
Automated Verification of
Concurrent Search Structures

Automated Verification of
Concurrent Search Structures

Siddharth Krishna
Microsoft Research, Cambridge

Nisarg Patel
New York University

Dennis Shasha
New York University

Thomas Wies
New York University

SYNTHESIS LECTURES ON XYZ #13

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Search structures support the fundamental data storage primitives on key-value pairs: insert a

pair, delete by key, search by key, and update the value associatedwith a key. Concurrent search struc-
tures are parallel algorithms to speed access to search structures onmulticore and distributed servers.
These sophisticated algorithms perform fine-grained synchronization between threads, making them
notoriously difficult to design correctly. Indeed, bugs have been found both in actual implementa-
tions and in the designs proposed by experts in peer-reviewed publications. The rapid development
and deployment of these concurrent algorithms has resulted in a rift between the algorithms that
can be verified by the state-of-the-art techniques and those being developed and used today. The
goal of this monograph is to bridge this gap and bring the certified safety of formal verification to
the concurrent search structures used in practice. The techniques and frameworks we present can be
applied to concurrent graph and network algorithms beyond search structures.

KEYWORDS
Verification, Separation Logic, Concurrency, Data Structures, Search Structures, B
trees, Hash Structures, Log-Structured Merge Trees

v

Contents
Acknowledgments . ix

1 Introduction . 1
1.1 Algorithmic Modularity . 2
1.2 Concurrent Search Structure Templates . 4
1.3 Case Studies . 5
1.4 Summary and Outline . 6

2 The Edgeset Framework and Template Algorithms . 8
2.1 B-link Trees . 8
2.2 Abstracting Search Structures using Edgesets . 9
2.3 The Link Template . 11

3 A Primer on Deductive Verification . 12
3.1 Basics and Notation . 12
3.2 Programming Language . 14
3.3 Separation Logic: Iris . 16

3.3.1 Formulas . 16
3.3.2 Specifications . 19
3.3.3 Proof Rules . 20

4 Ghost State . 28
4.1 Motivation . 28
4.2 Ghost States and Resource Algebras . 31
4.3 Proof of the Single-node Template . 34
4.4 Two-node Template and Keysets . 36
4.5 Disjoint Keysets and the Keyset RA . 37

5 The Flow Framework . 42
5.1 Motivation . 42
5.2 Local Reasoning about Global Properties . 43
5.3 The Flow Interface RA . 45

vi

5.4 Encoding Keysets using Flows . 47

6 Verifying Single-copy Concurrent Templates . 50
6.1 The Give-up Template . 51

6.1.1 Proof of the Give-up Template . 52
6.1.2 Maintenance Operations. 57

6.2 The Link Template . 58
6.2.1 Inreach . 58
6.2.2 Proof of the Link Template . 61
6.2.3 Maintenance Operations. 65

6.3 The Lock-coupling Template . 66
6.4 Verifying Implementations . 67
6.5 Proof Mechanization and Automation . 67

7 Verifying Multicopy Structures . 71
7.1 Overview . 71
7.2 Differential File Structures . 72
7.3 Log-Structured Merge Trees . 74
7.4 Multicopy Structures . 74

8 Verifying the Two-Node Multicopy Template . 82
8.1 The Two-Node Multicopy Template . 82
8.2 Correctness Proof for the Two-Node Template . 83

8.2.1 Proving Search Recency . 85
8.2.2 Proving the Correctness of Upsert . 91
8.2.3 Proving the Correctness of Maintenance . 94

9 Verifying a General Multicopy Template . 100
9.1 The General Multicopy Template . 100
9.2 Correctness Proof for the General Multicopy Template 103

9.2.1 Proving Search Recency . 103
9.2.2 Proving the Correctness of Upsert . 112
9.2.3 Proving the Correctness of Maintenance . 114

10 Related Work, Future Work, and Conclusion . 122
10.1 Related Work . 122
10.2 Future Work . 124

vii

10.2.1 Generalizations and Extensions . 124
10.2.2 Proving Liveness . 124
10.2.3 Lock-Free Concurrent Search Structure Algorithms 125

10.3 Conclusion . 126

Bibliography . 128

Authors’ Biographies . 138

ix

Acknowledgments
Besides acknowledging Liz, we should acknowledge our chosen readers Eddie ..., funding agen-
cies, Microsoft, Iris and Grasshopper authors, and Diane Cerra and perhaps other folks at Morgan
Claypool. Family members too if desired.

Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies
August 2020

1

C H A P T E R 1

Introduction
For the last 60 years or so, the processing power of computers has been doubling approximately
every two years. For most of that time, this growth has been backed by the increase in the number
of transistors present on integrated circuit chips, a phenomenon commonly known as Moore’s Law.
Until about 2000, this was accompanied by a corresponding increase in clock speed, the speed at
which computers perform each step of computation. However, in the early 2000s, computer hardware
started reaching the physical limits of clock speed, mostly due to heating and quantum effects. To
counter this, manufacturers have turned to parallel architectures where increased transistor densities
are being used to provide multiple cores on a single chip, enabling multiple computations to be
performed in parallel.

Having n processing cores on a chip, however, does not immediately imply a factor of n
increase in speed. To make the most of these multicore machines, software needs to be carefully
designed to efficiently divide work into threads, sequences of instructions that can be executed in
parallel.

Well-designed parallel algorithms distribute the workload among threads in a way that min-
imizes the amount of time spent waiting for each other. A standard way to achieve this is to store
any shared data in so-called concurrent data structures, supported by multi-threaded algorithms
that store and organize data. These data structures are now core components of critical applications
such as drive-by-wire controllers in cars, database algorithms managing financial, healthcare, and
government data, and the software-defined-networks of internet service providers. The research and
practitioner communities have developed concurrent data structure algorithms that are fast, scalable,
and able to adapt to changing workloads.

Unfortunately, these algorithms are also among the most difficult software artifacts to develop
correctly. Despite being designed and implemented by experts, the sheer complexity and subtlety
of the ways in which different threads can interact with one another means that even these experts
sometimes fail to anticipate subtle bugs. These bugs can cause the data to be corrupted or the pro-
gram to misbehave in unexpected ways. For instance, consider the standard textbook on concurrent
algorithms, The Art of Multiprocessor Programming [Herlihy and Shavit, 2008]. Although written
by renowned experts who have developed many of the most widely used concurrent data struc-
tures, the errata of the book list several severe but subtle errors in the algorithms included in the
book’s first edition. There have also been many such examples of concurrent algorithms in peer-
reviewed articles with (pencil-and-paper) mathematical proofs that have later turned out to contain
mistakes [Burckhardt et al., 2007, Michael and Scott, 1995]. It is clear therefore that we desperately

2 1. INTRODUCTION

need more systematic and dependable techniques to reason about and ensure correctness of these
complex algorithms.

Formal verification is a field of research that aims to use mathematical techniques to prove, in
a rigorous and machine-checkable manner, the absence of bugs and the conformity of a system to its
intended specification. Several projects have demonstrated the successful use of formal verification
to improve the reliability of real-world software designs, including SLAM, ASTREE, CertiKOS,
seL4, CompCert, and Infer. In fact, in some areas such as hardware verification, formal verification
is now a core part of the design process. However, there remains a huge gap between the concurrent
data structures that can be verified by state-of-the-art techniques and the algorithms being developed
and used everyday. The goal of this book is to bridge this gap and bring the certified safety of formal
verification to the concurrent data structures in use everyday.

1.1 ALGORITHMIC MODULARITY

Concurrent data structures are among the most complex algorithms in use today. This is because
they have to perform two very difficult tasks simultaneously: managing interference among threads
in such a way as to ensure correctness, and organizing the data in memory so as to maximize perfor-
mance. The resulting combination of delicate thread protocols and advanced data layouts used by
concurrent data structures makes formally verifying them extremely challenging.

Modularity is as important in simplifying formal proofs as it has been for the design and
maintenance of large systems. There are three main types of modular proof techniques: (i) Hoare
logic [Hoare, 1969] enables proofs to be compositional in terms of program structure; (ii) separation
logic [O’Hearn et al., 2001, Reynolds, 2002] allows proofs of programs to be local in terms of the
state theymodify; and (iii) thread modular techniques [Herlihy andWing, 1990, Jones, 1983, Owicki
and Gries, 1976] allow one to reason about each thread in isolation.

Concurrent separation logics [Brookes, 2007, Brookes and O’Hearn, 2016, da Rocha Pinto
et al., 2014, Dinsdale-Young et al., 2013, 2010, Dodds et al., 2016, Feng et al., 2007, Fu et al., 2010,
Jung et al., 2015, Nanevski et al., 2014, O’Hearn, 2007, Svendsen and Birkedal, 2014, Vafeiadis
and Parkinson, 2007] incorporating all of the above techniques have led to great progress in the
verification of practical concurrent data structures, including recent milestones such as a formal
paper-based proof of the B-link tree [da Rocha Pinto et al., 2011].

An important reason why many proofs, such as that of the B-link tree, are still complicated is
that they argue simultaneously about thread safety (i.e., how threads synchronize) andmemory safety
(i.e., how data is laid out in the heap).We contend that safety proofs should instead be decomposed so
as to reason about these two aspects independently. When verifying thread safety we should abstract
from the concrete heap structure used to represent the data and when verifying memory safety we
should abstract from the concrete thread synchronization algorithm. Adding this form of abstraction
as a fourth modular proof technique to our arsenal promises reusable proofs and simpler correctness
arguments, which in turn aids proof automation.

1.1. ALGORITHMIC MODULARITY 3

As an example, consider the B-link tree, which uses the link-based technique for thread syn-
chronization. The following analogy [Shasha and Goodman, 1988] captures the essence of the link-
based technique on a macroscopic data structure.

Bob wants to borrow book k from the library. He looks at the library’s catalog to locate k and
makes his way to the appropriate shelf n. Before arriving at n, Bob gets caught up in a conversation
with a friend. Meanwhile, Alice, who works at the library, reorganizes shelf n and moves k as well as
some other books to n′. She updates the library catalog and also leaves a sticky note at n indicating
the new location of the moved books. Finally, Bob continues his way to n, reads the note, proceeds
to n′, and takes out k. The synchronization protocol of leaving a note (the link) when books are
moved ensures that Bob can find k.

The library patron corresponds to a thread searching for and performing an operation on the
key k stored at some node n in the tree having links and the librarian corresponds to a thread per-
forming a split operation involving nodes n and n′. As in our library analogy, the synchronization
technique of creating a forward pointer (the link) when nodes are split works independently of how
data is stored within each node and how these are organized in memory (e.g. as a B-tree or hash
table). Hence, it applies to vastly different concrete data structures. Our goal is to verify the correct-
ness of template algorithms once and for all so that their proofs can be reused across different data
structure implementations.

Readers familiar with database protocols for transaction processing [Bernstein et al., 1987]
will recall that the classical way to establish serializability of a set of concurrent transactions is
to establish that transactions satisfy a stronger condition known as "conflict-preserving serializabil-
ity." Conflict-preserving serializability requires that transaction operations (reads and writes) can be
safely reordered to arrive at a serial execution. But no reordering is possible for Bob and Alice in the
library, because in no serial execution would Bob visit two shelves. Thus, the execution of Bob and
Alice are serializable (and, as we will see, "linearizable") but not conflict-preserving serializable,
rendering the classical proof technique of transaction processing inapplicable.

The path to achieving algorithmic proof modularity is to combine the template abstractions
with the proof technique of reasoning locally about modifications to the heap as in separation logic
(SL). This combination leads to simple proofs that are easy to mechanize. In terms of the state of the
art in verification technology, the proof of the link technique depends on certain invariants about the
paths that a search for a key k follows in the data structure graph. However, with the standard heap
abstractions used in separation logic (e.g. inductive predicates), it is hard to express these synchro-
nization invariants independently of the invariants that capture how the data structure is represented
in memory. That is why existing proofs such as the one of the B-link tree in [da Rocha Pinto et al.,
2011] intertwine the synchronization invariants and the memory invariants, which makes the proof
complex, hard to mechanize, and difficult to reuse on different structures.

4 1. INTRODUCTION

1.2 CONCURRENT SEARCH STRUCTURE TEMPLATES

This book shows how to adapt and combine recent advances in compositional abstractions and sep-
aration logic in order to achieve the envisioned algorithmic proof modularity for the important class
of concurrent search structures.

A search structure is a key-based store that implements three basic operations: search, insert,
and delete.We refer to a thread seeking to search for, insert, or delete a key k as an operation on k, and
to k as the operation key. We call the set of all keys the key space (e.g. the set of all natural numbers),
written KS. For simplicity, the presentation in this book treats search structures as containing only
keys (i.e. as implementations of mathematical sets), but all our proofs can be easily extended to
consider search structures that store key-value pairs.

Our proof methodology for search structures is based on the template algorithms for concur-
rent search structures by Shasha and Goodman [1988], who identified the key invariants needed for
decoupling reasoning about synchronization and memory representation for such data structures.
We apply those templates here for single-copy structures (structures containing at most one copy of
a key at any point in time, for example B-trees), and extend them significantly to cover multicopy
algorithms (structures that may contain multiple copies of a single key, of which only the latest copy
is active, for example log-structured merge trees).

The second ingredient is the concurrent separation logic Iris [Jung et al., 2016, 2018, 2015,
Krebbers et al., 2017]. We show how to capture the high-level idea of [Shasha and Goodman, 1988]
in terms of a new Iris resource algebra, yielding a general methodology for modular verification of
concurrent search structures.

This methodology independently verifies (1) that the template algorithm satisfies the (atomic)
abstract specification of search structures assuming that node-level operations maintain certain
shape-agnostic invariants and (2) that the implementations of these operations for each concrete
data structure maintains these invariants.

Our new resource algebra, in combination with Iris’ notion of atomic triples [da Rocha Pinto
et al., 2014, Jung et al., 2020, 2015], avoids explicit reasoning about execution histories and low-
level programming language semantics. Moreover, it yields a local proof technique that eliminates
the need to reason explicitly about the global abstract state of the data structure. The latter crucially
relies on the recently proposed flow framework [Krishna et al., 2018, 2020b], the final ingredient of
our methodology.

The flow framework, as explained in Chapter 5, provides an SL-based abstraction mechanism
that allows one to reason about global inductive invariants of general graphs in a local manner. Using
this framework, we can do SL-style reasoning about the correctness of a concurrent search structure
template while abstracting from the specific low-level heap representation of the underlying data
structure.

1.3. CASE STUDIES 5

Implementations

Hash table (give-up)

B+ tree

Lock coupling list

B-link tree

Hash table (link)

Templates

Give-up

Lock coupling

Link

Abstract spec.

Set ADT

code
sharing

Figure 1.1: The decomposition of our proofs as a result of our template-based methodology. This figure
shows our single-copy case studies (Chapter 6).

1.3 CASE STUDIES
We demonstrate our methodology by mechanizing the correctness proofs of template algorithms
for single-copy (Chapter 6) and multicopy (Chapter 7) search structures that abstract common real-
world data structure implementations.

The single-copy templates we verify are based on the link, give-up, and lock-coupling tech-
nique of synchronization (Figure 1.1). For these, we derive concrete verified implementations based
on B-trees, hash tables, and sorted linked lists, resulting in five different data structure implementa-
tions.

In the second half of the book, we apply the same approach to concurrent multicopy search
structures. We define and verify a two-node template that generalizes implementations such as dif-
ferential file structures (Chapter 8). We also verify a more general template for multiple nodes that
covers structures such as the log-structured merge (LSM) tree (Chapter 9).

A major advantage of our approach is that we can perform sequential reasoning when we
verify that an implementation is a valid template instantiation. We therefore perform the template
proofs in Iris/Coq and verify the implementations using the automated deductive verification tool
GRASShopper [Piskac et al., 2013, 2014]. The automation provided by GRASShopper enables us
to bring the proofs of highly complicated implementations such as B-link trees within reach.

Our proofs include a mechanization of the meta-theory of the flow framework presented
in [Krishna et al., 2020b], carried out independently in both GRASShopper and Iris/Coq. The veri-
fication efforts in the two systems are hence each fully self-contained. The template proofs done in
Iris are parametric with respect to any possible correct implementation of the node-level operations.
The specifications assumed in Iris match those proved in GRASShopper. However, we note that
there is no formal connection between the proofs done in the two systems. If one desires end-to-end
certified implementations, one can perform both template and implementation proofs in Iris/Coq
(albeit with substantial additional effort). Performing the proofs completely in GRASShopper or
a similar SMT-based verification tool would require additional tooling effort to support reasoning
about Iris-style resource algebras.

6 1. INTRODUCTION

The proofs we obtain are more modular, reusable, and simpler than existing proofs of such
concurrent data structures. For example, we are the first to obtain a mechanically verified proof of
concurrent B-link trees, B+ trees based on the give-up technique, and log-structuredmerge trees. Our
experience is that adapting our technique to a new template algorithm and instantiating a template
to a new data structure takes only a few hours of proof effort.

1.4 SUMMARY AND OUTLINE
This book describes a template-based methodology for verifying concurrent search structures that
enables proofs to be compositional in terms of program structure and state, and exploit thread and
algorithmic modularity.

• Our methodology is based on the edgeset framework [Shasha and Goodman, 1988], which we
describe in Chapter 2.

• All our proofs are performed in separation logic, in particular the higher-order concurrent
separation logic Iris [Jung et al., 2018, 2015], which we introduce in Chapter 3.

• In Chapter 4, we formalize the reasoning of Shasha and Goodman [1988], by defining a novel
resource algebra that allows us to use ghost state to keep track of keysets. This is a quantity that
lets us separate the correctness of a search structure implementation from its concrete heap
layout.

• Unfortunately, the keyset is a global graph property, so in order to obtain proof modularity we
use the flow framework (presented in Chapter 5) to reason locally about modifications to the
keyset.

• We demonstrate our proof technique on single-copy search structures in Chapter 6. We me-
chanically prove several complex real-world single-copy data structures such as the B-link tree
and various hash structures.

• We turn our attention to multicopy search structures in Chapter 7. Chapter 8 presents a two-
node template that is suitable for structures such as differential file systems. We extend this in
Chapter 9 to more than two nodes, and verify a template that generalizes the LSM tree.

• In Chapter 10 we survey related work, discuss avenues for future work, and conclude.

Some of our work presented above, in particular the case studies presented in Chapter 6, has appeared
in preliminary form in a conference paper [Krishna et al., 2020a].

Our proof technique that applies to any data structure that is indexed by keys, including im-
plementations of sets, maps, and multisets (but, as of now, not other structures, e.g., queues and
stacks). Our approach of separating concurrency templates and heap implementations requires the
data structure to have an abstract state (e.g. as mathematical set or map) with a certain algebraic

1.4. SUMMARY AND OUTLINE 7

structure: we need to be able to decompose the abstract state into local abstract states that are dis-
joint in some sense. Moreover, composition of abstract states needs to be associative, commutative,
and homomorphic to composition of heap graphs. For instance, consider a binary search tree rep-
resenting a mathematical map where each tree node stores a single key/value pair. If one arbitrarily
splits the tree’s heap graph into disjoint subgraphs, then these subgraphs represent disjoint math-
ematical maps whose union yields the map represented by the original composed heap graph. All
search structure implementations that we know of satisfy these compositional properties.

Our case studies also include a mechanization of the meta-theory of the flow framework [Kr-
ishna et al., 2020b] within Coq and GRASShopper, as well as a construction of a flow-interface
resource algebra for proofs in Iris. These components can be reused for other verification efforts
such as communication network graphs and memory management.

In summary, this book follows in the tradition of simplifying and scaling up verification efforts
using abstraction, compositionality, and modularity. We hope our framework for verifying concur-
rent search structures can serve as an inspiration for the design and proof of many algorithms for
high-performance multi-threaded systems.

8

C H A P T E R 2

The Edgeset Framework and
Template Algorithms

This chapter introduces the template-based proof methodology used throughout this book. We first
describe the B-link tree data structure, a highly-efficient and popular algorithm that uses the link
technique of synchronization. We then introduce the notion of edgesets and show how they can be
used to derive a template algorithm that can be instantiated to any search structure that uses the link
technique, including the B-link tree. Edgesets, and template algorithms based on them, were first
introduced by Shasha and Goodman [1988].

2.1 B-LINK TREES

The B-link tree (Figure 2.1) is an implementation of a concurrent search structure based on the
B-tree. A B-tree is a generalization of a binary search tree, in that a node can have more than two
children. In a binary search tree, each node contains a key k0 and up to two pointers yl and yr. An
operation on k takes the left branch if k < k0 and the right branch otherwise. A B-tree generalizes
this by having l sorted keys k0, . . . , kl−1 and l + 1 pointers y0, . . . , yl at each node, such that B ≤
l + 1 < 2B for some constant B. At internal nodes, an operation on k takes the branch yi if ki−1 ≤
k < ki. In the most common implementations of B-trees (called B+ trees), the keys are stored only
in leaf nodes; internal nodes contain “separator” keys for the purpose of routing only. When an
operation arrives at a leaf node n, it proceeds to insert, delete, or search for its operation key in the
keys of n. To avoid interference, each node has a lock that must be held by an operation before it
reads from or writes to the node.

When a node n becomes full, a separate maintenance thread performs a split operation by
transferring half its keys (and pointers, if it is an internal node) into a new node n′, and adding a
link to n′ from the parent of n. A concurrent algorithm needs to ensure that this operation does not
cause concurrent operations at n looking for a key k that was transferred to n′ to conclude that k
is not in the structure. The B-link tree solves this problem by linking n to n′ and storing a key k′

(the key in the gray box in the figure) that indicates to concurrent operations that the key k can be
reached by following the link edge if k > k′. To reduce the time the parent node is locked, this split
is performed in two steps: (i) a half-split step that locks n, transfers half the keys to n′, and adds a
link from n to n′ and (ii) a complete-split performed by a separate thread that takes half-split nodes
n, locks the parent of n, and adds a pointer to n′.

2.2. ABSTRACTING SEARCH STRUCTURES USING EDGESETS 9

1 2 4

y0

4 5

y1

6 7 8

y2

8 9

y3

4 5

n

8

n′

r

(−∞
,∞

)

(−
∞
, 4
)

[4, 5) (−
∞
, 8
)

[8,∞
)

[5,∞)

[4,∞) [5,∞) [8,∞)

Figure 2.1: An example B-link tree state in the middle of a split. Node nwas full, and has been half-split
and children y2 and y3 have been transferred to the new node n′ (old edges are shown with dotted lines),
but the complete-split has yet to add n′ to the parent r (the dashed edge). Each node contains an array of
keys k0, . . . , kl−1 in the top and an array of pointers y0, . . . , yl in the bottom. (The key in the gray box is
not considered part of the contents and determines when to take the link edge.) Each edge is labelled by
its edgeset (§2.2). Keys shown in internal nodes are separator keys, and do not count towards the contents
of the structure. The search structure depicted here has contents {1, 2, 4, 6, 7, 8, 9}.

Figure 2.1 shows the state of a B-link tree where node y2 has been fully split, and its parent
n has been half split. The full split of y2 moved keys {8, 9} to a new node y3, added a link edge,
and added a pointer to y3 in its (old) parent n. However, this caused n to become full, resulting in a
half split that moved its children {y2, y3} to a new node n′ and added a link edge to n′. The key 5

in the gray box in n directs operations on keys k ≥ 5 via the link edge to n′. The figure shows the
state after this half split but before the complete-split when the pointer of n′ will be added to r.

2.2 ABSTRACTING SEARCH STRUCTURES USING EDGESETS

The link technique is not restricted to B-trees: consider a hash table implemented as an array of
pointers, where the ith entry refers to a bucket node that contains an array of keys k0, . . . , kl that all
hash to i. When a node n gets full, it is locked, its keys are moved to a new node n′ with twice the

10 2. THE EDGESET FRAMEWORK AND TEMPLATE ALGORITHMS

1 let rec traverse n k =
2 lockNode n;
3 match findNext n k with
4 | None -> n
5 | Some n' ->
6 unlockNode n;
7 traverse n' k

8 let rec cssOp ω r k =
9 let n = traverse r k in

10 match decisiveOp ω n k with
11 | None -> unlockNode n;
12 cssOp ω r k
13 | Some res -> unlockNode n;
14 res

Figure 2.2: The link template algorithm. The cssOpmethod is the main method, and represents the core
search structure operations (search, insert, and delete) via the parameter ω. It uses an auxiliary method
traverse that recursively traverses the search structure until it finds the node upon which to operate.
This template can be instantiated to the B-link tree algorithm by providing implementations of helper
functions findNext and decisiveOp. findNextnk returns Somen′ if k ∈ es(n, n′) and None if there
exists no such n′. decisiveOpnk performs the operation ω (either search, insert, or delete) on k at node
n.

capacity, and n is linked to n′. Again, a separate operation locks the main array entry and updates it
from n to n′.

While these two data structures look completely different, the main operations of search,
insert, and delete follow the same abstract algorithm. In both, there is some local rule by which
operations are routed from one node to the next, and both introduce link edges when keys are moved
to ensure that no other operation loses its way.

To concretize this intuition, we view the state of a search structure abstractly as a mathematical
graph. Each node in this graph can represent anything from two adjacent heap cells (in the case of
a singly-linked list) to a collection of arrays and fields (in the case of a B-tree), and this mapping
is determined by the specific implementation under consideration. We then define the edgeset of
an edge (n, n′), written es(n, n′), to be the set of operation keys for which an operation arriving
at a node n traverses (n, n′). The B-link tree in Figure 2.1 labels each edge with its edgeset; the
edgeset of (n, y1) is [4, 5) and the edgeset of the link edge (y0, y1) is [4,∞). Note that 4 is in the
edgeset of (y0, y1) even though an operation on 4 would not normally reach y0. This is deliberate.
In order to make edgeset a local quantity, we say k ∈ es(n, n′) if an operation on k would traverse
(n, n′) assuming it somehow found itself at n. In the hash table, assuming there exists a global root
node, the edgeset from the root to the ith array entry is {k | hash(k) = i}, i.e., all the key values
for which a search would go to the node of the ith array entry. By contrast, the edgeset from an array
entry to the bucket node is the set of all keys KS, as is the edgeset from a deleted bucket node to its
replacement. (The reason is that once we arrive at an array entry (or a deleted node), we follow the
outgoing edge no matter what key we are looking for.)

2.3. THE LINK TEMPLATE 11

2.3 THE LINK TEMPLATE
Figure 2.2 lists the link template algorithm [Shasha and Goodman, 1988] that uses edgesets to de-
scribe the algorithm used by all core operations for both B-link trees and hash tables in a uniform
manner. The algorithm is described in an ML-like language that we use throughout the book, and
is described in more detail in §3.2. The algorithm assumes that an implementation provides certain
primitives or helper functions, such as findNext that finds the next node to visit given a current
node n and an operation key k, by looking for an edge (n, n′) with k ∈ es(n, n′). For the B-link
tree, findNext does a binary search on the keys in a node to find the appropriate pointer to follow.
For the hash table, when at the root findNext returns the edge to the array element indexed by the
hash of the key, and at bucket nodes it follows the link edge if it exists. The function cssOp can be
used to build implementations of all three search structure operations by implementing the helper
function decisiveOp to perform the desired operation (read, add, or remove) of key k on the node
n.

An operation on key k starts at the root r, and calls a function traverse on line 9 to find the
node on which it should operate. traverse is a recursive function that works by following edges
whose edgesets contain k (using the helper function findNext on line 3) until the operation reaches
a node n with no outgoing edge having an edgeset containing k. Note that the operation locks a
node only during the call to findNext, and holds no locks when moving between nodes. traverse
terminates when findNext does not find any n′ such that k ∈ es(n, n′), which indicates that n is the
correct node to operate on. In the B-link tree example, this corresponds to finding the appropriate
leaf.

At this point, the thread performs the decisive operation on n (line 10). If the operation suc-
ceeds, then decisiveOp returns Some res and the algorithm unlocks n and returns res. In case of
failure (say an insert operation encountered a full node), the algorithm unlocks n, gives up, and starts
from the root again.

If we can verify this link template algorithm with a proof that is parametrized by the helper
functions, then we can reuse the proof across diverse implementations. In this book, we develop
a proof technique that allows us to verify such template algorithms for a wide variety of search
structures, from simple give-up based hash tables to cutting-edge implementations of log-structured
merge trees.

12

C H A P T E R 3

A Primer on Deductive
Verification

In this chapter, we introduce and illustrate the formal techniques used in this book, using an extremely
simple search structure template and implementation as an example.

3.1 BASICS AND NOTATION
We begin with some basic definitions and notation.

• The term (b ? t1 : t2) denotes t1 if condition b holds and t2 otherwise.

• We write f : A→ B for a function from A to B, and f : A ⇀ B for a partial function from
A to B.

• For a partial function f , we write f(x) = ⊥ if f is undefined at x.

• We use the lambda notation (λx. E) to denote a function that maps x to the expression E
(typically containing x).

• If f is a function fromA toB, we write f [x� y] to denote the function fromA ∪ {x} defined
by f [x� y](z) := (z = x ? y : f(z)).

• We use {x1� y1, . . . , xn� yn} for pairwise different xi to denote the function ε[x1�
y1] · · · [xn� yn], where ε is the function on an empty domain.

• Given functions f1 : A1 → B and f2 : A2 → B we write f1] f2 for the function f : A1]
A2 → B that maps x ∈ A1 to f1(x) and x ∈ A2 to f2(x) (if A1 and A2 are not disjoint sets,
f1] f2 is undefined).

• We also write λ0 := (λm. 0) for the identically zero function, λid := (λm. m) for the identity
function, and use e ≡ e′ to denote function equality.

• For functions f1, f2, we write f2 ◦ f1 to denote function composition, i.e. (f2 ◦ f1)(x) =

f2(f1(x)), and use superscript notation fp to denote the function composition of f with itself
p times.

3.1. BASICS AND NOTATION 13

• For multisets, we use the standard set notation if it is clear from the context. We also write
{x1� i1, . . . , xn� in} for the multiset containing i1 occurrences of x1, i2 occurrences of
x2, etc. For a multiset S, we write S(x) to denote the number of occurrences of x in S.

• We write _ for an anonymous variable, usually when a variable is used only once.

We now turn to introducing some basic algebraic concepts.

Definition 3.1 A partial monoid is a set M , along with a partial binary operation
+: M ×M ⇀M , and a special zero element 0 ∈M , such that (1) + is associative, i.e.,
(m1 +m2) +m3 = m1 + (m2 +m3); and (2) 0 is an identity element, i.e.,m+ 0 = 0 +m = m.
Here, equality means that either both sides are defined and equal, or both sides are undefined.

