Dear Editor,

We would like to thank the reviewers for the constructive comments on our manuscript. We have made several changes to accommodate their concerns and helpful suggestions, and explained our view in the few cases of disagreement . Please find in cursive and red font below our answers.
We believe this paper represents an important contribution to the state of the art, so look forward to hearing back from you.

Best Regards,

Rosalba Giugno

on behalf of the authors

----------------------- REVIEW 1 ---------------------

PAPER: 22

TITLE: A subgraph isomorphism algorithm and its application to biochemical data

AUTHORS: Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha and Alfredo Ferro

----------- REVIEW -----------

Review form

1) What are the claimed contributions of the paper? How well does the paper evaluate such contributions?

The paper presents a novel and simple heuristic for subgraph isomorphisms. The new method is compared to three existing ones using roughly four datasets.

2) Please highlight the strong points and weak points of the paper.

Strong:

- Comparing against three competitors is valuable

- Clearly written

- Method seems superior to prior work

Weak:

- Description of evaluation is unclear

- Important issue of distribution of label counts is ignored

- Effectively, the paper doesn't show much (see below)

3) Please provide constructive comments to help author improve the paper.

My major problem with the paper is that a reader doesn't learn a lot. The novel method is simple and has no clear-cut advantages over other methods, which the authors frankly admit. Thus, the only justification is the experimental evaluation. However, this evaluation is performed only on some graphs, label frequencies are not considered, and query sets were created artificially. No biological evaluation is given. And the differences in runtime, especially compared to LAD are not that big that one could not think that it is just a matter of a slightly more efficient implementation (like the way how adjacency lists are searched, see below) instead of the concrete algorithm. This makes speculations about superiority of the novel approach very, well, speculative.

Inspired by this comment we explained our contribution in the paper in more detail, both algorithmically and practically. In particular we say the following in Contribution (Section:Background). ROSALBA: PLEASE COPY FROM MY EDITED VERSION THROUGHOUT
“ Inference based methods, which propagate constraints to until convergence (for example LAD), theoretically represent the most fitting search strategy. In practice such inference is done at the price of a greater computational cost. When constrains verification is applied only locally (for example, the local inference used by FocusSearch and the pruning rules of VFlib), it is crucial to define a search strategy that tries to prune as much (or as early) as possible the search space. This aspect is not addressed by VFLib. FocusSearch applies this concept only partially. It defines a static and semi target dependent search strategy which weakly reflects the pattern topology. Moreover, it performs locally inference, optimizing its cost by using bit-vectors. In this paper we present a novel subgraph isomorphism algorithm, called RI . It creates a search strategy strongly depending only on the pattern graph topology. The order is chosen to create constraints as early as possible in the matching phase. Roughly, vertices having high valence and that are highly connected with vertices previously present in the ordering tend to come early in the final variable-ordering. During the matching phase, RI

does not apply any computationally costly pruning or inference rules.

This is the first paper that compares all the most recent and used algorithms (LAD, FocusSearch,VFlib). FocusSearch has never been compared before. We analyze algorithmic aspects including the size of search space, the memory requirement, the timeout of the algorithms, the matching time and the total time, varying the density and dimension of pattern and target graphs, the number and the distribution of the labels. Datasets represent the most common biological data. We also used synthetic data analyzed in the previous work by authors of LAD and VFLib. In order to validate our strategy, we compare RI and two versions of RI, called RI-Ds and RI-DsPm. RI-Ds computes, after defining the variable order of pattern vertices and before the subgraph isomorphism starts, an initial domains assignment. For each pattern vertex, RI-Ds computes its domain and verifies that pattern edges are compatibles in the target domains. It does not apply inference or domain reduction during backtracking. This low-priced verification helps in large dense targets, because it reduces the number of candidates to be verified during backtracking.

