model, a deadlock occurs whenever there is a cycle

in the WFG. The detection of deadlocks in the other

models require more complex computation, and is

discussed in details in [7].

Static Vs Dynamic Deadlock Detection

Deadlock detection can be classified as static or dy-

namic. In static deadlock detection, the overall strategy

in which deadlocks is detected is fixed. For example,

in centralized deadlock detection, the central site is

pre-determined. Similarly, in hierarchical deadlock de-

tection, the hierarchical organization of the sites is also

pre-determined. In distributed deadlock detection, all

sites have individual deadlock detection mechanisms.

In dynamic deadlock detection, deadlock detection

agents (DDA) are dynamically created for transactions

that access the same data objects. This is first proposed

in [8]. This allows the DDA scheme to adapt or self-

tune to the system transaction load.

Deadlock Resolution

Whenever deadlocks are detected, deadlock resolution

is used to remove the deadlocks. The key idea in dead-

lock resolution is to minimize the cost incurred as a

result of resolving the deadlock. There are two possible

strategies for deadlock resolution. In the first strategy, a

deadlock resolver aborts one or more transactions

that caused the deadlock. In the second strategy, trans-

actions are timed-out whenever deadlock occurs.

In the first strategy, one or more transactions are

selected to be aborted. These transactions are referred

to as the victim transaction(s). Singhal [14] presents a

general strategy for deadlock resolution in distributed

database systems. A victim transaction which will opti-

mally resolve the deadlock is selected. The victim

transaction is aborted, and the locks that are held by

the transaction are released. Deadlock detection infor-

mation that are related to the victim transaction is

removed from the system. In a distributed database

system, several issues need to be considered when

aborting transactions. First, whenever a deadlock is

detected by a site, the site might not have access to

the global deadlock information. Second, multiple sites

might independently detect the same deadlock. This

might cause the sites to independently resolve the

deadlock. Consequently, this causes more transactions

to be aborted than necessary. To solve this issue, a

deadlock resolver can be selected from amongst the

sites or the deadlock detection by various sites can be

prioritized. In order to determine the set of victim

transactions, various heuristics can be used. Intuitively,

the heuristics ensure that the cost of aborting transac-

tions is minimized. Some of these heuristics include:

choosing the youngest transaction in the cycle [8]

or choosing the transaction that causes the maximum

number of cycles [9]. The first heuristic is motivated by

the observation that the youngest transaction has just

started execution. Hence, it is less costly to abort. In

contrast, an older transaction has executed for some

354D Distributed Deadlock Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

time, and will be costly to abort. The second heuristic is

motivated by the observation that when deadlocks

occur, it is important to break the cycles in the global

WFG. If a transaction that caused themaximumnumber

of cycles is aborted, it can potentially removemore cycles

in the WFG. Hence, deadlock can be resolved faster.

In the second strategy, deadlocks are resolved using

time-outs. This strategy is suitable for the case where

deadlocks are infrequent. The time-out interval deter-

mines the waiting time for a transaction to be aborted.

Thus, the selection of an optimal time-out interval

is important. A short time-out interval will cause trans-

actions to be aborted unnecessarily. On the other

hand, a long time-out interval will result in the slow

resolution of deadlocks might not be resolved quickly.

Consequently, this impacts on the responsiveness of the

applications.

Key Applications
Deadlocks occur whenever locking-based protocols are

used to manage shared data objects or resources.

Distributed deadlock management is more challenging

to handle because none of the sites have global knowl-

edge of the entire system. The techniques that are

described can be applied and adapted for deadlock

management for various types of distributed systems.

Future Directions
The emergence of new computing platforms (e.g. Peer-

to-Peer (P2P), cloud computing) present new interac-

tion modalities with distributed data. As applications

built on these paradigms mature, a natural progression

would be the need for transactions which access shared

resources. This compels the need for locking-based

protocols to be used for accessing the shared resources.

Consequently, many open issues arise for distributed

deadlock detection in these new computing platforms.

Cross-references
▶Distributed Concurrency Control

▶Distributed Database Design

▶Distributed Database Systems

▶Two-Pheese Loching

Recommended Reading
1. Abonamah A.A. and Elmagarmid A. A survey of deadlock detec-

tion algorithms in distributed database systems. Advances in

Distributed and Parallel Processing (vol. one): system paradigms

and methods, pages 310–341, 1994.

2. Bracha G. and Sam T. Distributed deadlock detection.

Distributed Computing, 2(3):127–138, 1985.

3. Chandy K.M and Lamport L. Distributed snapshots:

Determining global states of distributed systems. ACM Trans.

Comput. Syst., 3(1):63–75, 1986.

4. Elmagarmid A.K. A Survery of distsributed deadlock algorithms.

SIGMOD Record, 15(3):37–45, 1986.

5. Gray J. Notes on data base operating systems. In: Advanced

Course: Operating Systems, pages 393–481, 1978.

6. Ho Gray S. and Ramamoorthy C.V. Protocols for deadlock

detection in distributed database systems. IEEE Trans. Softw.

Eng., 8(6):554–557, 1982.

7. Knapp E. Deadlock detection in distributed databases. ACM

Comput. Surv., 19(4):303–328, 1987.

8. Krivokapić., N. Kemper A. and Gudes E. Deadlock detection in

distributed database systems: a new algorithm and a compara-

tive performance analysis. The VLDB Journal, 8(2):79–100,

1999.

9. Makki K. and Pissinou N. Detection and resolution of deadlocks

in distributed database systems. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 1995, pp. 411–416.

10. Menascé D.A. Muntz R. Locking and deadlock detection in

distributed data bases. IEEE Trans. Softw. Eng., 5(3):195–202,

1997.

11. Mohan C., Lindsay., and Bruce G. Obermarck Ron Transaction

management in the R* distributed database management sys-

tem. ACM Trans. Database Syst., 11(4):378–396, 1986.

12. Özsu T.M. and Valduriez P. Principles of Distributed Database

Systems, Second Edition. Prentice-Hall, 1999.

13. Roesler M., Burkhard W.A. and Cooper K.B. Efficient deadlock

resolution for lock-based concurrency control schemes. In: Proc.

18th Int. Conf. on Distributed Computing Systems, pages 224–

233, 1998.

14. Singhal M. Deadlock detection in distributed systems. Comput-

er, 22(11):37–48, 1989.

15. Stonebraker M. The design and implementation of distributed

ingres. The INGRES Papers : anatomy of a Relational Database

System, Pages 187–196, 1986.

Distributed Hash Table

WOJCIECH GALUBA, SARUNAS GIRDZIJAUSKAS

EPFL, Lausanne, Switzerland

Synonyms
DHT

Definition
A Distributed Hash Table (DHT) is a decentralized

system that provides the functionality of a hash table,

i.e. insertion and retrieval of key-value pairs. Each node

in the system stores a part of the hash table. The nodes are

interconnected in a structured overlay network, which

Distributed Hash Table D 355

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

enables efficient delivery of the key lookup and key inser-

tion requests from the requestor to the node storing the

key. To guarantee robustness to arrivals and departures of

nodes, the overlay network topology is maintained and

the key-value pairs are replicated to several nodes.

Key Points
Every DHT defines its key space. For example, in many

DHTs the keys are 160-bit integers, which is the output

of the popular SHA1 hash function. Each node in the

system has a specific location in the key space and

stores the key-value pairs that are close to that location.

The different DHTsystems vary in the exact algorithms

for deciding which node should store which key [2].

The DHTrelies on a structured overlay network for

some of its functionality. The overlay network uses the

DHT keys for addressing its nodes, i.e. the overlay is

content (key) addressable. The structured overlay net-

work provides the routing primitive which allows scal-

able and reliable delivery of key lookup and key

insertion messages. The structured overlay implemen-

tations maintain the overlay topology and ensure rout-

ing efficiency as the nodes arrive and depart from the

system (node churn) [1].

Not only the overlay topology but also the DHT

data storage must be tolerant to churn. To achieve that,

the key-value pairs are replicated across several nodes.

A sufficient number of replicas needs to be maintained

to prevent data loss under churn. There are a number

of approaches to replication (cf. Peer-to-peer storage

systems). In the most common replication strategy a

node joining the DHT contacts the nodes that are close

to it in the key space and replicates the key-value pairs

that they store.

Cross-references
▶Consistent Hashing

▶Hash Table

▶Overlay Network

▶ Peer-to-Peer Overlay Networks

▶ Peer-to-Peer System

▶Replication in DHTs

Recommended Reading
1. Rhea S.C., Geels D., Roscoe T., and Kubiatowicz J. Handling

churn in a DHT. In Proc. USENIX 2004 Annual Technical Conf.,

2004, pp. 127–140.

2. Risson J. and Moors T. Survey of research towards robust peer-

to-peer networks: Search methods. Comput. Networks, 50

(17):3485–3521, 2006.

Distributed Join

KAI-UWE SATTLER

Technical University of Ilmenau, Ilmenau, Germany

Synonyms
Join processing; Distributed query

Definition
The distributed join is a query operator that combines

two relations stored at different sites in the following

way: each tuple from the first relation is concatenated

with each tuple from the second relation that satisfies a

given join condition, e.g., the match in two attributes.

The main characteristics of a distributed join is that at

least one of the operand relations has to be transferred

to another site.

Historical Background
Techniques for evaluating joins on distributed relations

have already been dy discussed in the context of the

first prototypes of distributed database systems such as

SDD-1, Distributed INGRES and R*. In [6] the basic

strategies ship whole vs. fetch matches were discussed

and results of experimental evaluations were reported.

Another report on an experimental comparison of

distributed join strategies was given in [5].

Special strategies for distributed join evaluation

that aim at reducing the transfer costs were developed

by Bernstein et al. [2] (semijoin) as well as Babb [1]

and Valduriez [11] (hashfilter join) respectively. The

problem of delayed and bursty arrivals of tuples during

join processing was addressed by particular techniques

like the XJoin [10]. Moreover, a technique for dealing

with limited query capabilities of wrappers in hetero-

geneous databases was introduced in [8] as a special

variant of the fetch matches strategy.

Foundations
For evaluating a distributed join several tasks have to

be addressed. First, the site where the actual join is

to be processed, has to be chosen. Second, the operand

relations have to be transferred to the chosen site if

they are not already available there. Finally, the join

between the two relations has to be computed locally

at that site. In the following, these different issues are

described in more details.

356D Distributed Join

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

Site Selection

Choosing the site where the join operation is to be

performed on is usually part of query optimization.

For the simplest case of joining two relations R and S

there are three possible join sites: the site of R, the site

of S, and a third site at which the result is eventually

needed. For the decision several aspects must be taken

into account: the cost for transferring the operand rela-

tions, the join ordering (in case of multi-way joins) as

well as subsequent operators in the query, e.g. at which

site the join result is needed for further processing.

Relation Transfer

Given that one of the relations is available at the join

site, there are two basic strategies to transfer the other

relation. The ship whole approach works as follows:

1. The remote relation is shipped to the join site at a

whole.

2. After the relation is received by the join site, it can

be stored and used to perform the join locally.

In contrast, the fetch matches or fetch as needed strategy

consists of the following steps:

1. The relation at the join site is scanned.

2. Based on the current value of the join attribute, the

matching tuples from the other relation are

requested.

3. If the other site has matching tuples, they are sent

back and joined with the currently considered tuple.

The following example illustrates the costs (in terms

of transferred data and number ofmessages) of these two

strategies. Given two relations R (site 1) and S (site 2)

with cardinalities jRj = 2.000 and jSj = 5.000, where

the tuple sizes in bytes are width(R) = width(S) =

100 and the join attributes A 2 attr(R) and C 2 attr

(S) have width(A) = width(C) = 10. Furthermore,

a foreign key constraint A ! C is assumed meaning

that jR ⋈A=C Sj = 2.000.

Using the ship whole approach the complete relation

has to be shipped, i.e., in case of R the transfer volume is

jRj� width(R) + jR⋈A=C Sj� (width(R) + width(S)), but

only two messages are required (assuming that the rela-

tion is sent using a single message). With the fetch

matches strategy the join attribute value of each tuple is

shipped to the other site and for each tuple a result

message is sent back. Thus, for relation R 2jRj messages

are needed. However, in the first step jRj� width(A) bytes
are transferred and in the second step jR ⋈A=C Sj�

width(S) bytes are sent back. The results for all strategies

are shown in Table 1. Note, that only that cases are

shown, where the result is sent back to the query issuer.

Furthermore, for simplicity the message sizes are not

considered in the transfer volume.

The results show that:

� The ship whole approach needs a larger transfer

volume.

� The fetch matches strategy requires more messages.

� The smaller relation should always be shipped.

� The transfer volume in the fetch matches strategy

depends on the selectivity of the join.

These basic strategies can further be improved by

exploiting row blocking, i.e., sending several tuples in

a block. Second, in case of the fetch matches strategy

the relation can be sorted first in order to avoid fetch-

ing tuples for the same join values multiple times.

Local Join Processing

After having transferred the operand relations to the

join site, the join is evaluated using any of the conven-

tional algorithm known from centralized DBMS, e.g.

nested-loops join, sort merge join, or hash join. If local

indexes on the join attributes are available, they can be

exploited. Furthermore, for the ship whole strategy a

temporary index on the shipped relation can be created

and exploited. In any case, the decision which strategy

to use for the join evaluation is made in the local

optimization step.

Sequential vs. Pipelined Processing

Another aspect of local processing is the strategy for

dealing with delayed or bursty tuple arrivals. A first

Distributed Join. Table 1. Transfer costs for join

strategies

Strategy
Query

issuing site

Transfer
volume
(KBytes)

Number of
messages

Ship
whole

Site 1 600 2

Ship
whole

Site 2 900 2

Fetch
matches

Site 1 220 4.000

Fetch
matches

Site 2 250 10.000

Distributed Join D 357

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:29:59

approach is to simply ignore this issue and assume a

constant and on time arrival of tuples. Each incoming

tuple is processed according to the chosen join strategy.

In case of the sort merge join this could mean to wait

for all tuples of the relation. With other strategies (e.g.,

if the shipped relation is the outer relation of a nested-

loops join) the incoming tuple is directly processed in

a pipelined fashion. However, if no tuple arrives, e.g.,

due to a network delay, no join result can be produced.

An alternative solution is to use a double pipelined

hash join, which exploits the inherent parallelism of

distributed processing and in this way allows to reduce

the overall response time.

Algorithms

In the following some special approaches of distributed

joins are described that extend the basic model of ship

whole and fetch matches.

Semijoin/hashfilter join. This join algorithms can

be regarded as a special variant of the fetch matches

join with the aim to reduce transfer costs. For this

purpose, only the projected join column or a compact

bitmap representation (computed by applying a hash

function) of that column of the first relation is sent

to the second site as a whole. Next, all matching tuples

are determined and sent back to the first site, where

the actual join is computed.

XJoin. In wide-area networks with unpredictable

response and transfer times, transmission delays may

result in delayed or bursty arrivals of data. Further-

more, slow data sources can also delay or even block

join processing. To address this problem and to allow

to deliver join results as early as possible and continu-

ously the XJoin [10] was proposed. It is based on

the symmetric hash join, which works as follows:

For each operand relation a hash table is maintai-

ned. Each incoming tuple is first inserted into the

corresponding hash table. Next, it is used for probing

the hash table of the other relation to find matching

tuples, compute the join with them, and output the

result immediately (Fig. 2). The XJoin extends this

algorithm by considering the case where the hash tables

exhaust the available main memory. For this purpose, a

partitioning strategy is applied to swap out portions

of the hash tables to disk-resident partitions. These

partitions are also used to produce results when the

site waits for the next tuples: in this case tuples from

the disk are joined with memory-resident partitions.

In order to avoid duplicates in the result special pre-

cautions are needed.

Bind join. In heterogeneous databases component

databases (data sources) are usually encapsulated by

wrappers responsible for query and result translation.

Depending on the kind of the sources (e.g., a legacy

system, a Website, or Web Service) these wrappers

sometimes do not allow fetching the whole table or

Distributed Join. Figure 2. Double pipelined hash join.

Distributed Join. Figure 1. Basic strategies for join processing.

358D Distributed Join

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

evaluating a join. Instead they support only parame-

terized selections of the form

select * from R where A = ‘‘?’’

In order to still join another relation with R a bind join

can be performed which is in fact a special fetch

matches strategy. By scanning the outer relation the

current value of the join column is passed on as the

parameter ‘‘?’’ to the wrapper query and the results

are collected and combined into the final join result.

This can further be improved by precompiling the

query plan, e.g., by exploiting prepared statements or

cursor caching techniques.

Key Applications
The main application of distributed joins is query

processing in distributed databases systems. In order

to evaluate a join operation on relations stored at

different sites a distributed strategy is needed.

A second area of application are heterogeneous

databases, e.g., in the form of mediators or federated

database systems. If legacy component databases or

their wrappers provide only limited query capabilities

(e.g., supporting only selections), a special strategy is

required, which was introduced above as bind join.

The XJoin presented above is also useful for evaluating

joins in this context.

Other application examples for distributed joins

include P2P systems for managing structured data,

e.g., Peer Data Management Systems (PDMS) and

P2P databases as well as distributed data stream pro-

cessing systems.

Experimental Results
Experimental comparisons of different join strategies

have been reported for example by Lu and Carey [5] as

well as by Mackert and Lohman [6]. Figure 3 shows

some results from [5] for the join between two rela-

tions from two different sites, each with 1,000 tuples

and a result size of 100 tuples.

The join algorithms considered in this experi-

ment are:

� A sequential combination of the ship whole ap-

proach with the nested-loops join for the local

processing (S-NL) and the sort-merge join

(S-SM). The shipped relation was stored in a tem-

porary table and for the nested-loops variant an

index was created before computing the join.

� Apipelined variant of this approach, where incoming

tuples were processed on the fly (P-NL and P-SM).

� A strategy equivalent to the fetch matches approach

using nested-loops join (F-NL) or sort-merge join

(F-SM).

In Fig. 3a the elapsed time for processing the joins

is shown, Fig. 3b depicts the number of messages.

Cross-references
▶ Evaluation of Relational Operators

▶ Semijoin

Recommended Reading
1. Babb E. Implementing a Relational Database by Means of

Specialized Hardware. ACM Transactions on Database Systems

4(1):1–29, 1979.

2. Bernstein P.A., Goodman N., Wong E., Reeve C.L., Rothnie J.B.

Query Processing in a System for Distributed Databases

(SDD-1). ACM Transactions on Database Systems 6(4):

602–625, 1981.

3. Hevner A.R., Yao S.B.: Query Processing in Distributed

Database Systems. IEEE Transactions on Software Engineering,

5(3):177–182, 1979.

4. Kossmann D. The State of the Art in Distributed Query Pro-

cessing. ACM Computing Surveys 32(4):422–469, 2000.

Distributed Join. Figure 3. Comparison of different join algorithms.

Distributed Join D 359

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

5. Lu H., Carey M. Some Experimental Results on Distributed Join

Algorithms in a Local Network. In Proc. 11th Int. Conf. on Very

Large Data Bases, 1985, pp. 229–304.

6. Mackert L.F., Lohman G. R* Optimizer Validation and Perfor-

mance Evaluation for Local Queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1986, pp. 84–95.

7. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd Edition. Prentice Hall 1999.

8. Roth M.T., Schwarz P. Don’t Scrap It, Wrap It! A Wrapper

Architecture for Legacy Data Sources. In Proc. 23th Int. Conf.

on Very Large Data Bases, 1997, pp. 266–275.

9. Stonebraker M. The Design and Implementation of Distributed

INGRES. In The INGRES Papers, M. (ed.): Stonebraker Addi-

son-Wesley, Reading, MA, 1986.

10. Urhan T., Franklin M.J. XJoin: A Reactively-Scheduled Pipelined

Join Operator. Bulletin of the Technical Committee on Data

Engineering 23(2):27–33, 2000.

11. Valduriez P. Semi-Join Algorithms for Distributed Database

Machines. In Schneider J.-J. (Ed.) Distributed Data Bases,

North-Holland, 1982, pp. 23–37.

12. Williams R., Daniels D., Hass L., Lapis G., Lindsay B., Ng. P.,

Obermarck R., Selinger P., Walker A., Wilms P., and Yost R.

R*: An overview of the Architecture. IBM Research Lab, San

Jose, CA, 1981.

Distributed Query

▶Distributed Join

▶Distributed Query Processing

Distributed Query Optimization

STÉPHANE BRESSAN

National University of Singapore, Singapore,

Singapore

Synonyms
Query optimization in distributed database systems

Definition
Distributed query optimization refers to the process of

producing a plan for the processing of a query to a

distributed database system. The plan is called a query

execution plan. In a distributed database system, sche-

ma and queries refer to logical units of data. In a

relational distributed relation database system, for in-

stance, logical units of data are relations. These units

may be be fragmented at the underlying physical level.

The fragments, which can be redundant and replicated,

are allocated to different database servers in the

distributed system.

A query execution plan consists of operators and

their allocation to servers. Standard physical operators,

usually implementing the data model’s algebra, are

used to process data and to consolidate intermediary

and final results. Communication operators realize the

transfer, sending and receiving, of data from one server

to another. In the case of fragmentation the plan uses

fragments instead of logical data units. In the case of

replication, the plan defines the choice of replicas.

Distributed query optimization, like non-distributed

query optimization, involves the enumeration of candi-

date query execution plans and the selection of an opti-

mal or satisfactory plan with respect to a cost model.

A cost model for distributed query optimization

involves not only local processing cost, i.e. the cost of

central unit processing and of input/output operations

but also the cost of communications.

A distributed query optimization algorithm selects

an optimal or satisfactory plan by exploring parts of

the combinatorial search space defined as the set of

possible query execution plans. The function of cost to

be optimized is called the objective function.

Historical Background
The three reference distributed relational database man-

agement systems are SDD-1 [1], Distributed Ingres [3]

and System R∗ [4]. Their respective distributed query

optimization algorithms are representative of the typi-

cal possible strategies.

The first distributed query optimization algorithm is

Wong’s ‘‘hill climbing’’ algorithm [10]. The algorithm

greedily tries and improves an initial feasible solution

and reaches, as the name indicates, a local optimum. The

algorithm is further refined in the distributed query

optimization algorithm of SDD-1 where it is extended

to include semi-join programs. SDD-1 supports neither

replication nor fragmentation. While Wong’s algorithm

works with a general objective function, SDD-1’s imple-

mentation considers total communication cost only.

Clearly, the overall focus of SDD-1’s optimization

approach is to reduce the volume of data transmitted.