Partial monoids are the basis of ghost state, an important reasoning technique which will be
introduced in Chapter 4. An example of a partial monoid is the setP(N) of all finite subsets of natural
numbers, together with disjoint union] (where X1]X2 is undefined if they are not disjoint) and
the empty set ∅. We usually identify a partial monoid with its support setM .

If + is a total function, then we call M a monoid. For example, the set of natural numbers
N together with addition + and zero, form a monoid. Let m1,m2,m3 ∈M be arbitrary elements
of the (partial) monoid in the following. Here is some terminology and notation associated with
(partial) monoids:

• We call a (partial) monoidM commutative if + is commutative, i.e.,m1 +m2 = m2 +m1.
N and Z are commutative monoids, while 2× 2 matrices of natural numbers with matrix
multiplication and the identity matrix form a non-commutative monoid.

• Similarly, a commutative (partial) monoidM is cancellative if + is cancellative, i.e., ifm1 +

m2 = m1 +m3 is defined, thenm2 = m3. For example,N is a cancellative while the monoid
formed by sets of natural numbers under set union is not (as {1} ∪ {1, 2} = {1} ∪ {2}).

• We sayM is positive ifm1 +m2 = 0 implies thatm1 = m2 = 0. As you might expect, N is
a positive partial monoid, while Z is not positive.

• For a positive (partial) monoidM , we can define a partial order≤ on its elements asm1 ≤ m2

if and only if ∃m3. m1 +m3 = m2. Positivity also implies that everym ∈M satisfies 0 ≤ m.
ForN, this order corresponds to the natural less-than-or-equal-to ordering on natural numbers.

We will see commutative cancellative monoids used in Chapter 5 in order to set up the flow frame-
work for reasoning locally about global graph properties.

14 3. A PRIMER ON DEDUCTIVE VERIFICATION

3.2 PROGRAMMING LANGUAGE
The programming language that we use in this book is an ML-like language with higher-order store,
fork, and compare-and-set (CAS), whose grammar is given below:

v ∈ Val ::= () Unit
| z Integers
| true | false Booleans
| ` Heap locations
| (µ f x. e) Fixpoints

e ∈ Expr ::= v Value
| x Variable
| e1 e2 Function application
| ref(e) Reference creation
| !e Dereference
| e1 ← e2 Reference assignment
| CAS(e, e1, e2) Compare-and-set
| fork {e} Fork
| letx = e1 in e2 Let expression
| if e1 then e2 else e3 Conditional expression

Values in our language include the unit value (the only value of the unit type), integers,
booleans, heap locations or addresses, and fixpoints (µ f x. e) that describes the function that is the
least fixpoint of the equation f(x) = e. Lambda abstractions (λx. e), that describe a function that
maps argument x to the expression e, can be defined in terms of fixpoints as (λx. e) := (µ _ x. e).

Since this is a functional language, all programs are expressions, the simplest kind of which is
just a value or a variable. Function application is written in standard functional programming style as
foo arg instead of foo(arg). The reference creation expression ref(e) evaluates to the address of
a newly allocated heap location, whose value is set to the result of evaluating the expression e. Heap
locations, or references, can be read (or dereferenced) by using the !e command, where e evaluates
to a heap location. A reference at location e1 can be written to value e2 using the e1 ← e2 command,
which returns the unit value (). The compare-and-set command CAS(e, e1, e2) is an instruction that
checks if the value at heap location e is equal to e1; if so, it sets its value to e2 and returns true,
otherwise it does nothing and returns false. The last three operations are atomic, which means that
during their execution no other thread can read or write to the heap location they operate on (in
other words, they appear to take place instantaneously). The fork command fork {e} creates a new
thread that evaluates expression e, and returns the unit value (). We have the standard compound
expressions such as let-bindings and if-then-else expressions. In the rest of the book, we use standard
syntactic shorthands, such as:

e1; e2 := let _ = e1 in e2 let rec fx = e1 in e2 := let f = (µ f x. e1) in e2

3.2. PROGRAMMING LANGUAGE 15

1 let rec cssOp ω r k =
2 lockNode r;
3 let res = decisiveOp ω r k in
4 unlockNode r;
5 res
6
7 let lockNode x =
8 if CAS(lk(x), false, true) then
9 ()

10 else
11 lockNode x
12
13 let unlockNode x =
14 lk(x) ← false

1 let decisiveOp ω r k =
2 match ω with
3 | search -> search r k
4 | insert -> insert r k
5 | delete -> delete r k
6
7 let insert r k =
8 let u = !r in
9 if u == ⊥ then

10 r ← k;
11 true
12 else
13 insert r k

Figure 3.1: A template algorithm for a single-node search structure (left), and an extremely simplistic
example of an implementation for the single-node template (right).

For example, consider the program on the left of Figure 3.1. This is a template algorithm for
the simplest possible search structure, a single-node structure, which we use as a running example
in this chapter. As with all the template algorithms in this book, we have a method cssOp that stands
for any one of the three core operations, by means of the parameter ω (which is one of search, insert,
or delete). cssOp first locks the (only) node r, then calls a function decisiveOp on the locked node,
before unlocking the node and returning the result. For simplicity, we use a spinlock to implement
lockNode and unlockNode. We also assume that there exists a function lk(x) that maps each node
x to the heap address that it uses as a lock flag (true when locked, false otherwise). x is locked by
repeatedly trying to CAS lk(x) to true, which will succeed only if the node is unlocked. Unlocking is
simpler, and the thread that has locked a node sets lk(x) to false. We call this algorithm a template
algorithm because it does not specify the implementation of its helper functions, in this case, only
the single function decisiveOp. This operation depends on the concrete implementation of the data
structure: on how nodes are laid out in memory, and how keys are stored within nodes.

Figure 3.1 (right) also shows a simple implementation of the single-node template. The sim-
plest implementation we can think of is for the single node r to consist of a single heap location
(also, for convenience, at address r). Our implementation of insert reads the address r into variable
u and if u is empty (denoted by some default initial value ⊥), writes the operation key k to location
r. However, if u is not empty, then this simplistic implementation loops infinitely. A slightly more
realistic implementation could, for example, have the single node contain an array of keys, which is
dynamically resized when full.

16 3. A PRIMER ON DEDUCTIVE VERIFICATION

3.3 SEPARATION LOGIC: IRIS

In this book, we use the de facto standard way to specify and verify data structures: separation logic.
Separation logic (SL), is an extension of Hoare logic [Hoare, 1969] that is tailored to perform mod-
ular reasoning about programs that manipulate mutable resources. In other words, SL is a language
that allows one to succinctly and modularly describe states of a program. Each sentence in this lan-
guage is called a formula, and describes a set of states. Separation logic also gives us a set of proof
rules that can be used to prove that states of interest (such as the set of resulting states after a program
executes) satisfy a particular formula.

There are many incarnations of SL, each tailored to reasoning about a particular class of pro-
grams. In this book, we use Iris, a mechanized higher-order concurrent separation logic framework.
The distinguishing feature of Iris is its generality: it is designed as a small set of core primitives
and proof rules that can be used to encode a huge variety of common constructs and techniques
for reasoning about concurrent programs. In particular, Iris is easily extendable with user-defined
resources via its ghost state mechanism, which we will describe in Chapter 4.

The price paid for this generality is that the core Iris logic is very abstract. To make this
book accessible to a wider audience, we present many of the derived features as though they are
primitive Iris features, and avoid talking about the formal semantic model altogether. We refer the
interested reader to a paper by Jung et al. [2018] for a more detailed introduction to Iris, and to the
documentation [Iris Team, 2020] for the full details.

Note that Iris is a garbage-collected or intuitionistic separation logic, hence all programs in
this book assume a garbage-collected setting. We can extend the techniques presented in this book
to also prove absence of memory leaks by considering extension of Iris such as Iron [Bizjak et al.,
2019].

3.3.1 FORMULAS
Iris formulas describe the resources owned by a thread. These resources can be part of a concrete
program state, for example, a set of heap cells, which captures the situations in which a thread has
exclusive ownership over these cells (because, say, it has locked them). In order to reason about fine-
grained concurrency and more complex concurrent patterns, these resources can also capture shared
ownership and partial knowledge of shared program state. In order to build intuition, we focus on the
simple case where formulas describe concrete program states, in the form of subsets of the heap, and
defer the discussion of advanced resources to Chapter 4. We say a state σ satisfies a formula when
the state is described by the formula. For a formal definition of program states and the satisfaction
relation in Iris, see the Iris documentation [Iris Team, 2020].

The grammar of Iris formulas is shown in Figure 3.2, and includes the following constructs:

• The first line consists of standard boolean constructs: boolean constants true and false, then
conjunction, disjunction, and implication.

3.3. SEPARATION LOGIC: IRIS 17

P,Q,R := True | False | P ∧Q | P ∨Q | P ⇒ Q

| ∃x. P | ∀x. P
| x 7→ v | P ∗Q | P −∗ Q | ∗x∈X P
| P

N
| a γ |

{
P
}
e
{
v. Q

}
|
〈
P
〉
e
〈
v. Q

〉
Figure 3.2: The grammar of Iris formulas, restricted to the constructs used in this book.

• The second line introduces quantification, although since Iris is a higher-order logic, x can
range over any type, including that of propositions and (higher-order) predicates.

• The third line includes the points-to assertion x 7→ v, a primitive assertion that denotes a heap
cell at address x containing value v. Note that if a state σ satisfies x 7→ v, then σ is a singleton
heap containing only the heap address x.

• A powerful feature of SL is the ∗ connective, or separating conjunction, that is used to conjoin
two disjoint parts of the heap. A state σ satisfies P ∗Q if it can be broken up into two disjoint
states σ = σ1 } σ2 such that σ1 satisfies P and σ2 satisfies Q. When P and Q are formulas
denoting heaps, this means that they talk about disjoint regions of the heap, i.e. that they do not
have any heap addresses in common. In particular, this means that x 7→ v1 ∗ y 7→ v2 implies
that x 6= y, and the formula x 7→ y ∗ x 7→ z is unsatisfiable as it is not possible to split a heap
into two disjoint portions both of which contain the same address x.

• We also have an iterated version of separating conjunction:∗x∈X P , where the bound vari-
able x ranges over a set X . For example, ∗x∈X x 7→ 13 denotes a set of heap cells with
address X all of whom have the value 13.

• The separating implication connective−∗, is defined as: a state σ satisfies P −∗ Q if for every
state σ1 disjoint from σ that satisfies P , the combined state σ } σ1 satisfies P −∗ Q. The best
way to understand −∗ is to think of ∗ and −∗ as separation logic analogues of ∧ and⇒ from
first-order logic. For instance, P ∗Qmeans you have both P and Q (and that they are disjoint,
or more generally, composable). Similarly, P −∗ Q describes a state such that if you conjoin
it with P , then you get Q. This property, P ∗ (P −∗ Q) ` Q, is the SL analogoue of modus
ponens in first-order logic (P ∧ (P ⇒ Q) ` Q).1

• Finally, the last line contains formulas for invariants (explained in Chapter 8), ghost state (ex-
plained in Chapter 4), and Hoare and atomic triples (explained in §3.3.2).

1` is the provable entailment relation; P ` Q means if we can prove P is true, then we can prove thatQ is true.

18 3. A PRIMER ON DEDUCTIVE VERIFICATION

Returning to our single-node search structure example (Figure 3.1), we could describe the
state of the structure by the formula

∃v. r 7→ v,

which means r is a heap location containing value v. Such a description would be quite limiting:
we would allow implementations only where each node contains a single heap location, implying
that the search structure would become full as soon as a key is added to it, and we would not be able
to provide implementations for lockNode and unlockNode as most lock implementations require
additional memory (e.g. a bit to hold the lock state). To solve the second issue, we could instead use
the formula

∃v, b. r 7→ v ∗ lk(r) 7→ b,

where the second heap location (at address lk(r)) stores the lock bit. Note that the use of the separat-
ing conjunction ∗ implies that r 6= lk(r), and so this formula describes two distinct heap locations.
If we wanted to describe an implementation where our single node contained an array of length
N + 1, we could use the formula

∃v0, v1, . . . , vN , b. r 7→ v0 ∗ (r + 1) 7→ v1 ∗ · · · ∗ (r +N) 7→ vN ∗ lk(r) 7→ b,

which describes N + 1 consecutive heap locations and a distinct lock location. This can also be
expressed succinctly using the iterated separating conjunction:

∃v0, v1, . . . , vN , b. lk(r) 7→ b ∗ ∗
0≤i≤N

(r + i) 7→ vi

Recall, however, that we want to leave the concrete details of how the node stores its keys
to the implementation of the template algorithm. This means we need to use some kind of a tem-
plate formula, one that can be instantiated to capture the instantiations described above. This can be
achieved by using an abstract predicate node(n,Cn), that stands for an unspecified implementation
of a node at address n containing keys Cn. Our template proof can then describe the state of the
search structure by the formula

∃b. node(r, C) ∗ lk(r) 7→ b,

which describes a state containing a single node r, with contents C, and a lock flag at location lk(r)

that has some contents b.
Our template proof then specifies the assumptions it makes about the predicate. As long as

implementations of node satisfy these assumptions, the template proof will be valid. For instance,
all our template proofs assume that

∀n,Cn, C ′n. node(n,Cn) ∗ node(n,C ′n) −∗ False,

an analogue to the property of points-to predicates (x 7→ y ∗ x 7→ z −∗ False) that captures the in-
tuition that the node(n,Cn) predicate “owns” the heap address n which cannot be in two places at
once.

3.3. SEPARATION LOGIC: IRIS 19

Ψω(k,C,C ′, res) :=

C ′ = C ∧ (res ⇐⇒ k ∈ C) ω = search

C ′ = C ∪ {k} ∧ (res ⇐⇒ k 6∈ C) ω = insert

C ′ = C \ {k} ∧ (res ⇐⇒ k ∈ C) ω = delete

Figure 3.3: The desired specification of core search structure operations. For core operation ω on key
k, Ψω describes the relation between C, the contents before the operation, C ′, the contents after the
operation, and the return value res.

3.3.2 SPECIFICATIONS
We now turn to the question of how to specify a program using SL formulas. The basic form of
program specification is the Hoare triple [Hoare, 1969]

{
P
}
e
{
v. Q

}
which is true if for every

state σ that satisfies P we have that (1) the program e does not reach an error state when run from
σ (for example, by trying to read unallocated memory), and (2) that if e terminates then it returns
some value v and the new state is some σ′ that satisfies Q. We write

{
P
}
e
{
Q
}
in the case where

Q does not mention the return value v.
In the single-node template, we can use a Hoare triple to specify the behavior the template

expects from the helper function decisiveOp:{
node(r, C)

}
decisiveOp ω r k

{
res. node(r, C ′) ∗Ψω(k,C,C ′, res)

}
The predicate Ψω, defined in Figure 3.3, captures the behavior of the set abstract data type, and is
the abstract specification of search structures that we use throughout this book. For a given search
structure operation ω on key k, Ψω(k,C,C ′, res) relates the contents of the search structure before
the operation (C), to the contents after the operation (C ′), and the return value res. The Hoare triple
for decisiveOp says: given a state containing a node r with contents C, the operation ω returns a
value res and the node r has (new) contents C ′ such that Ψω expresses the relationship between the
old and new contents and res.

Our goal is to prove that the single-node template algorithm is a correct search structure. We
cannot, however, use a similar Hoare triple to specify the single-node template. The reason is that
Hoare triples are suitable for specifying sequential algorithms, but not very helpful when reasoning
about concurrent algorithms. Imagine we tried to give the following specification for cssOp, where
CSS(r, C) (for concurrent search structure) is a predicate describing a search structure at location r
with contents C:{

CSS(r, C)
}
cssOp ω r k

{
res. CSS(r, C ′) ∗Ψω(k,C,C ′, res)

}
Unfortunately, such a specification would rule out most concurrent search structure algo-

rithms. The reason is that Hoare triples are defined in such a way that when proving a triple for a
program, one can assume that any resources in the precondition are owned exclusively by the thread

20 3. A PRIMER ON DEDUCTIVE VERIFICATION

executing the program. This means that any program that calls cssOp must own CSS(r, C) exclu-
sively, meaning it can call it only in situations where no other thread can read or modify CSS(r, C).
For example, consider a simple concurrent data structure protected by a single global lock. Be-
fore performing any operation on the structure, threads acquire this global lock, thereby ensuring no
other thread can access the structure. Essentially, Hoare triples permit only coarse-grained, so-called
disjoint concurrency.

We specify the concurrent behavior of search structures using atomic triples [da Rocha Pinto
et al., 2014, Jung et al., 2020, 2015]. An atomic triple

〈
P
〉
e
〈
v. Q

〉
is made up of the precondition

P , postcondition Q, return value v, and a program e. Such a triple means that e, despite executing
in potentially many atomic steps, appears to operate atomically on the shared state and transform it
from a state satisfying P to one satisfying Q. Atomic triples are strongly related to the well-known
linearizability [Filipovic et al., 2009, Herlihy and Wing, 1990] criterion for concurrent algorithms.
Intuitively, there is a point in time during the course of the execution of e, known as the linearization
point, where e updates P toQ. For the example of an insert operation on a search structure, this will
be the point of time when the inserted value is visible to other threads. Linearizability requires
that a concurrent set of operations produces the same final state and returns the same values as a
sequential execution of the operations where the ordering is the order of the linearization points. In
other literature [Bernstein et al., 1987], linearizability is known as order-preserving serializability.

The specification we want to prove for the single-node template algorithm is the following:〈
C. CSS(r, C)

〉
cssOp ω rk

〈
res. CSS(r, C ′) ∗Ψω(k,C,C ′, res)

〉
(3.1)

The binder on C in the precondition is a special pseudo-quantifier that captures the fact that during
the execution of ω, the value of C can change (e.g. by concurrent operations). At the linearization
point however, cssOp changes CSS(r, C) to CSS(r, C ′) in an atomic step. The new set of keys C ′

and the eventual return value res satisfy the predicate Ψω(k,C,C ′, res). Note that the C in the
postcondition is bound in the precondition, i.e. to the contents just before the linearization point.
The goal is that clients of the search structure can pretend that they are using a serial or sequential
implementation with specification Ψω.

Let us turn now to the question of how to prove specifications of programs.

3.3.3 PROOF RULES
First, let us look at how to prove a Hoare triple. Figure 3.4 lists some of the standard proof rules
useful for proving Hoare triples.2 An inference rule consists of two parts separated by a horizontal
line: the part above the line contains one or more premises, and the part below the line contains the
conclusion. For example, the way to read the hoare-fork rule is that if we can prove that expression e
satisfies the Hoare triple

{
P
}
e
{

True
}
then we can apply the rule and infer that e also satisfies the

triple
{
P
}
fork {e}

{
True

}
. Typically, when performing a proof we use the rule in a bottom-up

fashion. We start with a specification that we want to prove (the goal), and then find an inference
2We write e[x� v] to denote the expression e after substituting all occurences of the variable x with the term v.

3.3. SEPARATION LOGIC: IRIS 21

hoare-ret{
True

}
w
{
v. v = w

} hoare-false{
False

}
e
{
v. P

} hoare-alloc{
True

}
ref(v)

{
`. ` 7→ v

}
hoare-load{
` 7→ v

}
!v
{
w. ` 7→ v ∗ w = v

} hoare-cas-suc{
` 7→ v

}
CAS(`, v, w)

{
b. b = True ∗ ` 7→ w

}
hoare-store{
` 7→ v

}
`← w

{
` 7→ w

} hoare-cas-fail
v 6= v′{

` 7→ v
}
CAS(`, v′, w)

{
b. b = False ∗ ` 7→ v

}
hoare-lam{
P
}
e[x� v]

{
w. Q

}{
P
}

(λx. e) v
{
w. Q

} hoare-fork{
P
}
e
{

True
}{

P
}
fork {e}

{
True

}
hoare-let{
P
}
e1
{
w. R

}
∀w.

{
R
}
e2[x� w]

{
v. Q

}{
P
}
let x = e1 in e2

{
v. Q

}
hoare-csq
P ⇒ P ′

{
P ′
}
e
{
v. Q′

}
∀v. Q′ ⇒ Q{

P
}
e
{
v. Q

} hoare-frame{
P
}
e
{
v. Q

}{
P ∗R

}
e
{
v. Q ∗R

}
hoare-disj{
P
}
e
{
v. R

} {
Q
}
e
{
v. R

}{
P ∨Q

}
e
{
v. R

}
hoare-exist
∀x.

{
P
}
e
{
v. Q

}{
∃x. P

}
e
{
v. Q

}
Figure 3.4: Proof rules for establishing Hoare triples.

rule that matches the structure of the goal and apply it to replace the goal with the premises of the
rule. A rule with no premises is called an axiom, and in this case we omit the horizontal line (e.g.
hoare-load). Some rules are bi-directional: the premise implies the conclusion, but the conclusion
also implies the premise. These rules are denoted with a double horizontal line (e.g. hoare-exist).

A common metaphor used when describing SL proofs is that of ownership of resources. We
introduced the formula x 7→ _ as describing a program state (a heap cell at address x), but going
forward we will think of this points-to predicate as a resource owned by the program we are trying
to verify. It is a resource because it allows us to safely perform a read or write to heap location x,
using rules hoare-load and hoare-store. When proving a Hoare triple, we obtain the resources in the
precondition when we begin, and we are under the obligation to transform them into the resources
in the postcondition by the end of the program.

22 3. A PRIMER ON DEDUCTIVE VERIFICATION

Consider the following program expression that reads the value stored at heap location x into
a variable (v = !x) and then writes v + 1 back into the location (essentially, incrementing it):

einc := let v = !x in x← (v + 1)

A reasonable specification for einc is
{
x 7→ n

}
einc

{
x 7→ n+ 1

}
. Here is how we can prove this

specification using the proof rules in Figure 3.4:

hoare-load{
x 7→ n

}
!x

{
v. x 7→ n ∗ v = n

}
hoare-store{

x 7→ v
}
x← (v + 1)

{
x 7→ v + 1

}
hoare-frame{

x 7→ n ∗ v = n
}
x← (v + 1)

{
x 7→ v + 1 ∗ v = n

}
hoare-csq

∀v.
{
x 7→ n ∗ v = n

}
x← (v + 1)

{
x 7→ n+ 1

}
hoare-let{

x 7→ n
}
let v = !x in x← (v + 1)

{
x 7→ n+ 1

}
As with inference rules, we read these so-called proof trees in a bottom-up manner. Our goal, the
statement we want to prove, is at the root of the tree (the bottom). Each horizontal line represents the
use of an inference rule in order to transform the current goal into one or more (hopefully simpler)
goals. For example, the first rule we use in this proof is hoare-let, which works on let-bindings and
breaks the proof into the proof of bound expression e1 (on the left), and the proof of the let-body
e2 (on the right). Note that hoare-let requires the user to come up with an intermediate assertion R,
which is a formula that describes the state of the program after evaluating the bound expression e1
but before evaluating the let-body e2. The most common way to construct R is to defer the choice
until we finish the proof of the left-hand side branch, as this will give us a clue as to what R should
be. In this case, since e1 is a dereference, our only option is to use the rule hoare-load, but note that
this tells us exactly what R should be.

Moving to the right branch, we now have to prove

∀v.
{
x 7→ n ∗ v = n

}
x← (v + 1)

{
x 7→ n+ 1

}
.

Again, looking at the program expression, our only option is to use hoare-store, but the current
proof goal does not quite fit. In particular, hoare-store will give us the postcondition x 7→ v + 1

while we need the postcondition x 7→ n+ 1. To infer this, we need the fact that v = n, which is
a resource that we have in the precondition. We thus use the frame rule hoare-frame, which lets
us frame resources around a program fragment. This means we can carry resources that are not
needed by the program fragment from its precondition to its postcondition. In our case, the program
fragment is x← (v + 1), and as this does not modify v or n, we frame the resource v = n. This
gives us a postcondition of x 7→ v + 1 ∗ v = n, which implies x 7→ n+ 1, so we finish the proof
using hoare-csq.

As you can imagine, such proof trees quickly get unweildy when reasoning about realistic
programs. They also do not reflect the fact that we usually construct proofs in the same order as the
program is evaluated. In this book, we represent the above proof in an inline style as follows:

1
{
x 7→ n

}

3.3. SEPARATION LOGIC: IRIS 23

2 let v = !x in

3
{
x 7→ n ∗ v = n

}
4 x ← (v + 1)

5
{
x 7→ n+ 1

}
The way to read the inline-style proof is top-down, the same way one would read a program. The
proof starts with the precondition, and ends with the postcondition, and each alternate line is an
intermediate assertion describing the state of the program at that point. In this example, we start off
with a single heap cell x 7→ n, and the first line reads the value of the heap cell into a variable v. The
resulting state is thus x 7→ n ∗ v = n, containing both the heap cell and a new assertion recording
the fact that v = n. We then write v + 1 to x, which results in the state x 7→ n+ 1.

The entire proof corresponds to a proof tree of the Hoare triple
{
x 7→ n

}
einc

{
x 7→ n+ 1

}
,

where we combine a Hoare triple for each line using the standard proof rules for compound expres-
sions from Figure 3.4. Intermediate assertions, such as

{
x 7→ n ∗ v = n

}
, are both the postcondition

of the first line of code as well as the precondition of the second line of code. Note that the program
expression in each line determines the proof rule that must be used to prove the triple for that line,
and that each triple can be proved with this rule and standard rules like hoare-frame and hoare-csq.
Thus, we omit the intermediate assertions for the standard rules and directly write the resulting in-
termediate assertion for the next line. In more complex scenarios, we use comments or multiple
intermediate assertions to clarify how to get from one proof step to the next. We call the intermedi-
ate assertions in the inline-style proofs as our “proof context” at that point, because this is the set of
all resources that are available at that point in the program.

For example, the simple implementation for the single-node template that we discussed before
is one that uses a single heap cell for the node r. Figure 3.5 shows the definition of node in this case,
which uses a default value⊥ to indicate that the heap cell is empty, and relates the value in the heap
cell to the contents of the node if non-empty. The figure also shows a proof that the insert operation,
which inserts the given value if the heap cell is empty and loops indefinitely otherwise,3 satisfies the
specification for decisive operations given in Figure 4.5.

Proving atomic triples is trickier. Recall, that an atomic triple
〈
P
〉
e
〈
v. Q

〉
means there is

a single physical step during the execution of e when the shared state is transformed from P to Q.
Thus, while proving

〈
P
〉
e
〈
v. Q

〉
, we cannot treat P and Q as the pre- and postconditions of e

as a whole (remember, e is potentially a complex program consisting of multiple atomic steps). It is
more accurate to think of P and Q as the pre- and postcondition to e’s linearization point. Unlike
proofs of Hoare triples, where we are given ownership to the resources in P at the beginning of e’s
execution and are under an obligation to transform them toQ by the end, in proofs of atomic triples
we can read or modify the resources in the precondition only during atomic steps. Furthermore, our
obligation is that all atomic steps accessing P either make a modification that preserves P , except
for (exactly) one step, which has to transform it into Q.
3All proofs in this book are concerned with partial correctness, i.e. if a program terminates then it satisfies the given specification.
Our methodology can be extended (with additional assumptions) to also prove termination, as we discuss in the future work
section of the last chapter.

24 3. A PRIMER ON DEDUCTIVE VERIFICATION

1 node(n,C) := ∃v. r 7→ v ∗ C = {v} \ {⊥}
2

3
{
node(r, C)

}
4 let insert r k =

5
{
∃v. r 7→ v ∗ C = {v} \ {⊥}

}
6 let u = !r in

7
{
∃v. r 7→ v ∗ C = {v} \ {⊥} ∗ u = v

}
8 if u == ⊥ then

9
{
r 7→ ⊥ ∗ C = ∅

}
10 r ← k;

11
{
r 7→ k ∗ C = ∅

}
12 true

13
{
node(r, {k}) ∗ C = ∅

}
14 else

15
{
∃v. r 7→ v ∗ C = {v} \ {⊥}

}
16

{
node(r, C)

}
17 insert r k

18
{
v. node(r, C′) ∗Ψω(k, C,C′, v)

}
19
{
v. node(r, C′) ∗Ψω(k, C,C′, v)

}
Figure 3.5: Proof of insert for a single-node implementation.

logatom-intro
∀Φ.

{
AUx.P,Q(Φ)

}
e
{
v.Φ(v)

}〈
x. P

〉
e
〈
v. Q

〉 logatom-atom
∀x.

{
P
}
e
{
v. Q

}
e atomic〈

x. P
〉
e
〈
v. Q

〉
au-abort 〈

x. P ∗ P ′
〉
e
〈
v. P ∗Q′

〉{
AUx.P,Q(Φ) ∗ P ′

}
e
{
v.AUx.P,Q(Φ) ∗Q′

} au-commit〈
x. P ∗ P ′

〉
e
〈
v. Q ∗Q′

〉{
AUx.P,Q(Φ) ∗ P ′

}
e
{
v.Φ(v) ∗Q′

}
logatom-frame〈

x. P
〉
e
〈
v. Q

〉〈
x. P ∗R

〉
e
〈
v. Q ∗R

〉
Figure 3.6: Proof rules for establishing atomic triples.

Figure 3.6 contains the proof rules that help us execute the above proof argument. Most proofs
of atomic triples start by using the rule logatom-intro, which converts the atomic triple into a standard
Hoare triple. The precondition contains an atomic update token AUx.P,Q(Φ), which records the
fact that we are proving an atomic triple with precondition x. P (recall, x is bound by a pseudo-
quantifier) and postcondition Q. As we will see, this token gives us the right to use the resources

3.3. SEPARATION LOGIC: IRIS 25

1
〈
lk(x) 7→ True

〉
2
{
AUP,Q(Φ)

}
(* logatom-intro *)

3 let unlockNode x =

4
{
AUP,Q(Φ)

}
5

〈
lk(x) 7→ True

〉
(* au-commit *)

6
{
lk(x) 7→ True

}
(* logatom-atom *)

7 lk(x) ← false

8
{
lk(x) 7→ False

}
9

〈
lk(x) 7→ False

〉
10

{
Φ
}

11
{

Φ
}

12
〈
lk(x) 7→ False

〉
Figure 3.7: Proof of the unlock method.

in the precondition P when executing atomic instructions, but the token also records our obligation
to transform P to Q before execution completes. One way to use the resources in P is to use the
au-abort rule, which gives us access to the precondition P if the expression e is atomic: i.e. if we
can prove that e atomically transforms a global (shared) precondition P and some local precondition
P ′ into a local postcondition Q′ while leaving P unchanged. This rule is useful when a program
has some initial operations that modify the shared state in a way that does not change the abstract
state (for instance, by locking or performing maintenance on a node). At some point, however, the
program must update the shared state to the postconditionQ. logatom-intro enforces this obligation
by using an unknown, existentially quantified assertion Φ, in the postcondition of the Hoare triple.
The only way to prove Φ is to use rule au-commit, which lets us exchange the atomic update token for
Φ if we can prove that the program e transforms the global state from P to Q in an atomic step. As
with au-abort, the rule allows for some extra local resources P ′ andQ′ in the pre- and postcondition
of e.