RI-DsPm, in addition to RI-Ds, uses the prematch phase defined in FocusSearch, i.e. filters domains by using vertex invariants based on neighbor labels and topology. We show that RI-DsPm does not improve performance compare to RI and RI-Ds. This behavior is supported by the analysis given in [we cite the paper concerning FocusSearch]. Moreover, it validates the main ideas in RI: a powerful pattern vertex ordering, i.e. strongly depending only on the pattern graph topology, together with light constraints verification are more efficient than locally or global inference procedure.”

Then, in Section: Results and Discussion we added among other comments the following discussions on RI performance results.

“Summarizing the results we observed that

· RI always outperforms VF2.

· RIoutperforms all other algorithms in sparse target graphs such as AIDS, PDBSv1, and PDBSv2.

· RI is comparable with LAD and FocusSearch on small dense pattern graphs, PDBSv3, with dense patterns, and with semidense small-medium patterns.

· RI outperforms LAD but not FocusSearch on small dense pattern graphs, PDBSv3, with large semidense or sparse patterns.

Morever:

· We suggest to use RI-Ds on medium or large dense (such as Graemlin and PPI datasets). Here, RI-Ds outperforms (or comparable in total times with FocusSearch on PPI) all algorithms varying the number of labels and pattern dimensions and densities;

· We do not suggest the use of RI-DsPm or any costly inference or pruning rules. RI-DsPm does not improve performance compare to RI and RI-Ds. This behavior is supported by the analysis given in [we cite the paper concerning FocusSearch]. Since, our algorithm is independent of the used pruning rules, we also tried to run our algorithm with the rules from VFlib. Experiments show that the rules helped to reduce the search space but their contribution were not significant and, in some cases, they increased the total time of the matching process. Therefore, we did not deploy those pruning rules. These considerations validate the main idea in RI: a powerful pattern vertex ordering, i.e. strongly depending only on the pattern graph topology, together with light constraints verification are more efficient than locally or global inference procedure.”

3a. Major Compulsory Revisions

· Biological motivation is very weak. Figure 1 is not very helpful; for instance, you should properly explain why subgraph isomorphism is important for detecting frequent motifs. Also, references 1-7 are very strange, mostly not pointing to concrete works using SI in biology. This part should be expanded, as the paper is to be published in BMC Bioinformatics, not in an algorithm journal.

We extensively expanded this part (see Background Section). We removed Figure 1 and added description of subgraph isomorphism algorithms in biomedical applications citing references 1-7 (now mapped as references 5-11).

· The paper should pay more attention to the issue of label frequency distribution. Contrary to the claim in footnote 2, many graphs in biology, especially PPI (!), have nodes with (almost) unique labels. For such cases, SI is trivial. In any graph, the distribution of label frequencies has a very high impact on the size of the candidates for each vertex. It somehow seems that you favor graphs with uniform labeling, which makes SI harder. Please give detailed descriptions of the label distribution for all your test graphs and discuss how this affects performance. You seem to have somehow considered this in the presentation of results (see capture of table 2), but I couldn't understand how.

Thanks to this comment, we modified our presentation of experimental results. We report for each dataset the total number of real labels, the average number of labels per graph and the standard deviation. We added the number of matches for all datasets and the number of times each algorithm ends before the timeout. We added a new real dataset called PPI which represents protein interactions. We added more networks on the Graemlin dataset. We added performances on such datasets using the original labels (each vertex will have a unique label) and varying the number of labels from 32 to 2048. We used uniform and normal label distributions. We used dense, semidense and sparse patterns. We added (in the supplemental material) for all tested cases (which varied number of labels, pattern dimension, target dimension, and density) detailed comments on the performance and comparisons among algorithms. In the supplemental materials we added for each dataset a figure containing all performed tests (6 plots, number of matches, number of completed runs, space size, matching time, total time and memory). Then each plot is also given separately. Table 2 has been substituted with several figures to make the statistical analysis more clear. Finally, we apply our subgraph isomorphism algorithm to verify the presence of interactions among proteins in conserved complexes (obtained from CORUM database and functional annotated with GO), on 10 protein networks functionally annotated with GO.