SDD-1 distributed query optimization is static.

Distributed Ingres’ distributed query optimization

algorithm [3] deterministically explores the search

space of possible plans by making local optimization

decisions at each step. Distributed Ingres supports

horizontal fragmentation. The objective function is a

360D Distributed Query

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

weighted combination of total time cost and response

time. It therefore includes both local and communica-

tion cost. Distributed Ingres’ distributed query optimi-

zation is dynamic and therefore can benefit by the

knowledge of the actual size of intermediary results.

System R∗’s distributed query optimization algo-

rithm is described in [7]. The algorithm exhaustively

explores the search space of all possible query execution

plans using dynamic programming to prune regions.

The implementation of the algorithm in System R∗

supports neither replication nor fragmentation.

The objective function is total cost and includes local

processing and communication cost. System R∗’s

distributed query optimization is static.

Several approaches to dynamic query optimization

have been proposed for parallel and distributed data-

bases (see [5] for a rapid overview). Query scrambling

[9], for instance, allows re-organization of the query

execution plan during its execution in order to cope

with unpredicted delays.

As an alternative to centralized optimization, the

first system explicitly proposing an economical model

for distributed query optimization is the Mariposa

system [8].

While most of today’s commercial database man-

agement system vendors offer distributed versions of

their software, the continuous technological develop-

ments and the new application perspectives constantly

compel extension and revision of existing distributed

query optimization techniques in order to meet the

needs of the new systems and applications.

Both textbooks [2,6] present and discuss in details

the state of the art of distributed database technology

in general and distributed query optimization in par-

ticular in the 1980s and 1990s, respectively. The survey

[5] is a more current account of the development of

these technologies and techniques.

Foundations
A distributed database management system consists of

several dispersed database servers interconnected by an

either local or wide area network. The database servers

can be homogeneous or heterogeneous in hardware

and software. The servers and network can be more

or less autonomous.

Fragmentation and Replication

Data in a distributed database application may be

fragmented. Logical units of data as they appear in

the schema of the application may be further decom-

posed. Fragmentation can generally be expressed by

means of logical operators. In the case of relational

distributed database applications, a vertical fragment

of a relation is the result of a relational projection,

while a horizontal fragment is the result of a relational

selection. Fragments are allocated to different servers

in the distributed database management system. Frag-

mentation should be a lossless decomposition. How-

ever fragments can be redundant and replicated.

Fragmentation independence (often referred to as

‘‘fragmentation transparency’’) assumes that program-

mers write programs in terms of the logical schema of

the application and ignore the details of fragmentation,

redundancy and replication, and allocation. This prop-

erty should be guaranteed for all design and program-

ming purposes except, if necessary, for performance

tuning.

The choice among possible fragments and replicas,

the allocation of operations together with the cost and

time needed for processing, as well as communication

with local storage and network communication define

the search space for the distributed query optimization

problem and its objective function. Given a query to a

distributed database system, its optimization, the

distributed query optimization problem, is the choice

of a query execution plan given fragmentation, redun-

dancy and replication, and allocation, which is optimal

or satisfactory with respect to the cost model, i.e. tries

and minimizes the objective function.

Plan Enumeration

A query execution plan for a query to a distributed

database management system is the decomposition of

the query into local plans accessing fragments together

with a global plan for the coordination of local execu-

tions, communications, and transmission, consolida-

tion and production of results.

Since fragments and replicas are usually defined by

logical operations, it is possible to rewrite the original

query into a query in the same language involving only

actual fragments and replicas. This decomposition is

straightforwardly done by replacing each logical unit

by a sub-query defining its reconstruction from frag-

ments and replicas. For instance, in the simplest cases,

a horizontally decomposed relation is the union of

its fragments; a vertically decomposed relation is

the natural join of its fragments. Because of redundan-

cy and replication, there can be several possible

Distributed Query Optimization D 361

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

decompositions using alternative fragments and repli-

cas and therefore several alternative rewritings.

As with non-distributed query optimization, there

may be several candidate access and execution meth-

ods, therefore several possible physical operators, for

each logical operation. Furthermore, the data neces-

sary to an operation may not be available at the server

where the operation is allocated. Data needs to be

transmitted from the server where it is located to the

server where the operation is executed. When data

transmission is a dominant cost, an extended set of

operations can be considered to reduce data before

transmission: this is how the semi-join operator is

used in semi-join programs to favor transmission of

small amounts of data and local operations to trans-

mission of large amounts of data. One strategy consists

in trying and fully reducing (when queries are acyclic)

fragments before transmitting them.

A query execution plan is a tree of operators for

processing, as in non-distributed database manage-

ment systems, and, specifically to distributed database

management systems, for communication and trans-

mission of data. Every operator must be allocated to

one database server. Non-distributed query optimizers

are generally concerned with left- (or right-) deep trees

of operators, i.e. sequence of operations. Distributed

query optimizers need to consider bushy trees which

contain opportunities for parallel execution. Indeed

sibling sub-trees, when allocated to different servers,

can be executed in parallel.

In summary, the plan enumeration involves the enu-

meration of alternative fragments and replicas, the choice

of local execution methods, operations and communica-

tions, and of the choice of order and allocation of execu-

tion. As with non-distributed query optimization, the

size of the search space is combinatorial. Strategies ex-

ploring the entirety of the search space are unlikely to be

efficient. One can either use dynamic programming tech-

niques to prune the search space yet finding an optimal

solution, or use heuristics or randomized algorithms,

such as simulated annealing, to find near or local optima.

The exploration of the search space is guided by the

objective function, i.e. the cost associated to each plan.

Total Cost Model and Response Time

For each query execution plan the optimizer tries and

estimates its total cost, response time or a combination

of both. This is the objective function of the optimiza-

tion algorithm. The optimizer chooses the plan which

minimizes the cost, the response time or finds the

best combination or compromise.

At a coarse granularity, total cost is the sum of local

cost and communication cost. At a finer granularity,

the total cost model can be seen as an extension of

the standard cost model for centralized databases to

which is added the cost of network communications.

The total cost is the sum of the unit cost of central

unit processing, Ccpu, multiplied by the number of

cycles, #cycles, and the unit cost an input/output ope-

ration, CI ∕O, multiplied by the number of such

operations, #I ∕O, with the cost of communications.

Ctotal ¼ Ccpu �#cycles þ CI=O �#I=O þ Ccomm

It is commonly assumed that the cost of communica-

tion is linear in the number of bytes transmitted. The

cost of communication combines the cost of initiating

a message Cs_mess, the cost of receiving a messages

Cr_mess, the number of messages #mess, the cost of

transmitting one byte Ctr_byte, and the number of

bytes transmitted #bytes as follows.

Ccomm ¼ððCs mess þ Cr messÞ �#messÞ
þ ðCtr byte �#bytesÞ

Notice that the above formula requires the knowledge or

estimation of the size of the elementary data units being

processed as well as the selectivity of operations to

estimate the size of intermediary results. The unit of

cost is commonly time (in which case the model is

referred to as the ‘‘total time cost model’’). It is however

probably more accurate to assume a Dollar cost since

the total cost model is a measure of resource utilization.

The total cost model accounts for the usage of

resources but does not account for the benefits of pro-

cessing parallelism, input/output parallelism, and net-

work parallelism naturally available in distributed

database systems. Namely, processing, communication

with local storage and network communications can

happen in parallel since different machines inter-

connected by a physical network are involved.

Response time is the time, on the user’s clock,

needed by the system to execute a query. A simple

example is a sequential scan operation (for instance

in the case of a selection operation on a condition

for which neither indexing nor fragmentation can be

leveraged to rule out some fragments) of a relation

fragmented into n fragments allocated to n different

servers. The scan operation is decomposed into n scan

operations: one for each individual fragments. If, for

362D Distributed Query Optimization

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

simplicity, it is assumed that all sequential scan opera-

tions start simultaneously, the response time is the time

of the longest scan operation plus the time of longest

request communication and the time of the last re-

sponse communication. The total time is the sum of

the times of individual sequential scans plus the sum of

the times of all point-to-point (or broadcast, as possible

in Distributed Ingres) communications.

Static versus Dynamic Distributed Query Optimization

Static query optimization is performed when compiling

the application programwithout knowledge of the actu-

al size of the elementary units of data. Dynamic query

optimization is performed just before query execution

thus allowing the optimizer to take such knowledge into

account. A simple solution consists in statically generat-

ing several candidate plans for the same query and then

dynamically choosing the planwith the best potential for

efficient execution. Another solution, intermediary be-

tween static and dynamic query optimization prepares a

query plan which is later allocated.

Furthermore modern distributed database appli-

cations leveraging the Internet are confronted with

the unpredictable nature of a best effort communica-

tion network and of typically autonomously managed

servers. Unpredictable delays result in queries execu-

tions being blocked sine die. Query scrambling is a

dynamic approach that considers re-planning of the

query during its execution. Initially a query execution

plan for the distributed query is produced as described

above. Re-planning takes the form of the rescheduling

of transmissions and physical algebraic operators. If a

plan execution is blocked because of a stalled commu-

nication, query scrambling attempts to perform other

data transmission and operations initially scheduled

for later in the original query execution plan. Query

scrambling is a form of re-optimization at execution

time (on-the-fly).

Global versus local, Centralized versus Distributed

Query Optimization, andEconomical Models

The optimization process consists of both global (to

the system) and local (to each database server) optimi-

zation. Global optimization is usually centralized at the

server initially receiving the query. Global optimiza-

tion needs to know or estimate the values required for

the estimation of local cost, response time and com-

munication cost, such as, for instance, the selectivity of

sub-trees locally executed in order to estimate the

number of bytes transmitted in the result. Details of

local optimization, such as the choice of access meth-

ods, can be left to the component database servers.

This assumes that the database server performing

the global optimization has or can collect sufficient

information about the network and the other servers

to properly estimate costs and to devise and choose a

plan. Yet this information (including statistics about

the network and local processing) may be difficult to

collect and maintain if servers and network are auton-

omous, if the overall system is dynamic in nature, as

well as if external independent factors influence its

performance (e.g., general traffic of a public network).

Naı̈ve attempts to distribute the classical distributed

query optimization algorithms do not scale and rapidly

lead to unsatisfactory sub-optimal solutions. One family

of models for distributed optimization among autono-

mous agents is the one of economical models. These

models try and simulate a free market regulated by

supply and demand with negotiations based on bidding,

auctioning or bargaining.

In a simple and simplified model with bidding for

‘‘distributed’’ distributed query optimization, the usage

of resources is first monetized. Users (or user programs)

assign a budget to their query and ask for the most

economical execution available. The budget of a query

is a decreasing function of response time, thus naturally

expressing the acceptable compromise between resource

usage and response time for the particular user. Brokers

perform the (possibly partially) global by asking for and

purchasing resources but remaining below the budget

curve. Servers can actively try and maximize profit from

selling resources by bidding for execution or buying or

selling data.

Future Directions
The evolution of technology together with new app-

lications places the optimization requirements for

different new and future distributed database applications

at various points on the spectrum between approaches

conventionally referred to as centralized databases, paral-

lel databases, distributed database, federated databases

and peer-to-peer databases. Varying degrees of autonomy

and heterogeneity, together with the relative importance

of the elementsdefining cost change the requirements. For

instance, while peer-to-peer database applicationsmay be

primarily concerned with response time and network

congestion,mobile adhocnetworkdatabases applications

(distributed databases applications on mobile devices)

may be primarily concerned with communication costs.

Distributed Query Optimization D 363

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

Cross-references
▶Distributed Databases

▶Distributed Database Design

▶Distributed Query Processing

▶Query Optimization

▶Query Processing

▶ Semi-Join

▶ Semi-Join Program

Recommended Reading
1. Bernstein P.A., Goodman N.Wong E. Reeve C.L., and Rothnie Jr.

Query processing in a system for distributed databases (SDD-1).

ACM Trans. Database Syst., 6(4):602–625, 1981.

2. Ceri S. and Pelagatti G. Distributed Databases Principles and

Systems. McGraw-Hill, New York, NY, USA, 1984.

3. Epstein R.S., Stonebraker M., and Wong E. Distributed query

processing in a relational data base system. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1978, pp. 169–180.

4. Haas L.M., Selinger P.G., Bertino E., Daniels D., Lindsay B.G.,

Lohman G.M., Masunaga Y., Mohan C., Ng P., Wilms P.F., and

Yost R.A. R*: a research project on distributed relational dbms.

IEEE Database Eng. Bull., 5(4):28–32, 1982.

5. Kossmann D. The state of the art in distributed query proces-

sing. ACM Comput. Surv., 32(4):422–469, 2000.

6. Özsu T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. 1999.

7. Selinger P.G. and Adiba M.E. Access Path Selection in

Distributed Database Management Systems. In ICOD. 1980,

pp. 204–215.

8. Stonebraker M., Devine R., Kornacker M., Litwin W., Pfeffer A.,

Sah A., and Staelin C. An economic paradigm for query proces-

sing and data migration in mariposa. In PDIS. IEEE Computer

Society, 1994, pp. 58–67.

9. Urhan T., Franklin M.J., and Amsaleg L. Cost based query scram-

bling for initial delays. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 130–141.

10. Wong E. Retrieving dispersed data from SDD-1: a system for

distributed databases. In Berkeley Workshop, 1977, pp. 217–235.

Distributed Query Processing

KAI-UWE SATTLER

Technical University of Ilmenau, Ilmenau, Germany

Synonyms
Distributed query; Distributed query optimization

Definition
Distributed query processing is the procedure of an-

swering queries (which means mainly read operations

on large data sets) in a distributed environment where

data is managed at multiple sites in a computer net-

work. Query processing involves the transformation of

a high-level query (e.g. formulated in SQL) into a

query execution plan (consisting of lower-level query

operators in some variation of relational algebra) as

well as the execution of this plan. The goal of the

transformation is to produce a plan which is equivalent

to the original query (returning the same result) and

efficient, i.e. to minimize resource consumption like

total costs or response time.

Historical Background
Motivated by the needs of large companies and orga-

nizations that manage their data at different sites,

distributed database systems are subject of research

since the late 1970s. In these years, three important

prototype systems were developed which already intro-

duced fundamental techniques of distributed query

processing. The first system was SDD-1 [1], developed

at Computer Corporation of America between 1976

and 1980, that run on PDP-10 mainframes connected

by Arpanet. SDD-1 pioneered among others optimiza-

tion techniques and semijoin strategies. The two others,

Distributed INGRES [8] (University of Berkeley, 1977–

1981) and R* [11] (IBM Research, 1981–1985) contrib-

uted further techniques for distributed databases but

none of these approaches was commercially successful.

In [10], Stonebraker and Hellerstein explained this by

the lack of an adequate and stable networking environ-

ment at this time and the slow market acceptance of

distributed DBMS. Today, this has radically changed:

the major DBMS vendors offer solutions that include

query processing facilities allowing to query and com-

bine remote tables. Typically, this is achieved by exten-

sions of the standard query processor such as special

operators for executing remote (sub-)queries, adding

distributed queries to the search space of the query

optimizer as well as cost functions dealing with network

communication.

Besides these classic techniques, several new app-

roaches have been developed since the early prototypes.

TheMariposa system[9]wasbasedonamicro-economic

model for query processing where sites (servers) bid in

an auction to execute parts of a query which is payed by

the query issuer (client). This allows different bidding

strategies for each server in order to maximize its own

profit and may better work in a non-uniform, wide-area

environment with a large number of sites. Another line

of research addressed the problem of changing or

364D Distributed Query Processing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:00

unpredictablecommunicationtimesanddataarrivalrates

in a distributed environment by dynamic or adaptive

approaches. Proposed solutions range from operator-

level adaptation by introducing dedicated operators (e.g.

joinstrategies) toadaptationatquery levelby interleaving

ofqueryoptimizationand execution [4].

Foundations
The subject of distributed query processing is to answer a

query on data managed at multiple sites. This involves

several steps for transforming a high-level query into

an efficient query execution plan and opens various

alternative ways for executing query operations of

this plan. In this rest of this section, these phases are

described and the most important techniques for each

step are discussed.

Phases of Distributed Query Processing

The procedure of distributed query processing (Fig. 1)

follows the approach of conventional query processing

in database systems: In the first phase, a given query is

parsed and translated into an internal representation

(e.g. a query graph with nodes representing operators

of an extended relational algebra). Next in the rewrit-

ing phase, the query is further transformed by applying

equivalence rules in order to normalize, unnest, and

simplify it without taking physical aspects such as

cardinalities of relations, existence of indexes etc. into

account. In the next step, the query is optimized by

replacing the logical query operators by specific algo-

rithms (plan operators) and access methods as well as

by determining the order of execution. This is typically

done by enumerating alternative but equivalent plans,

estimating their costs and searching for the best solu-

tion. Finally, the chosen query execution plan is sent to

the query execution engine, possibly after generating

executable code.

In the distributed case, the phases of rewriting and

optimization are extended. During query rewrite global

relations referenced in the query have to be replaced by

the corresponding fragmentation and reconstruction

expressions resulting in fragment queries. Furthermore,

reduction techniques are applied to eliminate redundant

fragment queries or queries producing empty results.

These steps are called data localization.

The optimization phase is split into a global step

performed at the control site where the query was

submitted and a local step which is done at each site

maintaining a fragment relation referenced in this

query. Global optimization involves the decision at

which site the operation is to be executed as well

inserting communication primitives into the plan.

Global optimization typically ignores access methods

like index usage for fragment relations – this is part of

the local optimization.

Distributed Query Processing. Figure 1. Phases of Distributed Query Processing.

Distributed Query Processing D 365

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

Data Localization

Usually, a distributed database is designed in a way that

fragments of a global relation are stored at different

sites. These fragments are defined by fragmentation

expressions expressed for example as relational queries.

In order to provide location and fragment transparency

a query on a global relationR has to be transformed to a

query that accesses only the fragments of R. This is

achieved by replacing the global relation by the expres-

sion for reconstructing R from the fragments. Assum-

ing a global relation R(A, B, C) which is horizontally

fragmented into R1, R2, R3 as follows:

R1 ¼ sA<100ðRÞ
R2 ¼ s100�A�200ðRÞ
R3 ¼ sA>200ðRÞ

Then, R can be reconstructed by R = R1 [R2 [R3.

Using this fragmentation information, a global query

q1 := sA>150(R) is now transformed into the query

q01 :¼ sA>150ðR1 [R2 [R3Þ

Obviously, this is not an efficient query because R1 does

not contribute to the result. Therefore, reduction tech-

niques are applied which exploit equivalence transfor-

mations of relational algebra expressions in combination

with rules for identifying fragment queries. This produ-

ces empty results due to useless selections or joins. These

rules work mainly by analyzing predicates of fragment

expressions and queries and finding contradictions [2].

For instance, for horizontal fragmentation the fol-

lowing rule can be used:

spiðRjÞ ¼ ; if 8t 2 R : :ðpiðtÞ ^ pjðtÞÞ ð1Þ

Considering query q 0
1, the selection operator can be

pushed down to the fragments. Then, the rule finds the

contradicting predicate A < 100 ∧ A > 150 resulting

in an empty result:

sA>150ðR1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
;

[sA>150ðR2Þ [sA>150ðR3Þ

Thus, the fragment query sA>150(R1) can be

eliminated.

A similar technique is used for identifying useless

joins using the following rule:

Ri ffl Rj ¼ ; if 8t1 2 Ri;8t2 2 Rj :

:ðpiðt1Þ ^ pjðt2ÞÞ ð2Þ

Assume a second relation S(A, D) with the fragments:

S1 ¼ sA�200ðSÞ
S2 ¼ sA>200ðSÞ

A local query q2 := R ⋈ S has to be transformed into:

q02 :¼ ðR1 [R2 [R3Þ ffl ðS1 [S2Þ

By distributing the join over the unions and applying

rule (2) query q 0
2 can be rewritten into the following

form where three expressions can be identified as use-

less joins due to contradicting predicates:

ðR1 ffl S1Þ [ðR2 ffl S1Þ [ðR3 ffl S1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;

[ðR1 ffl S2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;

[ðR2 ffl S2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;

[ðR3 ffl S2Þ

This is done by looking only at the predicates of the

fragment expressions and not at the relations.

For vertical fragmentation the main goal of reduc-

tion is to identify useless projections. Assuming the

following fragmentation of relation R:

P1 ¼ pA;BðRÞ
P2 ¼ pA;CðRÞ

the reconstruction expression is R = P1 ⋈ P2. Thus, a

query q3 := pA,C(R) has to be transformed into the

following query:

q03 :¼ pA;CðP1 ffl P2Þ ¼ pA;CðP1Þ ffl pA;CðP2Þ

A projection on a vertical fragment is useless, if there

are no common attributes between the projection and

the fragment beside the key attribute. Note, this does

not results in an empty relation – however, the result is

redundant. This can be formulated in the following

rule. Given a fragmentation Ri = pB(R) of relation R(K,

A1,. . .,An) where B � { K, A1,. . .,An}.

pK ;B0ðRiÞ is useless; if B0 \ B ¼ ; ð3Þ

Using this rule for query q03, the projection on frag-

ment P1 can be identified as useless and eliminated

from the query:

pA;CðP1Þ|fflfflfflfflffl{zfflfflfflfflffl}
useless

pA;CðP2Þ

For derived and hybrid fragmentation similar techni-

ques exist which are described e.g. in [7].

366D Distributed Query Processing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

Optimization of Distributed Queries

Whereas the local optimization step is the same as in a

centralized database system, the global optimization

comprises some special tasks.

As in conventional query optimization the ordering

of joins is one of the main challenges. Typically, in a

distributed DBMS bushy join trees are considered by

the optimizer in addition to linear (left or right deep)

trees. Bushy trees are a shape of join trees where both

operands can be intermediate results instead of requir-

ing one base relation operand. These bushy trees allow

better exploiting parallelism in distributed queries.

Furthermore, in a distributed database the problem

of site selection is added, i.e. at which site an operation

(e.g. a distributed join) is to be executed. In the simple

case of joining two relations stored at different sites

this can be decided simply by comparing the size of the

relations: the smaller relation is sent to the other site.

However, for a multi-way join the number of possible

strategies is much larger and the sizes of the interme-

diate join results have to be estimated and considered

for finding the optimal join ordering.

Basically, there are two fundamental options in site

selection: either the data is retrieved from the storing

site to the site executing the query (called data

shipping) or the evaluation of the query is delegated

to the site where the data is stored (query shipping).