To illustrate proofs of atomic triples, we prove that the lock and unlock methods from Fig-
ure 3.1 satisfy the following atomic specifications:〈

b. lk(x) 7→ b
〉
lockNode x

〈
lk(x) 7→ True ∗ b = False

〉
〈
lk(x) 7→ True

〉
unlockNode x

〈
lk(x) 7→ False

〉
This captures the behavior that lockNode atomically sets lk(x) to True, but only if it used to be
False, and unlockNode sets it back to False if it used to be True.

Let us look at the simpler method, unlockNode, first (Figure 3.7). As mentioned above, we
start by converting the atomic triple into a Hoare triple using logatom-intro.4 Since unlockNode

has only a single operation, this must be the linearization point, and so we use au-commit to convert
4Note that for brevity we write P for the entire precondition, including any pseudo-quantifier, in all subsequent proofs.

26 3. A PRIMER ON DEDUCTIVE VERIFICATION

1
〈
b. lk(x) 7→ b

〉
2
{
AUP,Q(Φ)

}
(* logatom-intro *)

3 let lockNode x =

4
{
AUP,Q(Φ)

}
5

〈
b. lk(x) 7→ b

〉
(* au-abort or au-commit *)

6
{
lk(x) 7→ b

}
(* logatom-atom *)

7 if CAS(lk(x), false, true) then

8
{
lk(x) 7→ True ∗ b = False

}
(* hoare-cas-suc *)

9
〈
lk(x) 7→ True ∗ b = False

〉
(* end of logatom-atom *)

10
{

Φ
}

(* end of au-commit *)
11 ()
12 else

13
{
lk(x) 7→ b

}
(* hoare-cas-fail *)

14
〈
lk(x) 7→ b

〉
(* end of logatom-atom *)

15
{
AUP,Q(Φ)

}
(* end of au-abort *)

16 lockNode x

17
{

Φ
}

(* Recursive call: by induction *)

18
{

Φ
}

19
〈
lk(x) 7→ True ∗ b = False

〉
Figure 3.8: Proof of the lock method.

the AUP,Q(Φ) resource into the precondition lk(x) 7→ True. We call this proof step of using au-
abort or au-commit to access resources in the precondition as opening the precondition. We then use
logatom-atom to perform the update on heap address lk(x), which gives us the state expected by the
postcondition of unlockNode. Thus, we can successfully finish the application of the au-commit rule,
which we call committing the change. This gives us the expected Hoare postcondition Φ (argument
omitted since it is the unit), which allows us to complete the application of logatom-intro, completing
the proof.

The proof of lockNode is a bit more complicated (Figure 3.8). Once again, we start with
logatom-intro to convert the atomic triple to a Hoare triple. Since the first instruction in the program
is a CAS on a location lk(x) in the precondition, we must open the precondition somehow. The tricky
part is that we do not know whether to use au-abort or au-commit because we do not know if the CAS
will succeed until we look at the shared state in the precondition.

We thus do a proof by cases: depending on the value of b, we apply the appropriate rule (this
is shown as a single proof in Figure 3.8 for brevity). In the case where b is False, the CAS will
succeed, so we use au-commit, logatom-atom, and hoare-cas-suc to obtain the state in line 8. We can
then commit the change and obtain Φ as in the previous proof. On the other hand, if b is True, then
we use au-abort, logatom-atom, and hoare-cas-fail. In this case, we have not modified the shared
state, so we close the precondition using au-abort and get back the AUP,Q(Φ) resource. We then

3.3. SEPARATION LOGIC: IRIS 27

deal with the recursive call to lockNode by using the specification that we are trying to prove,{
AUP,Q(Φ)

}
lockNode x

{
Φ
}
,

to complete this branch of the proof.

28

C H A P T E R 4

Ghost State
In this chapter, we explain the technique of using ghost state to construct proofs of concurrent algo-
rithms, and describe how to do this in Iris using user-defined resources. We start by motiviating the
need for ghost state using the single-node template algorithm as an example.

4.1 MOTIVATION
Recall that we want to prove that the single-node template algorithm satisfies the specification:〈

C. CSS(r, C)
〉
cssOp ω r k

〈
res. CSS(r, C ′) ∗Ψω(k,C,C ′, res)

〉
We can use the following specification for lockNode and unlockNode:〈

b. lk(x) 7→ b
〉
lockNode x

〈
lk(x) 7→ True ∗ b = False

〉
〈
lk(x) 7→ True

〉
unlockNode x

〈
lk(x) 7→ False

〉
To do this, we need a definition of the search structure predicate CSS. In §3.3.1, we proposed using
an abstract predicate node(n,Cn) to represent the single node in the template proof, as the structure
of the node (whether it consists of one heap location, or many, etc.) is implementation-specific.
Building on this, a first attempt at a definition for CSS would be

CSS1(r, C) := ∃b. node(r, C) ∗ lk(r) 7→ b,

which captures the single node r with contents C as well as the lock flag.
Consider Figure 4.1, a first attempt to prove cssOp using the above definition of CSS1. We

start by using logatom-intro, which requires us to prove the corresponding Hoare triple instead (we
use P and Q to denote the pre- and postcondition of cssOp for brevity). The first line of code in
cssOp is the call to lockNode, whose specification tells us that it needs the resource lk(r) 7→ _. As
this heap cell is inside CSS1, which is inside the precondition P , we use au-abort to get access to P .
Note that we do not use au-commit, since this is not the linearization point of this method. We then
use logatom-frame to frame node(r, C), which is not modified by lockNode, and reduce the proof
to exactly the specification of lockNode. The state after lockNode implies P again, which allows
us to complete the use of au-abort, and results in the state shown on line 14.

The problem now is that the only specification we have of decisiveOp is{
node(r, C)

}
decisiveOp ω r k

{
res. node(r, C ′) ∗Ψω(k,C,C ′, res)

}
,

4.1. MOTIVATION 29

1 CSS1(r, C) := ∃b. node(r, C) ∗ lk(r) 7→ b
2

3
〈
C. CSS1(r, C)

〉
4
{
AUP,Q(Φ)

}
(* logatom-intro *)

5 let rec cssOp ω r k =

6
{
AUP,Q(Φ)

}
7

〈
CSS1(r, C)

〉
(* au-abort *)

8
〈
∃b. node(r, C) ∗ lk(r) 7→ b

〉
(* Expand CSS1 *)

9
〈
b. lk(r) 7→ b

〉
(* logatom-frame *)

10 lockNode r;

11
〈
lk(r) 7→ True

〉
12

〈
node(r, C) ∗ lk(r) 7→ True

〉
13

〈
CSS1(r, C)

〉
14

{
AUP,Q(Φ)

}
15 (* Problem: decisiveOp is not atomic! *)
16 let res = decisiveOp ω r k in
17 ...

18
{
v.Φ(v)

}
19
〈
v. CSS1(r, C′) ∗Ψω(k, C,C′, v)

〉
Figure 4.1: First attempt at a proof of the single-node template.

but our current state (line 14) does not contain the resource node(r, C). We cannot use au-abort
to open up P to get node(r, C) as before because decisiveOp is not atomic (its specification is
an ordinary Hoare triple). Note that we cannot require implementations to satisfy an atomic triple
for decisiveOp, this would defeat the purpose of the template, which locks the node before calling
decisiveOp in order to allow a sequential implementation whose correctness proof only involves
sequential reasoning.

We solve this issue (Figure 4.2) by adapting the definition of CSS to reflect the protocol fol-
lowed by all threads in this algorithm: that threads modify a node only when they have locked it.
Consider the alternative definition:

CSS2(r, C) := ∃b. lk(r) 7→ b ∗ (b ? True : node(r, C))

Here, the second term is node(r, C) if b is false (the node is unlocked), indicating that unlocked
nodes belong to the shared state and are available for anyone to acquire. But if b is true (the node
is locked), then the shared state contains only True, which means that the thread that locked the
node can take possession of the node(r, C) resource into its local state. Concretely, this means
that the proof context will contain CSS2(r, C) ∗ node(r, C) when we finish the proof of the Hoare
triple in the premise of rule au-abort (line 13). Note that we have here instantiated the rule with
P = CSS2(r, C) and Q′ = node(r, C). Since we only need to “give back” ownership of P in au-
abort, our context at line 14 will be AUP,Q(Φ) ∗ node(r, C). We are now back to proving a Hoare

30 4. GHOST STATE

1 CSS2(r, C) := ∃b. lk(r) 7→ b ∗ (b ? True : node(r, C))
2

3
〈
C. CSS2(r, C)

〉
4
{
AUP,Q(Φ)

}
(* logatom-intro *)

5 let rec cssOp ω r k =

6
{
AUP,Q(Φ)

}
7

〈
CSS2(r, C)

〉
(* au-abort *)

8
〈
∃b. lk(r) 7→ b ∗ (b ? True : node(r, C))

〉
(* Expand CSS2 *)

9
〈
b. lk(r) 7→ b

〉
(* logatom-frame *)

10 lockNode r;

11
〈
lk(r) 7→ True ∗ b = False

〉
12

〈
lk(r) 7→ True ∗ node(r, C)

〉
13

〈
CSS2(r, C) ∗ node(r, C)

〉
14

{
AUP,Q(Φ) ∗ node(r, C)

}
15

{
node(r, C)

}
(* hoare-frame *)

16 let res = decisiveOp ω r k in

17
{
node(r, C′) ∗Ψω(k, C,C′, res)

}
18

{
AUP,Q(Φ) ∗ node(r, C′) ∗Ψω(k, C,C′, res)

}
19

〈
CSS2(r, C′′) ∗ node(r, C′) ∗Ψω(k, C,C′, res)

〉
(* au-commit *)

20
〈
∃b. lk(r) 7→ b ∗ (b ? True : node(r, C)) ∗ node(r, C′) ∗Ψω(k, C,C′, res)

〉
(* Expand CSS2 *)

21
〈
lk(r) 7→ True ∗ node(r, C′) ∗Ψω(k, C,C′, res)

〉
(* Property of node *)

22
〈
lk(r) 7→ True

〉
(* logatom-frame *)

23 unlockNode r;

24
〈
lk(r) 7→ False

〉
25

〈
lk(r) 7→ False ∗ node(r, C′) ∗Ψω(k, C,C′, res)

〉
26

〈
CSS2(r, C′) ∗Ψω(k, C,C′, res)

〉
27 (* Problem: C 6= C′′ *)

28
〈
CSS2(r, C′) ∗Ψω(k, C′′, C′, res)

〉
29

{
Φ(res)

}
30 ...

31
{
v.Φ(v)

}
32
〈
v. CSS2(r, C′) ∗Ψω(k, C,C′, v)

〉
Figure 4.2: Second attempt at a proof of the single-node template.

triple and can apply the Hoare triple specification of decisiveOp on node(r, C). We think of any
resources we have in an intermediate state with curly braces, such as node(r, C), as being in the local
state of the current thread, which lets us perform non-atomic operations on node(r, C) without risk
of interference (i.e. without the risk that some other thread will read or modify that local state).

Figure 4.2 presents a second proof attempt that shows this locking mechanism in action. As
described above, when the application of au-abort around the call to lockNode concludes, we have

4.2. GHOST STATES AND RESOURCE ALGEBRAS 31

node(r, C) in the local state, and thus we can use the specification of decisiveOp (after using
hoare-frame to frame the extra resources AUP,Q(Φ)).

We now turn our attention to the call to unlockNode. Note that unlockNodemodifies the lock
location of r, whose heap cell is still part of the shared state (as it is contained in the definition of
CSS2), so we need to open the precondition again. But this step in the algorithm is also its lineariza-
tion point, because when the thread unlocks the node that it has (potentially) modified, any changes
it has made become visible to other threads.1 We thus use the rule au-commit to open the precon-
dition, which brings us to our second problem: recall that the precondition is

〈
C. CSS2(r, C)

〉
,

where C is (pseudo) quantified. This means that every time we open the precondition, we get a po-
tentially different set of contents C. Since we already have a variable called C in our context, when
opening the precondition we get CSS2(r, C ′′) using a fresh variable C ′′ on line 19. The reason is
that CSS2(r, C) is in the shared state, and theoretically other threads can modify the contents of
the search structure between the last time we opened the precondition (at the call to lockNode) and
now. Although this cannot happen in our single-node example, where the current thread has locked
the only node in the structure, the proof rules are generic rules that must apply to all algorithms,
including search structures consisting of multiple nodes.

Unfortunately, au-commit needs us to show that lockNode results in the postcondition of cssOp
where the predicateΨω(k,C ′′, C ′, res) usesC ′′, the same variable used in the precondition (line 28).
However, we have Ψω(k,C,C ′, res), which we got from the postcondition of decisiveOp. The last
time we looked, during the call to lockNode, the contents of the shared state was C. Thus, there is
no way we can prove Ψω(k,C ′′, C ′, res).

The real problem is in the definition of CSS2:

CSS2(r, C) := ∃b. lk(r) 7→ b ∗ (b ? True : node(r, C))

Note that when the single node it contains is locked, this formula becomes

lk(r) 7→ True ∗ True,

which says nothing about the contentsC. This is why when we access the shared state for the second
time in line 19, we know nothing about the contentsC ′′. To fix this, we need to modify the definition
of CSS to reflect the fact that since it has only one node, if that node is locked, then the contents
cannot be changed. On the other hand, when the node is unlocked, and put back into CSS, then the
contents can be updated. To do this, we will need to use a new concept, ghost state.

4.2 GHOST STATES AND RESOURCE ALGEBRAS
Ghost state, originally called auxiliary variables [Owicki and Gries, 1976], is a formal technique
where the prover adds state (variables or resources) to a program that capture knowledge about the
1In fact, the linearization point will be at the point of unlocking for all the lock-based single-copy search structures that we study
in this book. In chapters 8 and 9 we will study templates where this is not the case.

32 4. GHOST STATE

history of a computation not present in the state of the original program in order to verify it. As
long as the added ghost state, and the ghost commands that modify it, have no effect on the run-
time behavior of the program, then a so-called erasure theorem states that a proof of the augmented
program can be transformed into a proof of the programwith all ghost state removed (i.e., the original
program). The ghost state concept has shown itself to be an invaluable tool in the verifier’s toolbox,
and has been used to encode many common reasoning techniques including permissions, tokens,
capabilities, and protocols.

Iris expresses ownership of ghost state by the proposition a
γ which asserts ownership of a

piece a of the ghost location γ. It is the ghost analogue of the points-to predicate x 7→ v that asserts
that the (real) location x contains value v, except that a γ asserts only that γ contains a value one
of whose parts is a. This means ghost state can be split and combined according to the rules of
the resource algebra (RA), or the algebraic structure, from which the values (like a) are drawn. We
define RAs formally below, but for now, think of an RA as a setM , with a validity predicate V(−),
and a binary operation (·) : M ×M →M . The two important mechanisms for using ghost state
are: (1) a ghost location can be split and combined using the rule: a γ ∗ b

γ
a` a · b

γ
; and (2) at

any point, if a thread owns a resource c
γ then the value c is valid (V(c)).

What does it mean to split a ghost location, and why is this needed? Coming back to our
single-node template example, we need a way to keep track of the contents of the structure, both
in the shared state and in the local state of the thread that locks the node in such a way that the
two “views” of the contents are the same. This can be achieved by using the concept of fractional
permissions: we associate a fraction with a ghost location, so that the ghost location can be split and
shared amongmany threads to permit shared reads, but threads can only write to the ghost location if
they own the full ghost location. We achieve this by using a fractional RA (defined formally below),
that consists of elements of the form (q, C) for any fraction q ∈ (0, 1] and any set of keys C, as well
as a special element. Composition in this RA is defined as (q1, C1) · (q2, C2) = (q1 + q2, C1)

if C1 = C2 and q1 + q2 ≤ 1 and otherwise. Validity is defined as V(a) = (a 6=), making
the only invalid element. The upshot of these definitions is that in our example, we can extend the
definition of CSS(r, C) to

CSS(r, C) := ∃b. ½ C
γ
∗ lk(r) 7→ b ∗

(
b ? True : node(r, C) ∗ ½ C

γ
)
,

where we write ½ C
γ
for (½, C)

γ
for brevity. When a thread locks r, we give it both node(r, C)

and one of the halves ½ C
γ
. This way, when the thread looks at the shared state later, say when

unlocking r, it will have ½ C ′′
γ
∗ ½ C

γ
and since all resources have to be valid this means

C = C ′′.
Formally, a resource algebra is a generalization of the partial commutative monoid (PCM)

algebra commonly used by separation logics. The definition of an RA is given in Figure 4.3, where

4.2. GHOST STATES AND RESOURCE ALGEBRAS 33

A resource algebra is a tuple (M,V : M → Prop, |−| : M →M?, (·) : M ×M →M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)
∀a, b. a · b = b · a (ra-comm)
∀a. |a| ∈M ⇒ |a| · a = a (ra-core-id)
∀a. |a| ∈M ⇒ ||a|| = |a| (ra-core-idem)
∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b| (ra-core-mono)
∀a, b. V(a · b)⇒ V(a) (ra-valid-op)

where M? := M] {⊥} a? · ⊥ := ⊥ · a? := a?

a 4 b := ∃c ∈M. b = a · c

Figure 4.3: The definition of a resource algebra (RA).

Prop is the type of propositions of the meta-logic (e.g. Coq).2 The composition operator · must be
associative and commutative. The partial function |−| assigns to an element a a core |a| (which
can be thought of as a’s own unit, see ra-core-id). For technical reasons, the core function must be
idempotent andmonotonic. Asmentioned previously, RAs use a validity predicateV to identify valid
elements of the domain. 3 The rule ra-valid-op disallows taking an invalid element and composing
it with another element to make it valid; since Iris maintains an invariant that the composition of
all values in a ghost location is valid, this rule implies that any sub-resource in that location is also
valid.

Example 4.1 Given a set S, we define the fractional RA over values of S as:

M := (Q ∩ (0, 1], S) | V(a) := a 6= |(q, s)| := | | :=

(q1, s1) · (q2, s2) :=

{
(q1 + q2, s1) if q1 + q2 ≤ 1 ∧ s1 = s2

 otherwise
 · _ := _ · :=

Ghost state by itself is not very useful unless it can be updated. However, unlike physical
state, which can be modified at any point to any value, ghost state updates are restricted since Iris

2Iris actually uses cameras as the structure underlying resources, but as we do not use higher-order resources (i.e. state which can
embed propositions) in this book we restrict our attention to RAs, a stronger, but simpler, structure.

3Readers familiar with separation algebras will notice that the composition operator is not partial; cases where composition used
to be undefined can be encoded by sending them to an invalid element.

34 4. GHOST STATE

maintains the invariant that the composition of all the pieces of ghost state at a particular location is
valid (as given by V). Iris allows only frame-preserving updates a b, defined below.

Definition 4.2 A frame-preserving update is a relation between an element a ∈M and a set B ⊆
M , written a B, such that

∀a?f ∈M?. V(a · a?f)⇒ ∃b ∈ B. V(b · a?f).

We write a b if a {b}.

Intuitively, a b says that every frame af that is compatible with a should also be compatible
with b. Thus, changing a thread’s fragment of the ghost state from a to some b will not invalidate as-
sumptions about af made by any other thread. The fractional RA has the following frame-preserving
update:

frac-upd
(1, s) (1, s′)

Note that the element (1, s) has no frame (no other element can compose with it), thus the frame-
preserving update condition holds trivially.

This allows us to change the value stored at a ghost location as long as we own all the pieces of
that location. Correspondingly, we also note that there are no frame-preserving updates from (q, s)

when q < 1, which means no thread can change the value unless that thread holds all the fragments.

4.3 PROOF OF THE SINGLE-NODE TEMPLATE
We finally have all the pieces needed to prove the single-node template (Figure 4.4). Since all the
proofs of atomic triples in this book follow the same structure of using logatom-intro to turn it into
a Hoare triple proof and then au-abort and au-commit for each operation in the program, we omit
those details from the proof sketch. We also omit the AUP,Q(Φ) since it appears on every line, and
instead just assume we have the resources in the precondition when we go from a Hoare triple to
an atomic triple, like on line 7. We also use an additional predicate N(n,C) for the combination of
node(n,C) and the ghost state associated with that node.

The call to lockNode is handled as before, except that this time we take out N(r, C) from
the precondition after locking r. The call to decisiveOp is also handled as before, and note that it
modifies only the contents in node(r, C ′), the ghost state ½ C

γ
continues to record the contents

of the shared state from the time when the node was locked. When we open the precondition around
the call to unlockNode, we get the state shown on line 14. First, we use the property of the abstract
predicate node that node(n,Cn) ∗ node(n,C ′n) −∗ False to infer that b must be True (line 15).
Second, we use the fractional resource algebra properties on the ghost state the thread owns at this
point, ½ C ′′

γ
∗ ½ C

γ
, to infer that C = C ′′ (line 16). Third, we perform a frame-preserving

update using frac-upd to convert the ghost state to ½ C ′
γ
∗ ½ C ′

γ
, reflecting the updated contents

4.3. PROOF OF THE SINGLE-NODE TEMPLATE 35

1 N(n,C) := ½ C
γ
∗ node(n,C)

2 CSS(r, C) := ½ C
γ
∗ ∃b. lk(n) 7→ b ∗ (b ? True : N(r, C))

3

4
〈
C. CSS(r, C)

〉
5 let rec cssOp ω r k =

6
{

True
}

7
〈

½ C
γ
∗ ∃b. lk(n) 7→ b ∗ (b ? True : N(r, C))

〉
8 lockNode r;

9
〈

½ C
γ
∗ lk(n) 7→ True ∗ N(r, C)

〉
10

{
N(r, C)

}
11

{
node(r, C) ∗ ½ C

γ
}

12 let res = decisiveOp ω r k in

13
{
node(r, C′) ∗ ½ C

γ
∗Ψω(k, C,C′, res)

}
14

〈
½ C′′

γ

∗ ∃b. lk(n) 7→ b ∗
(
b ? True : N(r, C′′)

)
∗ N(r, C′) ∗Ψω(k, C,C′, res)

〉
15

〈
½ C′′

γ

∗ lk(n) 7→ True ∗ node(r, C′) ∗ ½ C
γ
∗Ψω(k, C,C′, res)

〉
16

〈
½ C

γ
∗ lk(n) 7→ True ∗ node(r, C′) ∗ ½ C

γ
∗Ψω(k, C,C′, res)

〉
17

〈
½ C′

γ

∗ lk(n) 7→ True ∗ node(r, C′) ∗ ½ C′
γ

∗Ψω(k, C,C′, res)
〉

18 unlockNode r;

19
〈

½ C′
γ

∗ lk(n) 7→ False ∗ node(r, C′) ∗ ½ C′
γ

∗Ψω(k, C,C′, res)
〉

20
〈
CSS(r, C′) ∗Ψω(k, C,C′, res)

〉
21

{
True

}
22 res

23
〈
v. CSS(r, C′) ∗Ψω(k, C,C′, v)

〉
Figure 4.4: Proof of the single-node template algorithm.

{
node(r, C)

}
decisiveOp ω r k

{
v. node(r, C ′) ∗Ψω(k,C,C ′, v)

}
node(n,Cn) ∗ node(n,C ′n) −∗ False

Figure 4.5: The assumptions made by the single-node template on implementations.

of the search structure. We can then use the atomic specification of unlockNode to get the state
shown on line 19. This can be rewritten to obtain the postcondition, completing the proof.

The assumptions made by this template proof on implementation-specific helper functions
and abstract predicates are listed in Figure 4.5. These functions and predicates are defined by imple-

36 4. GHOST STATE

1 let rec cssOp ω n1 n2 k =
2 let n = findNode n1 n2 k in
3 lockNode n;
4 let res = decisiveOp ω n k in
5 unlockNode n;
6 res

Figure 4.6: A template algorithm for a two-node search structure.

mentations, which must satisfy the given assumptions. For example, we saw in §3.3.3 a proof that
the simple implementation for the single-node template that uses a single heap cell for the node r
satisfies the decisive operation specification.

Next, we will see how to extend these ideas to a structure consisting of more than one node.

4.4 TWO-NODE TEMPLATE AND KEYSETS
We now look at a search structure that contains two nodes, n1 and n2, whose template algorithm is
listed in Figure 4.6. Since there are two nodes, the first step in this algorithm is to find the node in
which to search for, insert, or delete the given key. This is done via a new helper function findNode.
Once the appropriate node n is found, the algorithm proceeds similarly to the single-node template:
it locks n, calls decisiveOp on it, and then unlocks it.

Implementations of this template choose not only how to store the keys in a node (e.g. as an
array of keys or a list of keys) but also how to divide keys between nodes. For instance, one possible
implementation would be to send the odd keys to n1 and the even keys to n2. We represent this
choice in the template proof via an abstract function4 ks(n) that maps a node n to a set of keys we
call the keyset. Intuitively, we expect the implementation to define the keyset of a node n as the set
of keys ks(n) that, if present in the structure, must be in n. In the above example, ks(n1) is the set of
odd numbers, and ks(n2) is the set of even numbers. The proof of the template can use this keyset
function to specify the behavior it expects from the findNode helper function:{

True
}
findNode n1 n2 k

{
n. inFP(n1, n2, n) ∗ k ∈ ks(n)

}
Here, inFP(n1, n2, n) := (n = n1 ∨ n = n2) is a predicate that captures the fact that n is in the
footprint of the data structure, i.e. that it is one of the nodes in the data structure.5 We continue to use
the simple spin-lock implementation of lockNode and unlockNode, which, as shown in Chapter 3,
satisfy the following specifications:〈

b. lk(x) 7→ b
〉
lockNode x

〈
lk(x) 7→ True ∗ b = False

〉
4Abstract functions are like abstract predicates in that the template proof is done without knowing their definition; instead, the
proof relies on certain assumptions about them.

5While this is a trivial definition for the two-node template, we will use the same predicate to simplify the more complex proofs
in later chapters.

4.5. DISJOINT KEYSETS AND THE KEYSET RA 37〈
lk(x) 7→ True

〉
unlockNode x

〈
lk(x) 7→ False

〉
Note that a thread can call lockNode or unlockNode only on a node x for which it owns the heap
cell lk(x) – this is where the inFP(n1, n2, n) predicate will be used.

The challenge is in providing a suitable specification for decisiveOp. At the point when
decisiveOp is called, only one of the two nodes in the structure is locked by the current thread, and
hence any specification for decisiveOp can speak only about the node n. A natural first-attempt
would be:{

node(n,Cn)
}
decisiveOp ω n k

{
res. node(n,C ′n) ∗Ψω(k,Cn, C

′
n, res)

}
,

This spec says decisiveOp converts node(n,Cn) (node n with contents Cn) into node(n,C ′n)

(the node n with updated contents C ′n) such that the search structure specification predicate
Ψω(k,Cn, C

′
n, res) holds. However, the trouble is that the postcondition of cssOp requires us

to show that the contents of the entire search structure are modified from some C to C ′ such
that Ψω(k,C,C ′, res) holds. To complete the proof, we need to show that Ψω(k,Cn, C

′
n, res)⇒

Ψω(k,C,C ′, res).
This is not true of arbitrary sets Cn ⊆ C and C ′n ⊆ C ′. Consider the case where node n1

has contents {1, 3, 8}, and n2 has contents {2, 4, 8} and decisiveOp removes key 8 from n1. Here
Cn = {1, 3, 8} and C ′n = {1, 3}, but C = C ′ = {1, 2, 3, 4, 8}.

So, we need more constraints. Our example implementation assigned each node a distinct set
of keys (n1 got the odd keys and n2 got even keys). The missing piece of the proof is the property that
the keysets of any two nodes are disjoint. If we have a data structure where all keysets are disjoint
and the contents of each node n are a subset of the keyset of n, then we can show that it is sufficient
for decisiveOp to ensure that Ψω holds on the node n such that k ∈ ks(n). We next show how to
encode this argument in separation logic using a novel Iris resource algebra.

4.5 DISJOINT KEYSETS AND THE KEYSET RA
In order to define a resource algebra (RA) for disjoint keysets, we first describe some standard RA
constructions that are useful in defining more complex RAs [Iris Team, 2020, Jung et al., 2018].

Definition 4.3 Given a set S, the exlusive RA Ex(S) is defined as:

Ex(S) := ex(S) | V(a) := (a 6=) |ex(x)| := ⊥ | | := _ · _ :=

This RA is called the exclusive RA because it is defined such that at most one x ∈ S can be
owned. This is why: Iris is designed in such a way that the composition of all resources owned at
any point is valid. Since the composition of any two elements of the exclusive RA is , which is

38 4. GHOST STATE

invalid, this means at most one x ∈ S can be owned by any thread at a given point in time. We thus
obtain the following frame-preserving update:

ex-update
ex(x) ex(y)

This captures the intuition that since the resource is exclusive, if one thread owns it, then no other
thread has access to it; hence the thread can change it to anything it likes.

The second RA construction we use is the authoritative RA Auth(M), constructed from any
other RAM . This is used to model situations where one thread owns an authoritative element a of
M , and others potentially own fragments b 4 a of a.

Definition 4.4 Given an RA M that has a unit ε (and hence, a total core), the authoritative RA
Auth(M) is defined as:

Auth(M) := (Ex(M) | ⊥)×M

V((x, b)) := (x = ⊥ ∧ V(b)) ∨ (∃a. x = ex(a) ∧ b 4 a ∧ V(a))

(x1, b1) · (x2, b2) := (x1 · x2, b2 · b2) |(x, b)| := (⊥, |b|)

Let a, b ∈M . When using the Auth(M) RA, we write • a for full ownership (ex(a), ε) and
◦ b for fragmental ownership (⊥, b) and • a, ◦ b for combined ownership (ex(a), b). A simple prop-
erty of authoritative RAs that we will use is:

auth-frag-op
(◦ a) · (◦ b) = ◦ (a · b)

This rule says that we can split or combine a fragment according to the composition operator of the
underlying RA.