· Please justify your choice of competitors. Why do you think these are the best from the many more you list?

We list subgraph isomorphism algorithms that have contributed to the state of the art of this field. These led to the ideas underlying the most recent and most used subgraph isomorphism algorithms (i.e., LAD (2010), FocusSearch (2011), Vflib (2004)). Notice also that for almost all of them there is no released code and some work only on particular graphs (considering sizes and topologies). Moreover, the authors of VFLib have demonstrated that they outperform the algorithm Nauty (reference num. 1 (1981)) and the first algorithm of Ullmann (reference num. 2 (1976)). According to our experience on this field, we think that bioinformaticians will be interested in comparing LAD, FOCUSSearch, and our method which all outperform VFLib. Finally, since LAD and VFLib are released softwares, together with our method, we will release our implementation of FocusSearch (originally distributed in Modula2) and all tested datasets to help researchers to test or use one or more of these softwares. In the paper we have reported the sentences: "We compare our method with the most recent and efficient subgraph isomorphism algorithms (VFlib, LAD, and our C++ implementation of FocusSearch which was originally distributed in Modula2) on synthetic, molecules, and interaction networks data" and "This paper introduces a new algorithm for the subgraph isomorphism problem and compares it on synthetic and biochemical data with the most efficient and recent algorithms present in the literature".

· Please rewrite the section on how you generated pattern graphs. I suggest to have a separate paragraph per dataset. Say clearly how many patterns you generated and if experiments were repeated to get rid of caching effects. Why did you replace labels on the PPI data (see pre-last comment)? Also justify your algorithms for selecting (sub-)patterns and if the total number of matches in the dataset has been taken into account.

We rewrote the Section accordingly. Patterns must be subgraphs of the target graphs. We extract them varying when possible the density and trying to respect the nature of the target graph (maintaining the average of label distribution, and degree). Experiments were repeated to get rid of caching effects. We point out all these aspects in the section.

· You say that adjacency lists would require linear time for finding edges; this is puzzling, as a simple sort leads to logarithmic look-up time (using bin-search). Further, you say LAD uses an adjacency matrix with quadratic space requirements - but then I would expect to see a quadratic increase in Table 2, which is not there.

We agree with the reviewer comment. However, here we refer to the actual implementation used in the compared softwares. For examples, VFLib sorts elements in the adjacent lists but it searches using a linear time algorithm in the worst case. The quadratic increases of memory of LAD cannot be seen in the Table 2 since each algorithm besides the memory to store the graphs uses several support data structures to perform steps such as preprocessing, variable ordering and so on. To make these points clear to readers we add the following footnote: "We refer to the actual implementation of data structures of the algorithms in the released codes. Theoretically, efficient matrix implementations for sparse graphs could be implemented with moderate look-up time sacrifice and the search in adjacency lists could takes logarithmic time in the number of edges if a binary search were used on ordered lists of edges. Moreover, each algorithm uses several data structures besides the data structures to store the graphs. Therefore the resulting plots do not show the quadratic memory increases of one algorithm compared to another.

· Where is the decision tree you promise in the conclusions?

We had intended to include such a tree, but finally decided against doing so because a prose description turns out to be clearer. We have removed the sentence regarding the decision tree.

· Caption of Table 2 is very unclear, as is the evaluation as a whole. Please explain what "pattern dimensions" are, what role the number of labels played in the evaluation, what grouped tests are, and where the numbers in the table of the form "(3/4)" come from. What groups are you referring to? What are the units (minutes? seconds?)

We modify the statistical presentation of the results. Table 2 has been substituted with Figures....

3b. Minor Essential Revisions

· For your pattern graphs, please explain how often they match in the respective databases.

We added all these information in the supplemtal materials.

· You should specify whether any of your methods uses multi-threading (you run on a QuadCore). Would it be difficult to parallelize the different algorithms?