These two models are shown in Fig. 2. Data shipping

can avoid bottlenecks on sites with frequently used

data if many queries have to be evaluated by exploiting

client resources. On the other hand, query shipping is

the better choice if otherwise large amount of data has

to be transferred to the processing site. Thus, a hybrid

strategy is sometimes the best solution [3].

A further task in the global optimization step is to

decide which strategies or algorithms are to be used

to process the query operators. For example, a join

between two relations stored at different sites can be

processed in different ways: e.g. by shipping one rela-

tion to the site of the other relation as a whole (ship

whole), by scanning one of the relations and fetching

matching tuples from the other site, or by exploiting

a semijoin strategy. Thus, during plan enumeration

all these alternatives have to be considered by the

optimizer.

Choosing the best query execution plan from the

set of alternative plans requires to estimate costs. The

conventional approach in centralized DBMS focuses

on total resource consumption by estimating I/O and

CPU costs. In a distributed environment, communica-

tion costs depending on the network speed have to be

taken into account, too. However, the total resource

consumption approach optimizes the throughput of

a system, but ignores the inherent parallelism of a

distributed query. For example, a scan on two frag-

ments can be executed in parallel which reduces the

query execution time to the halve. An alternative

approach is the response time model which estimates

the time between initiating the query and the receipt-

ing of the query result. Figure 3 illustrates the differ-

ence between these two models. Given two relations R

and S, a query R ⋈ S submitted at site 3 and assume

that the costs are measured in time units.

Then, the total resource consumption Ttotal of the

query plan is

Ttotal ¼ 2 � TQ þ TSðsizeðRÞ þ sizeðSÞÞ

where TQ is the time for sending a message (in this case

the query request), Ts is the time for shipping a data

Distributed Query Processing. Figure 2. Data shipping

vs. query shipping.

Distributed Query Processing. Figure 3. Total resource

consumption vs. response time.

Distributed Query Processing D 367

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

unit from one site to another, and size(R) is the size of

relation R. In contrast, using the response time model

the cost is

Tresponse ¼ maxfTQ þ TS � sizeðRÞ;TQ þ TS � sizeðSÞg

This would prefer execution plans exploiting parallel

processing as well as resources of other sites and there-

fore is better suited for distributed environments if

communication is rather cheap.

Query Execution

Basically, the query execution phase of distributed

processing is very similar to centralized DBMS. How-

ever, there are some specialties which are

� The need for send/receive operators for submitting

fragment queries to other sites and shipping back

results to the query issuer.

� Dedicated algorithms are required particularly for

join processing, e.g. semijoin filtering or non-

blocking hash joins.

Finally, there are some special optimization techniques

which can be applied. First, in order to reduce the

communication overhead caused by network latency,

tuples are transferred in a block-wise manner (row

blocking) instead of sending each tuple at a time. Sec-

ond, caching results for reusing in future queries may

help to reduce communication costs, too. Caching

requires to balance the costs for loading and maintain-

ing the data and the benefits of answering a query

(partially) from the cache [6]. Furthermore, the cached

data chunks have to be described in order to be able to

check the containment of queries efficiently.

Key Applications
The main application of distributed query processing

are classic distributed databases allowing to store and

query data at different sites transparently. Another

application domain are client/server database systems

where the data is stored at a server and queries are

submitted at client machines. Often, the computing

resources of the client machines can be used for pro-

cessing (portions of) the queries, too. Typical examples

of such systems are object-oriented database systems

but also middleware technologies such as application

servers.

The existence of legacy databases of all flavors in

many companies leads to the need of accessing and

integrating them using queries in a standardized (e.g.

relational) language on a composite schema. For this

purpose, heterogeneous DBMS and mediators were

developed that provide wrappers/gateways for encap-

sulating the system-specific transformation of queries

and results between the global level and the local

component system. Heterogeneous DBMS exploit

distributed query processing techniques but have to

deal with the heterogeneity of schema and data as

well as with the possibly limited query capabilities of

the component system. Commercial DBMS vendors

have quickly adopted these techniques and offer now

their own gateway solutions in addition to distributed

query processing features, e.g. Oracle Database Gate-

way and IBM Information Server.

P2P systems and sensor networks are a current ap-

plication area of distributed query processing. In these

approaches, a network of nodes or sensors can be seen

as a distributed database. Answering queries requires to

retrieve and process data from different nodes using

techniques described above. The challenges in these

areas are mainly scalability (e.g. querying thousands

of nodes) as well as dynamics and unreliability of the

network.

Cross-references
▶Distributed DBMS

▶Distributed Join

▶Distributed Query Optimization

▶Query Processing

Recommended Reading
1. Bernstein P.A., Goodman N., Wong E., Reeve C.L., and Rothnie

Jr., J.B. Query processing in a system for distributed databases

(SDD-1). ACM Trans. Database Syst. 6(4):602–625, 1981.

2. Ceri S. and Pelagatti G. Correctness of query execution strategies

in distributed databases. ACM Trans. Database Syst. 8

(4):577–607, 1983.

3. Franklin M., Jonsson B., and Kossmann D. Performance tradoffs

for client-server query processing. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 149–160.

4. IEEE Computer Society. Bull. Tech. Committee Data Eng., 23

(2), June 2000.

5. Kossmann D. The state of the art in distributed query proces-

sing. ACM Comput. Surv., 32(4):422–469, 2000.

6. Kossmann D., Franklin M., Drasch G., and Ag W. Cache

investment: integrating query optimization and distributed

data placement. ACM Trans. Database Syst. 25(4):517–558,

2000.

7. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. Prentice-Hall, USA, 1999.

368D Distributed Query Processing

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

8. Stonebraker M. The Design and Implementation of Distributed

INGRES. In stonebraker M. (ed.). The INGRES Papers, Addi-

son-Wesley, Reading, MA, 1986.

9. Stonebraker M., Aoki P., Litwin W., Pfeffer A., Sah A., Sidell J.,

Staelin C., and Yu A. Mariposa: a wide-area distributed database

system. VLDB J. 5(1):48–63, 1996.

10. Stonebraker M. and Hellerstein, J.M. Distributed Database Sys-

tems. In: M. Stonebraker and J.M. Hellerstein (eds.). Readings in

Database Systems, 3rd edn. Morgan Kaufmann, San Francisco,

CA, 1998.

11. Williams R., Daniels D., Hass L., Lapis G., Lindsay B., Ng. P.,

Obermarck R., Selinger P., Walker A., Wilms P., and Yost R. R*:

An overview of the Architecture. Technical Report RJ3325, IBM

Research Lab, San Jose, CA, 1981.

12. Yu C.T. and Chang C.C. Distributed query processing. ACM

Comput. Surv., 16(4):399–433, 1984.

13. Yu C.T. and Meng W. Principles of Database Query Processing

for Advanced Applications. Morgan Kaufmann, 1998.

Distributed Recovery

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
Recovery in distributed database systems

Recovery in distributed commit protocols

Recovery in replicated database systems

Definition
In a distributed database system (DDBS), failures in

the midst of a transaction processing (such as failure of

a site where a subtransaction is being processed) may

lead to an inconsistent database. As such, a recovery

subsystem is an essential component of a DDBS [14].

To ensure correctness, recovery mechanisms must be in

place to ensure transaction atomicity and durability

even in the midst of failures.

Distributed recovery is more complicated than cen-

tralized database recovery because failures can occur at

the communication links or a remote site. Ideally, a

recovery system should be simple, incur tolerable over-

head, maintain system consistency, provide partial op-

erability and avoid global rollback [6].

Historical Background
A DDBS must be reliable for it to be useful. In particu-

lar, a reliable DDBS must guarantee transaction atom-

icity and durability when failure occurs. In other

words, a committed transaction’s actions must persist

across all the sites at which it is processed, and an

aborted transaction’s actions must not be allowed to

persist. A transaction is aborted either explicitly

(through an abort command) or implicitly as a result

of a failure prior to its completion (through the recov-

ery mechanism).

However, in a DDBS, besides traditional failures

types which occur in a centralized system (such as

media and power failures), new types of failures may

occur, e.g., communication link failure, network parti-

tioning, delayed/lost messages and remote site failure.

While existing recovery mechanisms on centralized sys-

tems can be employed to handle the former type of

failures, the latter kind is more complicated to deal with.

To ensure transaction atomicity, distributed

commit protocols have been proposed. These include

Two-Phase Commit and its variants [3,7,12] and

Three-Phase Commit [13]. To recover from failures,

a log is maintained at each site. As in centralized

system, the log contains information such as the

before and after view of an updated record. In addi-

tion, to facilitate distributed recovery, actions of the

distributed commit protocol are also logged. In this

way, each site knows the execution status of a transac-

tion prior to the failure, and can determine if a trans-

action is committed or not before taking the necessary

action. For example, for committed transaction, the

log facilitates replaying the operations in the same

order as they did before the failure; for uncommitted

transactions, the operations has to be undone.

Log-based recovery protocols incur high overhead

and may result in low transaction throughput. This is

because log records have to be forced-written out to

disks during logging, and have to be read from disks

again during recovery. In order for a failed site to be

recovered speedily, checkpointing techniques have also

been proposed [1,10,11]. These schemes periodically

maintain consistent states so that a failed site needs to

rollback to a recent consistent state to reduce actions to

be undone or redone.

There have been some efforts to reduce recovery

overhead, and to perform online recovery so as not to

disrupt transaction processing. In [15], an agent-based

recovery protocol is proposed. The key idea is to buffer

new database actions issued at the failed site (as it

recovers using an existing log recovery scheme), and

then replayed these buffered actions over the recovered

state independently. In [5], distributed and redundant

Distributed Recovery D 369

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

logging is used in which a site redundantly logs records

to main memory and additionally to a remote site.

In this way, the expensive forced-writes are avoided

totally. In [9], HARBOR eliminates recovery logs

(and hence the expensive disk write operations for

log records) by exploiting replication/redundancy.

This is done by keeping replicas consistent so that

recovering a crashed site can be done by querying

remote, online sites for missing updates.

All commercial systems today employ log-based

roll-back recovery methods.

Foundations
ADDBS is vulnerable to failures that occur in centralized

systems, such as power failure that may result in lost

of data at a site. In addition, a DDBS is highly dependent

on the availability of all sites, as well as their ability to

communicate reliably with one another. When a site

fails, sub-transactions running at that site may render

the database inconsistent. Likewise, communication fail-

ures can result in the network becoming split into two

or more partitions whose data may not be consistent.

Even timeout may be deemed as a failure. As such,

recovery is more complicated for DDBS.

In DDBS, log-based techniques are the pre-domi-

nant schemes used to provide transaction atomicity

and durability. Each site maintains a log which extends

the widely used write ahead logging (WAL) scheme in

centralized systems [3,4]. Under WAL, all modifica-

tions to records are written to a log before they are

applied. Essentially, each log record contains a four-

tuple <tid, oid, vold, vnew> where tid is the transaction

identifier, oid is the object identifier, vold and vnew are

the old and new values of the updated object. There

are also additional log records <tid, start> and <tid,

commit>, <tid, abort> that capture the start of trans-

action tid and that it has committed or aborted. These

log records enable the system to redo an operation if a

transaction has committed (i.e., if the commit log

record is in the log, then it means the transaction has

committed, and the object can be updated to the new

value vnew). Similarly, if the log commit/abort records

are not found, then it means that failure has occurred

before the transaction is committed/aborted. Hence, it

may be necessary to undo some of the operations (by

overwriting the object value with vold). In this way, a

database can be restored to a consistent state.

The extension arises because of the distributed com-

mit protocols that are introduced to synchronize

subtransactions of a transaction during the commit

process. This calls for state transitions to be logged so

that a failed site knows the status of a transaction’s

execution and can recover independently without com-

munication from other sites. Consider the two-phase

commit protocol which operates as follows: (i) In

phase 1, the coordinator requests votes from all partici-

pants whichmay respond with a Yes vote (to commit the

transaction) or No vote (to abort the transaction). (ii) In

phase 2, the coordinator will make a global decision

based on the votes – if all participants vote Yes, then

the global decision is to commit the transaction; other-

wise, the global decision is to abort it. Failures can occur

at different state transitions.

The following log records will be generated at

the coordinator: (i) before commit is initiated, the

coordinator will generate a <Tid, start � 2PC> log

which also contains the list of participants involved in

processing the transaction Tid. (ii) When the coordi-

nator is ready to commit the transaction (after receiv-

ing positive votes from all the participants), it will

create a <Tid, commit> log record; alternatively, for

a global abort decision, a <Tid, abort> log record

is written instead. (iii) Finally, when all participants

acknowledged that the commit operations have been

performed, the coordinator will add a <Tid, end �
2PC> log.

On the other hand, at each participant, the follow-

ing log records will be created: (i) a participant that is

ready to commit upon receiving a request-for-vote

message will log its vote, i.e., a log record <Tid,

Wait � State> is created; on the other hand, a partici-

pant that will not commit the transaction will create a

log record <Tid, Abort>. (ii) Upon commit (after

receiving the global commit decision), the participant

will create a log commit record<Tid, Commit>. How-

ever, if the global decision is to abort the transaction,

if the participant voted Yes, then <Tid, Abort> will

be created.

When there is a failure during the commit process,

the operational sites will execute a termination proto-

col that will bring the transaction to a final state (either

global abort or commit depending on the states of the

operational sites). For two-phase commit, it is possible

that the operational sites will need to wait for the failed

sites to recover and become operational again before

any further action can be taken.

For the failed site, there are two possible cases. First,

the failed site is the coordinator. In this case, upon

370D Distributed Recovery

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

recovery, the coordinator checks its log. (i) If the failure

happens prior to the initiation of the commit procedure

(i.e., the failed site did not find the <Tid,start � 2PC>

record in its log, then it can initiate the commit proce-

dure. (ii) If the failure occurs in the waiting state (i.e.,

<Tid, start � 2PC> is found in the log but not <Tid,

commit>), then it can restart the commit procedure.

(iii) Finally, if the failure takes place in the commit/

abort state, then if the coordinator has received all

acknowledgements, it can complete successfully;

otherwise, it will initiate the termination protocol as

if it is an operational site.

Second, the failed site is a participant site. Again,

there are several possible scenarios. (i) If the site failed

before receiving any initiation request, then it can

unilaterally abort the transaction. This is because the

operational site would have aborted the transaction.

(ii) If the site failed in the waiting state (i.e., <Tid,

Wait � State> is found in the log but not <Tid,

commit>), then the recovered site will initiate the

termination protocol as an operation site. (iii) Finally,

if the <Tid, commit> or <Tid, abort> or log record is

found in the log, then no further action is necessary, as

it means that the transaction has already committed/

aborted.

Now, the recovery process for variants of the two-

phase commit protocol is similar. In some case, one

can optimize by allowing non-blocking of operational

sites, in which case, the failed site may need to verify

the status of the distributed commit operation with

other operational sites upon recovery.

Key Applications
Since distributed systems will always encounter failure,

distributed recovery methods are needed in all

distributed systems to ensure data consistency. In par-

ticular, techniques developed for DDBS can be adapted

and extended to emerging platforms like peer-to-peer

(P2P) computing, mobile computing, middleware,

and publish/subscribe systems.

Future Directions
Although distributed recovery is a fairly established

topic, more work need to be done to support online

recovery. In addition, the emergence of new distributed

computing platforms (e.g., P2P computing, cloud com-

puting, mobile computing, middleware) brings new

challenges that require more effective solutions than

what are currently available in the literature. For

example, in P2P systems, the dynamism of node join

and departure makes it difficult for a failed node to

recover fully (since nodes that are operational at the

time of the node’s failure may no longer be in the

network). It remains a challenge to device an effective

recovery scheme in this context. As another example,

consider mobile computing context (where nodes are

mobile). Here, the base stations may be exploited to

manage the logs [2]. However, because connectionsmay

be intermittent, many transactions will fail. A possible

alternativeistoallowalongermessagedelaytobetolerated.

InboththeP2Pandmobileenvironments,arelaxnotionof

serializabilitymaybemorepractical.Yetanotherdirection

is to design recovery mechanisms for middleware.

Initial effort has been done [7] but effective solutions are

still lacking. Finally, a networked system is vulnerable to

attacks that may corrupt the database. Recovering

from such a state is an important subject that has

not yet received much attention from the database

community.

Cross-references
▶Crash Recovery

▶ Logging and Recovery

▶Three-Phase Commit

▶Two-Phase Commit

Recommended Reading
1. Chrysanthis P.K., Samaras G., and Al-Houmaily Y.J. Recovery

and performance of atomic commit processing in distributed

database systems. In Recovery Mechanisms in Database Systems.

Kumar Hsu Prentice-Hall, 1998. Chapter 13.

2. Gore M., Ghosh R.K. Recovery of Mobile Transactions. DEXA

2000 Workshop, 23–27, 2000.

3. Gray J. Notes on data base operating systems. In Operating Sys-

tems – An Advanced Course. Bayer R., Graham R., Seegmuller G.

(eds.). LNCS, Vol. 60, pp. 393–481, Springer, 1978.

4. Gray J. et al. The recovery manager of the system R database

manager. ACM Comput. Surv., 3(2):223–243, 1981.

5. Hvasshovd S., Torbjornsen O., Bratsberg S., Holager P. The

clustra telecom database: high availability, high throughput,

and real-time response. In Proc. 21th Int. Conf. on Very Large

Data Bases, 1995, pp. 469–477.

6. Isloor S.S. and Marsland T.A. System recovery in distributed

databases. In COMPSAC. 1979, pp. 421–426.

7. Jimenez-Peris R., Patino-Martinez M., and Alonso G. An

algorithm for non-intrusive, parallel recovery of replicated data

and its correctness. In Proc. 21st Symp. on Reliable Distributed

Syst., 2002, pp. 150–159.

8. Lampson, B. and Sturgis H. Crash recovery in a distributed data

storage system. Technical report, Computer Science Laboratory,

Xerox Palo Alto Research Center, California, 1976.

Distributed Recovery D 371

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:01

9. Lau E. and Madden S. An integrated approach to recovery and

high availability in an updatable, distributed data warehouse. In

Proc. 32nd Int. Conf. on Very Large Data Bases, 2006, pp. 12–15.

10. Lin J. and Dunham M.H. A low-cost checkpointing

technique for distributed databases. Distrib. Parall. Databases,

10(3):241–268, 2001.

11. Lomet D. Consistent timestamping for transactions in

distributed systems. Tech. Report CRL90/3, Cambridge Research

Laboratory, Digital Equipment Corp., 1990.

12. Mohan C., Lindsay B., and Obermarck R. Transaction manage-

ment in the R* distributed data base management system. ACM

Trans. Database Syst., 11(4):378–396, 1986.

13. Skeen D. Non-blocking commit protocols. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1981, pp. 133–142.

14. Tamer Ozsu M. and Valduriez P. Principles of distributed

database systems (2nd edn). Prentice-Hall, 1999.

15. Wang Y. and Liu X. Agent based dynamic recovery protocol in

distributed databases. In ISPDC. 2003.

Distributed Sensor Fusion

▶Data Fusion in Sensor Networks

Distributed Source Coding

▶Data Compression in Sensor Networks

Distributed Spatial Databases

PANOS KALNIS

National University of Singapore, Singapore,

Singapore

Definition
Distributed spatial databases belong to the broad cate-

gory of distributed database systems. Data reside in

more than one sites interconnected by a network, and

query processing may involve several sites. A site can be

anything from a server to a small mobile device. The

broad definition covers many research areas. This entry

gives an overview of the following sub-categories:

(i) Distributed spatial query processing, which focuses

mainly on spatial joins. (ii) Distributed spatial indexes

(e.g., a distributed version of the R-tree). (iii) Spatial

queries in large distributed systems formed by devices

such as PDAs, mobile phones, or even sensor networks.

Historical Background
Similar to relational databases, in spatial databases the

most important operator is the spatial join. In rela-

tional databases, distributed joins are often implemen-

ted by using the semi-join operator. Let R and S be

relations residing in two different sites Rsite and Ssite.

First Rsite calculates R
0 which is the projection of R on

the join attribute. R0 is transmitted to Ssite and is joined

with S; the result is called semi-join. That result is sent

back to Rsite where it is joined with R to produce the

final join between R and S.

The semi-join concept can be adapted for joins

between spatial datasets. However, the following char-

acteristics of spatial datasets must be taken into

account:

1. The relational semi-join is based on the assumption

that the projected relation R0 will be much smaller

than R (since it contains fewer attributes and there

are no duplicates), leading to lower transmission

cost. In spatial datasets, the equivalent to the join

attribute is the spatial object. The size of each

spatial object (typically a polygon) may be in the

order of hundreds or thousands of bytes, and usu-

ally dominates the size of other attributes. There-

fore, projecting on the join attribute is not likely to

reduce the transmission cost.

2. Evaluation of spatial relationships, such as contain-

ment, intersection and adjacency between two

polygons, is complex and expensive (in terms of

CPU and I/O cost), compared to testing the join

condition in relational databases.

To address these issues, existing work [1,14] imple-

ments distributed spatial joins by using approximations

of the spatial objects. This technique is common in

spatial databases and involves two phases: the first

phase operates on simple approximations of the

objects (e.g., Minimum Bounding Rectangle – MBR)

and produces a superset of the result. Since the approx-

imations are simpler than the original objects, this

phase is fast. The second phase removes the false hits

of the intermediate result by operating on the exact

polygons of the spatial objects.

The previous discussion assumes that the two sites

are collaborating and allow access to their internal

index structures. However, this is not always the case.

Mamoulis et al. [10] and Kalnis et al. [5] assume that a

mobile device is interested in the join of two spatial

datasets whose sites do not collaborate. To avoid

372D Distributed Sensor Fusion

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:02

downloading the entire datasets, the mobile device

interleaves the join with a statistics acquisition process

which prunes parts of the space.

In addition to implementing distributed versions

of spatial operators, several papers have focused on

distributed spatial data structures (e.g., k-RP∗;S [8]

and hQT∗ [7]). A typical problem in distributed tree

structures is that the server responsible for the root

node is overloaded, since all queries must traverse the

tree in a top-down fashion. Mouza et al. [12] proposed

the SD-Rtree, which is a distributed version of the

R-tree. Overloading the root is minimized by replicat-

ing a (possibly outdated) copy of the internal nodes of

the tree in all clients. Several researchers [4,6,11] have

also developed distributed spatial indices on top of

Peer-to-Peer systems.