We can now define the RA that we use to keep track of the keyset and contents of each node.

Definition 4.5 Given a key space KS, the keyset RA is defined as:

Keyset := (KS× KS) | | ⊥ V((K,C)) := (C ⊆ K) V(_) := False

(K1, C1) · (K2, C2) :=

{
(K1 ∪K2, C1 ∪ C2) if C1 ⊆ K1 ∧ C2 ⊆ K2 ∧K1 ∩K2 = ∅
 otherwise

 · _ := _ · := ⊥ · a := a · ⊥ := a |a| := ⊥

4.5. DISJOINT KEYSETS AND THE KEYSET RA 39

This is an RA where elements are pairs of sets of keys, where the first set represents the
keyset and the second represents the contents of a node (or, more generally, a set of nodes). We also
have two special elements, representing invalid compositions and a unit ⊥, so that we can use an
authoritative version of this RA below. The validity predicate checks if the contents are a subset of
the keyset, and composition is only defined between valid elements whose keysets are disjoint.

In our proofs, we will be using Auth(Keyset), the authoritative keyset RA. Recall that for
the single-node template proof (§4.3), we needed to use the fractional RA so that the shared state
could keep track of the global contents even when the single node was locked. Similarly, we need
two copies of the ghost state that keeps track of the contents, one copy that always stays in the shared
state and is fixed to equal the parameterC in CSS(n1, n2, C), and one copy that is split among nodes
and handed out to threads who lock a node. Performing this reasoning with many fractional locations
gets messy and tedious, so we instead use the authoritative RA, which was built for such situations.

Using Auth(Keyset), we add the formula •(KS, C)
γ
to the definition of CSS to represent

the abstract state of the search structure as one whose keyset is the entire key space KS and contains
the keys C. Similarly, we represent the local abstract state of a node n by the formula ◦(Kn, Cn)

γ
,

whereKn andCn are the keyset and contents, respectively, ofn. By the definition of the authoritative
RA, the assertion

•(KS, C)
γ
∗∗
n∈N

◦(Kn, Cn)
γ

expresses that the setsKn for each n ∈ N are disjoint and their union is included in KS . Moreover,
Cn ⊆ Kn and similarly the Cn sets are disjoint and are included in C. If we can associate each Cn
and Kn to the contents and keyset, respectively, of n, then an assertion like the one above gives us
the desired disjoint decomposition of the abstract state into local states.

The Auth(Keyset) RA has frame-preserving updates such as the following, which we will
use to update the ghost state when we insert or delete a key k:

ks-ins
V((K,C)) V((Kn, Cn)) k ∈ Kn

•(K,C), ◦(Kn, Cn) •(K,C ∪ {k}), ◦(Kn, Cn ∪ {k})

ks-del
V((K,C)) V((Kn, Cn)) k ∈ Kn

•(K,C), ◦(Kn, Cn) •(K,C \ {k}), ◦(Kn, Cn \ {k})

For example, ks-del says that if •(K,C)
γ
and ◦(Kn, Cn)

γ
are valid resources such that k ∈

Kn then we can update the fragment to (Kn, Cn \ {k}) (for instance when we remove k from the
contents of a node n) and the authoritative resource to (K,C \ {k}) (meaning k is also removed
from the global contents). Combining this with ks-ins for insertions, we get the following lemma:

ks-upd
•(K,C)

γ

∗ ◦(Kn, Cn)
γ

∗ k ∈ Kn ∗Ψω(k, Cn, C
′
n, res)

˙|V∃C′. •(K,C′)
γ

∗ ◦(Kn, C
′
n)

γ

∗Ψω(k, C,C′, res)

40 4. GHOST STATE

1 inFP(n1, n2, n) := (n = n1 ∨ n = n2)

2 N(n) := ∃Cn. node(n,Cn) ∗ ◦(ks(n), Cn)
γ

3 CSS(n1, n2, C) := •(KS, C)
γ

∗ (∃b1. lk(n1) 7→ b1 ∗ (b1 ? True : N(n1)))

4 ∗ (∃b2. lk(n2) 7→ b2 ∗ (b2 ? True : N(n2)))
5

6
〈
C. CSS(n1, n2, C)

〉
7 let rec cssOp ω r k =

8
{

True
}

9 let n = findNode n1 n2 k in

10
{
inFP(n1, n2, n) ∗ k ∈ ks(n)

}
11 lockNode n;

12
{
N(n)

}
13

{
node(n,Cn) ∗ ◦(ks(n), Cn)

γ}
14 let res = decisiveOp ω n k in

15
{
node(n,C′

n) ∗ ◦(ks(n), Cn)
γ

∗Ψω(k, Cn, C
′
n, res)

}
16

〈
node(n,C′

n) ∗ ◦(ks(n), Cn)
γ

∗Ψω(k, Cn, C
′
n, res) ∗ •(KS, C)

γ

∗ · · ·
〉

17
〈
node(n,C′

n) ∗ ◦(ks(n), C′
n)

γ

∗Ψω(k, C,C′, res) ∗ •(KS, C′)
γ

∗ · · ·
〉

(* By KS-UPD *)

18 unlockNode n;

19
〈
CSS(n1, n2, C

′) ∗Ψω(k, C,C′, res)
〉

20
{

True
}

21 res

22
〈
v. CSS(n1, n2, C

′) ∗Ψω(k, C,C′, v)
〉

Figure 4.7: Proof of the two-node template algorithm.

{
True

}
findNode n1 n2 k

{
n. inFP(n1, n2, n) ∗ k ∈ ks(n)

}
{
node(n,Cn)

}
decisiveOp ω n k

{
res. node(n,C ′n) ∗Ψω(k,Cn, C

′
n, res)

}
node(n,Cn) ∗ node(n,C ′n) −∗ False

Figure 4.8: The assumptions made by the two-node template on implementations.

This lemma is expressed in terms of Iris’ basic update modality ˙|V. The intuitive meaning of P ˙|VQ
is that if we have the resource P then we can do a ghost state update and get Q.

We can now prove the two-node template (Figure 4.7). The definition of CSS has been ex-
tended to account for two nodes and a locking mechanism for each. It also contains the authoritative
version of the keyset and global contents: •(KS, C)

γ
. Each node is represented by the node pred-

4.5. DISJOINT KEYSETS AND THE KEYSET RA 41

icate N(n), which contains the abstract predicate node(n,Cn) that is implementation-specific as
well as the fragment containing n’s keyset and contents ◦(ks(n), Cn)

γ
.

The call to findNode is handled as explained previously, using the specification given in
Figure 4.8. To prove the precondition of lockNode, we now need to show that we own lk(n), which
we can do using the prediate inFP(n1, n2, n) that we obtained from findNode. After lockNode,
we can move the node N(n) from the shared state into our local state as before. We then use the
specification of decisiveOp to get a modified node predicate node(n,C ′n) and Ψω(k,Cn, C

′
n, res).

As with the single-node template, the linearization point is at the call to unlockNode. We
use the rule au-commit to open the precondition and get access to the shared state, obtaining the re-
sources shown in the intermediate assertion on line 16. We then use ks-upd to udpate both the node’s
fragment of the keyset RA as well as the authoritative element to the new contents, and obtain the
resource Ψω(k,C,C ′, res). This step corresponds to the reasoning that since the decisive operation
was performed on a node n such that k ∈ ks(n), the global contents also change appropriately. We
can then apply unlockNode’s specification to change the lock location of n, and return N(n) to the
shared state, obtaining the postcondition CSS(n1, n2, C

′) ∗Ψω(k,C,C ′, res).

42

C H A P T E R 5

The Flow Framework
So far, we have seen how to use ghost state in order to verify template algorithms for one and two-
node structures. Most useful real-world structures, like the B-link tree (Chapter 2), have a dynamic
and unbounded number of nodes. Extending our proofs to structures with unbounded nodes presents
a challenge, because we want to prove that a thread preserves global invariants while doing opera-
tions on a few nodes. We formulate such proofs using the flow framework. This chapter defines and
motivates the flow framework.

5.1 MOTIVATION
To see why the two-node template proof does not extend to the unbounded-node setting, recall that
we represented the shared state using the CSS predicate, defined as:

N(n) := ∃Cn. node(n,Cn) ∗ ◦(ks(n), Cn)
γ

CSS(n1, n2, C) := •(KS, C)
γ
∗ (∃b1. lk(n1) 7→ b1 ∗ (b1 ? True : N(n1)))

∗ (∃b2. lk(n2) 7→ b2 ∗ (b2 ? True : N(n2)))

Extending CSS to describe an unbounded number of nodes can be done using the iterated separating
conjunction as (where r is the root node):

CSS(r, C) := ∃N. •(KS, C)
γ
∗∗
n∈N

(∃b. lk(n) 7→ b ∗ (b ? True : N(n)))

This formula says there exists a set of nodes N , where each n ∈ N has a lock location set to some
boolean b and the resources in N(n). Extending the definition of N, on the other hand, is trickier.
Recall that ks(n) was an abstract function, whose definition was to be provided by the implemen-
tation. For the two-node template, our example implementation used the following definition of the
keyset:

ks(n) :=

{
{k | k is odd} n = n1

{k | k is even} otherwise
Unfortunately, the keyset in most real-world implementations is a global quantity, i.e. ks(n) depends
on nodes other than just n. For example, the rules of a B-tree dictate that the keyset of a node n
depends on the keys in all the nodes on the path from the root to n. In Figure 2.1, the keyset of y0
is (−∞, 4), and the keyset of y2 is [5, 8). This makes it impossible for us to define a function ks(n)

that maps a B-tree node n to its keyset, because in Iris, a function can depend only on its arguments.
We thus need a way to talk about a global quantity in a local manner.

5.2. LOCAL REASONING ABOUT GLOBAL PROPERTIES 43

5.2 LOCAL REASONING ABOUT GLOBAL PROPERTIES
As noted above, while separation logic is based on the concept of local reasoning, many important
properties of data structure graphs depend on non-local information. For instance, we cannot express
the property that a graph is a tree by conjoining per-node invariants. As we have seen above, we also
cannot write down the keyset of a B-tree as a local function of each node. The flow framework [Kr-
ishna et al., 2018, 2020b] is a separation logic based approach that provides a mechanism to reason
about global quantities in local proofs.

The flow framework [Krishna et al., 2020b] uses the concept of a flow – a function from
nodes to values from some flow domain – to specify global graph properties in terms of node-local
invariants. These flow values must satisfy the flow equation, i.e. they must be a fixpoint of a set of
algebraic equations induced by the entire graph (thereby allowing one to capture global constraints
at the node level). When modifying a graph, the framework allows one to perform a local proof that
flow-based invariants are maintained via the notion of a flow interface. This is an abstraction of a
graph region that specifies the flow values entering and exiting the region; if these are preserved
then the flow values of the rest of the graph will be unchanged.

The rest of this section illustrates these concepts by considering the simple example of a
linked-list data structure. We will come back to search structures in §5.4.

Suppose we have a graph G on a set of nodes N and we want to express the global property
that it is a list rooted at some node r in terms of a condition on each node. To do this, we need to
know some global information at each node: for instance, suppose there existed a function pc that
mapped each node n to the number of paths from r to n.1 If for every node n, pc(n) = 1 and n has
at most one outgoing edge (both node-local assertions) then we know thatGmust be a list rooted at
r.

This path-counting function pc is an example of a flow because it can be defined as a solution
to the flow equation:

∀n ∈ N. fl(n) = in(n) +
∑
n′∈N

e(n′, n)(fl(n′)) (FlowEqn)

This is a fixpoint equation on a function fl : N →M , where M is a flow domain, in is an inflow
that specifies the default/initial flow value of each node, and e is a mapping from pairs of nodes to
edge functions that determine how the flow of one node affects the flow of its neighbor. The flow
framework works with directed partial graphs that are augmented with a flow, called flow graphs.
A flow graph is a tuple H = (N, e,fl) consisting of a finite set of nodes N ⊆ N (N is potentially
infinite), a mapping from pairs of nodes to edge functions e : N ×N→ E, and a function fl such
that (FlowEqn) is satisfied for some inflow in . Flow graph compositionH1 �H2 is a partial oper-
ator that is a disjoint union of the nodes, edges, and flow values and is defined only if the resulting
graph continues to satisfy (FlowEqn).

1We assume a definition of pc where pc(r) = 1 even in acyclic graphs, because typically we are interested in the reachability of
heap nodes from an external stack pointer.

44 5. THE FLOW FRAMEWORK

r

l

n

m

λid

λid

λid

r

l

n

m

λid

λid

λid

l

m

1

1

Figure 5.1: A flow-based view of the delete operation on a linked-list. The operation unlinks a node n
from a linked-list by swinging the pointer from its predecessor l to its successor m. Edges are labeled
with the path-counting flow domain (λ0 edges omitted). The interface of the blue region {l, n} is shown
on the right, and is preserved by this update.

In the case of the path-counting flow, the flow domain M is N, the inflow is in(n) :=

(n = r ? 1 : 0) (the root has inflow of 1 and all other nodes have inflow of 0), and the edge function
e(n, n′) is the identity function λid := (λm. m) for all edges (n, n′) in G and the zero function
λ0 := (λm. 0) otherwise. The flow equation then reduces to the familiar constraint that the number
of paths from r to n, pc(n), equals 1 if n = r else 0, plus the sum of the number of paths to all n′

that have an edge to n.
The problem with assuming that each node knows a flow value that satisfies some global

constraint over the entire graph is that when a program modifies the graph, it can be hard to show
that the flow-based invariants are maintained. In particular, when the program modifies a small part
of the graph, say by modifying a single edge, we would like to prove that the flow invariants are
preserved by reasoning only about a small region around the modified edge. The flow framework
enables such local proofs by means of an abstraction of flow (sub)graphs called flow interfaces.

Consider the simple example of a singly-linked list deletion procedure that unlinks2 a given
node n from the list (Figure 5.1). The program swings the pointer from n’s predecessor l to n’s
successorm. We use the path-counting flow and the flow-based local constraints described above to

2Recall from §3.3 that we assume a garbage-collected setting in this book.

5.3. THE FLOW INTERFACE RA 45

express the invariant that the graph is a list (we show how to formally express this later). For a flow
graphH over the path-counting flow domain, modifying a single edge (n, n′) can potentially change
the flow (the path-count) of every node reachable from n. However, notice that the modification
shown in Figure 5.1 changes (l, n) to (l,m) wherem is the successor of n. This preserves the flow
of every node outside the modified subgraph H1 = H|{l,n} (shown in blue in Figure 5.1) because
there was one path coming out ofH1 and one path going tom both before and after the modification.

Flow interfaces build on this intuition; the interface I = (in, out) of a flow graph H with
domain N is a tuple consisting of the inflow in : N →M (e.g., how many incoming paths each
node in H has) and the outflow out : (N \N)→M (for our path-counting example, how many
outgoing paths H has to each external node). Formally, the inflow of H = (N, e,fl) is the in

that satisfies (FlowEqn) (this is unique [Krishna et al., 2020b]) and the outflow is defined as
out(n) :=

∑
n′∈N e(n′, n)(fl(n′)). For example, the flow interface of {l} in the left of Figure 5.1

is ({l� 1} , λ0[n� 1]) because l has one incoming path from outside {l} and the subgraph
{l} has one outgoing path to n. The interface of {l, n} in the left and center of Figure 5.1 is
({l� 1, n� 0} , λ0[m� 1]), which is depicted abstractly on the right. The flow framework tells
us that if we have H = H1 �H2 and we modify H1 to some H ′1 with the same interface, then
H ′ = H ′1 �H2 exists. This means that the flow of all nodes in H2 is unchanged; thus it suffices to
check that H ′1 satisfies the flow-based invariant and has the same interface as H1, which are both
local checks.

One can capture any graph property of interest by instantiating the flow domain appropri-
ately [Krishna et al., 2020b]. This involves specifying the desired property in terms of two con-
straints: a local constraint on the flow of every node, and a global constraint on the inflow and outflow
of the entire data structure (the latter is typically used to identify root nodes). We will demonstrate
this §5.4 when we encode keysets using flows. First, we show how to perform flow-based reasoning
in Iris.

5.3 THE FLOW INTERFACE RA
This section formally defines the notions presented in the previous section, in particular, a flow
interface resource algebra that will allow us to perform flow-based reasoning in Iris.

Definition 5.1 FlowDomain. A flow domain (M,+, 0, E) consists of a commutative cancellative
(total) monoid (M, 0,+) and a set of functions E ⊆M →M .

Example 5.2 The flow domain used for the path-counting flow is (N,+, 0, {λid, λ0}), consisting
of the monoid on natural numbers under addition and the set of edge functions containing only the
identity function and the zero function.

Definition 5.3 Graph. A (partial) graphG = (N, e) consists of a finite set of nodesN ⊆ N and
a mapping from pairs of nodes to edge functions e : N ×N→ E.

46 5. THE FLOW FRAMEWORK

A flow of graph G = (N, e) under inflow in : N →M is a solution of the following fixpoint
equation (the same as (FlowEqn), repeated for clarity) over G, denoted FlowEqn(in, e,fl):

∀n ∈ dom(in). fl(n) = in(n) +
∑

n′∈dom(in)

e(n′, n)(fl(n′))

Note that every graph need not have a flow; there are graphs (N, e) and inflows in for which
FlowEqn(in, e,fl) has no solution. On the other hand, graphs that have a flow are called flow graphs.

Definition 5.4 Flow Graph. A flow graph H = (N, e,fl) consists of a graph (N, e) and a func-
tion fl : N →M such that there exists an inflow in : N →M satisfying FlowEqn(in, e,fl).

We let dom(H) = N , and sometimes identifyH and dom(H) to ease notational burden. Two
flow graphs with disjoint domains always compose to a graph, but this will only be a flow graph if
their flows are chosen consistently to admit a solution to the resulting flow equation (thus, the flow
graph algebra below has a special invalid elementH , which is the result of flow graph composition
of incompatible flow graphs).

Definition 5.5 Flow Graph Algebra. The flow graph algebra (FG,�, H∅) for flow domain
(M,+, 0, E) is defined by

FG ::= H ∈ {(N, e,fl) | (N, e,fl) is a flow graph} | H

(N1, e1,fl1)� (N2, e2,fl2) :=

{
H H = (N1]N2, e1] e2,fl1] fl2) ∈ FG

H otherwise
_�H := H � _ := H

H∅ := (e∅,fl∅)

where e∅ and fl∅ are the edge functions and flow on the empty set of nodes N = ∅.

Cancellativity of the flow domain operator + is key to defining an abstraction of flow graphs
that permits local reasoning. The following lemma follows from the fact that + is cancellative.

Lemma 5.6 Given a flow graph (N, e,fl) ∈ FG, there exists a unique inflow in : N →M such
that FlowEqn(in, e,fl).

Proof. Suppose in and in ′ are two solutions to FlowEqn(_, e,fl). Then, for any n,

fl(n) = in(n) +
∑

n′∈dom(in)

e(n′, n)(fl(n′)) = in ′(n) +
∑

n′∈dom(in′)

e(n′, n)(fl(n′))

which, by cancellativity of the flow domain, implies that in(n) = in ′(n). �

5.4. ENCODING KEYSETS USING FLOWS 47

Our abstraction of flow graphs consists of two complementary notions. Lemma 5.6 implies
that any flow graph has a unique inflow. Thus we can define an inflow function that maps each flow
graph H = (N, e,fl) to the unique inflow inf(H) : H →M such that FlowEqn(inf(H), e,fl). We
can also define the outflow of H as the function outf(H) : N \N →M defined by

outf(H)(n) :=
∑
n′∈N

e(n′, n)(fl(n′)).

Definition 5.7 Flow Interface. Given a flow graphH ∈ FG, its flow interface int(H) is the tuple
(inf(H), outf(H)) consisting of its inflow and its outflow.

We use I.in and I.out to denote, respectively, the inflow and outflow of an interface I . We
can finally define the flow interface resource algebra, which will allow us to use flow interfaces in
our Iris proofs.

Definition 5.8 Flow Interface Algebra. The flow interface algebra (FI,V, |−|,⊕) is defined by

FI ::= I ∈ {int(H) | H ∈ FG} | I V (a) := a 6= I |a| := I∅

I1 ⊕ I2 :=

{
int(H) ∃H1, H2. H = H1 �H2 ∧ ∀i ∈ {1, 2} . int(Hi) = Ii

I otherwise,

where I∅ := int(H∅).

Theorem 5.9 The flow interface algebra (FI,V, |−|,⊕) is a resource algebra.

5.4 ENCODING KEYSETS USING FLOWS
We now answer the question of how to define a keyset function in a node-local way, using flow
interfaces.

To define keysets using flows, we build on the concept of edgesets. Recall that the edgeset
es(n, n′) is the set of keys for which an operation arriving at a node n traverses (n, n′). This is a
node-local concept, and hence can be expressed in Iris. Let the inset of a node n, written ins(n), be
defined by the following fixpoint equation

∀n ∈ N. ins(n) = in(n) ∪
⋃
n′∈N

es(n′, n) ∩ ins(n′)

where in(n) := (n = r ? KS : ∅). The inset of a node n is thus KS if n equals the root r, else the
set of keys k that are in the inset of a predecessor n′ such that k ∈ es(n′, n). Intuitively, ins(n) is the

48 5. THE FLOW FRAMEWORK

ins(I, n) := I.in(n)

outs(I, n′) := I.out(n′) outs(I) :=
⋃

n′ 6∈dom(I)

outs(I, n′)

ks(I, n) := ins(I, n) \ outs(I, n)

N(n,Cn) := ∃In. node(n, In, Cn) ∗ ◦(ks(In, n), Cn)
γk
∗ ◦In

γI ∗ dom(In) = {n}

ϕ(r, I) := V(I) ∧ I.in(r) = KS ∧ I.out = λ0

CSS(r, C) := ∃I. •I
γI ∗ ϕ(r, I) ∗ •(KS, C)

γk

∗ ∗
n∈dom(I)

(
∃b. lk(n) 7→ b ∗ (b ? True : ∃Cn. N(n,Cn))

)

Figure 5.2: The definition of CSS and other predicates using a flow-based encoding of keysets.

set of keys for which operations could potentially arrive at n in a sequential setting. For example, in
Figure 2.1 insets are shown in the top-left of each node; ins(y2) = [5, 8) and ins(n′) = [5,∞). Let
the outset of n, outs(n), be the keys in the union of edgesets of edges leaving n. The keyset can then
be defined as ks(n) = ins(n) \ outs(n).

If the equation defining the inset looks familiar, the reason is that it is just (FlowEqn) using
sets and set operations, and edge functions that take the intersection with the appropriate edgeset.
This means we can define a flow domain where the flow at each node is the inset of that node. This
will allow us to talk about the keyset in terms of node-local conditions: in particular, we can now
use the keyset in the keyset RA ghost state described in §4.5.

Encoding the inset as a flow requires using multisets of keys3 as the flow domain. We label
each edge (n, n′) in a graphG by the function ees(n,n′) := (λX. es(n, n′) ∩X). If the global inflow
is in = (λn. (n = r ? KS : ∅)), which encodes the fact that operations on all keys k start at the root
r, then the flow equation implies that fl(n) is the inset of n.

As with the keyset RA, we use an authoritative version of the flow interface RA (Auth(FI), see
Definition 4.4) in our proofs. This enables us to reason about the concurrent setting where threads
can lock nodes and take them out of the shared state. Since we are now using two kinds of ghost
state, we use γI to denote the Auth(FI) ghost location and γk for the Auth(Keyset) ghost location.

3We cannot use sets of keys because a flow domain is a cancellative commutative monoid (Definition 5.1), and unlike multiset
union, set union is not cancellative.

5.4. ENCODING KEYSETS USING FLOWS 49

The resulting definitions are shown in Figure 5.2. The inset, outset, and keyset are defined in
terms of a flow interface as described above (we overload the same symbols used before because they
express the same quantities). The node predicate N(n,Cn) now has a fragment of both the keyset
RA and flow interface RA corresponding to the node n. Note that n’s keyset is now a function of
n’s singleton interface and n, making it local as desired. The predicate ϕ contains the constraints
on the interface of the global search structure which are needed to make the flow of each node be
interpreted as the inset of each node. CSS contains the authoritative global interface •I

γI
, as well

as the authoritative keyset RA element as before.
With such a definition, we can reason about search structures with an unbounded number of

nodes. In the next chapter we will see how to prove three templates for real-world search structures.

50

C H A P T E R 6

Verifying Single-copy
Concurrent Templates

This chapter shows how to bring together all the concepts developed so far in order to verify template
algorithms for concurrent search structures in which each key is present at most once in a data
structure. The three templates we describe are based on three common concurrency techniques, and
were first described in template form by Shasha and Goodman [1988].

〈
C. CSS(r, C)

〉
cssOp ω k

〈
res. CSS(r, C ′) ∗Ψω(k,C,C ′, res)

〉

Ψω(k,C,C ′, res) :=

C ′ = C ∧ (res ⇐⇒ k ∈ C) ω = search

C ′ = C ∪ {k} ∧ (res ⇐⇒ k 6∈ C) ω = insert

C ′ = C \ {k} ∧ (res ⇐⇒ k ∈ C) ω = delete

Figure 6.1: The atomic specification of core search structure operations. We prove that all search struc-
ture templates in this book satisfy this specification.

Remember, our aim is to prove the atomic specification shown in Figure 6.1 for the template
method cssOp that represents, via the parameter ω, an arbitrary search structure operation (either
search, insert, or delete). This specification uses an abstract predicate CSS(r, C) that represents
a search structure with root r containing the set of keys C. The binder on C in the precondition
is a special pseudo-quantifier that captures the fact that during the execution of ω, the value of
C can change (e.g. by concurrent operations) but at the linearization point, ω on operation key k
changes CSS(r, C) to CSS(r, C ′) in an atomic step. The new set of keys C ′, and the eventual return
value res, satisfy the predicate Ψω(k,C,C ′, res) – here C is bound to the contents just before the
linearization point. The bottom line is that clients of the search structure can pretend that they are
using a sequential implementation with specification Ψω.

6.1. THE GIVE-UP TEMPLATE 51

inFP(n) −∗
〈
C. CSS(r, C)

〉
lockNode x

〈
CSS(r, C) ∗ N(n, In, Cn)

〉
N(n, In, Cn) −∗

〈
C. CSS(r, C)

〉
unlockNode n

〈
CSS(r, C)

〉
Figure 6.2: High-level specifications for the lock module used by all template proofs in this chapter.
These can be proved from the low-level specifications we proved in Chapter 3 and the definitions of CSS
and inFP.

All the template proofs in this chapter assume some immplementation of lockNode and
unlockNode that satisfy the following specifications:1〈

b. lk(x) 7→ b
〉
lockNode x

〈
lk(x) 7→ True ∗ b = False

〉
〈
lk(x) 7→ True

〉
unlockNode x

〈
lk(x) 7→ False

〉
To simplify the upcoming proofs, we will assume that lockNode and unlockNode satisfy the higher-
level specifications shown in Figure 6.2, which can be proved easily from the above specifications
and the definitions of CSS and inFP.

These specifications are written in a new form, using the magic wand−∗, which is the owner-
ship analogue of implication (see Chapter 3 for more details). The specification of lockNode says
that if we own inFP(n), i.e. if we know that n is in the footprint of the structure, then we can use
the atomic triple that follows. The triple tells us that lockNode operates on the search structure
CSS(r, C), and removes the node N(n, In, Cn) from it (allowing the caller to move it to its local
state) while returning the search structure unmodified.

Similarly, the specification of unlockNode says that if a thread owns the node predicate for
n, then it can call unlockNode in an atomic step to put n back into the shared search structure.

6.1 THE GIVE-UP TEMPLATE
We start by considering a template algorithm that uses the well-known give-up style of concurrency
(Figure 6.3). The proof of this template is very similar to that of the link template, but simpler, hence
we describe it first.

The give-up template, like the link template, uses locks only when reading or writing from a
node and does not hold locks while traversing from one node to the next. Unlike the link template,
there are no link edges added by threads that move data from one node to another. Instead, each node
stores a range field: this is an under-approximation of that node’s inset. Upon arriving at a new node
n, each thread locks the node and checks its query key k against the range of n. If k is in the range
of n then the thread knows that it is still on the correct path, and it continues. If not, it gives up: it
1We showed in Chapter 3 that a simple spin-lock implementation satisfies these specifications. However, note that one can use
more complex lock implementations, as long as they satisfy these specifications.

52 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

1 let rec traverse r n k =
2 lockNode n;
3 if inRange n k then
4 match findNext n k with
5 | None -> n
6 | Some n' -> unlockNode n;
7 traverse n' k
8 else
9 unlockNode n;

10 traverse r r k

11 let rec cssOp ω r k =
12 let n = traverse r r k in
13 match decisiveOp ω n k with
14 | None ->
15 unlockNode n;
16 cssOp ω r k
17 | Some res ->
18 unlockNode n;
19 res

Figure 6.3: The give-up template algorithm. The cssOp method is the main method, and represents all
the core search structure operations via the parameter ω. It makes use of an auxiliary method traverse

that recursively traverses the search structure until it finds the node upon which to operate.

relinquishes the lock on n and goes back to the root of the data structure to retry. (In fact, it could go
back to any previous node to retry, but eventually it might have to go back to the root. For simplicity
we consider the version of the algorithm that goes back to the root immediately.)

The code for this template algorithm is given in Figure 6.3. Note that in addition to the helper
functions findNext and decisiveOp, this template assumes a helper function inRange. When
called as inRangenk, this function returns true if and only if k is in the range of n.

The give-up template can be instantiated by a B+ tree, for instance, by adding two additional
fields to each node n. These fields keep track of lower and upper bounds for keys that are present in
the subtree rooted at n. When a thread looking for k arrives at a node n, it checks if k is in the range
of n (by checking if k is between the lower and upper bounds inclusively), and gives up and restarts
if not. Though we have conceived a range as consisting of a lower and upper bound, in fact a range
can be an arbitrary function as long as it is a subset of the inset. For example, it can be a set of key
values that hash to a particular value for a hash table.

6.1.1 PROOF OF THE GIVE-UP TEMPLATE
The definition of the search structure predicate CSS for the give-up template is given in Figure 6.4.
This is almost the same as the one we developed in the last chapter using flows (see Figure 5.2 in
§5.4), but with an extra form of ghost state that is used to reason about traversals. The reason we
need additional ghost state is that the give-up template performs a traversal over the search structure
where it holds no locks when moving from one node to the next. For instance, at the point when the
traverse method is called, the node n is not locked. Yet, to be able to apply the specification of
lockNode, we need to know that n is a node in the data structure (and not some arbitrary memory
address that may not be allocated).