We do not use multi-threading even if we run on a QuadCore. The parallelization of the above algorithm is not straightforward and may require substantial changes in the algorithm’s strategies. We are currently working on this interesting project. To make this point clear we added the following footnote:

Experiments have been conducted on a QuadCore Intel Xeon

2.33Ghz, with 4 physical cores at 64 bit with 4Mb cache, 4Gb of RAM, running

Linux version 2.6.32. Notice that we do use multi-threading.

· The pseudocode in Fig. is not very helpful. You should be more verbose here and reflect the presentation from the text (page 10).

We change it accordingly.

· I think the paper would gain if the different components of the score (page 10) would be evaluated independently. I also was puzzled that the frequency of the label of a candidate node is not important for candidate selection.

Before to set our scoring schema we had tried what reviewer suggested. The results were not satisfactory. So we decided to report only the most suitable scoring schema.

3c. Discretionary Revisions

· Please check if reference 18 is the right one

The reference 18 was the following: “Waltz DL: Generating semantic descriptions from drawings of scenes with shadows. Technical Report AI-TR-271, MIT Artificial Intelligence Laboratory 1972” which is a pioneering work for constraint propagation for a scene drawing application. Since (i) we agree that it is not so clear from the title of the Waltz paper why we cite it, and (ii) in the current work we cite other papers that cite Waltz1972, we decide to remove that reference.

· Please check reference 14. Is this a technical report? Where can it be accessed?

The reference 14 was Tarjan R: “Maximum cardinality search and chordal graphs. Unpublished Lecture Notes CS 259 1976”. There is no online access to it. Therefore we have substituted it with the equally relevant paper R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,test acyclicity of hypergraphs,and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566–579

----------------------- REVIEW 2 ---------------------

PAPER: 22

TITLE: A subgraph isomorphism algorithm and its application to biochemical data

AUTHORS: Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha and Alfredo Ferro

----------- REVIEW -----------

Review form

What are the claimed contributions of the paper? How well does the paper evaluate such contributions? This paper proposes a novel subgraph matching algorithm, RI, that out performs most of the leading algorithms in most of the scenarios. The authors also propose to release software package with this algorithm and some other implemented algorithms. This paper substantiated this claim by a comprehensive comparative study of RI with three other algorithms and four graph datasets with various characteristics, as well as synthetic data. The benchmark shows that RI outperforms other algorithms in terms of matching time, memory and total execution time. The benchmarks do evidently support the authors claim. However, there are two major concerns. First of all, the authors only provided mechanistically benchmarks (such as memory and running time), but didn't mention the comparison of subgraph matching results. It's not clear whether all matching algorithms produce the same set of results. Secondly, as the performances of these algorithms are heavily dependent on the input dataset, the variability of these benchmarks could be quite high. However, the authors only supplied mean values, therefore there's no way to interpret the variability (for example, if the running time of each execution varies dramatically with skewed distribution, using median instead of mean may be a more robust measure).

Please highlight the strong points and weak points of the paper. Strengths: clear articulation of the algorithm; comprehensive comparative benchmarks and results. Weaknesses: lack of interpretation of results besides benchmark comparisons; some writings, figures and tables are not very clear.

3) Please provide constructive comments to help author improve the paper.

3a. Major Compulsory Revisions

3a.1: The authors provided benchmarks on matching time, memory, search space and total time. However, the author didn't provide the data for matching results of the algorithms. Are all algorithms produce the same results? I suspect not, because of the usage of heuristics. If this is the case, how would the authors rate the quality of each subgraph matching result? Which algorithm performs best? Are there any false negatives (failed to matching true hits) or false positives?

We added for each dataset and for each query the number of matches (See result section and related plots). All algorithms are deterministic and correct, therefore they return the same results. The terms "heuristic" or "strategy" refer how the algorithm works, what matches first, if they do preprocessing and so on. We added standard deviations values and error bar on the most significant results.