Finally, many applications assume a large number

of mobile devices (e.g., PDAs, mobile phones) which

store spatial data and ask spatial queries. For example,

in the MobiEyes [3] system, mobile clients collaborate

to answers continuous range queries. Other papers

focus on broadcast-based wireless environments [15],

which broadcast periodically the spatial index and data

to all clients. Moreover, several sensor networks (e.g.,

Coman et al. [2]) optimize the query processing by

exploiting the spatial properties (e.g., location, com-

munication range and sensing range) of the sensors.

Foundations
The section on ‘‘Distributed Query Processing’’ discusses

query processing in distributed spatial databases and fo-

cusesmainly on two cases: (i) the sites collaborate and are

willing to share their internal indices (i.e., Tan et al. [14])

and (ii) the sites do not collaborate with each other (i.e.,

Mamoulis et al. [10]). Section ‘‘Distributed Spatial

Indices’’ presents distributed spatial indices, themost rep-

resentative being the SD-Rtree [12]. Finally, Section ‘‘Spa-

tialQueries InvolvingNumerousMobileClients’’discusses

spatial queries that involve numerous and possiblymobile

clients (e.g., smart phones, sensor networks, etc).

Distributed Query Processing

As mentioned above, distributed spatial joins are

implemented by using approximations of the spatial

objects. Tan et al. [14] investigate two approximation

methods. The first one assumes that at least one of the

datasets is indexed by an R-tree variant. In the example

of Fig. 1, let R be the indexed dataset. The method uses

the MBRs of the objects at level 0 (i.e., leaf level) or

level 1 of the R-tree. Assuming that level 0 is used, Rsite

sends to Ssite the following set of MBRs: R0 = {a1,a2,b1,

b2, c1, c2}. Ssite performs window queries for each object

in R0 and returns to Rsite the set S
0 ={ d1,d3} of objects

(i.e., polygons) which intersect with MBRs in R0. Fi-

nally Rsite examines the polygons of the pairs (a2, d1)

and (c2,d3) in order to remove any false hits. A second

example assumes that level 1 of the R-tree is used. In

this case Rsite sends the MBR set R0 = {A, B, C} and Ssite
returns the set of polygons S0 = {d1, d2, d3}. Finally, Rsite

computes the join result from R and S0. It is noted that,

if level 0 of the R-tree is used, R0 typically containsmany

MBRs, allowing very refined search in Ssite; consequen-

tly, S0 usually contains a small number of objects. On

the other hand, if level 1 is used, R0 contains less MBRs

Distributed Spatial Databases. Figure 1. Distributed spatial join based on R-tree approximation.

Distributed Spatial Databases D 373

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:02

but S0 may include more objects (for instance, d2 is a

false hit). The choice of the appropriate level depends on

the average size (in bytes) of the polygons in S.

The second approximation method used by Abel

et al. [1] and Tan et al. [14] is similar to the one

proposed by Orenstein [13]. The space is recursively

divided into cells, and each cell is given a unique base-5

key. The order of the keys follows the z-ordering space

filling curve. Each object is approximated by up to four

cells at various levels of the curve. Figure 2a shows

an example; the gray-shaded object is approximated

by cells 1100, 1233, 1300 and 1410. The keys of all

objects in Rsite and Ssite are sorted in ascending order,

generating two lists: Rlist and Slist. An example is shown

in Fig. 2b and c. Each object has between one (e.g., r3)

and four keys (e.g., r2); moreover, the keys of an object

may not be consecutive in the ordered list (e.g., s2).

Rsite transmits Rlist to Ssite. Ssite uses merge-join to join

the two lists. The join condition is cell-containment

rather than key equality. For instance, the pair

(1122,1100) is generated because cell 1122 is contained

in cell 1100. The result may contain duplicates; for

example (1122,1100) and (1124,1100) both represent

the object pair (r1,s1). Duplicates are eliminated and

Ssite sends the semi-join result (together with the poly-

gons of the corresponding S objects) to Rsite; in the

running example, the semi-join contains pairs (r1, s1)

and (r2, s2). Finally, Rsite eliminates the false hits (i.e.,

pair (r1,s1)) based on the exact object geometry.

According to the experimental evaluation in [14], the

total cost of the join (in terms of response time) is, in

most cases, lower when using the z-ordering approxi-

mation, compared to the R-tree approach.

A related problem is studied by Mamoulis et al.

[10]. Again, two spatial datasets R and S reside in Rsite

and Ssite, respectively; however, the two sites do not

collaborate. As an example, let R be a dataset which

stores the location of hotels and other points of inter-

est, whereas S stores information about the physical

layers of the region (e.g., rivers, forests, urban areas,

etc). Let u be a client with a mobile device (e.g., PDA,

smart mobile phone) that asks the query ‘‘find all

hotels which are at most 2km away from a forest.’’

The query is a spatial join. However, neither Rsite nor

Ssite can evaluate the join, because they do not collabo-

rate. A typical solution is to use a mediator. Neverthe-

less, for ad-hoc queries, it is unlikely that there is a

suitable mediator. Therefore, the query must be eval-

uated by the mobile device. It is assumed that the

servers support a simple query interface and can an-

swer window (i.e., find all objects in a region) and

count queries (i.e., how many objects are within a

region); the servers do not allow access to their internal

indices. Moreover, since telecommunication providers

charge by the amount of transferred data, u wants

to minimize that quantity and does not consider the

query cost at the servers. Figure 3 shows the two

datasets. The client partitions conceptually the data

by a 2 � 2 grid (i.e., AB12,AB34,CD12,CD34) and

requests the number of objects in each quadrant.

Since none of the quadrants is empty, all of them

may contain joining pairs. Therefore, the client recur-

sively partitions each quadrant and retrieves the new

statistics (i.e., number of objects in each cell). Now,

some cells (e.g., C1 in Rsite) are empty; u eliminates

these cells, since they cannot contain any solution. For

Distributed Spatial Databases. Figure 2. Distributed spatial join based on z-ordering approximation.

374D Distributed Spatial Databases

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:02

the remaining cells u may partition them again and

ask for more statistics. However, if the distribution

of objects in a cell is roughly uniform, further parti-

tioning is unlikely to eliminate any cells. [3] presents a

cost model to estimate when the cost of retrieving

refined statistics is more than the potential savings

due to pruning. At that point, u performs the spatial

join. For each cell, if the number of objects is similar

in both datasets, u downloads the objects of both cells

and performs hash-based spatial join. On the other

hand, if the number of objects differs drastically (e.g.,

the cell in R has much more objects than the

corresponding cell in S), then u downloads only the

objects from S and performs nested-loop join by send-

ing a series of window queries to R. Kalnis et al. [5]

developed more efficient algorithms for the same

problem.

A similar method was used by Liu et al. [9] for

evaluating k-nearest-neighbor queries. They assume a

client-server architecture (only one server), where the

server can execute only window queries. Therefore, the

client must estimate the minimum window that con-

tains the result. The authors propose a methodology

that either estimates the window progressively, or

approximates it using statistics about the data. Statisti-

cal information is assumed to be available at the client;

hence there is no overhead for retrieving statistics.

Distributed Spatial Indices

Several researchers have studied distributed versions of

common spatial indices. Litwin and Neimat [8] pro-

posed a distributed version of the kd-tree, called

k-RP*S, whereas Karlsson [7] developed hQT*, which

is a distributed quad-tree. Both papers focus on point

data. Recently, Mouza et al. [12] proposed the SD-

Rtree, which is a distributed version of the R-tree

capable of indexing regions. SD-Rtree is a binary bal-

anced tree. Initially (Fig. 4a), the entire tree resides in

one server S0. There is a data node d0, which contains

all spatial objects and an associated MBR A, which

encloses the objects of d0. d0 is a conceptual node and

typically contains a large number of objects, limited

only by the capacity of server S0. The objects inside d0
may be indexed by any spatial index (e.g., a local R-

tree). During insertion, a split is performed if the

capacity of S0 is reached. A new server S1 enters the

system and receives approximately half of the objects;

these are selected using the usual R-tree split algo-

rithms. In Fig. 4b the objects remaining in d0 are

enclosed by MBR B, whereas a new data node d1 is

created in S1; the corresponding MBR is C. Another

node r1 is created in S1; r1 has pointers to d0 and d1,

together with their MBRs. r1 is called routing node and

is similar to the internal nodes of common R-trees.

Figure 4c shows one more split of node d1. A new

server S2 enters the system and creates a data node d2
and a routing node r2. The new MBRs of d1 and d2 are

E and D, respectively. Finally, data is stored in three

servers (i.e., S0 stores d0, etc) and the routing informa-

tion is distributed in two servers (i.e., r1 is in S1 where-

as r2 is in S2). Due to splits, the tree may become

imbalanced; to achieve balance, node rotations similar

to the classical AVL tree are performed.

Distributed Spatial Databases. Figure 4. SD-Rtree example.

Distributed Spatial Databases. Figure 3. MobiHook

example.

Distributed Spatial Databases D 375

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:02

The set of all routing nodes is called image of the

tree. Each client application has a copy of the image. In

order to query (or update) the spatial data, the client

first searches the local image to identify the server that

stores the required data, and contacts that server di-

rectly. This is crucial for a distributed structure, since it

avoids traversing the tree through the root (i.e., it does

not overload the root server). However, a client’s image

may be outdated. In this case, the wrongly contacted

server forwards the query to the correct part of the tree

and updates the client’s image. Moreover, due to R-tree

node overlap, a query may need to traverse multiple

paths; some of them are redundant. To avoid this, if

two nodes overlap, they are annotated with additional

information about their intersection. In Fig. 5a, nodes

A and B store the set of objects in their intersection; in

this example the set is empty. The intersection set is

updated only if necessary. For instance, the split of

node B in Fig. 5b does not affect the intersection set.

On the other hand, the extension of D in Fig. 5c

changes the intersection set. If a query q arrives at D,

it can be answered directly by D (i.e., without contact-

ing the subtree of F), since the intersection set indicates

that there is no matching object in F.

Several researchers have proposed distributed spatial

indices on top of Peer-to-Peer (P2P) systems. For in-

stance, Mondal et al. [11] proposed a P2P version of

the R-tree, whereas Jagadish et al. [4] developed the

VBI-tree, a framework for deploying multi-dimensional

indices on P2P systems. Also, Kantere and Sellis [6]

proposed a spatial index similar to quad-tree, on top

of a structured P2P network. These approaches are

based on different assumptions for the update and

query frequency, and the stability (i.e., mean lifetime)

of peers in the network. Therefore, it is not clear which

approach is more suitable in practice.

Spatial Queries Involving Numerous Mobile Clients

There exist a variety of spatial distributed systems con-

sisting of numerous mobile clients. Such systems are

optimized for the low battery life and the scarce

resources (e.g., storage, CPU) of the mobile devices.

Gedik and Liu [3] proposed MobiEyes, a grid-based

distributed system for continuous range queries.

MobiEyes pushes part of the computation to the mobile

clients, and the server is primarily used as a mediator.

The notion of monitoring regions of queries was intro-

duced to ensure that objects receive information about

the query (e.g., position and velocity). When objects

enter or leave the monitoring region, the server is noti-

fied. By using monitoring regions, objects only interact

with queries that are relevant; hence they conserve pre-

cious resources (e.g., storage and computation).

Another architecture is based on the fact that wire-

less networks are typically broadcast-based. All data are

broadcasted periodically and each client listens for its

relevant data. In a wireless broadcast environment, an

index called air index is commonly used to minimize

power consumption. A mobile device can utilize the

air index to predict the arrival time of the desired

data. Therefore, it can reduce power consumption by

switching to sleep mode for the time interval that no

desired data objects are arriving. The intuition behind

the air index is to interleave the index items with the

data objects being broadcasted. Zheng et al. [15] pro-

posed two air indexing techniques for spatial data

based on the one-dimensional Hilbert Curve and the

R-tree, respectively. Using those indices, they discuss

how to support Continuous Nearest Neighbor queries

in a wireless data broadcast environment.

A related subject is the processing of spatial queries

in sensor networks. Such networks are made of a large

number of autonomous devices that are able to store,

process and share data with neighboring devices. The

spatial properties of the sensors (e.g., location, com-

munication range and sensing range) are typically

exploited to route queries efficiently. For example,

Coman et al. [2] propose a system that answers range

queries (e.g., ‘‘find the temperature for each point in an

area’’). The system takes advantage of the fact that the

Distributed Spatial Databases. Figure 5. Example of overlap in SD-Rtree nodes.

376D Distributed Spatial Databases

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:02

sensing ranges of some sensors may completely cover

other sensors; consequently, the latter do not need to

be contacted.

Key Applications
Nowadays, the trend in databases is the separation

of the location of data from the abstract concept of

the database itself. Therefore a database may reside in

more than one location, but can be queried as a con-

tinuous unit. This is made possible due to the increase

of network speed. Numerous practical applications

can benefit from distributed spatial databases. As an

example, consider a spatial database that stores the

location of hotels and other points of interest in an

area, and a second database which stores information

about the physical layers of the region (e.g., rivers,

forests, urban areas, etc). Each database is useful by

its own. Nevertheless, by combining the two, the value

of the data increases, since the distributed system is

now able to answer queries such as ‘‘find all hotels

inside a forest.’’ There are also applications where

there is only one spatial dataset, but it is distributed

in many servers (or peers). For example, each peer may

monitor road congestion in its neighborhood. In order

to find routes in a city that avoid congested roads, the

spatial data in all peers must be indexed by a

distributed data structure.

Cross-references
▶Distributed Databases

▶Distributed Join

▶R-Tree (and Family)

▶ Spatial Indexing Techniques

▶ Spatial Join

Recommended Reading
1. Abel D.J., Ooi B.C., Tan K.-L., Power R., and Yu J.X. Spatial

Join Strategies in Distributed Spatial DBMS. In Proc. 4th Int.

Symp. Advances in Spatial Databases, 1995, pp. 348–367.

2. Coman A., Nascimento M.A., and Sander J. Exploiting Redun-

dancy in Sensor Networks for Energy Efficient Processing of

Spatiotemporal Region Queries. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 2005, pp. 187–194.

3. Gedik B. and Liu L. MobiEyes: Distributed Processing of Con-

tinuously Moving Queries on Moving Objects in a Mobile Sys-

tem. In Advances in Database Technology, Proc. 9th Int. Conf.

on Extending Database Technology, 2004, pp. 67–87.

4. JagadishH.V.,Ooi B.C., VuQ.H., Zhang R., and ZhouA. VBI-Tree:

A Peer-to-Peer Framework for Supporting Multi-Dimensional

Indexing Schemes. In Proc. 22nd Int. Conf. on Data Engineering,

2006.

5. Kalnis P., Mamoulis N., Bakiras S., and Li X. Ad-hoc Distributed

Spatial Joins on Mobile Devices. In Proc. 20th Int. Parallel &

Distributed Processing Symp., 2006.

6. Kantere V. and Sellis T.K. A Study for the Parameters of a

Distributed Framework That Handles Spatial Areas. In Proc.

10th Int. Symp. Advances in Spatial and Temporal Databases,.

2007, pp. 385–402.

7. Karlsson J.S. hQT*: A Scalable Distributed Data Structure for

High-Performance Spatial Accesses. In Proc. Int. Conf. of Foun-

dations of Data Organization (FODO), 1998, pp. 37–46.

8. Litwin W. and Neimat M.-A. k-RP*S: A Scalable Distributed

Data Structure for High-Performance Multi-Attribute Access.

In Proc. Int. Conf. on Parallel and Distributed Information

Systems (PDIS). 1996, pp. 120–131.

9. Liu D.-Z., Lim E.-P., and Ng W.-K. Efficient k Nearest Neighbor

Queries on Remote Spatial Databases Using Range Estimation.

In Proc. 14th Int. Conf. on Scientific and Statistical Database

Management, 2002, pp. 121–130.

10. Mamoulis N., Kalnis P., Bakiras S., and Li X. Optimization of

Spatial Joins on Mobile Devices. In Proc. 8th Int. Symp.

Advances in Spatial and Temporal Databases, 2003, pp. 233–251.

11. Mondal A., Lifu Y., and Kitsuregawa M. P2PR-Tree: An R-Tree-

Based Spatial Index for Peer-to-Peer Environments. In Proceed-

ings of EDBT Workshops – P2P&DB, 2004, pp. 516–525.

12. du Mouza C., Litwin W., and Rigaux P. SD-Rtree: A Scalable

Distributed Rtree. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 296–305.

13. Orenstein J.A. A Comparison of Spatial Query Processing Tech-

niques for Native and Parameter Spaces. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1990, pp. 343–352.

14. Tan K.-L., Ooi B.C., and Abel D.J. Exploiting Spatial Indexes for

Semijoin-Based Join Processing in Distributed Spatial Data-

bases. IEEE Trans. Knowl. Data Eng., 12(6):920–937, 2000.

15. Zheng B., Lee W.-C., and Lee D.L. Search Continuous Nearest

Neighbor on Air. In Proc. Int. Conf. on Mobile and Ubiquitous

Systems: Networking and Services (MobiQuitous), 2004, pp.

236–245.

Distributed Storage Systems

▶ Peer-to-Peer Storage

Distributed Transaction
Management

WEE HYONG TOK

National University of Singapore, Singapore,

Singapore

Synonyms
Transaction management in distributed database

systems

Distributed Transaction Management D 377

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:03

Definition
Distributed transaction management deals with the

problems of always providing a consistent distributed

database in the presence of a large number of transac-

tions (local and global) and failures (communication

link and/or site failures). This is accomplished through

(i) distributed commit protocols that guarantee atom-

icity property; (ii) distributed concurrency control

techniques to ensure consistency and isolation proper-

ties; and (iii) distributed recovery methods to preserve

consistency and durability when failures occur.

Historical Background
A transaction is a sequence of actions on a database that

forms a basic unit of reliable and consistent computing,

and satisfies the ACID property. In a distributed data-

base system (DDBS), transactionsmay be local or global.

In local transactions, the actions access and update

data in a single site only, and hence it is straightforward

to ensure the ACID property. However, in global trans-

actions, data from more than one site are accessed and

updated. A global transaction typically spawns sub

transactions at each of the sites in which data are

accessed. When multiple global transactions are run-

ning, these sub transactions’ processing may be inter-

leaved. Thus, distributed transactions must be carefully

managed to prevent errors that may corrupt the data-

base. In addition, sites or communication link may fail

and result in inconsistent database states across sites.

To ensure that a distributed database is always in a

consistent state, the distributed transactionmanagement

system must guarantee the ACID property. Transaction

atomicity is achieved through distributed commit

protocols, e.g., Two-Phase Commit and its variants

[8,10,11] and Three-Phase Commit [13]. These proto-

cols allow sub transactions (running at different sites) of

a global transaction to reach a final outcome of the

execution. In this way, either all sub transactions commit

(in which case the global transaction commits) or all sub

transactions abort (in which case the global transaction

aborts).

To ensure consistency and isolation properties,

distributed concurrency control techniques have been

designed. In particular, the notion of global serializability

has been introduced to ensure that global transactions are

serializable. These algorithms determine themanagement

of synchronization primitives (e.g., locks, timestamps,

serialization graphs), and the order in which database

operations (i.e., read andwrite) are executed concurrently

in a distributed manner. As such, anomalies such as the

reading of uncommitted data, unrepeatable reads, and

overwriting of uncommitted data can be prevented.

Distributed concurrency control algorithms can be classi-

fied into lock-based [1,4,11,14,15], timestamp-based

[12], and serialization graph testing (SGT) based [2,6,9].

Hybrid methods which use a combination of locks and

timestamps are discussed in [5]. For lock-based scheme,

(distributed) deadlocks have to be handled. Balter et al.

[3] discusses the relationship between deadlock manage-

ment and concurrency control algorithms.

Finally, when a transaction has committed, its effect

must persist in the database regardless of failures. Simi-

larly, if failure happens before a transaction commits,

then none of its effects must persist. For example, a

power failure that wipes out all main memory content

should not nullify the effect of a committed transaction.

Similarly, site failures should not affect the distributed

commit protocol. To ensure durability and consistency,

distributed recoverymethods have been developed. These

include log-based techniques [8] and checkpointing

methods [7] (cross-reference to Distributed Recovery).

The two-phase commit protocol and the distributed

2PL concurrency control algorithm are implemented in

the System R* [11] and NonSTOP SQL [15] systems.

Distributed INGRES [14] uses the two-phase commit

protocol and the primary copy 2PL for concurrency

control. Log-based protocols are the main recovery

methods employed in commercial systems.

Foundations
A distributed database system consists of a collection of

database sites. A centralized database system is located

at each of the sites. The database sites communicate

with each other by sending messages via a communica-

tion network. A transaction consists of a sequence of

operations that are performed on the data objects. Two

operations, oi(x) and oj(x), which are accessing the

shared data object x, are conflicting operations if

either oi(x) or oj(x) is a write operation.

Distributed Transaction Management

In order to handle both local and global transactions,

each site of a distributed database system consists

of the following components: transaction manager,

transaction coordinator, and recovery manager. The

transaction manager handles the execution of transac-

tions at each site, and maintains a log to facilitate

recovery. In order to ensure that the ACID properties

378D Distributed Transaction Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:03

are guaranteed when multiple transactions are con-

currently executed, the transaction manager relies on

concurrency control techniques. The transaction coor-

dinator is used to plan and schedule sub transactions

that are executed on multiple sites. In addition, the

transaction coordinator determines whether the trans-

actions that are executed on multiple sites are com-

mitted or aborted. The recovery manager is used to

recover the database to a consistent state if failure

occurs. Figure 1 shows the various components in the

transaction management system at each database site.

Serializability Theory

Serializability theory provides the theoretical founda-

tion for proving the correctness of a concurrency con-

trol algorithm, by showing that the overall results of

executing a set of concurrent transactions is equivalent

to executing the transactions in a serial manner. In

serializability theory, this is referred to as a serializable

schedule. A serializable schedule ensures the consisten-

cy of a database system.

Let T denote a set of concurrently executing trans-

actions. The operations for the various transactions in

T can be executed in an interleaved manner. A com-

plete schedule, S, defines the execution order of all

operations. A schedule, S’, is a prefix of a complete

schedule. Formally, T = {T1, T2,. . .,Tn}, and S is a

partial order over T, with ordering relation, < S,

where: (i) S ¼
Sn
i¼1

Ti , (ii) <S �
Sn
i¼1

<i , and (iii) for

any two conflicting operations, oi and oj 2 S, either oi
< S oj or oj < S oi. The first condition states that S

consists of the operations which belong to the set of

transactions T. The second condition states that the

ordering relation is a superset of the ordering relations

of each of the transactions. The third condition states

that the ordering of every pair of conflicting transac-

tion is given by the ordering relation < S. Two sche-

dules, S1 and S2 defined over Tare conflict equivalent if

for each pair of conflicting operations oi and oj (i 6¼ j),

if oi < S1 oj, then oi < S2 oj. A schedule is serializable if

and only if it is conflict equivalent to a serial schedule.

