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In this annex the experimental results will be commented more in details.  

 

 

Randomly connected graphs 

 

The behaviour of the selected algorithms is shown in three interesting cases. 

In the first case, Fig.1a, the size of the attribute alphabet M is 75% of the number of nodes and the 

graph density ηis 0.05.  In this case McGregor performs better, because the other two algorithms 

face the problem using the association graph. The association graph is large and dense and so it not 

convenient to find out its maximum clique. 

In the second case, Fig.1b, M = 50% and η= 0.1. This case is very interesting because the behaviour 

of the three algorithms is almost the same. The meaning is that the density of the two starting 

graphs is enough to make McGregor not the fastest and, the association graph is enough dense to 

make Durand Pasari not the fastest too. Finally the heuristic of Balas Yu, is too complex to 

elaborate, to make this algorithm winning on the others. The conclusion is that in this case there is 

not an algorithm definitely faster that the others. 

In the third case, Fig.1c, M is 75% and ηis 0.2. In this case the density of the two starting graphs 

becomes enough high to make convenient to face the problem using the association graph. 

Moreover, this density is not high enough to permit to the heuristic of Balas Yu (which is quite 

expensive to elaborate) a good pruning, thus also this algorithm is slow, and Durand Pasari is the 

fastest algorithm. 
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Fig.1: experimental results for random graphs. a) the size of the attribute alphabet is M=75% 
of the number of nodes, the density η is 0.05;  b)  M = 50%, η = 0.1:  c)  M = 33%, η = 0.2. 
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Regular Mesh Graphs 

In the Fig.2a, 2b and, 2c the most interesting behaviours of the algorithms on regular meshes are 

shown. M is always fixed to 33%, the behaviour in the case of M = 50% and in case of  75% are 

very similar but faster, because of a better pruning due the larger alphabet of attributes. More in 

detail, in the first case, Fig.2a, the behaviour on  bi-dimensional meshes is shown. All the three 

algorithms shows similar characteristics, but a tendency is clear: both McGregor and Balas Yu 

perform better than Durand Pasari. The main difference between Durand Pasari and Balas Yu is that 

the second algorithm provides a more refined heuristic function. In this case the role of a more 

refined heuristic on larger graphs is very clear. In the second case, Fig.2b, the behaviour on tri-

dimensional meshes is shown. Here Balas Yu algorithm is slower because of the complex heuristic. 

McGregor and Durand Pasari show a similar performance. Finally in Fig.2c, the behaviour on 

quadri-dimensional meshes is shown. In this last case McGregor algorithm performs better for 

larger graphs.  
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Fig.2:  experimental results for regular meshes. The size of the attributes alphabet is always 
M=33% of the number of nodes. a) results for meshes 2D graphs;  b) meshes 3D  graphs;  c) 
meshes 4D graphs. 
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Irregular Mesh Graphs 

 

The behaviour of the three algorithms is shown in nine interesting cases. 

In Fig.3a, 3b and, 3c the behaviour of the algorithms on irregular 2D meshes is shown. M is always 

fixed to 33%, the behaviour in the case of M = 50% and in case of  75% are very similar but faster, 

because of a better pruning of the candidate solutions due to the larger alphabet of attributes. More 

in detail, in the first case, Fig.3a, the behaviour for irregularity degree ρ = 0.2 is shown, then in 

Fig.3b the irregularity becomes ρ = 0.4 and, finally in Fig.3c ρ = 0.6. In Fig.3a the three algorithms 

show a similar behaviour, this is another case in which the graph morphology doesn’t favours an 

algorithm respect to another. But when the mesh irregularity increases, in Fig.3b and Fig.3c, the 

tendencies of the algorithms become more clear. Firstly, it can be notices that McGregor algorithm 

becomes slower and slower. The reason is that when the irregularity increases the structure of the 

graph is going to become a little similar to the randomly connected graphs and in that case, it has 

already been shown that McGregor is not the best algorithm. Moreover, Durand Pasari algorithm is 

going to improve its behaviour for an increasing irregularity. The main reason is that the association 

graph is large and dense when the two starting graphs have a mesh structure and, the increasing 

irregularity of the graphs generates an association graph becoming less dense. Finally, Balas Yu 

algorithm is also going to improve its behaviour for ρ increasing, because it also uses the 

association graph and, for larger graphs there is an additional improvement because of the better 

heuristic. 

In Fig.4a, 4b and, 4c the behaviour of the algorithms on irregular 3D meshes is shown. M is always 

fixed to 50%. More in detail, in the first case, Fig.4a, the behaviour for irregularity degree ρ = 0.2 is 

shown, then in Fig.4b the irregularity becomes ρ = 0.4 and, finally in Fig.4c ρ = 0.6. The main 

difference with the previous three cases is that the alphabet of attributes is larger and then there is a 

smaller number of candidate solution to examine. As a consequence the three algorithms are faster 

than the previous cases. In Fig.4b it is clear that McGregor is the best algorithm and it is also 
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evident that this algorithm becomes slower for ρ increasing. The behaviour of Balas Yu and Durand 

Pasari is also similar to the cases of Fig.3a, 3b and, 3c, i.e. they improve for ρ increasing. Finally 

when ρ = 0.6, all the three algorithms have the same behaviour for small graphs, but McGregor has 

a better tendency for large graphs. 