Moreover, we signficantly modified our presentation of experimental results. We report for each dataset the total number of real labels, the average number of labels per graphs and the standard deviation. We added the number of matches for all datasets and the number of times each algorithm ends before the timeout. We added a new real dataset called PPI which represents protein interactions. We added more networks on the Graemlin dataset. We added performances on such datasets using the original labels (each vertex will have a unique label) and varying the number of labels from 32 to 2048. We used uniform and normal label distributions. We used dense, semidense and sparse patterns. We added (in the supplemental material) for all tested cases (varying number of labels, pattern and target dimensions and density) detailed comments regarding the performances and comparisons among algorithms. In the supplemental materials we added for each dataset a figure containing all performed tests (6 plots, number of matches, number of completed runs, space size, matching time, total time and memory). Then each plot is also given separately. Table 2 has been replaced with several figures to make the statistical analysis more clear. Finally, we apply our subgraph isomorphism algorithm to verify the presence of interactions among proteins in conserved complexes (obtained from CORUM database and functional annotated with GO), on 10 protein networks functional annotated with GO.

3b. Minor Essential Revisions

3b.1: Invert the color of molecular structure in Figure 1 to make it more legible.

We have removed the Figure 1 and expanded the Background Section describing the applications of subgraph isomorphism algorithms in Biochemical Applications.

3b.2: On page 7, Performance: The author didn't clearly explain why to timeout execution at 3 minutes mark. Is it because some executions would run indefinitely? If so, how often does it occur to each algorithm? It leads to suspicion that the performance may vary dramatically among executions since variances were not provided. Error bars or summaries should be added to some key plots such as matching time and total time.

For each datases we report how many subgraph isomorphisms each algorithm ends before the time out. Exceeding the three minute mark simply indicates poor performance. When an algorithm times out, we exclude the related running times from the means. RI gives the best behavior in all datasets. Results for VF2 on the Graemlin and PPI datasets are not reported since they often time out. FocusSearch times out on dense datasets and it happens to LAD to times out on large graphs. We added to significant plots the standard deviation.

3b.3: The author mentioned a decision tree for choosing algorithms on page 8 - but it's nowhere to be found.

We had intended to include such a tree, but finally decided against doing so because a prose description turns out to be clearer. We have removed the sentence regarding the decision tree.

3b.4: There are no units provided in table 2 which makes it quite difficult to interpret. Also the meaning of comma between the values is not clear.

We modify the statistical presentation of the results. Table 2 has been substituted with Figures....

We insert units (kb and sec) and substituted commas with points to define decimal.

3c. Discretionary Revisions

3c.1: Polish language and grammar. There are quite a few minor flaws, such as in the Abstract 'as early as possible at as low a cost as possible (as early and as low cost as possible)', 'among methods depending on their application (applications)', and some article usages (a, the), page 6 'we can have thousand (thousands)', etc.

We carefully revised the paper and correct language and grammar mistakes.

3c.2: Statement on page 7 that LAD uses quadratic memory is not necessarily true. A sparse matrix implementation can be used to drastically reduce memory usage with moderate look-up time sacrifice (O(log #column elements)).

We agree with the reviewer comment. However, here we refer to the actual implementation used in the compared softwares. For examples, VFLib sorts elements in the adjacent lists but it searches using a linear time algorithm in the worst case. The quadratic increases of memory of LAD cannot be seen in the Table 2 since each algorithm besides the memory to store the graphs uses several support data structures to perform steps such as preprocessing, variable ordering and so on. To make these points clear to readers we add the following footnote: "We refer to the actual implementation of data structures of the algorithms in the released codes. Theoretically, efficient matrix implementations for sparse graphs could be implemented with moderate look-up time sacrifice and the search in adjacency lists could takes logarithmic time in the number of edges if a binary search were used on ordered lists of edges. Moreover, each algorithm uses several data structures besides the data structures to store the graphs. Therefore the resulting plots do not show the quadratic memory increases of one algorithm compared to another.