In distributed database systems, global serializabil-

ity is required. For example, consider two transactions,

T1 and T2, that are initiated at two sites, site 1 and site 2

respectively. Suppose that both transactions access

objects x and y. Moreover, suppose that x is stored at

site 1, and y is stored at site 2, and that the constraint is

that x + y is a constant. Let Wi(x) denote a write action

on object x by transaction Ti. Suppose S1 and S2 are the

local schedules at site 1 and site 2 respectively. Now,

consider S1 = {w1(x), w2(x)} and S2 = {w2(y), w1(y)}.

Clearly, both S1 and S2 are locally serializable. However,

while the serial schedule for S1 is T1 ! T2, the serial

schedule for S2 is T2 ! Tl. These schedules may violate

the constraint and hence not globally serializable, if the

sequence of actions happens in the following order:

Distributed Transaction Management. Figure 1. Transaction management system at each database site.

Distributed Transaction Management D 379

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:03

w1(x), w2(y), w2(x), w1(y). However, it has been shown

that as long as all the local schedules at each site are

serializable with the same serialization order, then the

global schedule is serializable. Moreover, the serializa-

tion order of the global schedule corresponds to that of

the local order. As an example, if S1 = {w1(x), w2(x)}

and S2 = {w1(y), w2(y)}, then the global schedule is

serializable with T1 ! T2.

Concurrency control algorithms are used to ensure

that the global schedule is serializable. For replicated

distributed databases, more issues need to be consid-

ered before serializability theory can be applied. This is

because even if the local schedules are serializable, the

mutual consistency of the database needs to be consid-

ered. For replicated, distributed databases, a one-copy

serializable global schedule is desired in order to ensure

the mutual consistency of the replicated data. In addi-

tion to concurrency control, a replica control protocol

(e.g. ROWA) is used to ensure that one-copy serial-

izability can be achieved.

Key Applications
Distributed transaction management forms an integral

part of distributed database systems. The concurrency

control techniques, commit protocols, and recovery

techniques can be applied and adapted for different

types of distributed database systems.

Future Directions
The emergence of new computing platforms (e.g. Peer-

to-Peer (P2P), and cloud computing) introduces new

issues that need to be handled by distributed transac-

tion manager. P2P database systems are inherently

distributed systems, and have been studied extensively

by the database community. In P2P systems, the

absence of a global transaction manager introduces new

challenges. In addition, nodes join or leave the P2P

network. Transactions are often executed independently

on each peer. The maintenance of data consistency in

P2P database systems motivates the need for P2P-

based concurrency control algorithms. For example,

it may be necessary to maintain multiple versions of

data objects and/or a weaker notion of serializability

than the conventional notion of global serializability.

Recovery is also complicated by the fact that a failed

site may not find the operational sites (participating in

its transactions) available when it recovers (these sites

may have left the network). Thus, novel and online

recovery mechanisms are needed. Cloud computing is

an emerging computing platform for next-generation

applications. It provides basic services such as storage,

queuing, and computation. Hence, a data store can be

easily built using these basic services. The storage ser-

vices provided by the cloud can be perceived as a very

large shared disk. Different applications which use

the cloud will require different levels of concurrency

control. The need to support concurrent access on

the shared disk and different level of concurrency con-

trol motivates the need for concurrency control to be

offered on a à la carte basis. In addition, recovery

techniques for cloud computing have not been ade-

quately studied in the literature.

Cross-references
▶ACID Properties

▶Distributed Architecture

▶Distributed Concurrency Control

▶Distributed Deadlock Management

▶Distributed Recovery

▶Three-Phase Commit

▶Two-Phase Commit

Recommended Reading
1. Alsberg P. and Day J.D. A principle for resilient sharing of

distributed resources. In Proc. 2nd Int. Conf. on Software

Eng., 1976, pp. 562–570.

2. Badal D.Z. Correctness of concurrency control and implications

for distributed databases. In Proc. Computer Software and

Applications Conference (COMPSAC). Chicago, IL, 1979, pp.

588–594.

3. Balter R., Berard P., and Decitre P. Why control of the concur-

rency level in distributed systems is more fundamental than

deadlock management. In Proc. ACM SIGACT-SIGOPS 1st

Symp. on the Principles of Dist. Comp., 1982, pp. 183–193.

4. Bernstein P.A. and Goodman N. Concurrency control in

distributed database systems. ACM Comput. Surv., 13 (2):

185–221, 1981.

5. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Boston, MA, 1987.

6. Casanova M.A. The concurrency control problem for database

systems. Lecture Notes in Computer Science, Springer Berlin

1981.

7. Chrysanthis P.K., Samaras G., and Al-Houmaily Y.J. Recovery

and performance of atomic commit processing in distributed

database systems, Chapter 13. In Recovery Mechanisms in Data-

base Systems, V. Kumar, M. Hsu Prentice-Hall, Upper Saddle

River, NJ, 1998.

8. Gray J. Notes on data base operating systems. In Operating

Systems – An Advanced Course, R. Bayer, R. Graham, G.

Seegmuller (eds.). Lecture Notes in Computer Science, vol. 60,

Springer, Berlin, 1978, pp. 393–481.

380D Distributed Transaction Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:03

9. Hadzilacos T. and Yannakakis M. Deleting completed transac-

tions. In Proc. 5th ACM SIGACT-SIGMOD Symp. on Principles

of Database Systems, 1986, pp. 43–46.

10. Lampson B. and Sturgis H. Crash recovery in a distributed data

storage system. Technical report, Computer Science Laboratory,

Xerox Palo Alto Research Center, CA, 1976.

11. Mohan C., Lindsay B.G., and Obermarck R. Transaction man-

agement in the r* distributed database management system.

ACM Trans. Database Syst., 11(4):378–396, 1986.

12. Shapiro R. and Millstein R. Reliability and fault recovery in

distributed processing. OCEANS, 9:425–429, 1977.

13. Skeen D. Non-blocking commit protocols. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 133–142.

14. Stonebraker M. and Neuhold E.J. A distributed database version

of ingres. In Proceedings of the Second Berkeley Workshop on

Distributed Data Management and Computer Networks, 1977,

pp. 19–36.

15. The Tandem Performance Group. Tandem database group –

nonstop sql: a distributed, high-performance, high-availability

implementation of sql. In Proc. Second Int. Workshop on High

Performance Transaction Systems (HPTS), 1987, pp. 60–104.

Divergence Control

▶Replica Freshness

Divergence from Randomness
Models

ANABAPTISTS AMAIN

GIAMBATTISTA AMATI Ugo Bordon Foundation,

Rome, Italy

Synonyms
Deviation from randomness

Definition
Divergence From Randomness (DFR) Information Re-

trieval models are term-document matching functions

that are obtained by the product of two divergence

functions. An example of DFR function is that related

to Jensen’s information of two probability distribu-

tions [9, pp. 26–28]:X
i

I1ðp̂þi jjp̂iÞ: I2ðp̂þi jjp̂iÞ

where I1ðp̂þi jjp̂iÞ ¼ p̂þi � p̂i ¼ Dp̂i and I2ðp̂þi jjp̂iÞ ¼
log2

p̂iþDp̂i
p̂i

The DFR generalizes the Jensen’s information as

follows: X
i

I1ðp̂þi jjp̂iÞ: I2ðp̂þi jjpiÞ

where

� p is a prior probability density function of terms

(or documents) in the collection.

� p̂ is the frequency of the term in a document (or

in a subset of documents).

� p̂þ is the neighboring frequency of the term in

a document (or in a subset of documents).

� I1ðp̂þjjp̂iÞ ¼
P

i I1ðp̂þi jjp̂iÞ ¼ 0 if and only if

p̂þ ¼ p̂.

� I2ðp̂jjpÞ ¼
P

i I2ðp̂jjpÞ is minimum when p̂ ¼ p.

In a DFR model a term occurs randomly when p̂ ¼ p,

whereas a term is informative when p̂ � p.

Historical Background
Divergence FromRandomnessmodels were inspired by

Harter’s 2-Poisson model. Harter’s model assumes that

a word randomly distributedaccording to a Poisson

distribution is not informative, whereas a word that

does not follow a Poisson distribution indicates that it

conveys information [7]. The Okapi retrieval function,

BM25, was also inspired by Harter’s 2-Poisson model,

and indeed it can be derived from a DFR model [3].

Foundations
The Divergence From Randomness models have their

roots in information theory. Following Shannon’s the-

ory of information a document can be seen as a mes-

sage to transmit, where information is measured by the

cost of transmission. For example, if a message m(k) of

length k is generated by a set V of n symbols ti, each

symbol occurring with a frequency (prior probability)

pi, with 0 � i � n, then the information is:

I2 ¼ � log2 pðmðkÞÞ ¼ � log2

Yn
i¼1

p
k:pi
i

¼ �k
Xn
i¼1

: pi log2 pi

The entropy H of a the system generated by V is

defined as the average information transmitted by its

symbols

H ¼ � log2 pðmðkÞÞ
k

¼ �
X
0�i�n

pi log2 pi

Divergence from Randomness Models D 381

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

The average information transmitted by an arbitrary

message m(k) of length k is approximated by

I2ðkÞ ¼ � log2 pðmðkÞÞ � k:H ð1Þ

A collection D of N documents can be also con-

ceived as a set of messages that are generated by a

vocabulary V of n words ti. There are two types of

DFR models:

1. The document model. Each document d of length k

generates a partition of its terms over n cells

(terms). The partition satisfies the constraintPn
i¼1 tf i ¼ k, where tfi is the term frequency of

the i -th term in the document, and each term ti
has a prior probability pi of occurrence in an arbi-

trary document of the collection.

2. The term model. All occurrences of a term t in a

collection D of N documents generates a partition

over N cells (documents). Each document has a

prior probability pi of being selected. The partition

satisfies the constraint
PN

i¼1 tf i ¼ TF, where tfi
is the term frequency in the i -th document and

TF is the term frequency in the collection.

Document Models

Equation (1) provides the mean information carried

by an arbitrary document d of length k with expected

term frequencies k � pi. However, if the term frequency

Xi in the observed document is tfi and not k � pi,

then the information of the document is given by the

multinomial distribution:

p X1¼ tf1; :::;Xn ¼ tfnÞ¼
k

tf1tf2:::tf n

� �
ptf11 ptf22 � � �ptfnn

�

Here, the term independence is assumed, according to

which a document is treated as an ensemble and is said

to be a bag of words. Setting p̂i to the term frequency

inthedocument tfi
k
, it can be shown that [9, Chap.1, Ex.

5.12] that:

lim
k!1

I2ðp̂jjpÞ
k

¼Dðp̂jjpÞ ð2Þ

where I2ðp̂jjpÞ ¼ � log2 pðX1 ¼ tf1; :::;Xn ¼ tfnÞ and
Dðp̂jjpÞ �

P
ti2 v p̂i log2

p̂i
pi

is the Kullback-Leibler

divergence.

The prior probability pi can be set to ni
N
, the

ratio of the number ni of documents in which the

term occurs and the number N of documents of

the collection (The contribution of a term not occur-

ring in a document is null, being tf � log2 tf!0 for

tf!0.):

I2ðp̂jjpÞ � k:Dðp̂jjpÞ ¼ k:
X
ti2v

p̂i: log2
p̂i

pi
�

X
ti2v

tf i log2
tf i:N

k:ni

ð3Þ

The approximation of (3) is additive on terms, and

additivity is a useful property to extract the

Divergence from Randomness Models. Table 1.

The notations

Notation
Document
model

Term
model

tf The term frequency in
the document

Xi ¼ tfi The frequency of the
i -th term in the
observed document

Yj ¼ tfj The frequency of
the observed term
in the jTtH
document

X The vector of the Xi
random variables

Y The vector of the Yi
random variables

TF The term frequency in
the collection

nt The document
frequency of the term
in the collection

N The number of
documents

k The document length

p̂ The estimate of
probability density
from observations
(likelihood)

tf i
k

tf i
TF

p̂þ The neighboring value
of the probability
density from
observations

tf iþ1
kþ1

tf iþ1
TFþ1

p The prior probability
density

TFiP
n
i
TFi

or nt
N

1
N

Dðp̂jjpÞ The Kullback-Leibler
divergence of p̂
from p

382D Divergence from Randomness Models

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

contribution of single terms to information. For exam-

ple, given the query q the contribution of the query

terms to the document is:

I2ðp̂jjpÞ ¼ � log2 pðX1 ¼ tf1; :::;Xn ¼ tfnjqÞ

¼
X
ti2q

tf i log2
tf i:N

k:ni

ð4Þ

Term Models

DFR term models are developed similarly as the DFR

document models. The analogous formula of (3) is

I2ðp̂jjpÞ ¼ �log2ðpðY1 ¼ tf1; . . . ;Yn ¼ tfNÞÞ

� TF � Dðp̂jjpÞ ¼ TF �
XN
i¼1

p̂i � log 2

p̂i

pi

¼
XN
i¼1

tf i log 2

tf i � N
TF

ð5Þ

where p̂i ¼ tf i
TF

and pi ¼ 1
N

is the prior probability of

a document.

Document Length Normalization

Similarly to TF-IDF used in the vector space model,

also Formula 4 can be used for retrieval (see vector

space model). However, information (see (3)) grows

approximately linearly with the document length. If

Formula 4 were used as retrieval function, then long

documents would be preferred to short ones, while

retrieval evaluation has shown that users prefer more

distilled information. Formula 4 needs to be normal-

ized with respect to the document length. Length nor-

malization is a critical issue in information retrieval

models: for example the vector space model normalizes

weights by dividing them by the norms of the query

and documents vectors, whilst language models nor-

malizes by learning the value of a parameter that com-

bines the two term frequencies p and p̂.

It is indeed possible to average the information-

log p X1 ¼ tf1; :::;Xn ¼ tfnð Þð Þ by the length of the

document, obtaining the Kullback-Leibler divergence,

but in such a case shorter documents would be pre-

ferred to longer ones, because p̂i is higher in very short

documents than in long documents. A way to normal-

ize the information carried by the term is to compute

the information gain, which corresponds to the in-

crease of information provided by the addition of

one or more occurrences of the term, for example

when the term frequency increases from p̂i ¼ tf
k
to its

neighboring point p̂þi ¼ tfþ1
kþ1

. The increment rate of

information is

X
i

I1ðp̂þi jjp̂iÞ:I2ðp̂ijjpiÞ �
X
ti2q

1� p̂i

p̂þi

� �
k:p̂i: log2

p̂i

pi

ð6Þ

where I1ðp̂þi jjp̂iÞ ¼ 1� p̂i
p̂þ
i

.

The matching Formula 6 considers only the contri-

bution of the query terms and exploits the additivity

property of information over independent terms.

Examples of Document Models

The following two models are examples of DFRmodels

generated by (6):

� Example of a DFR document model. Let p̂i ¼ tf i
k
,

p̂þi ¼ tf iþ1
kþ1

. Equation (6) becomes

X
ti2q

1� p̂i

k � p̂i þ 1
ð� log2 pðx1 ¼ tf1; :::; xn ¼ tfnjqÞÞ

� k �
X
ti2q

1� p̂i

k � p̂i þ 1
� p̂i � log2

p̂i

pi

An approximation of �log2p(X1¼ tf1, . . ., Xn = tfn|q),

different from the Kullback-Leibler divergence can be

obtained exploiting the Stirling formula that is used for

the computation of the factorials [1]. This is a param-

eter free model of IR and an analogous formula is

implemented in the Terrier search engine [10] (The

increment rate is computed by the w-square divergence
between the two neighboring probabilities p̂i and p̂þi .).

� Example of a DFR term model. Let p̂i ¼ B tf i;ð
TF; nt

N
Þ; p̂þi ¼ B tf i þ 1; TFþ 1; nt

N

� �
where

B tf i; TF;pið Þ ¼ TF

tf i

� �
nt

N

� �tf i
1� nt

N

� �TF�tf i

Different from document model, term models do not

include the document length among its observable

random variables. Therefore, the term frequency tf

is not normalized with respect to the length of the

document. The following term frequency normaliza-

tion was shown to be very effective

tfn ¼ tf � ln 1þ c � �k
k

� �
where �k is the average document length and c is

a parameter [8]. Equation (6) becomes

X
ti2q

TFþ 1

nt � ðtfni þ 1Þ ð� log2 pðY1 ¼ tf1; :::; YN ¼ tfN;

Z ¼kjqÞÞ �
X
ti2q

TFþ 1

nt � ðtfni þ 1Þ � tfni � log2
tfni � N
TF

Divergence from Randomness Models D 383

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

As for the previous document model, the Stripl-

ing formula can be used for the computation of

the factorials to obtain a better approximation

of � log2 p Y 1 ¼ tf1; :::;YN ¼ tfN;Z ¼ kjqÞð [3]. Other

DFR models can be built by varying the way both

information and the information gain are defined [3].

Key Applications
DFR models can be also applied to query expansion,

and to predict query performance [2].

Future Directions
The notion of information gain of the DFR models are

strictly connected to the theory of causation and of

aftereffect in future sampling (word burstiness) [4,5]

[6, pp. 399–402]. The notion of neighboring points

used in information gain is related to Fisher’s informa-

tion [9, pp. 26–28]. A deeper analysis of the relation of

information gain to these concepts can lead to the

discover of more performing models of IR.

URL to Code
DFR models are implemented in the search engine

Terrier http://ir.dcs.gla.ac.uk/terrier/.

Cross-references
▶ 2-Poisson Model

▶BM25

▶ Length Normalization

▶Query Expansion Models

Recommended Reading
1. Amati G. Frequentist and Bayesian approach to Information

Retrieval. In Proc. 28th European Conf. on IR Research (ECIR

2006). Volume 3936 of Lecture Notes in Computer Science,

Springer, 2005, pp. 13–24.

2. Amati G., Carpineto C., and Romano G. Query difficulty, ro-

bustness, and selective application of query expansion. In

S. McDonald and J. Tait (eds.). ECIR, volume 2997 of Lecture

Notes in Computer Science, Springer, 2004, pp. 127–137.

3. Amati G. and Van Rijsbergen C.J. Probabilistic models of infor-

mation retrieval based on measuring the divergence from ran-

domness. ACM Trans. Inform. Syst. (TOIS), 20(4):357–389,

2002.

4. Gärdenfors P. Knowledge in Flux. MIT, 1988.

5. Gaussier E. and Clinchant S. The BNB distribution for text model-

ing. In ECIR, Lecture Notes in Computer Science. Springer, 2008.

6. Good I.J. A casual calculus i. Br. J. Phil. Sci., 11:305–318, 1961.

7. Harter S.P. A probabilistic approach to automatic keyword

indexing. PhD thesis, Graduate Library, The University of

Chicago, Thesis No. T25146, 1974.

8. He I. and Ounis B. On setting the hyper-parameters of the term

frequency normalisation for information retrieval. ACM Trans.

Inform. Syst., 2007.

9. Kullback S. Information Theory and Statistics. Wiley, New York,

1959.

10. Ounis I., Amati G., Plachouras V., He B., Macdonald C., and

Johnson D. Terrier Information Retrieval Platform. In Proc.

27th European Conf. on IR Research (ECIR 2005), volume

3408 of Lecture Notes in Computer Science, Springer, 2005,

pp. 517–519.

DNA Sequences

▶Biological Sequence

Document

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Definition
A document is a representation of information des-

igned for consumption by people. A document may

contain information in any medium or in multiple

media, though text is generally the dominant medium.

A document may be persistent and suitable for archival

uses or it may be ephemeral, lasting only for one

viewing.

Key Points
Dictionary definitions of the concept of a document

generally emphasize documents that have a physical

form. Even when computers are considered, the defini-

tions assume that a document is a file on a storage

device.

Modern computing, thanks especially to the Web,

has greatly expanded the scope of the term. Computers

make documents more diverse because comput-

ers allow users to create, store and manage material

from a variety of media using similar metaphors and

interfaces. Computers may also create documents on

the fly from fragments stored in a database, as is

common in e-commerce and other Web applications.

These documents may only exist long enough to be

transmitted from a server to a Web browser for a single

viewing by a single user.

Cross-references
▶Document Representations

384D DNA Sequences

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

Document Clustering

YING ZHAO
1, GEORGE KARYPIS

2

1Tsinghua University, Beijing, China
2University of Minnesota, Minneapolis, MN, USA

Synonyms
Text clustering; High-dimensional clustering; Unsu-

pervised learning on document datasets

Definition
At a high-level the problem of document clustering is

defined as follows. Given a set S of n documents, we

would like to partition them into a pre-determined

number of k subsets S1, S2,. . .,Sk, such that the docu-

ments assigned to each subset are more similar to each

other than the documents assigned to different subsets.

Document clustering is an essential part of text mining

and has many applications in information retrieval

and knowledge management. Document clustering

faces two big challenges: the dimensionality of the

feature space tends to be high (i.e., a document collec-

tion often consists of thousands or tens of thousands

unique words); the size of a document collection tends

to be large.

Historical Background
Fast and high-quality document clustering algorithms

play an important role in providing intuitive naviga-

tion and browsing mechanisms as well as in facilitating

knowledge management. The tremendous growth in

the volume of text documents available on the Inter-

net, digital libraries, news sources, and company-wide

intranets has led an increased interest in developing

methods that can help users to effectively navigate,

summarize, and organize this information with the

ultimate goal of helping them to find what they are

looking for. Fast and high-quality document clustering

algorithms play an important role towards this goal as

they provide both an intuitive navigation/browsing

mechanism by organizing large amounts of informa-

tion into a small number of meaningful clusters as well

as to greatly improve the retrieval performance either

via cluster-driven dimensionality reduction, term-

weighting, or query expansion.

Foundations
Figure 1 shows the commonly used three-step process

of transferring a document collection into clustering

results that are of value to a user. Original documents

are often plain text files, html files, xml files, or a

mixture of them. However, most clustering algorithms

cannot operate on such textual files directly. Hence, a

document representation is needed to transform the

original documents into the data model on which

clustering algorithms can operate. Depending on

the characteristics of the document collection and the

application requirements, the actual clustering process

can be performed using various types of clustering

algorithms including partitional clustering, agglomer-

ative clustering, model-based clustering, etc. Finally,

the quality of the clustering results need to be properly

assessed and presented to the users. Details on some of

the most commonly used methods in this three-step

process follows.