We solved this issue in the two-node template proof by defining a predicate inFP(n1, n2, n),
that asserted that n is one of the two nodes {n1, n2} in the structure. This approach no longer works

6.1. THE GIVE-UP TEMPLATE 53

ins(I, n) := I.in(n)

outs(I, n′) := I.out(n′) outs(I) :=
⋃

n′ 6∈dom(I)

outs(I, n′)

ks(I, n) := ins(I, n) \ outs(I, n)

N(n,Cn) := ∃In. node(n, In, Cn) ∗ ◦(ks(In, n), Cn)
γk
∗ ◦In

γI ∗ dom(In) = {n}

ϕ(r, I) := V(I) ∧ I.in(r) = KS ∧ I.out = λ0

CSS(r, C) := ∃I. •I
γI ∗ ϕ(r, I) ∗ •(KS, C)

γk
∗ • dom(I)

γf

∗ ∗
n∈dom(I)

(
∃b. lk(n) 7→ b ∗ (b ? True : ∃Cn. N(n,Cn))

)

Figure 6.4: The definition of CSS and other predicates used by the give-up template proof.

since we are in the general case where the structure has an unbounded number of nodes that are not
known to us a priori.

Our solution is to use an authoritative RA of sets of nodes, Auth(N), at a new ghost location
γf . The authoritative element owned by CSS is • dom(I)

γf
, and this captures the domain of the

shared state (which is equal to the domain of the global flow interface). The following properties of
Auth(N) allow threads to take snapshots of the footprint and assert locally that a given node is in
the footprint:

auth-set-upd
X ⊆ Y
•X •Y

auth-set-snap
•X •X · ◦X

auth-set-valid
V(•X · ◦Y)

Y ⊆ X

We then define the footprint predicate as

inFP(n) := ◦ {n}
γf

which expresses ownership of a fragment {n} of the domain. By auth-set-valid, this along with
• dom(I)

γf
implies thatn ∈ dom(I). Threads can thus use auth-set-snap and auth-frag-op to create

the resource inFP(n), which can then be moved into the thread’s local state.
Before we move on to the proof of the give-up template, let us review the assumptions made

by the give-up template on implementations (Figure 6.5). As usual, they are all Hoare triples that

54 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

{
node(n, In, Cn)

}
inRange n k{
v. node(n, In, Cn) ∗ (v = True⇒ k ∈ ins(In, n))

}
{
node(n, In, Cn) ∗ k ∈ ins(In, n)

}
findNext n kv. node(n, In, Cn) ∗

(
v = None ∗ k /∈ outs(In)

∨ v = Some(n′) ∗ k ∈ outs(In, n
′)
)

{
node(n, In, Cn) ∗ k ∈ ks(In, n)

}
decisiveOp ω n kv. node(n, In, C

′
n) ∗

(
v = None ∗ Cn = C′

n

∨ v = Some(v′) ∗Ψω(k, Cn, C
′
n, v

′)
)

node(n, In, Cn) ∗ node(n, I ′n, C′
n) −∗ False

Figure 6.5: The assumptions made by the give-up template on implementations.

operate on the abstract node predicate, meaning the implementation can be sequential. We require
that inRange n k return a boolean value, which if true implies that k is in the inset of n. (If it
is false, we do not require any additional information, because the algorithm gives up and restarts
from the root.) The findNextmethod is used by the traversal at each step: given a node n and a key
k, it either returns None, indicating that there is no outgoing edge with k in its edgeset, or returns
Some(n′) such that k is in the edgeset of (n, n′). Neither of these two methods modify the given
node n. The decisiveOp method has a similar spec to what we have used before, except that now
we allow it to also fail: if it returns None then we require it to return the node n with unmodified
contents, while if it returns Some(v′) then we require it to satisfy the per-operation specification
Ψω(k,Cn, C

′
n, v
′) as before.

Moving on to the proofs, we prove the following specification for the traverse helper func-
tion:

inFP(n) −∗
〈
C. CSS(r, C)

〉
traverse r n k

〈
v. CSS(r, C) ∗ N(v, Iv, Cv) ∗ k ∈ ks(Iv, v)

〉
This specification says that if n is in the footprint of the search structure, then traverse operates on
the entire search structure and returns a locked node v such that k is in the keyset of v, while leaving
the global contents unmodified.

The proof of traverse is shown in Figure 6.6. Note that the inFP(n) predicate from the
precondition is available in our proof context at the beginning of the proof. Hence we can use it
to apply the high-level lockNode specification (Figure 6.2) to get the node N(n, In, Cn) into the
thread-local state. We then use the specification of inRange from Figure 6.5.

6.1. THE GIVE-UP TEMPLATE 55

1 inFP(n) −∗
〈
C. CSS(r, C)

〉
2 let rec traverse r n k =

3
{
inFP(n)

}
4 lockNode n;

5
{
N(n, In, Cn)

}
6 if inRange n k then

7
{
N(n, In, Cn) ∗ k ∈ ins(In, n)

}
8 match findNext n k with

9 | None ->
{
N(n, In, Cn) ∗ k ∈ ins(In, n) ∗ k /∈ outs(In)

}
10 n

11 | Some n' ->
{
N(n, In, Cn) ∗ k ∈ ins(In, n) ∗ k ∈ outs(In, n

′)
}

12
{
N(n, In, Cn) ∗ inFP(n′)

}
13 unlockNode n;

{
inFP(n′)

}
14 traverse n' k
15 else

16
{
N(n, In, Cn)

}
17 unlockNode n;

18
{
inFP(r)

}
19 traverse r r k

20
〈
v. CSS(r, C) ∗ N(v, Iv, Cv) ∗ k ∈ ks(Iv, v)

〉
Figure 6.6: The proof of the traverse method of the give-up template algorithm.

In the then branch, this gives us the additional predicate k ∈ ins(In, n). We use this to apply
the specification of findNext, which leads to two cases. In the case where findNext returns None,
the specification tells us that we have k ∈ ins(In, n) ∗ k /∈ outs(In). By the definition of ks in Fig-
ure 6.4, this is exactly k ∈ ks(In, n), which allows us to prove the postcondition (technically, this is
the linearization point, and we use the appropriate proof rules to “commit” the change to the shared
structure and establish the postcondition).

If findNext returns Some(n′), then we have k ∈ ins(In, n) ∗ k ∈ outs(In, n
′) from

findNext’s postcondition. Before we move on to the unlocking and give away the node predicate,
note that we need to prove inFP(n′) in order to satisfy the precondition of the recursive call to
traverse. We obtain this by opening the precondition and using k ∈ outs(In, n

′) along with ϕ(I).
Since In is a sub-interface of I , and ϕ(I) specifies that I has no outflow, n can have an outflow of
k to n′ only if n′ is also a node in I . We thus obtain inFP(n′), and this completes this branch.

In the else branch of the call to inRange, we simply use the high-level specification of
unlockNode to give back the node predicate. We can then use induction to assume that the re-
cursive call to traverse will give us the desired postcondition. The precondition of the recursive
call requires us to prove inFP(r), but note that this is always true from the definition of CSS (as
ϕ(r, I)⇒ r ∈ dom(I)). This completes the proof of traverse.

56 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

1
〈
C. CSS(r, C)

〉
2 let rec cssOp ω r k =

3
{
inFP(r)

}
4 let n = traverse r r k in

5
{
N(n, In, Cn) ∗ k ∈ ks(In, k)

}
6 match decisiveOp ω n k with

7 | None ->
{
N(n, In, Cn)

}
8 unlockNode n;

{
True

}
9 cssOp ω r k

10 | Some res ->

11
{
node(n, In, C

′
n) ∗Ψω(k, Cn, C

′
n, res) ∗ k ∈ ks(In, n) ∗ · · ·

}
12 (* Linearization point: open precondition *)

13
〈
◦(ks(In, n), Cn)

γk
∗Ψω(k, Cn, C

′
n, res) ∗ k ∈ ks(In, n) ∗ •(KS, C)

γk
∗ · · ·

〉
14

〈
◦(ks(In, n), C′

n)
γk
∗Ψω(k, C,C′, res) ∗ •(KS, C′)

γk
∗ · · ·

〉
(* By KS-UPD *)

15
〈
N(n, In, C

′
n) ∗ CSS(r, C′) ∗Ψω(k, C,C′, res)

〉
16 unlockNode n;

17
〈
CSS(r, C′) ∗Ψω(k, C,C′, res)

〉
(* Prove postcondition, commit *)

18
{

True
}

19 res

20
〈
v. CSS(r, C′) ∗Ψω(k, C,C′, v)

〉
Figure 6.7: The proof of the give-up template algorithm.

We can now describe the proof of cssOp. As mentioned above, the definition of CSS gives
us inFP(r), so we open the precondition to get inFP(r) and use it to apply the specification of
traverse. This gives us a state where we have a node n such that k is in the keyset of n, which is all
we need to apply the specification of decisiveOp. In the case where decisiveOp fails and returns
None, we simply use the high-level specification of unlockNode to give back the node n and retry
(using induction to handle the recursive call).

On the other hand, if decisiveOp succeeds, then we have the state shown in line 11 (we write
· · · to hide the resources irrelevant to the next step in the proof). Note that we cannot yet write
N(n, In, C

′
n) because decisiveOp modified only node and not the rest of the ghost state in N. We

update this ghost state as well as the ghost state in the shared state in the next step. Since the call to
unlockNode is the linearization point, we open the precondition and prepare to commit our changes
to the shared state. In particular, we focus on the keyset RA ghost state, as shown in line 13. We
now have all the resources needed to use the rule ks-upd and update both the contents of n in its
fragment from Cn to C ′n and the global contents from C to some C ′ such that Ψω(k,C,C ′, res)

holds. The state that we have now has all the ghost state updated appropriately, so we can fold the
node n as N(n, In, C

′
n). We can then use the specification of unlockNode to give the node n back

to the shared state, and prove the postcondition of cssOp in order to finish the proof.

6.1. THE GIVE-UP TEMPLATE 57

6.1.2 MAINTENANCE OPERATIONS.
The template algorithms we have seen so far cover the core search structure operations search, insert,
and delete. However, real search structures also need maintenance operations in order to function
correctly. For example, in a B+ tree, successive inserts of nearby keys can make a leaf node full,
necessitating a split operation to split the leaf into two. Conversely, practical B+-tree implementa-
tions also have a free-at-empty operation when a node becomes empty. (Classically, B+-trees use
"merges" when neighboring nodes become less than half-full. However, free-at-empty turns out to
be more efficient, because merged nodes tend to be split soon afterwards if, as is common, there are
more inserts than deletes to the structure.) To ensure that these maintenance operations do not inval-
idate any core operations, we must verify that they (a) preserve the invariants of the search structure,
and (b) do not change the contents of the entire structure.

Both these conditions can be expressed in the following specification for an arbitrary mainte-
nance operation maintOp: 〈

C. CSS(r, C)
〉
maintOp r

〈
CSS(r, C)

〉
This triple gives the maintenance operation the permission to modify the search structure CSS(r, C)

as long as it appears, to any other thread, to instantaneously modify the structure to another valid
search structure CSS(r, C) with the same contents. If the maintenance operation operates on locked
nodes, then its proof can again be split between a concurrent proof of the maintOp and a sequential
proof of the operations it performs on locked nodes. We omit these proofs here, but they can be
proved using the same techniques that we have shown so far.

For the give-up template, preserving CSS includes preserving the invariant that the range of
every node is a subset of its inset. In the B+ tree example, the range of the root at any given time is
the entire key space KS. The range of a non-root node n is set to its inset when n is created. If n is
later split or merged, then its range is reduced to the inset it will be at the end of the split or merge.
A thread searching for k might have visited the parent of n before the split began and then might
visit node n after n was split. The thread would then see that the key k is not in the range of n and
give up.

The split operation involves creating a new node, and to show that this does not invalidate any
of the flow-based invariants, we use the following notion.2

Definition 6.1 A flow interface I ′ is a domain extension of interface I , written I b I ′, if and only
if

1. dom(I) ⊆ dom(I ′),

2. ∀n ∈ I. I.in(n) = I ′.in(n), and

3. ∀n′ 6∈ I ′. I.out(n′) = I ′.out(n′).
2Remember, we write I for dom(I) = dom(I.in) when it is clear from context.

58 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

This definition allows I ′ to differ from I by having a larger domain, as long as the new nodes
are fresh and edges from the new nodes do not change the outflow of the modified region. We can
show that replacing an interface with a domain extension is a frame-preserving update in the flow
interface RA:

flowint-dom-upd
I1 b I

′
1 I ′1 ∩ I2 = ∅ ∀n ∈ I ′1 \ I1. I2.out(n) = 0

(•I1 ⊕ I2, ◦I1) {(•I ′1 ⊕ I2, ◦I ′1) | (I1 ⊕ I2) b (I ′1 ⊕ I2)}

We use this lemma in the proof of the split operation to update the flow interface ghost state when
adding the new node.

6.2 THE LINK TEMPLATE
The link template is very similar to the give-up template, and shares much of its proof. While the
link template algorithm might even look simpler than the give-up, for it does not have the inRange
helper function, it is in fact a bit more complicated to prove. This section explains why, and then
shows how to extend the proof of the give-up template to the link template.

6.2.1 INREACH
The main reason the give-up proof does not work for the link template is that without inRange it is
hard to prove that the link template’s traversal stays on track and finds the correct node (i.e. a node
n with k ∈ ks(n)) at the end.

In the absence of concurrent operations (particularly concurrent split operations), this follows
because we start off at the root r, where by definition k ∈ ins(r), and traverse an edge (n, n′) only
when k ∈ es(n, n′), maintaining the invariant that k ∈ ins(n). When a node n has no outgoing edge
having k in its edgeset, we know by definition that k ∈ ks(n).

In the presence of concurrent split operations, the k ∈ ins(n) invariant no longer holds be-
cause the inset of a node n shrinks after a split. For example, Figure 6.8 shows a B-link tree state in
between the half-split and full-split. When the full-split completes and r is linked to n′ (Figure 6.9),
then the inset of n will be reduced from (−∞,∞) to (−∞, 5) as all keys larger than 5 will go from
r directly to n′. This means that an operation looking for a key k > 5 which was at n before the split
will now find itself at a node such that k 6∈ ins(n).

Fortunately, the operation is not lost: if it traverses the link edge, it will arrive at a node with
k in its inset (namely, n′). This means that if we add k back to the inset of n, then we would not be
changing the keyset of any node: k will not be in n’s keyset as it is in the edgeset of the link edge,
and k is already in the inset of n′. Because this quantity is no longer the inset (as k would not arrive
at n in a sequential setting), we call this the inreach of n, written inr(n) (intuitively, this is the set of
keys k that can start at n and, following edges having k in their edgeset, reach the node containing
k in its keyset). Figure 6.8 shows the inreach of each node in its top-right corner; the inreach of y2

6.2. THE LINK TEMPLATE 59

1 2 4

(−∞, 4) (−∞,∞)

y0

4 5

[4, 5) [4,∞)

y1

6 7 8

[5, 8) [5,∞)

y2

8 9

[8,∞) [8,∞)

y3

4 5

(−∞,∞) (−∞,∞)

n

8

[5,∞) [5,∞)

n′

(−∞,∞) (−∞,∞)

r

(−∞
,∞)

(−
∞
, 4
)

[4, 5) (−
∞
, 8
)

[8,∞
)

[5,∞)

[4,∞) [5,∞) [8,∞)

(−∞,∞)

Figure 6.8: An example B-link tree in the middle of a split. Node n was full, and has been half-split
and children y2 and y3 have been transferred to the new node n′ (old edges are shown with dotted lines),
but the complete-split has yet to add n′ to the parent r (the dashed edge). Each node now additionally
contains its inset (see §5.4) in the top left and the inreach (defined in this section) in the top right. The
label with a curved arrow to the top-left of the root is its inflow (explained in §5.4).

is [5,∞) despite its inset’s being only [5, 8) because it can still reach nodes with keys in [8,∞) in
their keyset via link edges.

We define the inreach to be the solution to the following fixpoint equation

∀n ∈ N. inr(n) = in(n) ∪
⋃
n′∈N

es(n′, n) ∩ inr(n′)

where in is any inflow such that in(r) = KS. This may look identical to the definition of inset, but
there is a subtle, but vital, difference: by not constraining the inflow of non-root nodes, we enable the
split operation to add flow to nodes it has split to ensure that their inreach records the fact that they
can still reach keys k that were moved to other nodes. For example, in Figure 6.9 when the full-split
adds the edge (r, n′) and re-routes keys in [5,∞) to take (r, n′) instead of (r, n), then n’s inset is
reduced from (−∞,∞) to (−∞, 5).

Our solution to this is to increase the inflow of n to make up for the removed keys. We will
formally justify this operation in §6.2.3, but at a high-level what we do is increase in(n) from ∅ to
[5,∞), thereby preserving its inreach of (−∞,∞). Intuitively, this operation does not violate any

60 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

1 2 4

(−∞, 4) (−∞,∞)

y0

4 5

[4, 5) [4,∞)

y1

6 7 8

[5, 8) [5,∞)

y2

8 9

[8,∞) [8,∞)

y3

4 5

(−∞, 5) (−∞,∞)

n

8

[5,∞) [5,∞)

n′

5

(−∞,∞) (−∞,∞)

r

(−∞
, 5) [5,∞)

(−
∞
, 4
)

[4, 5) (−
∞
, 8
)

[8,∞
)

[5,∞)

[4,∞) [5,∞) [8,∞)

(−∞,∞)

[5,∞)

Figure 6.9: The B-link tree from Figure 6.8 after the full-split of n has completed. Note that while n’s
inset has been reduced to (−∞, 5), its inreach is preserved at (−∞,∞).

other invariant because the newly added keys [5,∞) are propagated via the link edge to a node that
has those keys in its inset (n′). Thus, this increase in inflow does not change the keyset of any node.

We have one final issue to solve: as it stands, the full-split does not preserve the interface
of the region {r, n, n′} because the outflow to y2 and y3 has increased. For example, the outflow
from n′ to y2 was [5, 8) before the full-split (the edge label in Figure 6.8 is the edgeset, which is
(−∞, 8), but since the inset of n′ is [5,∞), keys below 5 do not arrive at n′ to be part of its inflow).
However, after the full-split, the outflow from n′ to y2 is {[5, 8), [5, 8)}, i.e. the multiset where all
keys in [5, 8) have multiplicity 2. This is because one copy of keys in [5, 8) arrive from the newly
introduced inflow on n, and one copy from r.

The problem is in our encoding of edgesets and inreach in the flow framework:
we had to use multisets instead of sets because sets are not a flow domain. Our so-
lution is to tweak the edge functions from ees(n,n′) := (λX. es(n, n′) ∩X) to ees(n,n′) :=

(λX. {k� (k ∈ es(n, n′) ∩X ? 1 : 0)}), essentially projecting the multiset intersection back to
a set, and preventing multiple copies of keys from being propagated.

We now have an invariant for traverse: k ∈ inr(n). This is true at the root, because KS =

in(r) ⊆ inr(r), and it is preserved during traversal since findNext follows edges with k in the
edgeset. We will ensure that no concurrent operations reduce the inreach of any node by adding an
appropriate constraint to the search structure predicate CSS in §6.2.2.

6.2. THE LINK TEMPLATE 61

inr(In, n) := In.in(n) outs(In) :=
⋃

n′ 6∈dom(In)

outs(In, n
′)

outs(In, n
′) := In.out(n′) ks(In, n) := inr(In, n) \ outs(In, n)

Figure 6.10: The definition of keyset and associated quantities for the link template proof.

inFP(n) := ◦ {n}
γf

inInr(k, n) := ∃R. ◦R
γi(n) ∗ k ∈ R

N(n, In, Cn) := node(n, In, Cn) ∗ ◦(ks(In, n), Cn)
γk
∗ dom(In) = {n}

∗ ½ In
γh(n) ∗ inFP(n)

ϕ(r, I) := V(I) ∧ I.in(r) = KS ∧ I.out = λ0

CSS(r, C) := ∃I. •I
γI ∗ ϕ(r, I) ∗ •(KS, C)

γk
∗ • dom(I)

γf

∗ ∗
n∈dom(I)

(
∃b. lk(n) 7→ b ∗ (b ? True : ∃Cn. N(n, In, Cn))

∗ ◦In
γI ∗ •inr(In, n)

γi(n)

∗ ½ In
γh(n) ∗ dom(In) = {n}

)

Figure 6.11: The definition of CSS used by the link template proof.

We amend the definition of keyset used in the give-up proof accordingly (Figure 6.10). The
inreach is defined to be the flow of each node, the definition of outset is unchanged and the keyset
of each node n is defined to be inr(n) \ outs(n). This means that when findNext returns None, k ∈
inr(n) by the traversal invariant and k 6∈ outs(n) by the specification of findNext. Thus k ∈ ks(n),
which by ks-upd is sufficient to ensure correctness of the decisive operation (the proof is the same
as the one we performed for the give-up template).

6.2.2 PROOF OF THE LINK TEMPLATE
We need to make a few more changes to the give-up proof in order to verify the link template. In
particular, we need to add a few more types of ghost state to capture some of the special behaviour
of the link template.

62 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

{
node(n, In, Cn) ∗ k ∈ inr(In, n)

}
findNext n kv. node(n, In, Cn) ∗

(
v = None ∗ k /∈ outs(In)

∨ v = Some(n′) ∗ k ∈ outs(In, n
′)
)

{
node(n, In, Cn) ∗ k ∈ ks(In, n)

}
decisiveOp ω n kv. node(n, In, C

′
n) ∗

(
v = None ∗ Cn = C′

n

∨ v = Some(v′) ∗Ψω(k, Cn, C
′
n, v

′)
)

node(n, In, Cn) ∗ node(n, I ′n, C′
n) −∗ False

Figure 6.12: Assumptions the link template proof makes on helper functions and implementation-
specific predicates. These are defined and proved by implementations.

Figure 6.11 contains our definition of the search structure predicateCSS and related predicates
that we will use for the link template proof. As with the give-up proof, we use the authoritative
RA of flow interfaces at location γI for the flow-based reasoning, the keyset RA from §4.5 to lift
local updates to global ones, the authoritative RA of sets of nodes (and the accompanying inFP

predicate) to encode the domain of the search structure. But we add two new types of ghost state to
this definition.

First, we use fractional RAs at locations γh(n) for each node n to store one half of the node’s
singleton interface In inside N and the other half inside CSS. Since fractional RAs can be updated
only when both halves are together, this prohibits other threads from modifying the interface of n
when one thread has locked n and removed N(n, In, Cn) from CSS.

Second, we use an authoritative RA of sets of keys, at locations γi(n) for each node n, to
encode the inreach of each node. This RA has similar rules as the authoritative RA of sets of nodes
at location γf (i.e. auth-set-upd, auth-set-snap, and auth-set-upd). In our proofs, we use these rules
so that threads can take snapshots of a node n’s inreach and assert that a given key is in it even
when they have not locked n. We introduce a new predicate inInr(k, n) (defined in Figure 6.11) to
represent the knowledge a thread has about n’s inreach after taking a snapshot as described above.
If a thread owns inInr(k, n), then it knows that k is in the inreach on n. This knowledge is stable
under interference of other threads because in the link template, threads only increase the inreach of
a node.

Before we describe the link template proof, we present the assumptions it makes about its
implementation (summarized in Figure 6.12). Our specifications say that findNext is given a node
n satisfying node(n, In, Cn) and returns None if k is not in the outset of n else Some(n′) such that
k is in the outflow to n′ (by our definition of edge functions, this means k ∈ es(n, n′)). Similarly,

6.2. THE LINK TEMPLATE 63

decisiveOp expects a node node(n, In, Cn) such that k is in the keyset of n. If decisiveOp returns
None then it returns the node unchanged. On the other hand, if it returns Some(v′) then the node
is now node(n, In, C

′
n), and the return value satisfies the search structure specification with respect

to the old and new contents of the node n (Ψω(k,Cn, C
′
n, v
′)). Finally, we assume that the heap

representation predicate node(n, In, Cn) implies that we have ownership of the heap location n; in
particular, we need the property that it cannot be duplicated, hence owning two copies of it implies
False.

We now turn to the template proof, shown in Figure 6.13. Recall that our objective is to
prove the atomic triple for cssOp from Figure 6.1, using the helper function specifications listed in
Figure 6.12 and the lock module specification from Figure 6.2.

The specification of traverse that we prove is almost the same as in the give-up proof, with
the addition of inInr(k, n):

inFP(n) ∗ inInr(k, n) −∗〈
C. CSS(r, C)

〉
traverse r n k

〈
v. CSS(r, C) ∗ N(v, Iv, Cv) ∗ k ∈ ks(Iv, v)

〉
This specification says that if n is in the footprint of the search structure, and k is in the inreach of
n, then traverse operates on the entire search structure and returns a locked node v such that k is
in the keyset of v, while leaving the global contents unmodified.

As before, we start the proof by applying the high-level specification of lockNode from Fig-
ure 6.2. This adds N(n, In, Cn) to the thread-local state. Before we can move on to the call to
findNext, note that findNext’s precondition requires k ∈ inr(In, n) but we have inInr(k, n). The
difference is subtle, but luckily we can convert one to the other using the following lemma that can
be proved from the definitions of the involved predicates and auth-set-valid:

inInr-inr
CSS(r, C) ∗ N(n, In, Cn) ∗ inInr(k, n) −∗ k ∈ inr(In, n)

Since we need the CSS to apply inInr-inr, we open the precondition and apply this rule. This is a
purely logical step that doesn’t modify the shared state, so we can close the precondition again (i.e.
we use au-abort) and get the state shown in line 6. We now have all the resources needed to apply
findNext’s specification (Figure 6.12).

As before, if findNext succeeds, we directly obtain the postcondition of traverse, so we
commit (i.e. this is the linearization point) and complete this branch of the proof. If it fails, then as
before we need to prove the precondition of findNext for n′ for the recursive call. This uses similar
reasoning to the give-up proof, but here we must additionally establish inInr(k, n′). We do this using
the following lemma that says that if k is in the inreach of n and is in the outset from n to n′, then
it must be in the inreach of n′:

inreach-step
CSS(r, C) ∗ N(n, In, Cn) ∗ k ∈ inr(In, n) ∗ k ∈ outs(In, n

′) −∗ k ∈ inr(k, n′)

This lemma can be proved using the definition of inreach and some lemmas of the flow framework
encoding that we described in §6.2.1. Again, we open the precondition to apply this lemma, closing

64 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

1 inFP(n) ∗ inInr(k, n) −∗
〈
C. CSS(r, C)

〉
2 let rec traverse n k =

3
{
inFP(n) ∗ inInr(k, n)

}
4 lockNode n;

5
{
inFP(n) ∗ inInr(k, n) ∗ N(n, In, Cn)

}
6
{
N(n, In, Cn) ∗ k ∈ inr(In, n)

}
7 match findNext n k with

8 | None ->
{
N(n, In, Cn) ∗ k ∈ ks(In, n)

}
9 n

10 | Some n' ->
{
N(n, In, Cn) ∗ k ∈ inr(In, n) ∗ k ∈ outs(In, n

′)
}

11
{
N(n, In, Cn) ∗ inFP(n′) ∗ inInr(k, n′)

}
12 unlockNode n;

{
inFP(n′) ∗ inInr(k, n′)

}
13 traverse n' k

14
〈
v. CSS(r, C) ∗ N(v, Iv, Cv) ∗ k ∈ ks(Iv, v)

〉
15

16
〈
C. CSS(r, C)

〉
17 let rec cssOp ω r k =

18
{
inFP(r) ∗ inInr(k, r)

}
19 let n = traverse r k in

20
{
N(n, In, Cn) ∗ k ∈ ks(In, k)

}
21 match decisiveOp ω n k with

22 | None ->
{
N(n, In, Cn)

}
23 unlockNode n;

{
True

}
24 cssOp ω r k
25 | Some res ->

26
{
node(n, In, C

′
n) ∗Ψω(k, Cn, C

′
n, res) ∗ k ∈ ks(In, n) ∗ · · ·

}
27 (* Linearization point: open precondition *)

28
〈
◦(ks(In, n), Cn)

γk
∗Ψω(k, Cn, C

′
n, res) ∗ k ∈ ks(In, n) ∗ •(KS, C)

γk
∗ · · ·

〉
29

〈
◦(ks(In, n), C′

n)
γk
∗Ψω(k, C,C′, res) ∗ •(KS, C′)

γk
∗ · · ·

〉
(* By KS-UPD *)

30
〈
N(n, In, C

′
n) ∗ CSS(r, C′) ∗Ψω(k, C,C′, res)

〉
31 unlockNode n;

32
〈
CSS(r, C′) ∗Ψω(k, C,C′, res)

〉
(* Prove postcondition, commit *)

33
{

True
}

34 res

35
〈
v. CSS(r, C′) ∗Ψω(k, C,C′, v)

〉
Figure 6.13: The link template algorithm with a proof outline.

6.2. THE LINK TEMPLATE 65

it again without modifying it. We can then use the high-level specification of unlockNode to return
the node n, and obtain the postcondition of traverse by using induction on the recusrive call.

The cssOp operation begins with a call to traverse on line 19. To satisfy traverse’s pre-
condition, we need to open the precondition and take a snapshot of the global footprint (using auth-
set-snap and ϕ(r, I)⇒ r ∈ dom(I)), obtaining inFP(r). Also, ϕ(r, I)⇒ k ∈ inr(Ir, r) so we also
take a snapshot of r’s inreach at ghost location γi(r) to add inInr(k, r) to our context. The resulting
context is depicted in line 18.

To call traverse we also need CSS(r, C), so we need to open the precondition again. This
is allowed because since traverse has an atomic triple, it behaves atomically and we can open
atomic preconditions (i.e. use au-abort and au-commit) around calls to it. After traverse returns,
we add its postcondition in line 14 to our context (minus CSS(r, C), which needs to be given back
to re-establish cssOp’s precondition since we do not commit here). The next step is the call to
decisiveOp, for which we already have the precondition in our context.

We then look at the two possible outcomes of decisiveOp. In the case where it returns None,
our context is unchanged, so we execute unlockNode using the N(n, In, Cn) in our context. We can
use the specification of cssOp on the recursive call on line 24 to complete this branch of the proof.

On the other hand, if decisiveOp succeeds, we get back a modified node node(n, In, C
′
n)

with new contents C ′n that satisfies the search structure specification Ψω(k,Cn, C
′
n, res) locally

(line 26). We now need to show that this modification results in cssOp’s postcondition; this is es-
sentially the linearization point of this algorithm.