3c.3: Convert memory axis on plots to kb (kilobyte) or mb for better interpretability.

We modify accordingly.

3c.4: The number of vertices on page 6 for AIDS and PDBv1 and the number in table 1 don't match up. It could have been due to rounding but not clearly stated.

We fixed it.

----------------------- REVIEW 3 ---------------------

PAPER: 22

TITLE: A subgraph isomorphism algorithm and its application to biochemical data

AUTHORS: Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha and Alfredo Ferro

----------- REVIEW -----------

Review form

1) What are the claimed contributions of the paper? How well does the paper evaluate such contributions?

 This paper presents a new subgraph isomorphism algorithm, called RI, which creates a search strategy depending only on the pattern graph. The performance of the algorithm is evaluated on several biomedical data sets comparing against a few recent existing methods.

2) Please highlight the strong points and weak points of the paper.

Strong points:

 1. The problem of subgraph isomorphism checking is a fundamental and important one underlying many graph applications.

 2. The comparison of some recent subgraph isomorphism algorithms in terms of search strategy, space reduction, preprocessing and data structure is informative.

 3. The algorithm is evaluated with real data sets.

Weak points:

1. Essentially, there are two major paradigms of reducing subgraph isomorphism in the setting of graph pattern query. One is pattern-driven and the other is data-driven, corresponding to static and dynamic strategy respectively. Each has its strength and limitations for different applications with different data scenario and pattern distribution. While the author has presented detailed description of their proposed method, they have not been successful in convincing me with analytical arguments or theoretical support why their static strategy should outperform the existing algorithms. It would have been nice to see insights into the nature of the data that would lend support to the proposed method.

Inspired by this comment we extensively explained our contribution in the paper. We agree that the paper was weakly to make our contibution clear. First we explain algorithmic investigations and intuitions that justify why we propose RI. In particular we say the following in Contribution (Section:Background). ROSALBA: PLEASE COPY FROM NEW TEXT
“ Inference based methods, which propagate constrains to until convergence (for example LAD), theoretically represent the most fitting search strategy. In practice such inference is done at the price of a greater computational cost. When constrains verification is applied only locally (for example, the local inference used by FocusSearch and the pruning rules of VFlib), it is crucial to define a search strategy that tries to prune as much (or as early) as possible the search space. This aspect is not addressed by VFLib. FocusSearch applies this concept only partially. It defines a static and semi target dependent search strategy which weakly reflects the pattern topology. Moreover, it performs locally inference, optimizing its cost by using bit-vectors. In this paper we present a novel subgraph isomorphism algorithm, called RI . It creates a search strategy strongly depending only on the pattern graph topology. The order is chosen to create constraints as early as possible in the matching phase. Roughly, vertices having high valence and that are highly connected with vertices previously present in the ordering tend to come early in the final variable-ordering. During the matching phase, RI

does not apply any computationally costly pruning or inference rules.

This is the first paper that compares all the most recent and used algorithms (LAD, FocusSearch,VFlib). FocusSearch has never been compared before. We analyze algorithmic aspects including the size of search space, the memory requirement, the timeout of the algorithms, the matching time and the total time, varying the density and dimension of pattern and target graphs, the number and the distribution of the labels. Datasets represent the most common biological data. We also used synthetic data analyzed in the previous work by authors of LAD and VFLib. In order to validate our strategy, we compare RI and two versions of RI, called RI-Ds and RI-DsPm. RI-Ds computes, after defining the variable order of pattern vertices and before the subgraph isomorphism starts, an initial domains assignment. For each pattern vertex, RI-Ds computes its domain and verifies that pattern edges are compatibles in the target domains. It does not apply inference or domain reduction during backtracking. This low-priced verification helps in large dense targets, because it reduces the number of candidates to be verified during backtracking.