Document Representation

Documents are often represented using the term fre-

quency-inverse document frequency (tf-idf) vector-

space model [12]. In this model, each document d is

considered to be a vector in the term-space and is

represented by the vector

dtfidf ¼ tf1 logðn=df1Þ; tf2 logðn=df2Þ; :::; tfm logðn=dfmÞð Þ;

where tfi is the frequency of the ith term (i.e., term

frequency), n is the total number of documents, and dfi
is the number of documents that contain the ith term

(i.e., document frequency). To account for documents

of different lengths, the length of each document vec-

tor is normalized so that it is of unit length.

Similarity Measures

Two prominent ways have been proposed to measure

the similarity between two documents di and dj when

represented via their tf-idf representation. The first

method is based on the commonly used [12] cosine

function

cosðdi;djÞ ¼ dti dj=ðjjdijj jjdj jjÞ;

and since the document vectors are of unit length,

it simplifies to di
tdj. The second method computes

the similarity between the documents using the

Euclidean distance dis(di, dj) = ||di � dj||. Note that

besides the fact that one measures similarity and the

other measures distance, these measures are quite sim-

ilar to each other because the document vectors are of

unit length.

Document Clustering D 385

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

Partitional Document Clustering

Partitional algorithms, such as K-means [11],

K-medoids [8], probabilistic [3], graph-partitioning-

based [14], or spectral based [1], find the clusters by

partitioning the entire dataset into either a predeter-

mined or an automatically derived number of clusters.

A key characteristic of many partitional clustering

algorithms is that they use a global criterion function

whose optimization drives the entire clustering pro-

cess. For some of these algorithms the criterion func-

tion is implicit (e.g., PDDP [1]), whereas for other

algorithms (e.g., K-means [11]) the criterion function

is explicit and can be easily stated. This latter class of

algorithms can be thought of as consisting of two key

components. First is the criterion function that the

clustering solution optimizes, and second is the actual

algorithm that achieves this optimization.

Criterion Function Criterion functions used in the

partitional clustering reflect the underlying definition

of the ‘‘goodness’’ of clusters. The partitional clustering

can be considered as an optimization procedure that

tries to create high quality clusters according to a partic-

ular criterion function. Many criterion functions have

been proposed and analyzed [8,6,16]. Table 1 lists a total

of seven different clustering criterion functions. These

functions optimize various aspects of intra-cluster

similarity, inter-cluster dissimilarity, and their combi-

nations, and represent some of the most widely used

criterion functions for document clustering. These cri-

terion functions utilize different views of the underly-

ing collection, by either modeling the objects as vectors

in a high-dimensional space, or by modeling the col-

lection as a graph.

The I 1 criterion function (1) maximizes the sum of

the average pairwise similarities (as measured by the

cosine function) between the documents assigned to

each cluster weighted according to the size of each

cluster. The I 2 criterion function (2) is used by the

popular vector-space variant of the K-means algorithm

[2]. In this algorithm each cluster is represented by its

centroid vector and the goal is to find the solution that

maximizes the similarity between each document and

the centroid of the cluster that is assigned to. Compar-

ing I 1 and I 2 we see that the essential difference

between them is that I 2 scales the within-cluster simi-

larity by the ||Dr|| term as opposed to the nr term used

by I 1 . ||Dr|| is the square-root of the pairwise similari-

ty between all the document in Sr and will tend to

emphasize clusters whose documents have smaller

pairwise similarities compared to clusters with higher

pairwise similarities.

The E1 criterion function (3) computes the cluster-

ing by finding a solution that separates the documents

Document Clustering. Figure 1. Structure of document clustering learning system.

386D Document Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

of each cluster from the entire collection. Specifically, it

tries to minimize the cosine between the centroid vec-

tor of each cluster and the centroid vector of the entire

collection. The contribution of each cluster is weighted

proportionally to its size so that larger clusters will be

weighted higher in the overall clustering solution. E1

was motivated by multiple discriminant analysis and is

similar to minimizing the trace of the between-cluster

scatter matrix [6].

The H1 and H2 criterion functions (6) and (7) are

obtained by combining criterion I 1 with E1, and I 2

with E1, respectively. Since E1 is minimized, both H1

and H2 need to be maximized as they are inversely

related to E1.

The criterion functions that we described so far,

view each document as a multidimensional vector. An

alternate way of modeling the relations between docu-

ments is to use graphs. Two types of graphs are

commonly used in the context of clustering. The first

corresponds to the document-to-document similarity

graph Gs and the second to the document-to-term

bipartite graph Gb [15,4]. Gs is obtained by treating

the pairwise similarity matrix of the dataset as the adja-

cency matrix of Gs, whereas Gb is obtained by viewing

the documents and the terms as the two sets of vertices

(Vd and Vt) of a bipartite graph. In this bipartite

graph, if the ith document contains the jth term,

then there is an edge connecting the corresponding

ith vertex of Vd to the jth vertex of Vt. The weights of

these edges are set using the tf-idf model.

Viewing the documents in this fashion, edge-cut-

based criterion functions can be used to cluster docu-

ment datasets. G1 and G2 (4) and (5) are two such

criterion functions that are defined on the similarity

and bipartite graphs, respectively. The G1 function [5]

views the clustering process as that of partitioning the

documents into groups that minimize the edge-cut of

each partition. However, because this edge-cut-based

criterion function may have trivial solutions the edge-

cut of each cluster is scaled by the sum of the cluster’s

internal edges [5]. Note that cut(Sr , S� Sr) in (4) is the

edge-cut between the vertices in Sr and the rest of the

vertices S � Sr , and can be re-written as Dr
t(D � Dr)

since the similarity between documents is measured

using the cosine function. The G2 criterion function

[15,4] views the clustering problem as a simultaneous

partitioning of the documents and the terms so that it

minimizes the normalized edge-cut of the partitioning.

Note that Vr is the set of vertices assigned to the rth

cluster and W(Vr) is the sum of the weights of the

adjacency lists of the vertices assigned to the rth cluster.

Optimization Method There are many techniques that

can be used to optimize the criterion functions

described above. They include relatively simple greedy

schemes, iterative schemes with varying degree of hill-

climbing capabilities, and powerful but computation-

ally expensive spectral-based optimizers [11,1,15,4,7].

Here is a simple yet very powerful greedy strategy that

has been shown to produce comparable results to those

produced by more sophisticated optimization algo-

rithms. In this greedy straggly, a k-way clustering of a

set of documents can be computed either directly or

via a sequence of repeated bisections. A direct k-way

clustering is computed as follows. Initially, a set of k

objects is selected from the datasets to act as the seeds

of the k clusters. Then, for each object, its similarity to

Document Clustering. Table 1. The mathematical

definition of various clustering criterion functions

Criterion
function Optimization function

I 1

ð1Þ maximize
Pk
i¼1

1
ni

P
v;u2Si

simðv; uÞ
 !

I 2

ð2Þ maximize
Pk
i¼1

ffiP
v;u2Si

simðv; uÞ
r

E1

ð3Þ minimize
Pk
i¼1

ni

P
v2Si ;u2S

simðv;uÞffiP
v;u2Si

simðv;uÞ
q

G1

ð4Þ minimize
Pk
i¼1

P
v2Si ;u2S

simðv;uÞP
v;u2Si

simðv;uÞ

G2

ð5Þ minimize
Pk
r¼1

cutðVr ;V�Vr Þ
W ðVr Þ

H1

ð6Þ maximize I1

E1

H2

ð7Þ maximize I2

E1

The notation in these equations are as follows: k is the total

number of clusters, S is the total objects to be clustered, Si is the

set of objects assigned to the ith cluster, ni is the number of

objects in the ith cluster, v and u represent two objects, and sim

(v,u) is the similarity between two objects.

Document Clustering D 387

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:04

these k seeds is computed, and it is assigned to the

cluster corresponding to its most similar seed. This

forms the initial k-way clustering. This clustering is

then repeatedly refined so that it optimizes a desired

clustering criterion function. A k-way partitioning via

repeated bisections is obtained by recursively applying

the above algorithm to compute two-way clustering

(i.e., bisections). Initially, the objects are partitioned

into two clusters, then one of these clusters is selected

and is further bisected, and so on. This process con-

tinues k � 1 times, leading to k clusters. Each of these

bisections is performed so that the resulting two-way

clustering solution optimizes a particular criterion

function.

Agglomerative Document Clustering

Hierarchical agglomerative algorithms find the clusters

by initially assigning each object to its own cluster

and then repeatedly merging pairs of clusters until a

certain stopping criterion is met. Consider an n-object

dataset and the clustering solution that has been com-

puted after performing l merging steps. This solution

will contain exactly n � l clusters, as each merging

step reduces the number of clusters by one. Now,

given this (n � l)-way clustering solution, the pair of

clusters that is selected to be merged next, is the one

that leads to an (n� l� 1)-way solution that optimizes

a particular criterion function. That is, each one of

the (n � l) � (n � l � 1) ∕ two pairs of possible merges

is evaluated, and the one that leads to a clustering

solution that has the maximum (or minimum)

value of the particular criterion function is selected.

Thus, the criterion function is locally optimized within

each particular stage of agglomerative algorithms.

Depending on the desired solution, this process con-

tinues until either there are only k clusters left, or when

the entire agglomerative tree has been obtained.

The three basic criteria to determine which pair of

clusters to be merged next are single-link [13], com-

plete-link [10] and group average (i.e., unweighted

Pair Group Method with Arithmetic mean

(UPGMA)) [8]. The single-link criterion function

measures the similarity of two clusters by the maxi-

mum similarity between any pair of objects from each

cluster, whereas the complete-link uses the minimum

similarity. In general, both the single- and the com-

plete-link approaches do not work very well because

they either base their decisions to a limited amount

of information (single-link), or assume that all the

objects in the cluster are very similar to each other

(complete-link). On the other hand, the group average

approach measures the similarity of two clusters by the

average of the pairwise similarity of the objects from

each cluster and does not suffer from the problems

arising with single- and complete-link.

Evaluation of Document Clustering

Clustering results are difficult to evaluate, especially for

high dimensional data and without a priori knowledge

of the objects’ distribution, which is quite common in

practical cases. However, assessing the quality of the

resulting clusters is as important as generating the

clusters. Given the same dataset, different clustering

algorithms with various parameters or initial condi-

tions will give very different clusters. It is essential to

know whether the resulting clusters are valid and how

to compare the quality of the clustering results, so that

the right clustering algorithm can be chosen and the

best clustering results can be used for further analysis.

In general, there are two types of metrics for asses-

sing clustering results: metrics that only utilize the

information provided to the clustering algorithms

(i.e., internal metrics) and metrics that utilize a priori

knowledge of the classification information of the

dataset (i.e., external metrics).

The basic idea behind internal quality measures is

rooted from the definition of clusters. A meaningful

clustering solution should group objects into various

clusters, so that the objects within each cluster are

more similar to each other than the objects from dif-

ferent clusters. Therefore, most of the internal quality

measures evaluate the clustering solution by looking at

how similar the objects are within each cluster and how

well the objects of different clusters are separated. In

particular, the internal similarity measure, ISim, is de-

fined as the average similarity between the objects of

each cluster, and the external similarity measure, ESim,

is defined as the average similarity of the objects of

each cluster and the rest of the objects in the data set.

The ratio between the internal and external similarity

measure is also a good indicator of the quality of the

resultant clusters. The higher the ratio values, the bet-

ter the clustering solution is. One of the limitations of

the internal quality measures is that they often use the

same information both in discovering and in evaluat-

ing the clusters.

The approaches based on external quality measures

require a priori knowledge of the natural clusters that

388D Document Clustering

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

exist in the dataset, and validate a clustering result by

measuring the agreement between the discovered clus-

ters and the known information. For instance, when

clustering document datasets, the known categoriza-

tion of the documents can be treated as the natural

clusters, and the resulting clustering solution will be

considered correct, if it leads to clusters that preserve

this categorization. A key aspect of the external quality

measures is that they utilize information other than

that used by the clustering algorithms. The entropy

measure is one such metric that looks are how the

various classes of documents are distributed within

each cluster.

Given a particular cluster, Sr , of size nr , the entropy

of this cluster is defined to be

EðSrÞ ¼ � 1

log q

Xq
i¼1

nir
nr

log
nir
nr

ð8Þ

where q is the number of classes in the data set, and nr
i

is the number of documents of the ith class that were

assigned to the rth cluster. The entropy of the entire

clustering solution is then defined to be the sum of the

individual cluster entropy weighted according to the

cluster size. That is,

Entropy ¼
Xk
r¼1

nr

n
EðSrÞ: ð9Þ

A perfect clustering solution will be the one that leads

to clusters that contain documents from only a single

class, in which case the entropy will be zero. In general,

the smaller the entropy values, the better the clustering

solution is.

Key Applications
Document clustering is used to organize large collec-

tions of documents into meaningful groups in order

to provide intuitive navigation aids, information sum-

marization, data compression, and dimensionality

reduction.

URL to Code
An illustrative example of a software package for clus-

tering low- and high-dimensional datasets and for

analyzing the characteristics of the various clusters is

Cluto [9]. Cluto has implementations of the various

clustering algorithms and evaluation metrics described

in previous sections. It was designed by the University

of Minnesota’s data mining’s group and is available at

http://www.cs.umn.edu/�karypis/cluto.

Data Sets
Utility tools for pre-processing documents into vector

matrices and some sample document datasets are also

available at http://www.cs.umn.edu/�karypis/cluto.

Cross-references
▶Clustering Assessment

▶Clustering for post-hoc information retrieval

▶ Information Retrieval

▶Text Mining

▶Unsupervised Learning

Recommended Reading
1. Boley D. Principal direction divisive partitioning. Data Mining

Knowl. Discov., 2(4), 1998.

2. Cutting D.R., Pedersen J.O., Karger D.R., and Tukey J.W. Scatter/

gather: A cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992, pp.

318–329, Copenhagen.

3. Dempster A.P., Laird N.M., and Rubin D.B. Maximum likeli-

hood from incomplete data via the em algorithm. J. R. Stat. Soc.,

39, 1977.

4. Dhillon I.S. Co-clustering documents and words using bipartite

spectral graph partitioning. In Knowledge Discovery and Data

Mining, 2001, pp. 269–274.

5. Ding C., He X., Zha H., Gu M., and Simon H. 1Spectral min-

max cut for graph partitioning and data clustering. Technical

Report TR-2001-XX, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA, 2001.

6. Duda R.O., Hart P.E., and Stork D.G. Pattern Classification.

Wiley, New York, 2001.

7. Fisher D. Iterative optimization and simplification of hierarchi-

cal clusterings. J. Artif. Intell. Res., 4:147–180, 1996.

8. Jain A.K. and Dubes R.C. Algorithms for Clustering Data. Pren-

tice Hall, New York, 1988.

9. Karypis G. Cluto: A clustering toolkit. Technical Report 02-017,

Department of Computer Science, University of Minnesota, 2002.

10. King B. Step-wise clustering procedures. J. Am. Stat. Assoc.,

69:86–101, 1967.

11. MacQueen J. Some methods for classification and analysis of

multivariate observations. In Proc. Fifth Symp. Math. Stat.

Prob., 1967, pp. 281–297.

12. Salton G. Automatic Text Processing: The Transformation,

Analysis, and Retrieval of Information by Computer. Addison-

Wesley, Reading, MA, 1989.

13. Sneath P.H. and Sokal R.R. Numerical Taxonomy. Freeman,

London, UK, 1973.

14. Zahn K. Graph-tehoretical methods for detecting and describing

gestalt clusters. IEEE Trans. Comput., (C-20):68–86, 1971.

15. Zha H., He X., Ding C., Simon H., and Gu M. Bipartite graph

partitioning and data clustering. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 2001.

16. Zhao Y. and Karypis G. Criterion functions for document clus-

tering: Experiments and analysis. Mach. Learn. 55:311–331, 2004.

Document Clustering D 389

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

Document Databases

FRANK WM. TOMPA

University of Waterloo, Waterloo, ON, Canada

Synonyms
Document repositories; Text databases; Corpora

Definition
A document database is a collection of stored texts

managed by a system that provides query and update

facilities. Usually the database includes many docu-

ments related by their subject matter, origin, or applica-

bility to an enterprise. The content of each document

may be free text, semi-structured text including a

few well-identified fields (e.g., title, author, date), or

highly structured tagged text such as might be encoded

using XML. Occasionally documents may also contain

multimedia components.

In contrast, the term corpus (plural corpora) typi-

cally refers to a static collection of texts that have been

assembled by experts to study linguistic phenomena

(e.g., the Brown Corpus, created in 1964 to study

American English, and the Swedish Language Bank) or

to provide a rich source of text for lexicographic needs

(e.g., the Dictionary of Old English Corpus, including

all extant texts written in Old English in the period

600–1150 AD, and the British National Corpus).

Such corpora are often distributed or licensed in the

form of data only, independently of any document

management system.

Historical Background
Electronic documents have been stored on computers

almost as long as numeric data. Early document systems

supported text editing and formatting and evolved into

sophisticated document creation and publishing sys-

tems. Electronic document management became an

integral part of the move towards office automation

that grew substantially during the 1970s and 1980s.

Holding documents in computers also made possible

the growth of hypertexts and hypermedia more gener-

ally, starting in the 1960s and continuing today. This,

in turn, formed the core of the World Wide Web.

Simultaneously the field of information retrieval

developed in response to the recognition that libraries

hold a substantial volume of data that is often difficult

to access effectively without the intervention of

professional librarians. Initially, small document col-

lections were amassed to test the performance of vari-

ous algorithms designed to locate relevant sources of

data in response to users’ information needs. Informa-

tion retrieval has since advanced substantially to deal

efficiently and effectively with multi-gigabyte collec-

tions of texts, whether the objective is to find relevant

documents or to find answers to very specific factual

questions.

An outgrowth of office automation was the recog-

nition that corporate documents form a business re-

source that deserves management commensurate with

the effort put into managing capital, human resources,

and more traditionally recognized forms of data. Thus

document management may be viewed as an extension

of database management to handle documents and

document fragments with the same care as is given to

tabular and other forms of business data.

Document management systems have evolved

from each of three technologies: information retrieval

engines, as special applications of object management

systems, and as extensions to relational database

management systems. They provide facilities to define

sub-collections, to load new documents and delete

old ones, to update existing documents, to retrieve

documents that match precise criteria exactly, and to

rank documents against a set of keywords or against

criteria that specify users’ needs in a less precise

manner. Document databases form the core of Enter-

prise Content Management systems.

Foundations
Because document database systems arise from tradi-

tional database systems and traditional information

retrieval systems, the scientific fundamentals of those

technologies underlie document databases as well.

When the databases include semi-structured or stru-

ctured documents, they often include constraints in

the form of regular expressions or context-free gram-

mars; thus the principles and practices of regular

and context-free languages also underlie document

databases.

Key Applications
Document databases are typically created by corpora-

tions and other enterprises to subject various docu-

ments to database management protocols. Publishers

and other organizations (or organizational sub-units)

for which printed or electronic documents are their

390D Document Databases

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

products use document databases to maintain drafts

and other variants of their products as well as historical

materials. As consumers of such products, organiza-

tions’ digital libraries use document databases to hold

and manage their collections. Thus document data-

bases form a core technology for publishers, digital

libraries, e-government, and e-business more generally.

In addition, some document databases maintain

materials that are internal to the enterprise. These

might comprise policies, procedures, advertising, blogs,

email messages, customers’ comments, confidential

reports, etc. The content for other document databases

might be collected from external sources and may in-

clude annual reports, legal documents, suppliers’ prod-

uct descriptions, financial reviews, etc. Document

databases may also be created to support benchmarking

studies or to meet specific application needs, such as

source code repositories.

Cross-references
▶Digital Libraries

▶ Information Retrieval

▶ Semi-structured Data Model

▶ Semi-Structured Database Design

▶XML Retrieval

▶XML Storage

Recommended Reading
1. Bertino E., Ooi B., Sacks-Davis R., Tan K.-L., and Zobel J. Text

databases. In Indexing Techniques for Advanced Database Sys-

tems. Kluwer Academic, Norwell, MA, 1997, pp. 151–184.

2. Chin A.G. (ed.). Text Databases and Document Management:

Theory and Practice. Idea Group, Hershey, PA, 2001.

3. Christophides V., Abiteboul S., Cluet S., and Scholl M. From

structured documents to novel query facilities. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1994, pp.

313–324.

4. Kilpeläinen P., Lindén G., Mannila H., and Nikunen E.

1A structured text database system. In Proc. Int. Conf. on Elec-

tronic Publishing, DocumentManipulation and Typography (EP

90), 1990, pp. 139–151.

5. Loeffen A. Text databases: a survey of text models and systems.

SIGMOD Rec., 23(1):97–106, 1994.

6. Lowe B., Zobel J., and Sacks-Davis R. A formal model for

databases of structured text, In Proc. Fourth Int. Conf. on

Database Systems for Advanced Applications (DASFAA’95).

1995, pp. 449–456.

7. Macleod A. A data base management system for document

retrieval applications. Inf. Syst., 6(2):131–137, 1981.

8. Sacks-Davis R., Arnold-Moore T., and Zobel J. Database systems

for structured documents. In Proc. Int. Symp. on Advanced

Database Technologies and Their Integration (ADTI’94), 1994,

pp. 272–283.

9. Salminen A. and Tompa F.W. Requirements for XML document

database systems. In Proc. ACM Symp. on Document Engineer-

ing (DocEng’01). 2001, pp. 85–94.

10. Stonebraker M., Stettner H., Lynn N., Kalash J., and Guttman A.

Document processing in a relational database system. ACM

Trans. Inf. Syst., 1(2):143–158, 1983.

Document Field

VASSILIS PLACHOURAS

Yahoo! Research, Barcelona, Spain

Definition
A document field is a part of a document or of the

document metadata in which the text has a particular

function. A document field can contain free or prefor-

matted text. Each field, according to its function, has

different characteristics, length, and term distributions.

Key Points
Textual documents have implicit structure, which aids

the understanding of the text. Long textual documents

are usually organized in chapters, sections, paragraphs,

and each of those can have a concise description in the

form of a title. In the case of hypertext documents,

explicit links between documents in the form of hyper-

links are often associated with anchor text. News wire

documents also have metadata such as date, or the

name of the author. Efforts to standardize metadata

about documents have resulted in projects such as the

Dublin Core Metadata Initiative [1].