To do this, we again open the atomic precondition CSS(r, C). We now have the context in
line 28 (we have also expanded N(n, In, C

′
n)), and now we can apply our ghost update ks-upd to

update the global contents and get the context in line 29. In particular, we have Ψω(k,C,C ′, res)

and CSS(r, C ′), which allows us to “commit” and establish the postcondition. We finally apply the
specification of unlockNode using the remaining N(n, In, C

′
n), and complete the proof.

6.2.3 MAINTENANCE OPERATIONS.
As with the give-up, maintenance operations for the link technique need to be proved separately.
The specification for a maintenance operation maintOp is the same:

〈
C. CSS(r, C)

〉
maintOp r

〈
CSS(r, C)

〉
Again, this triple gives the maintenance operation the permission to modify the search structure
CSS(r, C) as long as it instantaneously modifies the structure to another valid search structure
CSS(r, C) with the same contents. While we once again omit the full proofs here, we describe
them at a high-level below and show the new lemmas needed.

For the B-link tree, the maintenance operations are the half-split, full-split, and merge. The
interesting part of their proofs is in showing that they do not decrease the inreach of any node, which
for the half-split and merge is easy to do. The half-split also requires us to reason about the creation

66 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

of a new node, which we do using the domain extension notion (Definition 6.1) and frame-preserving
update from §6.1.2.

For the full-split, we have discussed how we need a frame-preserving update that allows in-
creasing the inflow of nodes that allows us to show that the full-split preserves the inreach of all
modified nodes. This is formally justified by a notion of interface extension that allows increasing
the inflow of the modified region. Note that this definition is only for flow domains that are positive
monoids (Chapter 3), which is true of the flow domain that we use, multisets of keys.

Definition 6.2 Given a positive flow domain, a flow interface I ′ is an inflow extension of interface
I , written I 4 I ′, if and only if

1. dom(I) = dom(I ′),

2. ∀n ∈ I. I.in(n) ≤ I ′.in(n), and

3. I.out ≡ I ′.out .

This definition allows I ′ to differ from I by having a larger inflow, as long as the domains and
the outflow of the of the modified region are exactly the same. Similarly, we can show that replacing
an interface with an inflow extension is a frame-preserving update in the flow interface RA:

flowint-inf-upd
I1 4 I

′
1 the flow domain is positive

(•I1 ⊕ I2, ◦I1) {(•I ′1 ⊕ I2, ◦I ′1) | (I1 ⊕ I2) 4 (I ′1 ⊕ I2)}

We use this lemma in the full-split to update the flow interface ghost state in such a way as to preserve
the inreach of all modified nodes.

6.3 THE LOCK-COUPLING TEMPLATE
The lock-coupling template (Figure 6.14) uses the hand-over-hand locking scheme to ensure that
no thread is negatively interfered with while it is on its traversal. Unlike the other two templates in
this chapter, every thread always holds at least one lock while traversing from one node to the next.
This means that no other thread can overtake this thread, or perform any modification that would
invalidate this thread’s search.

This template can be instantiated to an implementation that uses a sorted singly-linked list,
where each node contains a single key. Insert operations create a new node and link the node into
the appropriate position of the list, while delete operations unlink the node containing the operation
key from the list by swinging the pointer from the predecessor node to the successor node (as shown
in Figure 5.1).

The lock-coupling technique is a simpler and less efficient concurrency technique. It can be
proved, on paper at least, using the standard conflict-preserving serializability technique [Bernstein

6.4. VERIFYING IMPLEMENTATIONS 67

1 let rec traverse p n k =
2 match findNext n k with
3 | None -> (p, n)
4 | Some n' ->
5 unlockNode p;
6 lockNode n;
7 traverse n n' k

8 let rec searchStrOp ω r k =
9 lockNode r;

10 match findNext r k with
11 | None -> searchStrOp ω r k
12 | Some n ->
13 let (p, n) = traverse r n k in
14 let res = decisiveOp ω p n k in
15 unlockNode p;
16 unlockNode n;
17 res

Figure 6.14: The lock-coupling template algorithm. Like all our templates, the main method is cssOp
and traverse is an auxiliary method used for recrusive traversal.

et al., 1987]. Thus, we omit the details of its proof using our technique here. The full proof is available
online in our public repository of machine-checked proofs (see §6.5), along with the other proofs in
our book.

6.4 VERIFYING IMPLEMENTATIONS
To obtain a verified implementation of one of the templates, one needs to specify the concrete rep-
resentation of a node by defining the node predicate and provide code for the helper functions that
satisfies the specifications assumed by the template in question. For example, to verify an implemen-
tation of the give-up template, one needs to provide implementations for node, inRange, findNext,
and decisiveOp that satisfy the assumptions listed in Figure 6.5.

Wewould like to re-emphasize that these specifications use sequential Hoare triples and assert
ownership of only locked nodes. Thus, if their implementations are sequential code, we can verify
them using an off-the-shelf separation logic tool that can verify sequential heap-manipulating code.
Such tools typically provide better automation, and can help speed up the verification process.

In the next section we will discuss the tools we used and the implementations we verified for
each of the three template algorithms seen in this chapter.

6.5 PROOF MECHANIZATION AND AUTOMATION
This section evaluates the techniques presented so far by mechanically verifying the three template
algorithms from this chapter and some real-world implementations based on them. Our case studies
are summarized in Figure 6.15.

We verify the give-up, link, and lock-coupling template proofs that were described above.
These proofs have been mechanically checked using the Coq proof assistant, building on the for-
malization of Iris [Jung et al., 2015]. The proofs parameterize over the implementation of the helper
functions (e.g. decisiveOp, findNext, etc.) and the heap representation predicate node.

68 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

Implementations
Hash table (give-up)

B+ tree

Lock coupling list

B-link tree

Hash table (link)

Templates

Give-up

Lock coupling

Link

Abstract spec.

Set ADT

code
sharing

Figure 6.15: The templates and implementations in our case studies. The arrows indicate that all three
templates satisfy the abstract specification of a Set ADT (as defined in Figure 6.1), and link implemen-
tations to the template that they instantiate.

For the link and give-up templates, we have derived and verified implementations based on B-
trees and hash tables. In particular, we verify the B-link tree implementation described in Chapter 2.
For the lock-coupling template we have considered a sorted linked list implementation.

These concrete implementations have been verified using the separation logic based deduc-
tive program verifier GRASShopper [Piskac et al., 2014]. As the tool uses SMT solvers to largely
automate the verification process, this provided us with a substantial decrease in effort. While we do
not have, as of now, a formal proof for the transfer of proofs between Iris and GRASShopper, note
that Iris is expressive enough to support all the reasoning that we do in GRASShopper, but comes
with significant additional manual effort.

Our verification effort includes a mechanization of the meta-theory of flows [Krishna et al.,
2020b] (i.e. that flow interfaces form an RA). Our formalization is parametric in the flow domain (i.e.
the underlying cancellative, commutative monoid). We also provide instantiation of the meta-theory
for the specific flow domains used in our proofs (e.g. multisets). We have duplicated this effort in
Iris/Coq and GRASShopper in order to make the two parts of our verification self-contained. The
formalization is available as two standalone libraries that can be reused for other flow-based proofs
in these systems.

In addition to the helper functions of each data structure that are assumed by the templates, we
have also verified the split operations for B-link trees. The B-link tree uses a two-part split operation:
a half-split that creates a new node, transfers half the contents from a full node to this new node,
and adds a link edge; and a full-split that completes the split by linking the original node’s parent
to the new node. For the split operations, we assume a harness template for a maintenance thread
that traverses the data structure graph to identify nodes that are amenable to half splits. While we
have not verified this harness, we note that it is a variation of our lock-coupling template where the
abstract specification leaves the contents of the data structure unchanged. For the implementations
of half and full splits, we verify that the operation preserves the flow interface of the modified region
as well as its contents.

The full development of our mechanization effort is available online at
https://github.com/nyu-acsys/template-proofs/tree/css_book.

https://github.com/nyu-acsys/template-proofs/tree/css_book

6.5. PROOF MECHANIZATION AND AUTOMATION 69
Table 6.1: Summary of templates and instantiations verified in Iris/Coq and GRASShopper. For each
algorithm or library, we show the number of lines of code, lines of proof annotation (including specifi-
cation), total number of lines, and the proof-checking / verification time in seconds.

Module Code Proof Total Time
Templates (Iris/Coq)
Flow library 0 2803 2803 114
Link template 14 487 501 55
Give-up template 18 390 408 49
Lock-coupling template 26 980 1006 238
Total 58 4660 4718 456
Implementations (GRASShopper)
Flow library 0 721 721 9
Array library 143 320 463 9
B+ tree 63 99 162 21
B-link (core) 85 161 246 36
B-link (half split) 34 192 226 94
B-link (full split) 17 137 154 697
Hash table (link) 54 99 153 10
Hash table (give-up) 60 138 198 13
Lock-coupling list 59 300 359 51
Total 515 2167 2682 940

Table 6.1 provides a summary of our development. Experiments have been conducted on a
laptop with an Intel Core i7-5600U CPU and 16GB RAM. We split the table into one part for the
templates (proved in Coq) and one part for the implementations (proved in GRASShopper). We note
that for the B-link tree, B+ tree and hash table implementations, most of the work is done by the array
library, which is shared between all these data structures. The size of the proof for the lock-coupling
list and maintenance operations is relatively large. The reason is that these involve the calculation
of a new flow interface for the region obtained after the modification. This requires the expansion of
the definitions of functions related to flow interfaces, which are deeply nested quantified formulas.
GRASShopper enforces strict rules that limit quantifier instantiation so as to remain within certain
decidable logics [Bansal et al., 2015, Piskac et al., 2013]. Most of the proof in this case involves
auxiliary assertions that manually unfold definitions. The size of the proof could be significantly
reduced with a few improved tactics for quantifier expansion [Leino and Pit-Claudel, 2016].

It is difficult to assess the overall time effort spent on verifying the link template algorithm,
which was the first algorithm that we considered. The reason is that we designed our verification
methodology as we verified the template. However, with all the machinery now in place, our ex-

70 6. VERIFYING SINGLE-COPY CONCURRENT TEMPLATES

perience is that verifying a new template algorithm is a matter of a few hours of proof effort. In
fact, adapting the link template proof to the give-up template was straightforward and required only
minor changes. Our experience with adapting implementation proofs is similar.

We believe that our case studies are representative of real-world applications and that our
methodology can be widely applied. The template algorithms that we have verified focus on lock-
based techniques with fixed linearization points inside a decisive operation. In fact, many real-world
applications perform better using lock-based algorithms instead of lock-free algorithms as the latter
tend to copy data more3. On the other hand, our methodology does not require locking, and can
be extended to prove lock-free algorithms such as the Bw-tree [Levandoski and Sengupta, 2013]
(The Bw-tree is an example of a multi-copy search structure, which we examine in Chapter 7).
While our methodology can, in theory, be applied to any search structure implementation, there are
implementations that use very specific concurrency techniques that cannot be used by other heap
representations (e.g. Harris’ list [Harris, 2001]; see §10.2 for a discussion of the Harris list). Our
technique would give us a “single-use” template in such cases, but this would still structure the proof
and make it simpler to construct and verify.

3For instance, Apache’s CouchDB uses a B+ tree with a global write lock; BerkeleyDB, which has hosted Google’s account
information, uses a B+ tree with page-level locks in order to trade-off concurrency for better recovery; and java.util.concurrent’s
hash tables lock the entire list in a bucket during writes, which is more coarse-grained than the one we verify.

71

C H A P T E R 7

Verifying Multicopy Structures
7.1 OVERVIEW

In Chapter 6 we demonstrated how to simplify the verification of concurrent search structures by
abstracting the common concurrency algorithms underlying diverse implementations such as B-trees
and hash tables into templates that can be verified once and for all. The template algorithms we have
considered so far handle only search structures that perform all operations on keys in place. That is,
an operation on key k searches for the unique node containing k in the structure and then performs
any necessary updates on that node. Since every key occurs at most once in the data structure at any
given moment, we refer to these structures as single-copy structures.

Single-copy structures demonstrate good read performance. However, some applications,
such as event logging, favor write performance over read performance, possibly at the cost of in-
creased memory overhead. This demand is met by data structures that store updates to a key k out
of place at a new node instead of overwriting a previous copy of k that was already present in some
other node. Performing out-of-place updates can improve write performance because the updates
can be done in constant time (e.g., always at the head of a list). A consequence of this design is that
the same key k can now be present multiple times simultaneously in the data structure. Hence, we
refer to these structures as multicopy structures.

Multicopy structures are commonly used in scenarios where the search structure is spread over
multiple media such as memory, solid-state drives, and hard disk drives. Each medium necessitates
a different data structure to make use of its particular characteristics. We thus have a data structure
composed of data structures. In this chapter, we treat the inner data structures as nodes, and study
template algorithms for the outer data structure. Inner data structures are single-copy search struc-
tures, and so the algorithms and proof techniques studied in the previous chapters can be applied to
them.

Examples of multicopy structures include the differential file structure [Severance and
Lohman, 1976], log-structured merge (LSM) tree [O’Neil et al., 1996], and the Bw-tree [Levan-
doski et al., 2013]. The differential file structure and LSM tree, in particular, can be tuned by im-
plementing workload- and hardware-specific data structures at the node level. In addition, research
has been directed towards optimizing the layout of nodes and developing different strategies for the
maintenance operations used to reorganize these data structures. This has resulted in a variety of im-
plementations today (e.g. [Dayan and Idreos, 2018, Raju et al., 2017, Thonangi and Yang, 2017, Wu
et al., 2015]. For a comprehensive review of the literature on LSM trees, see [Luo and Carey, 2020]).

72 7. VERIFYING MULTICOPY STRUCTURES

Despite the differences between these implementations, they generally follow the same high-level
algorithms for the core search structure operations.

In the following chapters, we derive template algorithms for such concurrent multicopy struc-
tures from high-level descriptions of their operations. These templates can then be instantiated to
the differential file and LSM tree implementations. We further show how the flow framework can
be used to prove their correctness. A new technical challenge that we need to address here is that the
multicopy design complicates the linearizability proof: in a multicopy structure, the logical value of
a key k is defined as the value associated with the latest copy of k.

However, a thread T searching for the value associated with k may be unaware of updates to
that value that have happened after T started its search. As a consequence, T may return a value
that is not associated with the latest copy of k at the time of return. This by itself does not violate
correctness as long as the copy of k that T operated on was the latest copy at some point in time
after T started its search - a property we refer to as search recency.

The correctness argument is now more involved, however, because T ’s linearization point is
no longer a fixed step in its decisive operation (as was the case for the templates we have considered
so far) but can be some point during the preceding data structure traversal. In general, the lineariza-
tion point thus depends on the history of the computation and the interference of other threads. We
propose an appropriate flow domain and flow to track such history information in a local proof of
the search recency property.

In the remainder of this chapter, we will describe the differential file structure [Severance and
Lohman, 1976] and LSM tree [O’Neil et al., 1996] in more detail. We will then derive an abstract
notion ofmulticopy structures similar to the abstract single-copy structures in the edgeset framework.
We further provide general atomic specifications for the operations onmulticopy structures and show
that any concurrent multicopy template algorithm that obeys these specification is linearizable. In
chapters 8 and 9 we then discuss two template algorithms that generalize differential file structures
and LSM trees, respectively, and prove that they satisfy the desired specifications.

7.2 DIFFERENTIAL FILE STRUCTURES
The differential file structure is one of the earliest examples of a key-value store that allows out-of-
place updates. The structure stores the data in amain file on disk. However, when key-value pairs are
inserted or deleted, the changes are first recorded in a differential file in memory instead ofmodifying
the main file directly. In the following, we will refer to the differential file as the root node and the
main file as the disk node of the data structure. Figure 7.1 shows a potential state of a differential
file structure with root node r and disk node n.

The insert and delete operations are performed by a single generic operation referred to as
an upsert. The upsert operation takes a key-value pair (k, v) and inserts it into the root node. If an
entry (k, v′) already exists in that node, then v′ is replaced by v. Otherwise, the new pair is inserted.
To delete a key k from the structure, one upserts the pair (k,�) where � is a dedicated tombstone
value used to indicate that k has been deleted.

7.2. DIFFERENTIAL FILE STRUCTURES 73

(k1, d)
(k3,�)

r

(k1, a)
(k2, b)
(k3, c)

n

memory disk

Figure 7.1: A differential file structure

r

(k1, d)
(k2, b)
(k3,�)

n

memory disk

Figure 7.2: A differential file structure obtained after reorganizing data in Fig 7.1

When searching for the value associated with a given query key k, the search thread consults
the root node first. If k is not found, then the thread proceeds to the disk node. For instance, a search
for key k2 on the differential file structure in Fig. 7.1 will return b, while a search for k3 will return
� indicating that k3 has been deleted.

Periodically (e.g., after a certain time period or when the root node becomes full), a mainte-
nance operation reorganizes the structure by moving the contents of the root node to the disk node,
leaving the root node empty so it can begin collecting changes once again. In case of a conflict when
moving the data, i.e. if a copy of key k exists in both nodes, then the copy in the root node is kept as
it is more recent. Figure 7.2 shows the structure obtained after reorganizing the structure shown in
Fig. 7.1. Here, the copy (k3,�) in the root node is kept over (k3, c) in the disk node.

Each of the two nodes is itself implemented as a single-copy structure that may itself consist of
many (sub)nodes. How these node-level data structures are implemented depends on the underlying
storage medium and the sequential or concurrent algorithm used. If a concurrent algorithm is used,
it could be verified using the single-copy templates from previous chapters.

In the case of a differential file structure, all updates, inserts, and deletes happen at the root.
The disk node is read-only except when maintenance operations take place during which time it is
exclusively locked and is updated using a sequential process. In the remainder of our discussion,
we will therefore treat node-level operations abstractly as atomic operations on the set of key-value
pairs stored in a node and focus our attention on concurrency of the top-level structure, which in this
case consists of the root and disk nodes, but which we will generalize in the next section.

74 7. VERIFYING MULTICOPY STRUCTURES

7.3 LOG-STRUCTURED MERGE TREES
Modern LSM (Log-Structured Merge) tree implementations have evolved out of differential file
structures. They target applications that require high write performance such as file systems for
storing transactional log data. The LSM tree can be seen as a generalization of the differential file
structure, in the sense that it replaces the single disk node n with a list of disk nodes n1, n2, . . . , nl.
Fig. 7.3 shows an example. As in the case of differential file structures, the implementation of the
node-level structures can depend on the storage medium. Most modern implementations use skip
lists for memory nodes and sorted string tables of fixed size for the nodes stored on disk. 1 The size
of the disk nodes typically increases exponentially as one moves down the list (i.e. further from the
root).

The upsert and search operations essentially follow the same idea as in the differential file
structure. The upsert operation takes place at the root node r. A search for a query key k traverses the
list starting from the root node and retrieves the value associated with the first k that is encountered.
If the retrieved value is � or if no entry for k has been found after traversing the entire list, then
the search determines that k is not present in the data structure. Otherwise, it returns the retrieved
value. For instance, a search for key k1 on the LSM tree depicted in Fig. 7.3 would determine that
this key is not present since the retrieved value is � from node n1. Similarly, k4 is not present since
there is no entry for this key. On the other hand, a search for k2 would return d and a search for k3
would return c.

To prevent the root node from growing too large, the LSM tree performs flushing. As the name
suggests, the flushing operation flushes the data from the root node to the disk by moving its contents
to a newly created disk node. Figure 7.4 shows the LSM tree obtained from Fig. 7.3 after flushing
the contents of r to the new disk nodem.

To prevent the list from growing too long, the LSM tree performs compaction. The compaction
operation merges the data from two (or more) nodes in the disk and replaces them with a single one.
During the merge, if a key is present in more than one of the merged nodes, then the most recent
(closer to the root) copy is kept, while stale copies are discarded. Figure 7.5 shows the LSM tree
obtained from Fig. 7.3 after compacting nodes n1 and n2 to the new node m. Here, the copy of k2
in n2 has been discarded.

As is the case for differential file structures, the net effect of all these operations is that the
logical value of key k is the most recently upserted value associated with key k.

7.4 MULTICOPY STRUCTURES
Analogous to the verification methodology described in Chapter 6, we abstract away from the data
organization within the nodes, and treat the data structure as consisting of nodes in a mathematical
directed acyclic graph. In current implementations and in our proof, this graph is a list, but the gen-
eralization to a directed graph is straightforward. Moreover, we will abstract from the concrete data
1RocksDB [Facebook, 2020], LevelDB [Google, 2020] and Apache HBase [Apache Software Foundation, 2020b] all use variants
of concurrent skip list for in-memory data structure and SSTables for disk storage.

7.4. MULTICOPY STRUCTURES 75

(k2, d)

r

(k1,�)
(k2, b)

n1

(k2, a)
(k3, c)

n2

(k1, c)
(k3, b)

n3

memory disk

Figure 7.3: Top-level structure of an LSM tree

r

(k2, d)

m

(k1,�)
(k2, b)

n1

(k2, a)
(k3, c)

n2

(k1, c)
(k3, b)

n3

memory disk

Figure 7.4: LSM tree obtained from Fig. 7.3 after flushing node r to disk

(k2, d)

r

(k1,�)
(k2, b)

n1

(k2, a)
(k3, c)

n2

(k1, c)
(k3, b)

n3

(k1,�)
(k2, b)
(k3, c)

m

memory disk

Figure 7.5: LSM tree obtained from Fig. 7.3 after compacting nodes n1 and n2

values associated with the keys in the data structure to keep the presentation simple. However, since
multiple copies of any key k can be present in different nodes of the data structure simultaneously,
we need a mechanism to differentiate between these copies. We therefore represent the entries of the
contents of the data structure as pairs (k, t) where t is a timestamp uniquely identifying the point
when this copy of k was upserted. We use a single global clock for this purpose. For example, (k3, 4)

was upserted after (k2, 3), which was upserted after (k3, 1).

76 7. VERIFYING MULTICOPY STRUCTURES

k1 ⊥
k2 7
k3 ⊥

r

k1 6

k2 5
k3 ⊥

n1

k1 ⊥
k2 3
k3 4

n2

k1 2

k2 ⊥
k3 1

n3

Figure 7.6: Abstract multicopy data structure graph for the LSM tree in Fig. 7.3.

Formally, let KS be the set of all keys. A multicopy structure is a directed acyclic graph
G = (N,E) with nodes N and edges E ⊆ N ×N . We assume that there is a dedicated root node
r ∈ N which uniquely identifies the structure (in case there are multiple instances that threads may
operate on simultaneously). Each node n of the graph is labelled by its contents Cn : KS→ N⊥,
which is a map from keys to timestamps (N⊥ := N] {⊥}). For a node n and its contents Cn, we
say (k, t) is in the contents of n if Cn(k) = t. We denote the absence of key k in n by Cn(k) = ⊥.
As usual, for each edge (n, n′) ∈ E in the graph, the edgeset es(n, n′) is the set of keys for which an
operation arriving at a node n traverses (n, n′). We require that the edgesets of all outgoing edges
of a node n are pairwise disjoint. Figure 7.6 shows a potential abstract multicopy structure graph
consistent with the LSM tree depicted in Fig. 7.3. Here, all edges have edgeset KS. Observe that at
this level of abstraction, we do not distinguish among insertions, updates, and deletions. Instead, we
record the timestamp of the upsert for each copy of a key.

Sequential specification. As our goal is to prove linearizability of concurrent multicopy structure
templates, we need a specification for a hypothetical sequential implementation that we take as the
baseline of our verification. In principle, the desired sequential specification is that of a map ADT,
i.e., the abstract contents of the data structure is a partial mathematical mapM from keys to values.
A search r k returns the valueM(k) associated with the operation key k and an upsert r k v up-
datesM toM [k� v], associating k with the given value v. However, attempting to prove such a
specification directly is difficult due to the fact that concurrent searches can actually return old values
that are not consistent with the data structure’s current abstract contents. We solve this problem by
using the timestampwhen an upsert operation takes effect in lieu of the value that is being upserted.
That is, we view a multicopy structure abstractly as a map from keys to timestamps. In particular,
when proving linearizability, this will allow us to reorder concurrent searches appropriately based
on the timestamp that they return. This simplifies the correctness argument. One can easily recover
a specification in terms of key/value maps by tracking the upserted values alongside the timestamps
of the upsert. We omit this step from our discussion as it does not provide any substantial insight.

To formalize the above idea, we extend the ordering on natural numbers to N⊥ by defining
⊥ < n for alln ∈ N. The logical (timestamp) contents of amulticopy structure is themapM : KS→
N⊥ that associates every key with its latest copy in the structure:

M(k) := max {t | ∃n ∈ N. Cn(k) = t}

We callM(k) the logical timestamp of key k. Note thatM(k) = ⊥ indicates that no copy of k exists
in the structure, i.e. k has not been upserted so far.

7.4. MULTICOPY STRUCTURES 77

Now suppose thatMCS(r, t,M) is a predicate that abstracts the state of a multicopy structure
with root r by its logical contents M as well as the current value t of the global clock. We then
require that search and upsert respect the following sequential specifications:

∀t,M.
{
MCS(r, t,M)

}
upsert r k

{
MCS(r, t+ 1,M [k� t])

}
(7.1)

∀t,M.
{
MCS(r, t,M)

}
search r k

{
t′. MCS(r, t,M) ∗M(k) = t′

}
(7.2)

The sequential specification of upsert updates the logical timestamp of k to the current global clock
value and increments the global clock. Similarly, the specification of search expresses that search
returns the logical timestamp of its query key.

Unfortunately, we cannot just turn these sequential specifications into corresponding atomic
triples that we can then use to verify concurrent template algorithms for multicopy structures. The
problem is that, in contrast to the single-copy structures that we have considered so far, the lin-
earization point of search is not fixed at the moment that a thread reaches its decisive operation,
but depends on the upserts performed by concurrently executing threads. If we attempted to con-
vert (7.2) directly into an atomic triple, this issue would be reflected in the proof of search in the
form of non-fixed commit points of this atomic triple. While Iris provides mechanisms for reason-
ing about non-fixed commit points, the subset of the logic that we have been using in this book is
ill-equipped to handle this additional proof complexity.

Rather than introducing advanced Iris features to deal with this situation, we derive alternative
atomic specifications for the multicopy structure operations that require reasoning only about fixed
commit points. However, this simplification comes at a small price: we have to relate the two types
of specifications using a meta-level correctness argument that we prove only on paper.

Atomic specification: search recency. We start with an example that illustrates the issue of the
dynamic linearization points of search. Consider a thread T1 that starts a search for key k3 in the
multicopy structure depicted in Fig. 7.6. Since k3 is not contained in the root node r, T1 will proceed
to the first disk node n1. Suppose that at this point another thread T2 concurrently upserts k3 into the
root node, say with timestamp 8. After T2 completes its upsert, T1 continues its search, proceeding
to node n2 where it finds an entry for k3 and returns the associated timestamp 4 (and, in a full
key-value implementation, the value associated with the upsert at timestamp 4). However, at this
point we have M(k3) = 8. Thus, this execution seemingly violates the postcondition of search’s
sequential specification given above. Nevertheless, the execution is still linearizable. In particular,
we can choose the start of T1 as its linearization point since we haveM(k3) = 4 at this point, thus
satisfying the postcondition of search. On the other hand, if we consider an alternative interleaving
of the two thread’s executions where thread T2 completes its upsert before T1 inspects the root node,
but after T1 starts its search, then T1 will return 8 and its linearization point is the point when it reads
the entry for k3 in r. Thus, the choice of the linearization point of search depends on the relative
speeds of concurrent upserts and searches.

78 7. VERIFYING MULTICOPY STRUCTURES

More generally, we will see that search(k) is linearizable if it either returns the logical times-
tamp associated with k at the point when the search started, or any other copy of k that was upserted
between the search’s start time and the search’s end time. We refer to this property as search recency.

A formal specification of search that captures the search recency property needs to relate the
return value of search to the copies of the query key k that were concurrently upserted while the
search executed. Our abstraction of a multicopy structure in terms of its logical contentsM is not
well-suited for this purpose because it loses too much information about the data structure’s state:
the logical contents tracks only the latest copies of keys but not stale copies that were previously
upserted and that an ongoing search may still access.

We therefore first move to a slightly more low-level abstraction. To this end, we define the
upsert history H ⊆ KS× N⊥ of a multicopy data structure as the set of all copies (k, t) that have
been upserted thus far in the entire history of the computation. In particular, this means that any
template algorithm will have to maintain the invariant H ⊇

⋃
n∈N Cn. We further define H̄ :=

λk. max {t | (k, t) ∈ H}. Since the data structure must always contain the latest copy of a key that
was upserted, H̄ coincides with the logical contentsM .

Assume that, similar to MCS(r, t,M), we are given a template-specific predicate
MCS(r, t,H) that abstracts the state of a multicopy structure by its upsert history H and the cur-
rent value t of the global clock. The desired atomic specification of upsert in terms of the new
abstraction is simply:〈

tH. MCS(r, t,H)
〉
upsert r k

〈
MCS(r, t+ 1, H ∪ (k, t))

〉
(7.3)

To derive the atomic specification of search, first note that because H collects all copies of
keys that have been upserted thus far, at the point when the returned timestamp t′ of a search is
determined, we must necessarily have (k, t′) ∈ H for the search to be correct. In addition, we need
to capture that t′ is either the logical timestamp of k at the start of the search or t′ is a time point of an
upsert for k that happened after the search started. To express this constraint, we assume an additional
template-specific abstract predicate mcs_sr(k, t0). This predicate must hold at the invocation point
of search and imply that t0 is the logical timestamp of k at that point. The atomic specification of
search that captures the search recency property is then as follows:

mcs_sr(k, t0) −∗〈
tH. MCS(r, t,H)

〉
search r k

〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉 (7.4)

This new specification solves our problem of having to reason about non-fixed commit points when
proving the atomic triple. That is, in the proof of search, we can now always commit the atomic
triple at the point when the return value of the search is determined, i.e., when (k, t′) ∈ H is estab-
lished. This point is independent of the concurrently executing upserts.

The following theorem relates the two types of specifications at themeta-level to obtain the de-
sired overall correctness result. It is based on the observation that a concurrent execution of upsert
and search operations that satisfy the atomic specifications (7.3) and (7.4) can be linearized by

7.4. MULTICOPY STRUCTURES 79

letting the upserts in the equivalent sequential execution occur in the same order as their atomic
commit points in the concurrent execution, and by letting each search r k occur at the earliest time
after the timestamp referenced by the returned copy t′ of k. That is, if the timestamp t0 associated
with k at the time search begins is equal to t′ then search occurs right after its invocation in the
concurrent execution. Otherwise, if t0 < t′, then it occurs right after t′ was upserted.