In Fig.5a, 5b and, 5c the behaviour of the algorithms on irregular 4D meshes is shown. M is always 

fixed to 75%. More in detail, in the first case, Fig.5a, the behaviour for irregularity degree ρ = 0.2 is 

shown, then in Fig.5b the irregularity becomes ρ = 0.4 and, finally in Fig.5c ρ = 0.6. In this three 

cases the alphabet of attributes is still larger and then there is a smaller number of candidate 

solution to examine. Also in these cases there is a tendency of  McGregor to make worse when the 

irregularity increases, while the other two algorithms works better for a higher ρ. However 

McGregor is always the best algorithm because of the large alphabet of attributes: when M=75%, it 

is never convenient to use the association graph. It is also clear that the heuristic of Balas Yu makes 

this algorithm more efficient than Durand Pasari. 
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Fig.3: experimental results for irregular meshes 2D graphs. The size of the attributes 
alphabet is always M=33% of the number of nodes. a) the irregularity degree is ρ = 0.2; b) 
the irregularity degree is ρ = 0.4; c) the irregularity degree is ρ = 0.6. 
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Fig.4: experimental results for irregular meshes 3D graphs. The size of the attributes 
alphabet is always M=50% of the number of nodes. a) the irregularity degree is ρ = 0.2; b) 
the irregularity degree is ρ = 0.4; c) the irregularity degree is ρ = 0.6. 
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Fig.5: experimental results for irregular meshes 4D graphs. The size of the attributes 
alphabet is always M=75% of the number of nodes. a) the irregularity degree is ρ = 0.2; b) 
the irregularity degree is ρ = 0.4; c) the irregularity degree is ρ = 0.6. 
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Bounded Regular Graphs 

In all the three selected cases the maximum connection degree is v =6.  

In the first case, Fig.6a, the size of the attribute alphabet M is 33% of the graph size; in the second 

case, Fig.6b, M = 50% and, finally, in the third case, Fig.6c, M is 75%. 

Firstly, it is interesting to notice that Balas Yu and Durand Pasari have a similar behaviour for all 

the three cases: for small graphs Durand Pasari is better, but for larger graphs Balas Yu become 

definitely better than the other one. As in precedent cases, the main reason is the more refined 

heuristic cutting more candidate solutions when the dimension of the staring graphs increases. 

What is also interesting to notice is the behaviour of McGregor: this algorithm is incredibly sensible 

to the size of alphabet. Indeed when M = 33% McGregor is incredibly slower, when M=50% it is a 

little slower than the other algorithms, but for M=75% it becomes the fastest algorithm, for large 

graphs. 

In this three graphs is really clear that the use of the association graph is convenient only when the 

size of the alphabet of attributes is enough small, otherwise it is better to use algorithms facing the 

problem without the association graph. 
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Fig.6: experimental results for regular bounded graphs. The maximum degree connection is 
always ν=6. a) The size of the attributes alphabet is M=33% of the number of nodes the; b) 
M=50%; c)  M=75%. 
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Bounded Irregular Graphs 

In the first case, Fig.7a, the size of the attribute alphabet M is 75% of the number of nodes and 

maximum connection degree is v = 3.  In this case McGregor performs better; the number of edges 

per node and  the number of attributes are low and then the association graph is large and dense. 

Then  it is not convenient to find out its maximum clique. 

In the second case, Fig.7b, M = 50% and v= 6. In this case, for small graphs Durand Pasari is the 

best algorithm, but it is interesting to notice that the tendency of all the three algorithms is the same 

for larger graphs. The meaning is that the density of the two starting graphs is enough to make 

McGregor not the fastest and, the association graph is enough dense to make Durand Pasari not the 

fastest. Finally the heuristic of Balas Yu, is too complex to elaborate, to make this algorithm 

winning on the others. The conclusion is that in this case there is not an algorithm definitely faster 

that the others. 

Finally, in the third case, Fig.7c, M is 33% and v=9. In this case the density of the two starting 

graphs becomes enough high to make convenient to face the problem using the association graph. 

McGregor is not adapt to use for these graphs. Moreover, this density is not high enough to permit 

to the heuristic of Balas Yu (which is quite expensive to elaborate) a good pruning, thus this 

algorithm is not winning on Durand Pasari and performs very similarly but a little worse. 
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Fig.7: experimental results for irregular bounded graphs. a) The size of the attributes 
alphabet is M=33%, and the maximum connection degree is ν=3; b) M=50% and ν=6; c)  
M=75% and ν=9. 