Fields are also being used to represent the annota-

tions of text with semantic and syntactic information.

For example, the semantic information may corre-

spond to entities, or locations. The syntactic informa-

tion may correspond to the part of speech of tokens or

to syntactic relationships between tokens. Such infor-

mation can be used to perform search tasks such as

entity ranking [3].

The text and the distribution of terms in a particu-

lar field depend on the function of that field. For

example, a term may occur many times in a document,

because of the document’s verbosity. On the other

hand, the title of a document is a short and concise

description of the document. Hence, terms are

expected to appear only once or twice in the title of a

document, and the resulting term frequency distribu-

tion is almost uniform [2]. Similarly, the anchor text of

incoming hyperlinks of Web documents serves the

Document Field D 391

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

purpose of providing a concise description of a docu-

ment, and from this point of view, it is similar to the

title of documents. However, a document is likely to

have one title, while it is not unusual to have docu-

ments with several million incoming hyperlinks and

associated anchor texts.

Cross-references
▶Anchor Text

▶Dublin Core

▶ Field-based Information Retrieval Models

Recommended Reading
1. Dublin Core Metadata Initiative. Retrieved April 15, 2008,

http://dublincore.org/.

2. Jin R., Hauptmann A., and Zhai C. Title language model

for information retrieval. In Proc. 25th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2002, pp. 42–48.

3. Zaragoza H., Rode H., Mika P., Atserias J., Ciaramita M., and

Attardi G. Ranking Very Many Typed Entities on Wikipedia. In

Proc. Int. Conf. on Information and Knowledge Management,

2007, pp. 1015–1018.

Document Formats

▶Document representations (incl. native and

relational)

Document Identifier

▶Resource Identifier

Document Index and Retrieval

▶Text Indexing and Retrieval

Document Length Normalization

BEN HE

University of Glasgow, Glasgow, UK

Synonyms
Term frequency normalization; Length normalization

Definition
Document length normalization adjusts the term fre-

quency or the relevance score in order to normalize the

effect of document length on the document ranking.

Key Points
The reasons for employing a document length normal-

ization method in an IR system are quite subtle. In

general, the effect observed on the ranking by the pres-

ence of many lengthy documents in a collection is to

favor their retrieval with respect to shorter documents.

Singhal, Buckley and Mitra gave the following two

reasons for adopting a length normalization in the

vector space model [4]:

1. The same term usually occurs repeatedly in long

documents.

2. The vocabulary of a long document is usually large.

In 1994, Robertson and Walker also studied the effect

of document length in the context of the probabilistic

model. They observed that:

" Some documents may simply cover more material than

others, [. . .], a long document covers a similar scope to

a short document, but simply uses more words.

According to Robertson and Walker [2], term frequen-

cies may also depend on author’s writing style, that

may describe concepts and facts either in details or

concisely. Robertson and Walker called this phenome-

non as the verbosity hypothesis.

According to the language modeling approach,

the normalization of the document length is instead

related to the sparse data problem. The sparse data

problem is also the core problem in natural language

processing for the estimation of the probability of

string occurrences. The smoothing technique is usually

applied to cope with the sparse data problem in the

language modeling approach for IR [5].

In the context of Vector Space model, cosine nor-

malization adjusts the effect of document length on

document weights by computing the cosine similarity

between the query and the document weight vectors.

Singhal et al. proposed an improvement of cosine

normalization for the vector space model, called the

pivoted normalization [4]. The basic idea of the pivoted

normalization is to introduce a tunable hyper-parameter

to empirically adjust the normalization factor of a given

normalization method, by fitting the probability of re-

trieval to the probability of relevance. The probability of

392D Document Formats

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

retrieval is computed from returned documents for each

given query, and the probability of relevance is com-

puted from the relevance information given by the

human assessors.

In the context of probabilistic model, the BM25

weighting model employs a saturation function to

normalize term frequency [3]. This normalization

function is derived from the study of the document

length effect in the 2-Poisson model.

Some of Divergence from Randomness (DFR)

weighting models employ the Normalization 2 for

adjusting the relationship between term frequency

and document length, that assumes a decreasing term

frequency density function of document length [1].

Cross-references
▶ Probabilistic Models and Binary Independence Model

▶ Probability Smoothing

Recommended Reading
1. Amati G. Probabilistic models for information retrieval based on

divergence from randomness. Ph.D. Thesis, Department of

Computing Science, University of Glasgow, 2003.

2. Robertson S. E. and Walker S. Some simple effective approxima-

tions to the 2-poisson model for probabilistic weighted retrieval.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 232–241.

3. Robertson S.E., Walker S., Jones S., and Hancock-Beaulieu M.

Okapi at trec-3. In Proc. The 3rd Text Retrieval Conference,

1994.

4. Singhal A., Buckley C., and Mitra M. Pivoted document length

normalization. In Proc. 19th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1996,

pp. 21–29.

5. Zhai C. and Lafferty J. A study of smoothing methods for

language models applied to ad hoc information retrieval. In

Proc. 24th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2001, pp. 334–342.

Document Links and Hyperlinks

VASSILIS PLACHOURAS

Yahoo! Research, Barcelona, Spain

Definition
Document links and hyperlinks are cross-references bet-

ween different documents or between different parts of

the same document. They facilitate the navigation of

users in the document space. However, information

seeking by only following hyperlinks is possible only

for relatively small collections of hyperlinked docu-

ments. Hyperlinks can have explicit or implicit types.

Two common types of links are organizational or navi-

gational links and informational links.

Key Points
Textual documents are rich in structure, one aspect of

which is the cross-references or links to different parts

of the same document or to other documents. Biblio-

graphic references is one form of links between docu-

ments for example. Bush [3] envisioned Hypertext as

a natural way to organize, store and search for infor-

mation, similar to the associative way in which the

humans organize information.

Document links and hyperlinks are explicit cross-

references between parts of the same document or

different documents. Such links alter the information

search process by allowing a user to navigate the docu-

ment space by following hyperlinks. Navigation may

be sufficient for small collections of documents. As

the number of documents increases, or when naviga-

tion is allowed across heterogeneous sets of hypertext

documents, however, users may not be able to locate

information by merely following links. IR techniques

address one aspect of this problem by allowing search

for information, or locating starting points for brows-

ing hypertext collection.

The links in hypertext systems can have explicit or

implicit types. Baron et al. [2] identified twomain types

of links, namely the organizational and the content-

based links. The former type of links was used to orga-

nize and help navigation among hypertext documents,

while the latter type was used for pointing to docu-

ments on similar topics. However, as with bibliographic

references in scientific publications, some hypertext

systems do not provide typed links. The automatic

inference of the link type is a difficult task, because it

requires understanding the context of both the source

and destination documents. Differently from identify-

ing the type of hyperlinks [1], investigated the auto-

matic typed linking of related documents. After linking

all pairs of documents, the similarity of which exceeds a

threshold, the resulting graph is simplified by iteratively

merging links. A type is assigned to the resulting links,

according to a predefined taxonomy.

Cross-references
▶Anchor text

Document Links and Hyperlinks D 393

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

Recommended Reading
1. Allan J. Automatic hypertext link typing. In Proc. Seventh ACM

Conf. on Hypertext, 1996, pp. 42–52.

2. Baron L., Tague-Sutcliffe J., Kinnucan M.T., and Carey T.

Labeled, typed links as cues when reading hypertext documents.

J. Am. Soc. Inform. Sci., 47(12):896–908, 1996.

3. Bush V. As we may think. The Atlantic Monthly, July, 1945.

Document Management

▶ Enterprise Content Management

Document Path Query

▶ Path Query

Document Repositories

▶Document Databases

Document Representations
(Inclusive Native and Relational)

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Synonyms
Documents; Document formats; Markup languages;

Semi-structured data; Page representations

Definition
Native document representations are file formats desig-

ned for documents. They can be roughly divided into

three types: page-oriented, stream-oriented, and tree-

structured. Hybrid types can also be found. Within

each type, document representations range from the

simple to the complex. All native representations as-

sume an implicit order of the document’s information,

reflecting the linear reading order of conventional

documents. The most important document represen-

tation is the Extensible Markup Language (XML),

which is tree-structured and can have any level of

complexity. It is seeing widespread use on the Web

and in business and is also popular for non-document

applications.

Relational databases use a variety of document

representations that map to a native representation.

Page-oriented and stream-oriented documents are

best stored in a coarse-grained manner and do not

appear to have stimulated much research. In contrast,

tree-structured documents are well-suited to fine-

grained decomposition for storage in relational data-

bases. As a result, XML databases are a very active

research topic. The challenge for relational sys-

tems is to maintain the implicit order of the docu-

ments’ elements while providing efficient access and

updates.

Historical Background
Furuta et al. [6] survey document formatting systems

up to 1982. The earliest document representations ap-

pear to have been created by programmers who wanted

to be able to create their own documents without the aid

of support staff, using readily available devices. All of

the representations described in the survey are markup

languages. The earliest markup languages, such as

RUNOFF and PUB, were stream-oriented. Their mark-

up was highly procedural, specifying changes to para-

meters of a simple formatter or line breaker. Later

markup languages, such as Scribe and GML, supported

higher levels of abstraction,were at least partially tree-

structured, and were used in systems with higher-quality

formatters. For the TeX system, Knuth developed

advanced formatting algorithms [9] whose quality has

yet to be surpassed. All markup language systems as-

sumed that their users would edit language files with a

text editor and then invoke a formatter on the command

line to produce output for a printer.

The personal computer revolution in the 1980s

spawned the creation of various word processing sys-

tems. These systems had user interfaces that were more

accessible to non-technical workers, but their document

representations were much simpler than those of the

later markup-based systems. Early word processors

used stream-based representations that were entirely

procedural, with no facility for abstract concepts like

figures or section headings. As these systems matured,

they gained more abstract structural features, such as

named styles for paragraphs, but their representations

have remained essentially stream-oriented. In general,

word processing document representations are not

394D Document Management

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

human-readable and are proprietary, though conversion

tools between representations are widely available.

The simultaneous development of the laser printer

required a means to transmit a page from computer

to printer over the low-bandwidth connections then

available. In response, various companies designed

proprietary page description languages (PDLs) that

described pages at a higher level, thus requiring sub-

stantially less bandwidth. The most important were

Adobe’s PostScript, used in the first personal laser

printers, and Hewlett-Packard’s Printer Command

Language (PCL). Both are still widely used in printers,

but today the most important PDL is Adobe’s Portable

Document Format (PDF) [1] because it is printer-

independent, compact, and because Adobe distributes

free viewing and printing software for all widely-used

platforms.

By the mid-1980’s, the diversity of incompatible

markup languages and word-processing representations

was making collaboration between authors quite diffi-

cult. In response, two competing document interchange

formats were developed, the Standardized Generalized

Markup Language (SGML) [7] and theOpenDocument

Architecture (ODA). Only SGML was a success and its

success was limited. However, SGML was the basis for

the Hypertext Markup Language (HTML) used on the

World Wide Web. As HTML came to be used more as

a page description language than as a high-level tree-

structured specification, the Web community sought a

more structured solution. The result was the Extensible

Markup Language (XML) [3], which is designed to

allow Web documents to convey stronger semantics

and to better support sophisticated, even intelligent,

applications.

Foundations

Native Representations

Page-Oriented Representations There are two prin-

cipal page-oriented representations: page images and

page description languages (PDLs).

The simplest page-oriented document represen-

tation is a sequence of page images, usually created by

scanning paper documents. While this representation

may seem primitive, it is quite important because

of the substantial number of documents that predate

electronic representations of any kind or for which the

electronic version has been lost. Often, in digital

libraries, the page images will have been processed by a

document analysis system in order to generate a search-

able text stream or to produce an electronic version of

the page that can be scaled or reformatted without

producing image artifacts. The result is a hybrid repre-

sentation mixing pages with a stream or tree structure.

The development of efficient workflows for this analysis

process has been an interesting area of research [13].

PDLs are considerably more complex. The core

of any PDL is a two-dimensional vector graphics

language with strong support for high-quality text ren-

dering. This implies full support for scientific floating

point computation, for conversion between various

units of measure, and for specifying character fonts.

PDLs must also have commands to control paper

handling and common printing features like screening

and halftoning. The PDLs used in printers (principally

PostScript and PCL) are not suited to database applica-

tions because their documents are specific to particular

printers and cannot be guaranteed to print or display

correctly on all devices. In contrast, the PDF [1] repre-

sentation is a generalization of PostScript that is device-

independent and has evolved over time to have many of

the best qualities of stream-oriented and tree-structured

representations. Documents encoded by modern PDF

generators typically include a complete text stream that

can be indexed and searched. Both commercial and

open-source tools can be found to generate and manip-

ulate PDF. Finally, it worth mentioning that the Post-

Script PDL is a fully human-readable language that can

be created in a standard text editor, though it also sup-

ports binary data formats.

Stream-Oriented Representations Stream-oriented re-

presentations organize documents as a sequence of

characters or paragraphs. They may contain substan-

tial amounts of formatting information, but unlike the

page-oriented representations, generally do not encode

the exact appearance of the document on the page or

screen. The principal stream-oriented representations

are raw text, the Rich Text Format, and various word

processor formats.

A raw text document contains a sequence of char-

acters. Any organization of the characters into lines,

paragraphs, or pages is specified by the use of specialized

characters such as the ASCII line feed and form feed

characters. The most common character coding scheme

is ASCII, but the more general Unicode format is also

seen and may grow in importance over time. Raw text

Document Representations (Inclusive Native and Relational) D 395

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

has the advantages of simplicity, compactness, porta-

bility, and ease of processing. Its primary disadvantage

is the inability to represent almost any useful typo-

graphic, hypertext, or multimedia effect. The raw text

representation is remarkably robust and remains in

widespread use, especially in the software development

community, where the ubiquity of programming tools

makes raw text an attractive representation. It is also

a common representation for e-mail.

Rich Text Format (RTF) [10] is a proprietary rep-

resentation that is widely used for interchange among

word processors. Its canonical form is a human-

readable ASCII markup language that describes a doc-

ument as a stream of paragraphs that may be divided

into sections. RTF’s sections and paragraphs embody

regions of content with common formatting character-

istics. Document content appears inside the para-

graphs along with other markup.

Word processor representations resemble RTF in

that they describe a sequence of paragraphs but until

recently most have been proprietary, binary represen-

tations. Recently, human-readable non-proprietary

formats for word processing have begun to be accepted,

with the most important being the Open Document

Format [11]. This format uses the tree-structured XML

markup language, but its underlying structure is still

a stream of paragraphs.

Tree-Structured Representations For databases, the

most interesting native document representations are

tree-structured markup languages. The most impor-

tant such language is the Extensible Markup Language

(XML) [3], which is essentially a simplification of

the earlier SGML standard. Because XML is simple,

general, and human-readable, it has become a standard

representation for data interchange.

XML is really two languages: a markup syntax for

documents and a context-free grammar meta-language

for defining classes of documents that can be encoded

in the markup syntax. The markup syntax primarily

defines how a tree of elements with embedded content

is specified by marking up the content with tags.

The following example shows a trivial, but complete,

‘‘bookdata’’ document. The bookdata element is

the root of the tree and contains title and editor

elements. The bookdata element also has two attri-

butes, which record the topic and year of the book.

In general, elements are designed to hold content that

will be shown to people and attributes are designed to

hold metadata that could be processed by automated

tools.

<? xml version="1.0" ?>

<bookdata topic="Databases" year ="2008">

<title>Encyclopedia of Database

Systems</title>

<editor>Ling Liu</editor>

<editor>Tamer \:{O}zsu</editor>

</bookdata>

XML has several important technical and philosophi-

cal differences from the page- and stream-oriented

representations.

� Unlike the PDLs, XML is almost purely declarative. It

is not a programming language and has no compu-

tational features. An XML document describes only

a hierarchical organization of content, possibly with

metadata.

� XML is designed to represent the logical organiza-

tion of a document rather than its appearance.

It has no predefined formatting features and

does not make any assumptions about media or

devices.

� While designed for representing documents, XML

is not limited to this application. In fact, XML’s

simplicity and clean syntax have resulted in many

unanticipated uses.

� XML is supported by a rich ecosystem of related

languages that support tasks including document

transformation (XSLT [8]) and alternative grammar

systems (or schemas) for defining document classes

(XSchema [5]). Especially important for databases

is the XQuery document query language [2].

XML documents are often categorized into three clas-

ses: structured, semi-structured, and marked-up text.

In a structured XML document class, all documents

have the same tree structure and every element has a

unique name. In semi-structured document classes,

there may be variations in the tree structure at certain

locations, such as alternate element types or variable

repetition of one element or a group of elements. In

both semi-structured and structured documents, doc-

ument content is only found in the leaf elements of the

tree. In contrast, marked-up text can have content at

any level of the tree and may permit huge variations in

tree structure. Marked-up text may have important

elements of logical structure, such as sentences, that

are not explicitly marked-up by elements and span

396D Document Representations (Inclusive Native and Relational)

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

multiple elements. Most database research has focused

on structured and semi-structured XML.

Hybrid Representations Hybrid representations can

deliver the advantages of multiple representations at

the cost of increased complexity. They are most com-

monly seen as extensions that address the limitations

of page-oriented representations.

The combination of page images with a parallel

text stream has already been mentioned. This represen-

tation can be used to create document interfaces that

show the scanned image, but allow indexing and search-

ing of the content, including highlighting those portions

of the original page image that match a search string.

Considerably more elaborate is Tagged PDF [1],

which extends the page description core of PDF with a

structural tagging system to encode the roles of text frag-

ments (e.g. body text, footnote, etc.), adds explicit word

breaks, and maps all fonts to Unicode. Used properly,

Tagged PDF ensures that the content of a PDF document

can be scanned in the same order that a human reader

would scan it and clearly identifies elements likemarginal

notes and headers that are not part of the main text

flow. It also supports search and indexing, as well as

being able to encode some of the semantics of XML.

Relational Representations

In relational databases, documents can be represented

either as atomic entities, using large objects (LOB), or

decomposed into their component parts. The large

object approach can be used with all native representa-

tions. Decomposition is usually called ‘‘shredding’’ and

is only used with XML documents.

Large Object Representation LOB representation

stores an entire document or medium-sized parts of

an entire document as a large object in a relational

table. This is the natural representation for docu-

ments whose native representation is page-oriented

or stream-oriented and has some real advantages for

XML documents as well. Long documents may be

divided into a sequence of smaller LOBs, such as indi-

vidual pages or sections.

LOB representation is useful for documents that

do not need to be updated frequently and for which

interesting metadata can be computed at the time of

insertion into the database. In this case, the relational

system provides an efficient way to find documents

based on queries against the metadata. For page- and

stream-oriented documents, LOB representation is a

natural choice, because the internal structure of the

documents (i.e. pages or sections/paragraphs) princi-

pally conveys presentation and has little semantics

useful for queries and updates. In contrast, LOB repre-

sentation is unlikely to be used for XML documents

unless they are quite unstructured or if a description

of the document class is not available.

LOB representation has the disadvantage that

standard relational operations cannot be used to search

or update the internal structure and content of the

documents. Instead, access and update operations

must be performed by other tools. While these tools

may be useful and efficient for single documents, the

performance and scalability benefits of the relational

approach for large-scale collections are lost when using

the LOB representation.

Shredded Representation Shredding is the process

of tearing apart an XML document into its component

elements for storage in database relations. There are

many trade-offs in designing both relations and

queries for the shredded elements. Draper [12] dis-

cusses the full range of choices. A key issue is whether

the schema for the XML document class is known.

When a schema is not available for an XML docu-

ment class, the edge table representation is used.

An edge table has one tuple for each element or attri-

bute in a document. The tuple has the following form:

Edge(ID, parentID, name, value)

The root element has a null parent ID and internal

nodes of the tree have null values. A useful optimiza-

tion is to replace the name with a pathID that points

to another table holding the full path names of the

nodes. Using pathIDs can reduce both table size and

the number of joins required for common queries.

When a schema is available for the documents,

inlining is a more efficient representation. Under inlin-

ing, elements are only placed in separate relations

when they can appear multiple times. Elements that

only appear once become columns in the relation for

their parents. In the earlier ‘‘bookdata’’ example, there

would be two relations: one for the bookdata element

that would have columns for the two attributes and for

the title; and another to hold the list of authors that

would be connected to the bookdata element via a

foreign key. The design of efficient queries over inlined

databases is challenging. Shanmugasundaram et al.

Document Representations (Inclusive Native and Relational) D 397

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:05

[12] showed that a complex query structure called

Sorted Outer Union provides the best combination

of efficiency and generality.

A key problem when working with shredded XML

documents is correctly maintaining the order of the

elements. This problem arises because the order of

the content in documents is usually quite important,

but it is only encoded implicitly. In the earlier ‘‘bookdata’’

example, the order of the author’s names should be

preserved, but it is only apparent from the order

in which the names appear in the XML source code.

Relational databases do not represent order automatical-

ly, so additional informationmust be added to the tables.

Tatarinov et al. [14] showed that the best choice of order

information depends on the type of query load. When

updates are rare, it is best to store a global order number

(an integer representing the node’s position in a pre-

order tree traversal). For loads that mix updates and

accesses, a variable-length numbering system related to

the Dewey Decimal Classification system is superior.

Key Applications
Documents are pervasive in human society, so there

are many applications for document representations.

The most important application is the Web, which can

be viewed narrowly as a document-sharing system.

Every Web page is a document written in HTML or

XHTML (an adaptation of HTML to the rules of

XML). A growing number of Web documents are

derived from information represented in XML or

from XML fragments taken from a database. Because

Web browsers have only limited support for XML

itself, it is primarily used as a back-end representation.

Other important applications include:

� Scanned document images are widely used to rep-

resent for historical, legal, and financial documents.

Systems that support scholars typically have rich

metadata attached to the page images.

� Page description languages (especially PDF) are

widely used as electronic representations of the

final form of documents, especially business and

official documents that are also distributed in print

form.

� The pervasive use of word-processing software

makes stream-based representations ubiquitous

for business documents. The lack of widely-

adopted open standards presents a real challenge

for systems that try to support them.

Cross-references
▶Dewey Decimal System

▶Digital Libraries

▶Document

▶Document Databases

▶ Indexing Semi-Structured Data

▶Markup Language

▶Meta Data

▶ Semantic Web

▶XML

▶XPath/Xquery

▶XSL/XSLT

Recommended Reading
1. Adobe Systems Incorporated, PDF reference. Sixth edn.,

2006.