Theorem 7.1 Any multicopy structure whose operations satisfy the low-level atomic specifications
is linearizable with respect to the high-level sequential specifications.

Proof. Assume that we have a multicopy structure whose operations satisfy the atomic specifica-
tions (7.3) and (7.4). Assume further that the structure is initialized with root r satisfying abstract
state MCS(r, 0, H0) where t0 = 0 and H0 = {(k,⊥) | k ∈ KS}.

To relate the low-level atomic specifications with the high-level sequential specifications of
the multicopy structure operations, we first defineMCS(r, t,M) in terms ofMCS(r, t,H):

MCS(r, t,M) := ∃H.MCS(r, t,H) ∗M = H̄

Now consider a concurrent history of operations {opi r ki}i∈[1,n] for n ≥ 0 with opi ∈
{search, upsert}. Further for every opi = search, assume that mcs_sr(ki, t0,i) held at the point
when opi r ki was invoked and let t′i be the return value of that search. Finally, assume that all opera-
tions are ordered by the time point when the unique commit point of their low-level atomic triples are
reached (i.e., when the operation took effect). We show that this history can be linearized by appro-
priately reordering operations such that each operation satisfies the sequential specifications (7.1)
and (7.2) after reordering.

First, it follows from the atomic specifications that, at the commit point of opi r ki, we must
have MCS(r, ti, Hi) where ti = ti−1 and Hi = Hi−1 if opi = search, respectively, ti = ti−1 + 1

andHi = Hi−1 ∪ {(ti−1, ki)} if opi = upsert. Moreover, since only upserts modify the abstract
state and the clock is incremented with every upsert, opi = upsert implies max(Hi−1)(ki) <

ti−1. In the following, we further letMi := max(Hi) for all i ∈ [1, n].
We first show that upserts do not need to be reordered relative to each other since they always

satisfy their sequential specifications. That is, suppose opi = upsert for some i ∈ [1, n], then we

80 7. VERIFYING MULTICOPY STRUCTURES

have:

Mi = max(Hi)

= max(Hi−1 ∪ {(ki, ti−1)})
= λk.max {t | (k, t) ∈ Hi−1 ∪ {(ki, ti−1)}}
= λk.k = ki ? max {t | (k, t) ∈ Hi−1 ∪ {(ki, ti−1)}} :

max {t | (k, t) ∈ Hi−1 ∪ {(ki, ti−1)}}
= λk. (k = ki ? ti−1 : max {t | (k, t) ∈ Hi−1}) (max(Hi−1)(ki) < ti−1)

= λk. (k = ki ? ti−1 : max(Hi−1)(k))

= max(Hi−1)[ki� ti−1]

= Mi−1[ki� ti−1]

Hence, the postcondition of (7.1) holds after opi returns.
Now suppose opi = search. First note that because searches do not modify the abstract state,

they can be safely reordered without affecting the other operations. Next observe that, according to
(7.4), we know that t0,i ≤ t′i and t′i ∈ Hi. Hence, there must exist a unique opj for some j ∈ [1, i)

that upserted ki at time point t′i. That is, tj = t′i, kj = ki and therefore Hj+1 = Hj ∪ {(ki, t′i)}.
We distinguish two subcases. First, assume tj > t0,i, i.e., opj took effect after opi r ki was

invoked. In this case, we can place opi anywhere after opj but before the next upsert operation in
the sequence. We know that MCS(r, tj+1, Hj+1) holds before opi is executed at its new place in
the sequence. Moreover, since max(Hj)(ki) < tj , we have max(Hj+1)(ki) = tj = t′i and hence
mcs_sr(ki, t′i) also holds. Now executing opi sequentially yields, according to (7.4), some t′ such
that (ki, t

′) ∈ Hj+1 and t′i ≤ t′. However, since (ki, t
′
i) is maximal in Hj+1, we must have t′i = t′.

Moreover, we have already established thatMj+1(ki) = max(Hj+1)(ki) = t′i. Hence, the postcon-
dition of (7.2) holds after opi returns.

Now, assume tj = t0,i, i.e., opj took effect before opi was invoked. In this case, let i′ =

max {j′ | j′ < i ∧max(Hj′+1)(ki) = t0,i}. Note, that i′ is well-defined since we have j < i ∧
max(Hj+1)(ki) = t0,i. We must necessarily have that opi′ took effect either after opi was invoked
but before it returned, or it was the last operation that took effect before opi was invoked. Either way,
we can safely place opi anywhere after opi′ but before the next upsert in the sequence, respectively,
before opi+1 if no upsert occurred between opi′ and opi+1. In all cases, MCS(r, ti′+1, Hi′+1) and
mcs_sr(ki, t′i) will hold before executing opi, and we have t′i = Mi′+1(ki) by construction. The
proof that opi must still return t′ = t′i is analogous to the previous case. Hence, the postcondition
of (7.2) holds again after opi returns.

�

Maintenance operations. For a maintenance operation m (e.g. flush or compact for the LSM
tree) the sequential and atomic specifications simply demand that the operation does not change the
abstract state of the data structure:

∀tM.
{
MCS(r, t,M)

}
m r

{
MCS(r, t,M)

}
(7.5)

7.4. MULTICOPY STRUCTURES 81〈
tH. MCS(r, t,H)

〉
m r

〈
MCS(r, t,H)

〉
(7.6)

Since maintenance operations do not affect the abstract state of the data structure, Theorem 7.1 can
be adapted to accommodate maintenance operations.

Summary. In order to prove the correctness of a given concurrent multicopy structure template,
it thus suffices to show that each operation satisfies its corresponding atomic specification (7.3),
(7.4), or (7.6)). In the following two chapters we discuss such proofs for two multicopy structure
templates. The first template considers multicopy structures that consist of exactly two nodes and
generalizes the differential file structures discussed in §7.2. It illustrates the basic RA constructions
and invariants involved in such proofs without also suffering from the additional complexity of
having to reason about an unbounded number of nodes. This template serves as a stepping stone
to the second template, which considers the general case of an unbounded number of disk nodes and
generalizes the LSM tree discussed in §7.3.

82

C H A P T E R 8

Verifying the Two-Node
Multicopy Template

In this chapter, we present a concurrent template for multicopy structures consisting of exactly one
memory node and one disk node. The template, thus, generalizes from the differential file structures
discussed in §7.2. We provide generic algorithms for the operations on such structures that abstract
from the implementation-specific operations on the node level. We will then prove that these algo-
rithms satisfy the atomic specifications of multicopy structures discussed in §7.4.

8.1 THE TWO-NODE MULTICOPY TEMPLATE

Figure 8.1 shows a potential abstract state of a two-node multicopy structure. The upsert operation
is performed on the root node, while the search operation proceeds by first examining the root node
for the operation key k, and moving on to the disk node if the root does not contain k. As there are
only two nodes at all times and the disk node has unbounded size, maintenance is performed by a
single operation that moves the data directly from the root node to the disk node. We next discuss
these operations in more detail.

Multicopy operations. Figure 8.3 provides the algorithms for the operations on the two-node tem-
plate. The operations are search, upsert and reorganize. These operations are defined in terms of
implementation-specific helper functions whose formal specifications we will provide later. These
are the functions addContents, inContents and reorganizeContents. The upsert additionally
uses readClock and incrementClock. These auxiliary functions are ghost code, code added in or-
der to facilitate the proof (these functions manipulate the ghost state that keeps track of the clock
value) while having no effect on the program behavior. Technically, Iris does not require us to add
such code in order to manipulate ghost state, but we use explicit ghost code here for the sake of
clarity.

The search follows the general idea behind the data retrieval operations on differential file
structures. The search r d k operation first locks the root node r and checks its contents. If a copy
of key k is found, then it is returned after unlocking r. Otherwise, the search moves onto the disk
node d and repeats the procedure. The search uses the helper function inContents n k to check if
any copy of k is contained in node n. Note that search, like the link template from Chapter 6, does
not hold locks when moving from one node to the next.

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 83

k1 5

k2 ⊥
k3 4

r

k1 1
k2 2

k3 3

d

Figure 8.1: Abstract state of a two-node multicopy structure representing the differential file structure
in Fig 7.1.

k1 ⊥
k2 ⊥
k3 ⊥

r

k1 6
k2 7

k3 4

d

Figure 8.2: A reorganization of data on the two-node multicopy structure shown in Fig 8.1

The upsert r k operation locks the root node and adds a new version of the key k to the
contents of the root node using addContents. In order to add a new copy of k, it must know the
current clock value. This is accomplished by using the read_clock () function. addContents r

k t adds the pair (k, t) to the root node when it succeeds. upsert terminates by incrementing the
clock value and unlocking the root node. The addContents function may however fail if the root
node is full. In this case upsert calls itself recursively 1.

The reorganize operation is again inspired by the maintenance operation undertaken
by differential file structures. The data structure simply locks both nodes and then merges the
data from the root node into the disk node using the implementation-specific helper function
reorganizeContents. If a copy of any key k is present in both the root node and the disk node,
then the copy in the root node is preserved while the copy in the disk node is deleted. Figure 8.2
illustrates the result of this operation on the two-node multicopy structure shown in Fig. 8.1.

8.2 CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE

We now focus on proving the correctness of the two-node template algorithms. Recall Theorem 7.1,
which states that a multicopy structure is linearizable if its operations satisfies the atomic specifica-
tions (7.3), (7.4), and (7.6). We adapt these specification to the two-node template:

〈
tH. MCS(r, t,H)

〉
search r d k

〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉〈
tH. MCS(r, t,H)

〉
upsert r k

〈
MCS(r, t+ 1, H ∪ (k, t))

〉〈
tH. MCS(r, t,H)

〉
reorganize r d

〈
MCS(r, t,H)

〉
1For simplicity of presentation, we assume that a separate maintenance thread invokes reorganize to ensure that upserts eventually
make progress. Also, note that we use a tail-recursive call, which ensures that the code will run in constant stack space.

84 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

1 let search r d k =
2 lockNode r;
3 let t' = inContents r k in
4 if t' != ⊥ then begin
5 unlockNode r; t'
6 end
7 else begin
8 unlockNode r;
9 lockNode d;

10 let t' = inContents d k in
11 unlockNode d; t'
12 end
13
14 let rec upsert r k =
15 lockNode r;
16 let t = readRlock() in
17 let res = addContents r k t in
18 if res then begin
19 incrementClock();
20 unlockNode r
21 end
22 else begin
23 unlockNode r;
24 upsert r k
25 end

26 let reorganize r d =
27 lockNode r;
28 lockNode d;
29 reorganizeContents r d;
30 unlockNode r;
31 unlockNode d

Figure 8.3: The two-node multicopy template algorithms. The template can be instantiated by pro-
viding implementations of helper functions inContents, addContents and reorganizeContents.
inContents n k returns Cn(k). addContents r k t adds the key k with the given clock value t
to the contents of root. The return value of addContents is a Boolean which indicates whether the
insertion was successful (e.g. if root node is full, insertion may fail leaving the contents unchanged).

Proving the atomic triple for upsert presents a minor technical challenge. The issue arises
because we cannot access the atomic precondition once the operation has been linearized. 2 The
linearization point of upsert is at line 22 in Fig. 9.1. However, after this point in the proof, we still
need to access to resources associated with the data structure in order establish the precondition for
unlocking the root node. If the atomic preconditions governs all the relevant resources, then we can
no longer return the resources protected by the lock back to the atomic precondition at this point.

The solution here is to use invariants. An invariant in Iris is a formula of the form P
N
, where

P is an arbitrary Iris formula. Invariants provide an orthogonal mechanism to atomic triples in order
2Recall from the discussion in §3.3.3 that the proof of an atomic triple proceeds by obtaining an atomic update token AUP,Q
(using rule logatom-intro). Here P is the precondition of the atomic triple whileQ is the postcondition. A thread possessing
AUP,Q can access resources in P before each atomic step. At the end of the atomic step, the thread must either establish P again
or use P to generate Q (i.e. when the operation is linearized). In the latter case, the thread loses the ownership of AUP,Q. After
this point, it can no longer access resources in P .

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 85

to reason about ownership of resources describing shared state that can be concurrently accessed by
many threads. Intuitively, an invariant is a property that, once established, will remain true forever.
It is therefore a duplicable resource and can be freely shared with any thread.

However, in order to ensure that the invariant indeed remains valid once it has been estab-
lished, Iris’ proof rules for invariants impose restrictions on how the resources contained in an in-
variant can be accessed and manipulated. At any point in time, a thread can open an invariant P

N

and gain ownership of the contained resources P . These resources can then be used in the proof of a
single atomic step of the thread’s execution. After the thread has performed an atomic step with an
open invariant, the invariant must be closed, which amounts to proving thatP has been reestablished.
Otherwise, the proof cannot succeed. In this sense, invariants behave much like the preconditions of
atomic triples before the atomic triple has been committed. However, unlike atomic preconditions,
an invariant is always accessible as long as it is reestablished after each atomic step.

The N in P
N

refers to the namespace of the invariant. Namespaces are part of the mech-
anism used in Iris to keep track of invariants that are currently open and need to be closed before
the next atomic step. This is necessary to avoid issues of re-entrancy in case of nested invariants,
which would lead to logical inconsistencies. In this book, we do not use more than one invariant at
any point in time. Hence, we omit the namespace annotations in the following. For a more in-depth
discussion of Iris’ invariant mechanism and the relevant proof rules, we refer the interested reader
to [Jung et al., 2018].

With the invariantmcs_inv(r, d) describing the shared state of the two-node multicopy struc-
ture, we amend the specifications of search, upsert and reorganize as follows:

mcs_inv(r, d) −∗ mcs_sr(k, t0) −∗〈
tH. MCS(r, t,H)

〉
search r d k

〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
mcs_inv(r, d) −∗

〈
tH. MCS(r, t,H)

〉
upsert r k

〈
MCS(r, t+ 1, H ∪ (k, t))

〉
mcs_inv(r, d) −∗

〈
tH. MCS(r, t,H)

〉
reorganize r d

〈
MCS(r, t,H)

〉
An atomic triple guarded by an invariant can be interpreted as satisfying the atomic triple under
the assumption that the shared state satisfies the invariant. In particular, the invariant mcs_inv(r, d)

relates the upsert history H used in the specifications to the contents of the two nodes of the data
structure. We provide its definition as well as the definition of the predicate mcs_sr(k, t0) used to
snapshot the current logical timestamp t0 of key k in the next section.

8.2.1 PROVING SEARCH RECENCY
We start with the proof of search.

High-level proof idea. Recall that search recency says that if t0 is the logical timestamp of k at the
point when search r d k is invoked, then the operation returns (k, t) ∈ H such that t > t0. Since
the timestamp t of the copy (and, in the full implementation, the value) of k retrieved by search

86 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

either comes from the root or disk node, we must examine the relationship between the history-
dependent contents H of the data structure and the physical contents Cn of the nodes n visited as
the search progresses. We do this by identifying the key invariants needed for proving search recency
in general for multicopy structures and then proceed to show that these are satisfied by the two-node
multicopy template.

We refer to the spatial ordering of the copies (k, t) stored in a multicopy structure as the
ordering in which these copies are reached when traversing the data structure graph starting from the
root node. Our first observation is that the spatial ordering is consistent with the temporal ordering
in which the copies have been upserted. In other words, the farther away a search gets from the root
node, the older the copies are that it will find. Therefore, when a search traverses the data structure
without being interfered with by other threads and it returns the first copy of its query key k that it
finds, it is guaranteed to return the current logical timestamp of k.

We formalize this observation in terms of the contents-in-reach of a node. The contents-
in-reach of a node n is the function Cir (n) : KS→ N⊥ defined recursively over the graph of the
multicopy structure as follows:

Cir (n)(k) :=

Cn(k) if Cn(k) 6= ⊥
Cir (n′)(k) if k ∈ es(n, n′) for some n′ ∈ N
⊥ otherwise

(8.1)

Note that Cir (n) is well-defined because the graph is acyclic and the edgesets labeling the outgoing
edges of every node n are disjoint.

For the simple case of a two-node multicopy structure with root node r and disc node d, the
above definition simplifies to:

Cir (r) = λk. (Cr(k) 6= ⊥ ? Cr(k) : Cd(k))

Cir (d) = Cd(k)

That is, k is in the contents-in-reach of the root if it is in the root; otherwise, k is in contents-in-reach
of the root if it is in the contents of the disk node.

The observation that interference-free searches will find the current logical timestamp of their
query key is then captured by the following invariant:

Invariant 1 At every atomic step, the logical contents of the multicopy structure is the contents-in-
reach of its root node: H̄ = Cir (r).

In order to account for concurrent threads interfering with the search, we prove the condition
t0 ≤ t′ for the timestamp t′ returned by the search. Intuitively, this is true because the contents-
in-reach of a node n can be affected only by upserts or maintenance operations, both of which
only increase the timestamps associated with keys: upserts insert new copies into the root node and
maintenance operations move recent copies down in the structure, possibly replacing older copies.
This observation is formally captured by the following invariant:

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 87

Invariant 2 From one atomic step to the next, the (timestamp) contents-in-reach of every node can
only increase. That is, for every node n and key k, if Cir (n)(k) = t at some point in time and
Cir (n)(k) = t′ at any later point in time, then t ≤ t′.

Finally, in order to prove the condition (k, t′) ∈ H of search recency, we need one additional
property:

Invariant 3 At every atomic step, all copies present in the multicopy structure have been upserted
at some point in the past. That is, for all nodes n, Cn ⊆ H .

Now let us consider an execution of search on k. If search finds a copy t′ = Cr(k)with t′ 6=
⊥ in the root node, then by Invariant 1 and the definition of contents-in-reach, we can immediately
conclude t′ = Cir (r)(k) = H̄(k). Moreover, Invariant 3 implies (k, t′) ∈ H . Finally, we know that
at the time of invocation of search we had H̄(k) = t0. Again, we know from Invariant 1 that we
also had H̄(k) = Cir (r)(k) at that point. Hence, Invariant 2 implies t0 ≤ t′.

On the other hand, if Cr(k) = ⊥, then it follows from Invariant 1 that we must have had
H̄(k) = Cir (d)(k) = t1 for some value t1 at the point when r was accessed. Moreover, Invariant 2
implies again t0 ≤ t1. The search now proceeds to the disk node and will return t′ such that t′ =

Cd(k) = Cir (d)(k) holds at this point. While t′ may differ from t1, Invariant 2 guarantees again that
t1 ≤ t′ and hence t0 ≤ t′. Moreover, Invariant 3 ensures (k, t′) ∈ H . Hence, search recency holds
in this case as well.

In the remainder of this subsection we explain how to formalize this high-level proof in Iris.

Invariant for the two-node multicopy structure. We start with the Iris invariant mcs_inv(r, d)

that we will be using in this proof. Figure 8.4 shows the parts of the invariant needed to formally
capture the high-level invariants 1 to 3 for proving search recency. We ignore some parts that are
irrelevant for now such as the ghost resources needed to keep track of the global clock. We will
present the full invariant when we discuss the proof of upsert.

We explain each part of the invariant in detail:

• The existentially quantified variables t,H ,Cr andCd are to be interpreted as the current clock
value, the current upsert history, the current contents of the root node and the current contents
of the disk node, respectively.

• As is standard when using logically atomic triples in combination with invariants in Iris, we
introduce two predicates capturing the state of the data structure, one owned by the invariant
(MCS•(r, t,H)) and one used in the atomic triples (MCS(r, t,H)). We can think of these
predicates as providing two different views at the logical state of the data structure, one from
the perspective of the data structure’s implementation, and one from the perspective of the
client. Together, they provide the following important properties:
view-upd
MCS•(r, t,H) ∗MCS(r, t,H)

MCS•(r, t′, H ′) ∗MCS(r, t′, H ′)

view-sync
MCS•(r, t,H) ∗MCS(r, t′, H ′) ` t = t′ ∧H = H ′

88 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

mcs_inv(r, d) := ∃ t,H,Cr, Cd.
MCS•(r, t,H)

∗ • H
γs

∗ (∃br. lk(r) 7→ br ∗ (br ? True : N(r, r, Cr))) ∗ ½Cr
γc(r)

∗ (∃bd. lk(d) 7→ bd ∗ (bd ? True : N(r, d, Cd))) ∗ ½Cd
γc(d)

∗ cir(H,Cr, Cd)
∗∗
k∈KS

• Cd(k)
γd(k)

where N(r, n, Cn) := node(r, n, Cn) ∗ ◦ Cn
γs ∗ ½Cn

γc(d)

cir(H,Cr, Cd) := H̄ = λk. (Cr(k) 6= ⊥ ? Cr(k) : Cd(k))

Figure 8.4: The invariant for the two-node multicopy template.

The rule view-upd says that both predicates are required in order to update the views of the
data structure. This occurs when both the invariant as well as the precondition of an atomic
triple are accessed at an atomic step. The rule view-sync ensures that both copies are always
in sync. The predicates MCS•(r, t,H) and MCS(r, t,H) are defined using a combination of
authoritative, option and exclusive RAs.

• Weuse the authoritative RA of sets of key/timestamp pairs,Auth(KS× N⊥), at ghost location
γs to keep track of the upsert history. That is, • H

γs
expresses the fact that the current upsert

history isH . Recall that the only frame-preserving update admitted by authoritative sets is to
add more elements to the set, which is consistent with the fact that H can only grow.

• The predicates N(r, n, Cn) contain the resources guarded by the lock bit lk(n) of node n. In
particular, this includes the implementation-specific predicate node(r, n, Cn), which captures
ownership of the resources needed to implement the node n. The predicate node(r, n, Cn)

must also tieCn to the implementation-specific physical representation of the node’s contents.
The third and forth conjuncts of the invariant thus capture the fact that a thread cannot modify
the contents of r or d without locking them first. We parameterize node by the root node r
in order to allow the implementation to choose different representations for memory and disk
nodes and optimize the node-level operations for the underlying storage medium (this can be
done by distinguishing between r = n and r 6= n). Further, note that the assertion ◦ Cn

γs
in

N(r, n, Cn) together with • H
γs

imply that Cn ⊆ H . This gives us Invariant 3.

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 89

• The fractional resources stored at ghost locations γc(r) and γc(d) ensure that when n ∈ {r, d}
is locked and ownership of N(r, n, Cn) is transferred from the invariant to the thread locking
n, then the Cn that is quantified in the invariant remains tied to the actual physical contents of
the node. This is achieved by splitting ownership of Cn in γc(n) between N(r, n, Cn) and the
invariant.

• The predicate cir(H,Cr, Cd) directly captures Invariant 1, relating the logical contents with
the contents-in-reach of the root node.

To see that Invariant 2 is also captured, first note that the authoritative set RA used for the
ghost location γs storing H enforces that H can only grow over time. It follows by definition of
H̄ that H̄ can only increase. Thus Invariant 1 implies that Invariant 2 holds for r. We use the final
conjunct of the invariant to capture that Invariant 2 also holds for d. For this purpose, we use the
authoritative RA of natural numbers with maximum as the underlying monoid operation (referred to
from now on as the authoritative mnat RA). The authoritative maxnat RA guarantees the following
properties:

auth-maxnat-valid
V(•m · ◦n)

m > n

auth-maxnat-upd
m 6 n

•m •n
auth-maxnat-snap
•m •m · ◦m

The ghost resource • m signifies that the current value is m and the ghost resource ◦ n expresses
that n is a lower bound on the current value. That is, •m · ◦n can be valid only ifm > n, as captured
by rule auth-maxnat-valid. Consequently, the only frame-preserving update permitted by this RA is
to replace the current valuem by any larger value (rule auth-maxnat-upd). Finally, rule auth-maxnat-
snap allows us to take a snapshot of the current value m and remember it as a lower bound for a
value of the resource that is observed at a later point in the proof.

In order to express Invariant 2 for d, the last conjunct in mcs_inv(r, d) uses for every key k
a ghost location γa(k) that stores the current value Cd(k) as an authoritative maxnat. The RA will
then enforce that Cd(k) can only increase over time.

Capturing the search recency property. Finally, we need to define the predicate mcs_sr(k, t0)

which we use in the specification of search recency, the key property allowing us to reorder searches
in the meta-level linearizability proof (Theorem 7.1). Ideally, we would like this predicate to ex-
press the fact that t0 was the logical timestamp of k at the precise point when search was invoked.
Unfortunately, there is no easy way to express this fact when reasoning modularly about the imple-
mentation of search without constraining the client that calls search. So instead we proceed as
follows. We define mcs_sr(k, t0) to capture the fact that t0 was the logical timestamp of k at some
point in the past (relative to the time point when the predicate holds). By requiringmcs_sr(k, t0) in
the precondition of search, we thus state that t0 was the logical timestamp of k at some point prior
to the invocation of search. Since the specification universally quantifies over t0, we will prove that
search recency holds for all such values t0, including the logical timestamp of k at the actual point

90 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

of invocation. Note that the resulting specification is in fact equivalent to the desired one because
the logical timestamp of a key only increases over time and the postcondition of search requires
t0 ≤ t′ for the returned time stamp t′. That is, if t0 ≤ t′ holds for the logical timestamp t0 at the
point of invocation of search, then for all prior logical timestamps t′0 of k before k was upserted to
t0, we must also have t′0 ≤ t′.

In order to define the predicate mcs_sr(k, t0), we reuse the ghost location γs, which stores
the current history-dependent contents H in an authoritative set RA. Recall from the discussion
of the authoritative set RA that the assertion • H

γs ∗ ◦ H ′
γs

expresses the fact that H is the
current authoritative version of the set at ghost location γs and H ′ ⊆ H . Since • H

γs
is part of

the invariant mcs_inv(r), the assertion mcs_inv(r) ∗ ◦ {(k, t0)}
γs

implies (k, t0) ∈ H . In other

words, ifmcs_inv(r) and ◦ {(k, t0)}
γs

hold simultaneously, then (k, t0) must have been upserted
at some point in the past and t0 was the logical timestamp of k from that point onward until the next
upsert of k. We therefore define:

mcs_sr(k, t0) := ◦ {(k, t0)}
γs

Proof of search. The outline of the formal correctness proof for search is shown in Fig. 8.5. The
proof assumes that the implementation-specific helper function inContents satisfies the specifica-
tion given on line 1.We also provide logically atomic triples that specify the assumed behavior of the
functions for locking and unlocking the nodes (at lines 2 and 3). The function lockNode atomically
produces N(r, n, Cn) using the invariant, while the function unlockNode consumes the N(r, n, Cn)

(by assimilating it back into the invariant).
Let us now turn to the outline of the proof. The intermediate assertions shown in Fig 8.5 rep-

resent the relevant information from the proof context at the corresponding point. By convention,
all the newly introduced variables are existentially quantified. Note that the conditionmcs_sr(k, t0)

is persistent and, hence, hold throughout the proof. Moreover, the invariant mcs_inv(r, d) is main-
tained throughout the proof since search does not modify any shared resources. We therefore do
not include these resources explicitly in the intermediate assertions.

The search operation starts by locking the root node r. This gives us access to the predicate
N(r, r, Cr) at line 8. Next, we apply the specification of inContents to the root node r. This gives
rise to two cases: (i) The call returns Cr(k) = t′ 6= ⊥ or (ii) the call returns Cr(k) = t′ = ⊥.

Let us consider the first case (line 12). At this point we have found the logical timestamp of
k and we can commit the atomic triple when the thread unlocks r in line 16. To prove the postcon-
dition of the atomic triple, we first obtain its preconditionMCS(r, t,H). Opening the invariant and
using rule view-sync we can conclude that H is the current authoritative upsert history. Hence, us-
ing cir(H,Cr, Cd) from the invariant and Cr(k) 6= ⊥ we can now infer H̄(k) = Cr(k). Moreover,
using mcs_sr(k, t0) we can conclude t0 ≤ H̄(k) (line 14). Thus, we must have H̄(k) = t′, which

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 91

gives us (k, t′) ∈ H and t0 ≤ t′ (line 15). Unlocking r transfers N(r, r, Cr) back to the invariant,
which leaves us with the postcondition of the atomic triple. This completes case (i).

Nowwe consider the second case at line 20, whereCr(k) = ⊥. In this case, we unlock the root
node and move on to the disk node. But before we unlock, we can infer useful information from the
fact that Cr(k) = ⊥. First, using cir(H,Cr, Cd) from the invariant, we know that H̄(k) = Cd(k).
Moreover, usingmcs_sr(k, t0) we conclude t0 ≤ H̄(k), and thus t0 ≤ Cd(k) (line 21). Next, we use
rule auth-maxnat-snap to take a snapshot of • Cd(k)

γd(k)

in the invariant to obtain ◦ Cd(k)
γd(k)

.
As we won’t be able to maintain Cd(k) once r has been unlocked, we replace it by a fresh variable
t1 (line 22). Now the thread unlocks r, returning ownership of N(r, r, Cr) back to the invariant
and immediately locks d, which transfers ownership of N(r, d, Cd) from the invariant to the thread
(line 26). At this point, we open the invariant and use the rule auth-maxnat-valid to conclude that
t1 ≤ Cd(k). Hence, we also have t0 ≤ Cd(k) (line 27).

The thread now uses inContents to retrieve the current value t′ of k in d (i.e. Cd(k)), which
it will return once it has unlocked d on line 33. This is going to be the commit point for the atomic
triple in case (ii). Hence, we access the precondition MCS(r, t,H) of the atomic triple before the
call to unlockNode (line 31). To obtain the postcondition of the atomic triple, we open the invariant
and use rule view-sync to conclude thatH is the current authoritative upsert history. Moreover, from
◦ Cd

γs
in N(r, d, Cd) we infer (k,Cd(k)) ∈ H . Replacing Cd(k) with t′ we arrive at line 32. Fi-

nally, unlocking d transfers N(r, d, Cd) back to the invariant, which leaves us with the postcondition
of the atomic triple. This completes case (ii).

8.2.2 PROVING THE CORRECTNESS OF UPSERT
We next verify the algorithm of upsert provided in Fig. 8.3 against its atomic specification:

mcs_inv(r, d) −∗
〈
tH. MCS(r, t,H)

〉
upsert r k

〈
MCS(r, t+ 1, H ∪ (k, t))

〉
Unlike the search operation, the upsert operation exhibits a fixed linearization point. The lin-

earization point is when the addContents operation succeeds. The proof is nevertheless interesting
as we need to show that upsertmaintains the invariants used for the proof of search in the previous
section.