RI-DsPm, in addition to RI-Ds, uses the prematch phase defined in FocusSearch, i.e. filters domains by using vertex invariants based on neighbor labels and topology. We show that RI-DsPm does not improve performance compare to RI and RI-Ds. This behavior is supported by the analysis given in [we cite the paper concerning FocusSearch]. Moreover, it validates the main ideas in RI: a powerful pattern vertex ordering, i.e. strongly depending only on the pattern graph topology, together with light constraints verification are more efficient than locally or global inference procedure.”

Than, in Section: Results and Discussion we added among other comments the following discussions on RI performance results related to data variability.

“Summarizing the results we observed that

· RI always outperforms VF2.

· RIoutperforms all other algorithms in sparse target graphs such as AIDS, PDBSv1, and PDBSv2.

· RI is comparable with LAD and FocusSearch on small dense pattern graphs, PDBSv3, with dense patterns, and with semidense small-medium patterns.

· RI outperforms LAD but not FocusSearch on small dense pattern graphs, PDBSv3, with large semidense or sparse patterns.

Morever:

· We suggest to use RI-Ds on medium or large dense (such as Graemlin and PPI datasets). Here, RI-Ds outperforms (or comparable in total times with FocusSearch on PPI) all algorithms varying the number of labels and pattern dimensions and densities;

· We do not suggest the use of RI-DsPm or any costly inference or pruning rules. RI-DsPm does not improve performance compare to RI and RI-Ds. This behavior is supported by the analysis given in [we cite the paper concerning FocusSearch]. Since, our algorithm is independent of the used pruning rules, we also tried to run our algorithm with the rules from VFlib. Experiments show that the rules helped to reduce the search space but their contribution were not significant and, in some cases, they increased the total time of the matching process. Therefore, we did not deploy those pruning rules. These considerations validate the main idea in RI: a powerful pattern vertex ordering, i.e. strongly depending only on the pattern graph topology, together with light constraints verification are more efficient than locally or global inference procedure.”

2. With the absence of theoretical analysis of the algorithm's performance, readers are to look for comprehensive empirical evaluations that would demonstrate the algorithm's performance in representative data settings. The data sets used in the paper are not presented to give clear categorization of the different data settings they each represent. For example, do they represent large sparse graphs, small dense graphs, or large dense ones? What about the number of distinct labels, which is an important factor affecting the complexity of subgraph isomorphism checking in real data? In fact, ideally, what should be shown is the characterizations of the respective data scenario that the proposed static method would give the best and the worst performance. If possible, synthetic data should be used where parameters of the data graph can be better controlled to comprehensively evaluate the new algorithm. This is very useful in evaluating the contribution and effectiveness of the proposed algorithm when no theoretical analysis is available.

Thanks to this comment, we extensively modify our experiments result presentation. We report for each dataset the total number of real labels, the average number of labels per graphs and the standard deviation. We added the number of matches for all datasets and the number of times each algorithm ends before the timeout. We added a new real dataset called PPI which represent protein interactions. We added more networks on the Graemlin dataset. We added performance measurements on such datasets using the original labels (each vertex will have a unique label) and varying the number of labels from 32 to 2048. We used uniform and normal label distributions. We used dense, semidense and sparse patterns. We added (in particular in the supplemental material) for all tested case (varying number of labels, pattern and target dimensions and density (small and large, dense, semidense and sparse data)) detailed comments on the performances and comparisons among algorithms. We recall also that we tested on the synthetic dataset used in the papers describing Vflib, Lad and FocusSearch. This dataset contains Bounded Valence: (the number of edges per vertex varies from 3, 6, 9), Mesh (2D, 3D and 4D, where 2,3,4 indicate the dimensionality of the meshes), and Random (edges are added according to a probability) graphs. In the supplemental materials we added for each dataset a figure containing all performed tests (6 plots, number of matches, number of completed runs, space size, matching time, total time and memory). Then each plot is also given separately. Table 2 has been substituted with several figures to make the statistical analysis more clear. Finally, we apply our subgraph isomorphism algorithm to verify the presence of interactions among proteins in conserved complexes (obtained from CORUM database and functional annotated with GO), on 10 protein networks functional annotated with GO.