2. Boag S., Chamberlin D., Fernández M.F., Florescu D., Robie J.,

and Siméon J. XQuery 1.0: an XML query language. World Wide

Web Consortium (W3C), 2007.

3. Bray T., Paoli J., Sperberg-McQueen C.M., Maler E., and

Yergeau F., Extensible Markup Language (XML) 1.0. World

Wide Web Consortium (W3C), fourth edn., 2006.

4. Draper D. Mapping between XML and Relational Data. In

XQuery from the experts: a guide to the W3C XML query

language. chap. 6, Addison Wesley, 2003.

5. Fallside D.C. and Walmsley P. XML Schema Part 0: Primer.

World Wide Web Consortium (W3C), second edn., 2004.

6. Furuta R., Scofield J., and Shaw A. Document formatting

systems: survey, concepts, and issues. Comput. Surv., 14

(3):417–472, 1982.

7. Goldfarb C.F. (ed.) Information processing – text and office

systems – Standard Generalized Markup Language (SGML).

International Organization for Standardization, Geneva,

Switzerland, 1986, International Standard ISO 8879.

8. Kay M. XSL transformations (XSLT) version 2.0. World

Wide Web Consortium (W3C), 2007.

9. Knuth D.E. and Plass M.F. Breaking paragraphs into lines.

Software Prac. Exper., 11(11):1119–1184, 1982.

10. Microsoft Office Word 2007 Rich Text Format (RTF) Specifi-

cation. 2007, version 1.9. Downloaded from microsoft.com,

November 2007.

11. OASIS, Open Document Format for Office Applications

(OpenDocument) v1.1. 2007, http://docs.oasis-open.org/office/

v1.1/OS/, 2007.

12. Shanmugasundaram J., Shekita E., Barr R., Carey M., Lindsay B.,

Pirahesh H., and Reinwald B. Efficiently publishing relational

data as XML documents. VLDB J., 10(2–3), 2001.

13. Simske S.J. and Baggs S.C. Digital capture for automated

scanner workflows. In Proc. 2004 ACM Symp. on Document

Engineering, 2004, pp. 171–177.

14. Tatarinov I., Viglas S.D., Beyer K., Shanmugasundaram J.,

Shekita E., and Zhang C. Storing and querying ordered

XML using a relational database system. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 204–215.

398D Document Representations (Inclusive Native and Relational)

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:06

Document Retrieval

▶ Information Retrieval

Document Segmentation

▶Text Segmentation

Document Summarization

▶Text Summarization

Document Term Weighting

▶ Information Retrieval Models

Document Visualization

▶Text Visualization

Documents

▶Document representations (inclusive native and

relational)

Domain Relational Calculus

▶Relational Calculus

Downward Closure Property

▶Apriori Property and Breadth-First Search

Algorithms

DR

▶Dimensionality Reduction

DRM

▶Digital Rights Management

DT

▶Decision Trees

Dublin Core

JAMES CAVERLEE
1, PRASENJIT MITRA

2,

MARY LAARSGARD
3

1Texas A&M University, College Station, TX, USA
2Pennsylvania State University, University Park, PA,

USA
3University of California-Santa Barbara,

Santa Barbara, CA, USA

Definition
Dublin Core is a standardized metadata set for describ-

ing information resources like documents, videos,

images, services, and other digital artifacts. Dublin

Core is intended to provide a simple metadata model

that can be adopted across a wide range of commu-

nities in an effort to enhance semantic interoperability.

The Dublin Core Metadata Element Set has been for-

mally endorsed by a number of standards bodies in-

cluding ISO [5], NISO [7], and IETF [6].

Historical Background
In 1995, the Online Computer Library Center (OCLC)

and the National Center for Supercomputing Applica-

tions (NCSA) co-sponsored a workshop to address the

challenge of developing a common metadata set for

describing networked resources [10]. The workshop

was motivated in part by the explosive growth of the

Web in the early 1990s and the inherent difficulty in

finding Web resources. The name ‘‘Dublin’’ in Dublin

Core derives from the location of this first workshop

in Dublin, Ohio; the term ‘‘Core’’ refers to the basic

importance of the elements defined in the metadata

standard that can be applied broadly across a wide

range of resources.

In the years since the first Dublin Core workshop,

the community has hosted annual workshops and con-

ferences devoted to Dublin Core and metadata

Dublin Core D 399

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:06

applications. The continued development and organi-

zation of the metadata standard is overseen by the

cross-disciplinary Dublin Core Metadata Initiative [3].

Foundations
Supporting information access, organization, and

management functionalities in a massively distributed

medium like theWeb is a serious challenge. In an effort to

provide support for these operations, Dublin Core advo-

cates the use of metadata to provide descriptive informa-

tion about information resources found on the Web, on

digital libraries, in enterprize settings, and in other net-

worked domains. In contrast to content-based features of

information resources (like the text indexing of a Web

document for use in a search engine), the metadata

approach can rely on features that describe a resource

(and that are not necessarily contained in the resource) to

support information discovery, categorization, and other

information management functionalities [1].

The Dublin Core metadata set provides a standar-

dized set of metadata elements for describing a wide

variety of resources – be they audio files, videos, docu-

ments, services, software packages, images, etc. By de-

sign, Dublin Core is simple so that metadata may be

generated by experts and non-experts alike. The basic

Dublin Core standard supports 15 different metadata

elements that can be applied to a resource (as shown

in Fig. 1). Each element may be used multiple times

to describe a single resource, and only the necessary

elements need be used in a description of a resource.

The 15 elements are intended to be core descriptors

that could be applied regardless of the particular

domain of interest. To illustrate, the element ‘‘Creator’’

could refer to the painter of a picture, the author of a

book, or to an organization that publishes a software

tool. Similarly, the ‘‘Description’’ element could refer

to a free text description of a resource, the abstract of

an article, a table of contents, or some other descriptive

image or text. Although Dublin Core supports great

flexibility in the use of these metadata elements, it is

good practice to rely on some standard vocabularies

for certain elements, e.g., to use standard MIME media

types for the element ‘‘Format.’’

As a concrete example, consider a resource like

an academic research paper. Figure 2 illustrates some

relevant Dublin Core metadata for a sample paper.

Qualified Dublin Core

Dublin Core additionally supports optional qualifiers

thatmay be used to extend and refine the 15 basicDublin

Core elements. Qualifiers can be used for either (i)

element refinement; or (ii) declaring an encoding

scheme [2,9].

Element refinement narrows the meaning of an

element. For example, the element ‘‘Date’’ can be

refined to ‘‘Created,’’ meaning that the metadata asso-

ciated with the element ‘‘Date’’ refers to a creation date

of the resource, and not to the date it was modified.

Alternatively, ‘‘Date’’ could be refined to ‘‘Modified’’

if the semantics of ‘‘Date’’ are meant to convey the date

the resource was modified, but not created.

Declaring an encoding scheme provides additional

information about the element that can be used for

interpreting the meaning of the element value. For

Dublin Core. Figure 1. The 15 Simple Dublin Core elements [4].

400D Dublin Core

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:06

example, the ‘‘Subject’’ element may be qualified with

an encoding scheme for the Library of Congress Subject

Headings (LCSH), a standard set of subject headings

that are widely adopted in libraries. By relying on a

controlled vocabulary instead of free text, the ‘‘Subject’’

element may provide clearer meaning to applications

relying on Dublin Core.

Since Dublin Core is intended to be simple and

easy-to-use, applications built to work with Dublin

Core metadata should be able to ignore qualifiers en-

tirely and still function in a useful way, albeit with

some loss of expressiveness.

Encoding Dublin Core

Dublin Core metadata can be represented in a number

of different formats, including plain text, HTML, XML,

and RDF. With the rise in interest in the Semantic

Web and other knowledge management activities,

there has been a push to see Dublin Core widely

adopted using RDF [8]. As an illustration of encoding

Dublin Core in RDF, Fig. 3 shows the RDF-encoded

metadata for the same resource described in Fig. 2.

Key Applications
Web, Semantic Web, digital libraries, business-

to-business exchange.

Cross-references
▶Metadata

▶Metadata Registry

Recommended Reading
1. Cathro W. Metadata: An Overview. Standards Australia Seminar,

1997.

2. Dublin Core Metadata Initiative. Dublin Core Qualifiers, 2000.

3. Dublin Core Metadata Initiative. 2008, http://dublincore.org.

4. Dublin Core Metadata Initiative. Dublin Core Metadata

Element Set, Version 1.1, 2008.

5. International Organization for Standardization. ISO 15836-

2003 Information and Documentation – The Dublin Core Meta-

data Element Set, 2003.

6. Internet Engineering Task Force. IETF RFC 5013 – The Dublin

Core Metadata Element Set, 2007.

7. National Information Standards Organization. ANSI/NISO

Z39.85-2007 The Dublin Core Metadata Element Set, 2007.

8. Nilsson M., Powell A., Johnston P., and Naeve A. Expressing

Dublin Core Metadata Using the Resource Description

Framework (RDF), 2008.

Dublin Core. Figure 2. Sample Dublin Core metadata for a research paper.

Dublin Core. Figure 3. Example RDF/XML markup using Dublin Core.

Dublin Core D 401

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:06

9. Weibel S. The State of the Dublin Core Metadata Initiative. Bull.

Am. Soc. Inf. Sci., 25(5):18–22, 1999.

10. Weibel S., Godby J., Miller E., and Daniel R. OCLC/NCSA

Metadata Workshop Report, 1995.

Dump

▶ Logging and Recovery

Duplicate Detection

▶Record Matching

▶ Semantic Data Integration for Life Science Entities

Duplicate Semantics

▶Bag Semantics

Duplication

▶Replication

Durability

▶ACID Properties

Duration

▶Time Interval

DVDs

▶ Storage Devices

DW

▶Data Warehouse

Dynamic Graphics

DIANNE COOK

Iowa State University, Ames, IA, USA

Synonyms
Multivariate data visualization; Multiple linked plots;

Motion graphics; Rotation; Tour; Animation

Definition
Dynamic graphics for data, means simulating motion

or movement using the computer. It may also be

thought of as multiple plots linked by time. Two

main examples of dynamic graphics are animations,

and tours. An animation, very generally defined, may

be produced for time-indexed data by showing the

plots in time order, for example as generated by an

optimization algorithm.

A tour is designed to study the joint distribution of

multivariate data, in search of relationships that may

involve several variables. It is created by generating

a sequence of low-dimensional projections of high-

dimensional data – typically 1D or 2D – so that many

different aspects of high-dimensional data can be ob-

served. Tours are thus used to find interesting lower-

dimensional projections of the data, ideally for data

which contains real-valued variables. The data Xn�p is

projected into Ap�d to produce a data projection

Yn�d = Xn�p A p�d. The projection matrix Ap�d is

orthonormal. The coefficients in Ap�d are generated

so that all values have some given probability of being

chosen and consecutive projections are close to the

previous, to provide apparently smooth motion.

Historical Background
The grand tour was defined and named by Asimov [2].

It computes the projections uniformly from a (p� 1)-D

sphere. All possible projections are equally likely.

To provide a smooth path, he generated sequential

projections by following a path on a high-dimensional

torus. Buja and Asimov [3] further developed the grand

tour by using an interpolated geodesic random walk,

between randomly generated basis planes. This im-

provement ensures that the grand tour efficiently covers

the space of all projections (Grassmann manifold), and

that within-plane spin is absent. The mathematics and

algorithms for this approach is described in detail by

Buja et al. [4]. A simpler approach to generating a grand

tour is used by Tierney [13].

402D Dump

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:06

The grand tour was first implemented by Buja et al.

[5] and the work developed to include a guided tour,

where projections are chosen according to a measure of

interestingness (e.g. projection pursuit) and a correla-

tion tour, where two sets of variables are toured using

1D projections in the horizontal and vertical direc-

tions. A correlation tour is related to regression analy-

sis, modeling one or more response variables against

many explanatory variables. The guided tour was de-

veloped further by Cook et al. [8].

Cook and Buja [7] developed manual controls

for the tour, enabling the user to manually change the

projection matrix coefficients, to assess the impact of

selected variables on the visible data structure. Wegman

[14] developed the full dimensional grand tour, where

the projection is displayed in parallel coordinates, and

also as a scatterplot matrix [6]. He further developed the

image grand tour to study remote sensing data [15].

Scott [12] developed the density grand tour, where each

1D projection is shown as a density. Huh [11] developed

a grand tour with a tail. Locations of points in previous

projections are plotted for a given time period in future

projections, giving a fuller sense of the motion of points.

Andrews curves [1] are a pre-cursor to the grand

tour. A general explanation of tours suitable for a

reasonably untechnical audience can be found in a

book chapter by Cook et al. [9].

Foundations
The tour is ideally suited for examining the joint dis-

tribution of multivariate data, for relatively small p (on

the order of small tens rather than hundreds), where

the variables take on real-values. Figures 1–3 compare

structure detection in a tour with that in a parallel

coordinate plot.

In Fig. 1 a set of eight 2D projections of 6D data are

taken from the movie of projections shown in a grand

tour. The data has three very well-separated clusters,

that are elliptically shaped in the six dimensions.

It should be noted that in this data, the three clusters

are not perfectly visible in any pair of the six variables.

Within seconds of viewing the tour, this is obvious to

even the most novice audience. Viewers clue to the

clusters by separations between points in certain pro-

jections and also the motion patterns of the points.

In a parallel coordinate plot (Fig. 2) the three

clusters are not readily detectable. A trained eye can

easily see two clusters, by recognizing two groups of

similar trends in the lines. The third cluster of lines

is a little more difficult to discern. If the three clusters

are identified using color, then they become much

more visible in the parallel coordinate plot (Fig. 3).

Generally tours are better than parallel coordinate

plots for this type of data and structure such as this,

clusters, outliers, linear or nonlinear dependencies,

Dynamic Graphics. Figure 1. A sequence of projections from a tour using 2D projections of 6D data. Within seconds of

watching the tour clustering of the observations can be seen.

Dynamic Graphics D 403

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:06

and relatively small dimension. Parallel coordinates are

more appropriate when there is a mix of categorical

and continuous variables, or when there are a large

number of variables.

Tours are usually implemented with the inclusion

of some navigation support. Figure 4 provides an

example. The circle with radial line segments in the

center of the plot represents the projection matrix,

A, which for this projection is:

A ¼

0:215 � 0:775
0:065 0:081

0:053 � 0:102
0:298 0:589
0:786 � 0:108
0:490 0:155

2
6666664

tars1

tars2

head

aede1

aede2

aede3

3
7777775

Look at the magnitude and sign of these values to

interpret the plot structure. The variables aede2 and

aede3 contribute the most to the horizontal direction

(first column). In this direction the orange (open cir-

cle) cluster is separated from the green (solid circle)

cluster and to some extent the purple (cross) cluster.

The variables tars1 and aede1 contribute the most to

the vertical direction (column 2), with the contribu-

tion of tars1 being negative. In this direction the green

(solid circle) cluster is separated from the purple

(cross) cluster and to some extent the orange (open

circle) cluster. This suggests that variables aede2, aede3

contribute to distinguishing between the orange (open

circle) cluster from the other two, and variables tars1,

aede1 contribute to distinguishing between green (solid

circle) and purple (cross) cluster. These interpretations

would be checked using pairwise scatterplots (middle,

right), univariate plots, or parallel coordinates (Fig. 3).

Using these additional aids one would decide that tars1

Dynamic Graphics. Figure 3. When the three clusters are colored they are more recognizably clusters in the parallel

coordinates plot.

Dynamic Graphics. Figure 2. A parallel coordinate plot of the same 6D data as shown in Fig. 1. Two clusters of different

line traces are readily seen but the three clusters are not so obviously recognized.

404D Dynamic Graphics

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:07

separates green (solid circle) from purple (cross), and

that aede2 separates green (solid circle) from orange

(open circle). It is really a combination of these vari-

ables which makes the difference between the clusters

marked, but individual variables contribute in partial

ways to the separation.

Key Applications
Tours are a critical part of many different types of multi-

variate analyses: clustering, classification, multivariate

tests, principal components analysis and multidimen-

sional scaling. These types of methods are used in

many,manydifferent applications, including astronomy,

biology, physics, social science, education, geology,

agronomy, ecology, credit risk, defense (Wegman et al.

[15] use the image grand tour to detect land mines in

satellite images). The tour also can be used to study

the geometry of high-dimensional spaces. Tours are an

integral part of exploratory data analysis.

Cook and Swayne [10] provide many more exam-

ples where the tour might be used to gain insight into

multivariate structure in data, or in the performance of

multivariate methods and algorithms.

Future Directions
There is a lot of scope for research in dynamic graphics.

For the tour, one might investigate different probabi-

lity distributions for choosing projections, particularly

for handling much larger numbers of variables, and

making use of sparseness. Studies might be done to

suggest the optimal viewing times for watching a tour

in order to recognize different types of structure. Some-

one might study tours on something other than

Euclidean space, to enable the study of more complex

data. For example, a tour on the space of all permuta-

tions could be used to explore categorical data. Other

methods for guiding the tour would be useful. Large data

poses a problem, because points get over-plotted. The

projections might be represented as density plots or

convex hulls, if these can be computed sufficiently fast.

There are interesting connections with statistical theory

that might be explored. For example, most random

projections of multivariate data look approximately

Gaussian, is related to the Central Limit Theorem.

URL to Code
http://www.ggobi.org

Cross-references
▶Business Intelligence

▶Classification

▶Cluster

▶Cluster Visualization

▶Curse of Dimensionality

▶Data Mining

▶Dimension

▶Dimensionality Reduction

▶ Exploratory Data Analysis (EDA)

▶ Feature Selection

▶Geographic Information Systems

▶ Information Extraction

▶Machine Learning in Computational Biology

▶Mining of Chemical Data

▶Multidimensional Scaling (MDS)

▶Multivariate Visualization Methods

▶ Parallel Coordinates

Dynamic Graphics. Figure 4. Circle inside the tour projection (left) provides navigation support for the tour.

Scatterplots (middle, right) help to confirm the interpretation of structure.

Dynamic Graphics D 405

Comp. by: SIndumathi Stage: Revises1 ChapterID: 000000A824 Date:16/6/09 Time:03:30:08

▶ Principal Components Analysis (PCA)

▶ Spatial Data Mining

▶Visual Analytics

▶Visual Classification

▶Visual Clustering

▶Visual Data Mining

Recommended Reading
1. Andrews D.F. Plots of high-dimensional data, Biometrics,

28:125–136, 1972.

2. Asimov D. The grand tour: a tool for viewing multidimensional

data, SIAM J. Sci. Stat. Comput., 6(1):128–143, 1985.

3. Buja A. and Asimov D. Grand tour methods: an outline, Com-

put. Sci. Stat., 17:63–67, 1986.

4. Buja A., Cook D., Asimov D., and Hurley C. Computational

Methods for High-Dimensional Rotations in Data Visualization,

In Handbook of Statistics: Data Mining and Visualization,

C.R. Rao, E.J. Wegman, J.L. Solka (eds.). Elsevier/North-

Holland, 2005, pp. 391–414.

5. Buja A., Hurley C., and McDonald J.A. A data viewer for multi-

variate data, Comput. Sci. Stat., 17(1):171–174, 1986.

6. Carr D.B., Wegman E.J. and Luo Q. ExplorN: Design Considera-

tions Past and Present, Technical Report 129, Center for Compu-

tational Statistics, George Mason University, Fairfax, VA, 1996.

7. Cook D. and Buja A. Manual controls for high-dimensional

data projections, J. Comput. Graph. Stat., 6(4):464–480, 1997.

8. Cook D., Buja A., Cabrera J., and Hurley C. Grand tour and

projection pursuit, J. Comput. Graph. Stat., 4(3):155–172, 1995.

9. Cook D., Lee E.-K., Buja A., and Wickham H. Grand tours,

projection pursuit guided tours and manual controls, In Hand-

book of Data Visualization, C.-H. Chen, W. Härdle A. Unwin

(eds.). Springer, Berlin, Germany, 2006.

10. Cook D. and Swayne D.F. Interactive and Dynamic Graphics for

Data Analysis: With R and GGobi, Springer, New York, 2007.

11. Huh M.Y. and Kim K. Visualization of Multidimensional Data

Using Modifications of the Grand Tour. J. Appl. Stat., 29

(5):721–728, 2002.

12. Scott D. Incorporating density estimation into other exploratory

tools, In Proc. of the Section on Statistical Graphics, 1995,

pp. 28–35.

13. Tierney L. LispStat: An Object-Oriented Environment for Sta-

tistical Computing and Dynamic Graphics, Wiley, New York,

1991.

14. Wegman E.J. The Grand Tour in k-Dimensions, Technical Re-

port 68, Center for Computational Statistics, George Mason

University, 1991.

15. Wegman E.J., Poston W.L., and Solka J.L. Image Grand Tour, In

Automatic Target Recognition VIII – Proceedings of SPIE, 3371,

SPIE, Bellingham, WA, 1998, pp. 286–294.

Dynamic Integrity Constraints

▶Temporal Integrity Constraints

Dynamic Taxonomies

▶ Faceted Search

Dynamic Web Pages

MARISTELLA MATERA

Polytechnic University of Milan, Milan, Italy

Definition
They are Web pages that are composed at run-time, by

dynamically extracting contents from a data source

and composing them into pre-defined page templates.

Key Points
Historically, hypertext navigation was meant as a way to

move among ‘‘static’’ documents, i.e., Web pages whose

HTML code includes both the content to be presented,

as well as the mark-up tags determining content rendi-

tion. Real-life Web applications however require the

capability of serving to the users pages that dynamically

publish content coming from one or more data sources.

For example, the content of the home page of a news

magazine is refreshed daily, by extracting the latest news

from the news repository. This requirement goes be-

yond the original capabilities of the HTTP protocol,

which is designed to exchange requests and resources

between the browser and the server, and not to govern

the process by which the desired resource is built.

Some server-side technologies have therefore been

introduced to overcome these limitations and to enable

the construction of Web pages ‘‘on the fly.’’ The most

common solution is to adopt server-side scripting

technologies (such as JSP or PHP), which enable

inserting into an HTML page template some program-

ming instructions that a server-side program execute

to compute the contents to be extracted dynamically

from the application data source. The result sent back

to the client is then a properly formatted HTML page,

including the extracted contents.

Other solutions imply the extension of the Web

server, through execution engines (for example Java

Servlet API) able to serve the requests for the dynamic

construction of Web pages.

Cross-references
▶Web Characteristics and Evolution

406D Dynamic Integrity Constraints

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