3. The literature survey is quite skewed, missing an important and well-cited body of related works in topics of graph indexing, graph pattern matching and frequent graph pattern mining. The author is suggested to refer to venues other than those in the paper, e.g., TKDE, TODS, KDD, VLDB, ICDM, etc..

Thanks to the above suggestion we have added the following paragraph to the background

section.

Finding a solution for the subgraph isomorphism problem is inherently hard [12] and therefore the efficiency of any software using subgraph isomorphism algorithms largely depends on (i) finding efficient heuristics to make the isomorphism algorithms faster ; (ii) reducing the number of subgraph isomorphism calls; or (iii) relaxing the isomorphism conditions.

Graph indexing based methods aim to design efficient indexes (i.e. extracted from graph subgraph, trees or paths [13–17]) or data structures [18, 19] capable of limiting the execution of subgraph isomorphism to only a few candidate graphs; graph mining algorithms [20–23] reduce the size of indices by identifies frequent subgraphs having at least a specified support; and graph pattern matching algorithms [24–27] solve a ”near” subgraph isomorphism problem by applying more relaxed reachability conditions [26].

This paper introduces a new algorithm for the subgraph isomorphism problem and compares it on synthetic and biochemical data with the most efficient and recent algorithms present in literature [3,28,29]. Notions, concepts and related works are given next.

4. One aspect of the techniques of subgraph isomorphism reduction has been missed in the discussion of the paper is the reduction of repeated sub-pattern generation and verification during the isomorphism checking process. No matter how the vertices are ordered to check isomorphism, all algorithms need to handle the challenge of how to avoid generate the same sub-pattern repeatedly. This is exactly why a large number of existing mining algorithms have proposed varied ``canonical ordering'' of the patterns to alleviate the problem. How is that problem addressed in RI?

The comment is very interesting and pertains to the excellent work done by the graph mining community. However, the subgraps isomorphism problem deals only with a pattern graph and a target graph. Generally speaking, if we have n patterns and we want to check for their occurrences in a target graph or in a database of graphs, we could reduce the number of patterns by using canonical labeling techniques. The aim is to apply subgraph isomorphism algorithms as
less as possible. In fact, canonical labeling is mostly efficient when the goal
is to find clusters of isomorphic small graphs. For example, in the
well known work of Yan et al [“Graph Indexing: A Frequent Structure
based Approach”, Sigmod 2004], they do the following:
(i) generate all frequent fragments with the
size-increasing support constraint;
(ii) use efficient data structures to store and retrieve such discriminative fragments and since graph isomorphism testing is hard they translate fragmnets into a sequence, called canonical
label;
(iii) After filtering they check if target graph candidates contain the pattern-graph using subgraph isomorphism algorithms.

We remark also that the work by McKay B: Practical graph isomorphism.
Congr. Numer. Del 1981, mostly known as the Nauty isomorphism
algorithm uses canonical labels (we have cited in the background
section). It has found applications on motif search softwares
to find class of isomorphic candidates motifs (small graphs – about ten nodes). However, authors of VFLib have clearly demonstrated, with the results
reported in their publications together with the VFLib popularity, that it is more efficient and scalable. We would like to emphasize that our experiments clearly show that RI outperforms VFLib.

5. There are quite a number of typos and grammar errors scattered around in the paper.

We carefully revised the paper and correct language and grammar mistakes.

3) Please provide constructive comments to help author improve the paper.

3a. Major Compulsory Revisions

 Please address weak point 2 and 3.

3b. Minor Essential Revisions

 Please address weak point 1 and 4.

3c. Discretionary Revisions

 Please address weak point 5.