High-level proof idea. In order to prove the logically atomic specification for upsert described
previously, we must identify an atomic step where the clock value is incremented and the upsert
history is updated. Intuitively, this atomic step is when the global clock is incremented (line 20 in
Fig 8.3) after addContents succeeds. Note that in this case addContents changes the contents of
the root node from Cr to C ′r = Cr[k� t]. Hence, in the proof we need to update the upsert history
from H to H ′ = H ∪ {(k, t)}, reflecting that the new copy has been upserted. It then remains to
show that the three key high-level invariants of multicopy structures are preserved by these updates.
We argue more generally, that these invariants are maintained by an upsert on the root node of any
multicopy structure.

92 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

First, observe that Invariant 3, which states Cn ⊆ H , is trivially maintained: only Cr is af-
fected by the upsert and the new copy (k, t) is included in H ′. Similarly, we can easily show that
Invariant 2 is maintained: Cir (n) remains the same for all nodes n 6= r and for the root node it
increases, provided Invariant 1 is also maintained.

Thus, the interesting case is Invariant 1. Proving that this invariant is maintained amounts to
showing that max[H ′](k) = t. This step critically relies on the following additional observation:

Invariant 4 At every atomic step, all timestamps inH are smaller than the current time of the global
clock t.

This invariant implies that H̄ ′(k) = max(H̄(k), t) = t, which proves the desired property. We note
that Invariant 4 is maintained because the global clock is incremented in the same step when H is
updated to H ′.

In the proof of Invariant 1 we have silently assumed that the timestamp t, which was obtained
by reading the global clock at 16, is still the value of the global clock at the linearization point when
the clock is incremented at 19. This step in the proof relies on the observation that only upsert

changes the global clock and it does so only while the clock is protected by the root node’s lock.
Hence, for lock-based implementations of multicopy structures, we additionally require the follow-
ing invariant:

Invariant 5 From one atomic step to the next, if a thread holds the lock on the root node, no other
thread will change the value of the global clock.

In the remainder of this section, we show how to formalize this high-level proof in Iris.

Updated invariant for the two-node multicopy structure. We first update mcs_inv(r, t,H) to
capture the additional high-level invariants required by the proof of upsert. The new Iris invariant
is shown in Fig 8.6. The changes are as follows:

• We track the current value t of the global clock in a fractional authoritative maxnat RA at ghost
location γt. The RA ensures that the clock value can only increase. To capture Invariant 5,
we split this resource half-way between the invariant and the predicate N(r, r, Cr), which is
protected by the lock of the root node.

• We add the constraint maxTS(t,H), which expresses Invariant 4.

Note that the new invariant implies the old invariant in Fig. 8.4 that we used for the proof of
search. Since search does not modify any of the ghost resources, the proof also works with the
new invariant.

Proof of upsert. Figure 8.7 shows the outline of the proof of upsert. The first line provides the
specification of the implementation-specific helper function addContents that we assume in the
proof. The specification simply says that when the function succeeds, the copy of k is updated to t
in Cr. In case it fails, then no changes are made. We also provide specifications of the ghost code

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 93

functions readClock and incrementClock for manipulating the ghost resource for the global clock
at ghost location γt. The function readClock requires fractional ownership of the clock resource for
some non-zero fraction q to read the current clock value (line 2). On the other hand, incrementClock
needs full ownership of the resource to increment the current clock value (line 3). Note that the
functions lockNode and unlockNode follow the same specification as in the proof of upsert (see
Fig. 8.5).

With everything needed for the proof of upsert in place, let us now walk through the proof
outline shown in Fig. 8.7. We start with the invariant mcs_inv(r, d) and atomic precondition〈
tH. MCS(r, t,H)

〉
. The invariant can be accessed at each atomic step, but must also be reestab-

lished after each step. Similarly, the atomic precondition is accessible at each atomic step, and must
either be used to generate the postcondition of the atomic triple or the precondition must be reestab-
lished.

The thread first locks the root node, which transfers ownership of N(r, r, Cr) from the invari-
ant to the thread (line 8). At this point, we unfold the definition ofN(r, r, Cr) (line 9) as we will need
the contained resources later in the proof. We here use the variable t1 to refer to the current value
of the global clock. Next, the thread uses readClock to read the current clock value into the local
variable t. We can use the fractional permission ½ • t1

γt and the specification of readClock to
conclude t = t1 (line 11). The thread now calls addContents to update r with the new copy of k
for timestamp t. This leaves us with two possible scenarios depending on whether the return value
res is True (line 14) or False (line 25).

In the case where addContents fails, no changes have been performed. Here, we simply fold
the definition of N(r, r, Cr) again, unlock r to transfer ownership of the node’s resources back to
the invariant and simply commit the atomic triple on the recursive call to upsert.

In the case where addContents succeeds, we obtained C ′r = Cr[k� t] from its postcondi-
tion, where C ′r is the new contents of the root node. The thread will next call incrementClock to
increase the global clock value. This will be the linearization point of this branch of the conditional
expression. Hence, we will also have to update all remaining ghost resources to their new values
at this point. To prepare committing the atomic triple, we first access its precondition to obtain
MCS(r, t′, H ′) for some fresh variables t′ and H ′ (line 16). We then open the invariant to access
MCS•(r, t,H) and use rule view-sync to conclude H ′ = H and t′ = t (line 17).

The actual commit of the atomic triple involves several steps. First, the thread calls
incrementClock. To satisfy the precondition of incrementClock, we open the invariant to retrieve
the second half of the fractional clock resource at ghost location γt, and combine it with the half in
the thread’s local state to obtain the full resource •t

γt . The postcondition of incrementClock then
gives us back •t+ 1

γt which we split again into two halves, returning one half to the invariant and
keeping the other in the local proof context. In addition, we update all remaining ghost resources:

• We update the authoritative version of the history dependent state at ghost location γs in the
invariant from H to H ′ = H ∪ {(k, t)}, using rule auth-set-upd.

94 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

• We use rule frac-upd to update the resource holding the root’s contents at location γc(r) from
Cr to C ′r by reassembling the full resource from the half owned by the invariant, respectively,
the half owned by the local proof context. After the update, the resource is split again into two
halves, with one half returned to the invariant.

• We use rule view-upd to update the client’s and invariant’s views of the data structures state to
MCS(r, t+ 1, H ′) and MCS•(r, t+ 1, H ′), respectively.

This leaves us with the new proof context shown on line 19. It remains to show that the updates
of the ghost resources preserve the invariant. That is, we need to prove that maxTS(t+ 1, H ′) and
cir(H ′, C ′r, Cd) hold. First note that maxTS(t+ 1, H ′) follows directly from the definition of H ′

and maxTS(t,H). We obtain the later from the invariant prior to the call to incrementClock. To
show cir(H ′, C ′r, Cd), we need to prove that for all keys k′

H̄ ′(k′) = (C ′r(k
′) 6= ⊥ ? C ′r(k

′) : Cd(k
′))

If k′ 6= k, the equality follows directly from cir(H,Cr, Cd) and the definitions ofH ′ andC ′r. For the
case where k′ = k observe that maxTS(t,H) implies H̄ ′(k) = t. Moreover, we have C ′r(k) = t by
definition of C ′r and we also know t 6= ⊥ because the clock resource can only hold natural numbers.

Finally, in order to prove that we can safely unlock r, we have to reassemble N(r, r, C ′r) from
the proof context at line 19. We have all the relevant pieces available, except for ◦ C ′r

γs
. We obtain

this remaining piece by observing that ◦ Cr
γs

implies CR ⊆ H ′ which in turn implies C ′r ⊆ H ′

by definition of C ′r and H ′. Using rule auth-set-snap we obtain ◦ H ′
γs
, which we can rewrite to

◦ (H ′ ∪ C ′r)
γs

using the previously derived equality H ′ = H ′ ∪ C ′r. Applying rule auth-frag-op,

we can then infer ◦ H ′
γs
∗ ◦ Cr′

γs
and after throwing away the first conjunct, we are left with

the desired missing piece.
After reassembling N(r, r, C ′r) we arrive at line 20 at which point the thread unlocks r, trans-

ferring N(r, r, C ′r) back to the invariant and this concludes the proof of upsert.

8.2.3 PROVING THE CORRECTNESS OF MAINTENANCE
Finally, we show that reorganize satisfies the following atomic specification, as required by The-
orem 7.1:

mcs_inv(r, d) −∗
〈
tH. MCS(r, t,H)

〉
reorganize r d

〈
MCS(r, t,H)

〉
Proving this atomic specification is simpler than proving the corresponding specifications for search
and upsert, because reorganize (exclusively) locks the whole data structure before making any
changes. Thus, a thread executing reorganize does not have to worry about the interference from
other threads.

Figure 8.8 shows the proof outline. The first three lines provide the specification of the
implementation-specific helper function reorganizeContents that we assume in this proof. The

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 95

precondition requires access to the physical resources of the root and disk node. The postcondition
then ensures that root node is empty and the disk node contains the full logical contents. Note that
we here use the abbreviation λ⊥ := λk.⊥.

The linearization point is the call to reorganizeContents. The proof proceeds in a similar
fashion as the previous proofs. We discuss only the aspects relevant to maintaining the invariant
mcs_inv(r, d) . First note that for any C : KS→ N⊥ we have C̄ = C. Hence, the two conjuncts
C ′r = λ⊥ and cir(C ′d, Cr, Cd) together with cir(H,Cr, Cd) from the invariant before the call to
reorganizeContents trivially imply cir(H,C ′r, C

′
d).

As we also need to update the ghost resource • Cd(k)
γd(k)

to • C ′d(k)
γd(k)

for every key k
to preserve the last conjunct of the invariant, we need to show Cd(k) ≤ C ′d(k). To see this, observe
that we have:

cir(H,λ⊥, C
′
d)⇔ C ′d = H̄

⇒ C ′d(k) = max {t | (k, t) ∈ H}
⇔ C ′d(k) = max {t | (k, t) ∈ H ∪ Cd}
⇒ C ′d(k) > max {t | (k, t) ∈ Cd}
⇔ C ′d(k) > Cd(k)

The second last step follows from Cd ⊆ H , which is implied by ◦ Cd
γs

in the proof context and
• H

γs
from the invariant before the linearization point. The preservation of the remaining parts of

the invariant follow easily.

96 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

1
{
noden(n,Cn)

}
inContents n k

{
v. noden(n,Cn) ∗ Cn(k) = v

}
2 mcs_inv(r, d) −∗ n ∈ {r, d} −∗

〈
True

〉
lockNode n

〈
N(r, n, Cn)

〉
3 mcs_inv(r, d) −∗ n ∈ {r, d} −∗ N(r, n, Cn) −∗

〈
True

〉
unlockNode n

〈
True

〉
4

5
{

mcs_inv(r, d) ∗mcs_sr(k, t0)
}
∗
〈
t H. MCS(t,H)

〉
6 let search r d k =
7 lockNode r;

8
{
N(r, Cr) ∗ ◦ Hr

γs ∗ (Cr ⊆ Hr)
}

9 let t' = inContents r k in

10
{
N(r, r, Cr) ∗ Cr(k) = t′

}
11 if t' != ⊥ then begin

12
{
N(r, r, Cr) ∗ Cr(k) = t′ 6= ⊥

}
13 (* Linearization point *)

14
{
N(r, r, Cr) ∗ Cr(k) = t′ ∗MCS(r, t,H) ∗ H̄(k) = Cr(k) ∗ t0 ≤ H̄(k)

}
15

{
N(r, r, Cr) ∗MCS(r, t,H) ∗ (k, t) ∈ H ∗ t0 ≤ t′

}
16 unlockNode r; t'

17
〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
18 end
19 else begin

20
{
N(r, r, Cr) ∗ Cr(k) = ⊥

}
21

{
N(r, r, Cr) ∗ t0 ≤ H̄(k) ∗ H̄(k) = Cd(k)

}
22

{
N(r, r, Cr) ∗ t0 ≤ t1 ∗ ◦ t1

γd(k)
}

23 unlockNode r;

24
{
t0 ≤ t1 ∗ ◦ t1

γd(k)
}

25 lockNode d;

26
{
N(r, d, Cd) ∗ t0 ≤ t1 ∗ ◦ t1

γd(k)
}

27
{
N(r, d, Cd) ∗ t0 ≤ Cd(k)

}
28 let t' = inContents d k in

29
{
N(r, d, Cd) ∗ t0 ≤ Cd(k) ∗ Cd(k) = t′

}
30 (* Linearization point *)

31
{
N(r, d, Cd) ∗MCS(r, t,H) ∗ t0 ≤ Cd(k) ∗ Cd(k) = t′

}
32

{
N(r, d, Cd) ∗MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

}
33 unlockNode d; t'

34
〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
35 end

36
〈
t′. MCS(r, t,H) ∗ t0 ≤ t′ ∗ (k, t′) ∈ H

〉
Figure 8.5: Proof of search for the two-node multicopy template

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 97

mcs_inv(r, d) := ∃ tH Cr Cd.

MCS•(r, t,H)

∗ • H
γs

∗ ½ • t
γt

∗ (∃br. lk(r) 7→ br ∗ (br ? True : N(r, r, Cr))) ∗ ½Cr
γc(r)

∗ (∃bd. lk(d) 7→ bd ∗ (bd ? True : N(r, d, Cr))) ∗ ½Cd
γc(d)

∗ cir(H,Cr, Cd)
∗maxTS(t,H)

∗∗
k∈KS

• Cd(k)
γd(k)

where N(r, n, Cn) := node(r, n, Cn) ∗ ◦ Cn
γs ∗ ½Cn

γc(n) ∗
(
r = n ? ½ • t

γt
: True

)
cir(H,Cr, Cd) := H̄ = λk. (Cr(k) 6= ⊥ ? Cr(k) : Cd(k))

maxTS(H, t) := ∀ k, t′. (k, t′) ∈ H → t′ < t

Figure 8.6: The full invariant for the two-node multicopy template. Changes to the invariant given in
Fig. 8.4 are highlighted in red.

98 8. VERIFYING THE TWO-NODE MULTICOPY TEMPLATE

1
{
node(r, r, Cr)

}
addContents r k t

{
v. node(r, r, C′

r) ∗ C′
r = (v ? Cr[k� t] : Cr)

}
2
{
q • t

γt ∗ q > 0
}

readClock ()
{
v. q • t

γt ∗ v = t
}

3
{
• t

γt
}

incrementClock ()
{
• t+ 1

γt
}

4

5
{

mcs_inv(r, d)
}
∗
〈
tH. MCS(t,H)

〉
6 let upsert r k =
7 lockNode r;

8
{
N(r, r, Cr)

}
9
{
node(r, r, Cr) ∗ ◦ Cr

γs ∗ ½Cr
γc(r) ∗ ½ • t1

γt
}

10 let t = readClock () in

11
{
node(r, r, Cr) ∗ ◦ Cr

γs ∗ ½Cr
γc(r) ∗ ½ • t1

γt ∗ t = t1

}
12 let res = addContents r k t in
13 if res then begin

14
{
node(r, r, C′

r) ∗ ◦ Cr
γs ∗ ½Cr

γc(r) ∗ ½ • t
γt ∗ C′

r = Cr[k� t]
}

15 (* Linearization point *)

16
{
node(r, r, C′

r) ∗ ◦ Cr
γs ∗ ½Cr

γc(r) ∗ ½ • t
γt ∗ C′

r = Cr[k� t] ∗MCS(r, t′, H ′)
}

17
{
node(r, r, C′

r) ∗ ◦ Cr
γs ∗ ½Cr

γc(r) ∗ ½ • t
γt ∗ C′

r = Cr[k� t] ∗MCS(r, t,H)
}

18 incrementClock ();

19

 node(r, r, C′
r) ∗ ◦ Cr

γs ∗ ½C′
r

γc(r)
∗ C′

r = Cr[k� t]

∗ ½ • t+ 1
γt ∗H ′ = H ∪ {(k, t)} ∗MCS(r, t+ 1, H ′)

20

{
N(r, r, C′

r)
}
∗
〈
MCS(r, t+ 1, H ∪ {(k, t)})

〉
21 unlockNode r

22
〈
MCS(r, t+ 1, H ∪ {(k, t)})

〉
23 end
24 else begin

25
{
node(r, r, C′

r) ∗ ◦ Cr
γs ∗ ½Cr

γc(r) ∗ ½ • t
γt ∗ C′

r = Cr

}
26

{
N(r, r, Cr)

}
27 unlockNode r;
28 upsert r k
29 end

30
〈
MCS(t+ 1, H ∪ {(k, t)})

〉
Figure 8.7: Proof of upsert for the two-node multicopy template

8.2. CORRECTNESS PROOF FOR THE TWO-NODE TEMPLATE 99

1
{
node(r, r, Cr) ∗ node(r, d, Cd)

}
2 reorganizeContents r d

3
{
node(r, r, C′

r) ∗ node(r, d, C′
d) ∗ C′

r = λ⊥ ∗ cir(C′
d, Cr, Cd)

}
4

5
{

mcs_inv(r, d)
}

*
〈
tH. MCS(r, t,H)

〉
6 let reorganize r d =
7 lockNode r;

8
{
N(r, r, Cr)

}
9 lockNode d;

10
{
N(r, r, Cr) ∗ N(r, d, Cd)

}
11 (* Linearization point *)

12
{
N(r, r, Cr) ∗ N(r, d, Cd) ∗MCS(r, t,H)

}
13

{
node(r, r, Cr) ∗ ◦ Cr

γs ∗ ½Cr
γc(r) ∗ ½ • t

γt

∗ node(r, d, Cd) ∗ ◦ Cd
γs ∗ ½Cd

γc(d) ∗MCS(r, t,H)

}
14 reorganizeContents r d;

15

node(r, r, C′
r) ∗ ◦ Cr

γs ∗ ½C′
r

γc(r)
∗ ½ • t

γt ∗ C′
r = λ⊥

∗ node(r, d, C′
d) ∗ ◦ Cd

γs ∗ ½C′
d

γc(d)
∗MCS(r, t,H)

16

{
N(r, r, C′

r) ∗ N(r, d, C′
d)
}

*
〈
MCS(r, t,H)

〉
17 unlockNode r;
18 unlockNode d

19
〈
MCS(r, t,H)

〉
Figure 8.8: Proof of maintenance operation for the two-node multicopy template.

100

C H A P T E R 9

Verifying a General Multicopy
Template

In this chapter, we present a general template for multicopy structures that comprise an unbounded
number of disk nodes. That is, the template generalizes the LSM (log-structured merge) tree dis-
cussed in §7.3. Again, we prove linearizability of the template by verifying that all operations satisfy
the atomic specifications assumed by Theorem 7.1.

The high-level proof closely follows that of the two-node template and relies on the same high-
level invariants. In particular, we build again on the notion of the contents-in-reach of a node, which
captures the relationship between the logical contents of the multicopy structure and the physical
contents of individual nodes in its graph. However, there is one new technical challenge that we
have to solve here: due to the unbounded number of disk nodes, the definition of the contents-in-
reach now involves a computation over a graph of unbounded size. We will use the flow framework
(Chapter 5) to define the contents-in-reach in terms of a suitable flow, enabling us to carry out all
proofs using only local reasoning about bounded graph regions.

9.1 THE GENERAL MULTICOPY TEMPLATE
We split the template into two parts. The first part is a template for search and upsert that works on
general multicopy structures, i.e., arbitrary DAGs with locally disjoint edgesets. The second part is a
template for a maintenance operation that generalizes the compaction mechanism found in existing
list-based LSM tree implementations to tree-like multicopy structures.

Multicopy operations. Figure 9.1 shows the code of the template for the generic multicopy oper-
ations. The operations search and upsert closely follow the high-level description of these opera-
tions on the LSM tree (Section 7.3). As with previous templates, the operations are defined in terms
of implementation-specific helper functions. These functions are similar to those introduced for the
two-node multicopy template. Only findNext is new. It returns the unique successor of the given
node n and query key k (i.e., the node n′ satisfying k ∈ es(n, n′)) if such a successor exists.

The search operation calls the recursive function traverse on the root node and general-
izes the search operation for the two-node template to an unbounded number of disk nodes. Note
that in contrast to lock-coupling, the thread executing the search holds no locks at the points when
traverse is called recursively. The upsert operation is identical to the one on the two-node tem-
plate.

9.1. THE GENERAL MULTICOPY TEMPLATE 101

1 let rec traverse n k =
2 lockNode n;
3 let t = inContents n k in
4 if t != ⊥ then begin
5 unlockNode n; t
6 end
7 else begin
8 match findNext n k with
9 | Some n' ->

10 unlockNode n;
11 traverse n' k
12 end
13 | None -> unlockNode n; ⊥
14 end
15
16 let search r k = traverse r k

17 let rec upsert r k =
18 lockNode r;
19 let t = readClock () in
20 let res = addContents r k t in
21 if res then begin
22 incrementClock ();
23 unlockNode r
24 end
25 else begin
26 unlockNode r;
27 upsert r k
28 end

Figure 9.1: The general template for multicopy operations search and upsert. The template can be in-
stantiated by providing implementations of helper functions inContents, findNext, and addContents.
inContentsnk returns Cn(k). findNextnk returns Somen′ if n′ is the unique node such that k ∈
es(n, n′), or None otherwise. addContents r k adds the key k with the current timestamp t to the con-
tents of r. The return value of addContents is a boolean which indicates whether the insertion was
successful (e.g. if r is full, insertion may fail leaving r’s contents unchanged).

1 let rec compact n =
2 lockNode n;
3 if atCapacity n then begin
4 let m = chooseNext n in
5 lockNode m;
6 mergeContents n m;
7 unlockNode n;
8 unlockNode m;
9 compact m
10 end
11 else
12 unlock n

Figure 9.2: Maintenance template for tree-like multicopy structures. The template can be instanti-
ated by providing implementations of helper functions atCapacity, chooseNext, and mergeContents.
atCapacityn returns a boolean value indicating whether node n has reached its capacity. The helper
function chooseNextn returns a successorm of n into which n should be compacted. Note thatm may
be freshly allocated. Finally, mergeContentsnm (partially) merges the contents of n intom.

102 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

k1 7

k2 5

k3 6

k4 8

n

k1 3

k2 ⊥
k3 ⊥
k4 4

k1 2

k2 1

k3 ⊥
k4 ⊥

KS {k1, k2}

k1 ⊥
k2 ⊥
k3 ⊥
k4 ⊥
n

k1 7

k2 5

k3 6

k4 8

m

k1 2

k2 1

k3 ⊥
k4 ⊥

KS {k1, k2}

k1 ⊥
k2 ⊥
k3 ⊥
k4 ⊥

k1 7

k2 5

k3 ⊥
k4 ⊥
n

k1 2

k2 1

k3 ⊥
k4 ⊥

k1 ⊥
k2 ⊥
k3 6

k4 8

m

KS {k1, k2}

{k3, k4}

Figure 9.3: Possible execution of the compact operation shown in Fig. 9.2. Edges are labeled with their
edgesets. The nodes n andm in each iteration are marked in blue.

Maintenance operation. For the maintenance template, we consider a generalized version of the
compaction operation found in LSM tree implementations such as LevelDB [Google, 2020] and
Apache Cassandra [Apache Software Foundation, 2020a, Jonathan Ellis, 2011]. While those im-
plementations work on lists for the top-level multicopy structure, our generalized template supports
arbitrary tree-like multicopy structures. The code is shown in Fig. 9.2. The template uses the helper
function atCapacityn to test whether the size of n (i.e., the number of non-⊥ entries in n’s con-
tents) exceeds an implementation-specific threshold. If not, then the operation simply terminates. In
case n is at capacity, the function chooseNext is used to pick a successor node m of n to merge
some of the contents of n into m. The merge is done by the helper function mergeContents. It
must ensure that all merged keys k satisfy k ∈ es(n,m). The nodem returned by chooseNext may
be freshly allocated in which case the new edgeset es(n,m) must be disjoint from all edgesets for
the other successors m′ of n. Note that the maintenance template never removes nodes from the
structure. In practice, the depth of the structure is bounded by letting the capacity of nodes grow
exponentially with the depth. Figure 9.3 shows the intermediate states of a potential execution of the
compact operation.

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 103

9.2 CORRECTNESS PROOF FOR THE GENERAL MULTICOPY
TEMPLATE

We will show that operations of the template satisfy the atomic specifications required by Theo-
rem 7.1 from Chapter 7:

mcs_inv(r) −∗ mcs_sr(k, t0) −∗〈
tH. MCS(r, t,H)

〉
search r k

〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
mcs_inv(r) −∗

〈
tH. MCS(r, t,H)

〉
upsert r k

〈
MCS(r, t+ 1, H ∪ (k, t))

〉
mcs_inv(r) −∗

〈
tH. MCS(r, t,H)

〉
flush r

〈
MCS(r, t,H)

〉
mcs_inv(r) −∗

〈
tH. MCS(r, t,H)

〉
compact r

〈
MCS(r, t,H)

〉
Here, mcs_inv(r) is the invariant guarding the shared state of the general multicopy structure. We
next discuss each operation in detail and prove its corresponding specification, starting with the
search operation.

9.2.1 PROVING SEARCH RECENCY
We argue that the high-level proof of search recency for the two-node multicopy template dis-
cussed in Section 8.2.1 generalizes to the new template. In particular, we can reuse the same
high-level invariants that we identified in the earlier proof. Recall the notion of contents-in-reach
Cir (n) : KS→ N⊥ of a node n which was critical for that proof. The value Cir (n)(k) is the first
copy of key k in the data structure that a search starting at node nwill find. Invariant 1 then stated the
property that the logical contents H̄ of a multicopy structure is the contents-in-reach of its root node.
This invariant captures the intuition that a search that starts at the root and that is not interfered with
by concurrent threads will find the correct copy of its query key. Invariants 2 and 3 then provide the
necessary auxiliary properties to prove search recency in the presence of interference. Invariant 2
states that the contents-in-reach of every node can only increase for every key over time. Finally,
Invariant 3 captures the fact that all copies of keys in the node-level contents have been upserted at
some point in the past.

In addition to these three general invariants that every multicopy structure must satisfy, we
need an inductive invariant for the traversal performed by the search: we require as a precondition
for traverse n k that Cir (n)(k) > t0 where t0 is the logical timestamp of k at the point when
search was invoked. To see that this property holds initially for the call traverse r k in search,
let H̄0 be the logical contents at the time point when search was invoked. By assumption we have
H̄0(k) = t0. Moreover, Invariant 1 implies that wemust have hadCir (r)(k) = t0 at this point. Since
Cir (r)(k) only increases over time according to Invariant 2, we can conclude that Cir (r)(k) > t0
when traverse is called. We next show that the traversal invariant is maintained by traverse and
is sufficient to prove search recency.

Consider a call traverse n k such thatCir (n)(k) > t0 holds initially. Wemust show that the
call returns t such that t > t0 and (k, t) ∈ H . We know that the call to inContents on line 3 returns

104 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

t such that t = Cn(k). Let us first consider the case where t 6= ⊥. In this case, traverse returns t on
line 5. By definition of Cir (n) we have Cir (n)(k) = Cn(k). Hence, the precondition Cir (n)(k) >
t0 together with Invariant 2 guarantee t > t0. Moreover, Invariant 3 guarantees (k, t) ∈ H .

Now consider the case where Cn(k) = t = ⊥, indicating that no copy has been found for k
in n. In this case, traverse calls findNext to obtain the successor node of n and k. In the case
where the successor n′ exists (line 9), we know that k ∈ es(n, n′) must hold. Hence, by definition
of contents-in-reach we must have Cir (n)(k) = Cir (n′)(k). From Cir (n)(k) > t0 and Invariant 2,
we can then conclude Cir (n′)(k) > t0, i.e. the precondition for the recursive call to traverse on
line 11 is satisfied and search recency follows by induction.

On the other hand, if n does not have any next node, then traverse returns ⊥ (line 13),
indicating that k has not yet been upserted at all so far. In this case, by definition of contents-in-reach
we must have Cir (n)(k) = ⊥. Invariant 2 then guarantees ⊥ > t0 which in turn implies t0 = ⊥.
Hence, search recency holds trivially in this case.

In the remainder of this section, we show how to formalize the above proof in Iris. The key
technical challenge we will have to solve here, compared to the proof of search recency for the two-
node template, is that the contents-in-reach is now a recursive function defined over an unbounded
graph. This makes it more difficult to obtain a simple local proof that involves reasoning only about
a bounded number of nodes in the graph at a time. We will solve this challenge using the flow
framework, similarly to howwe dealt with the inset function in the case of the single-copy templates.

Encoding contents-in-reach using flows. Let us revisit the recursive definition of contents-in-
reach given in Equation (8.1). The computation of contents-in-reach proceeds bottom-up in the
multicopy structure graph starting from the leaves and continues recursively towards the root node.
That is, the computation proceeds backwards with respect to the direction of the graph’s edges. This
makes a direct encoding of contents-in-reach in terms of flows difficult because the flow equation
describes computations that proceed in forward direction. We side-step this problem by following
an approach where we track the purported contents-in-reach of every node as explicit ghost state in
the invariant and then use a flow to propagate these values forward in the graph so as to check that
they are indeed consistent with the recursive definition (8.1).

In the following, we denote by Bn the purported value of Cir (n) for every node n in the
graph. We will track this value in an auxiliary ghost location associated with each node in the in-
variant mcs_inv(r). The flow of a node n in our encoding then captures the assumptions that the
Bn′ make about Cir (n) for all predecessor nodes n′ of n. The node-level invariant for n enforced
by mcs_inv(r) will ensure that these assumptions are consistent with the purported value Bn for
Cir (n) at n.

The cancellative monoid M for the flow domain of this encoding consists of multisets of
key-timestamp pairs M := KS× N⊥ → N. The edge function for the flow graph induced by the
multicopy structure is defined as follows:

e(n, n′)(_) := χ({(k, t) | k ∈ es(n, n′) ∧ Cn(k) = ⊥ ∧Bn(k) = t}) (9.1)

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 105

k1 ⊥
k2 7
k3 ⊥

r

k1 6

k2 5
k3 ⊥

n1

k1 ⊥
k2 3
k3 4

n2

k1 2

k2 ⊥
k3 1

n3

k1 6
k2 7
k3 4

k1 6
k2 5
k3 4

k1 2
k2 3
k3 4

k1 2
k2 ⊥
k3 1

χ({(k1, 6),
(k3, 4)}) χ({(k3, 4)}) χ({k1, 2})

Figure 9.4: Flow encoding of contents-in-reach for multicopy structure shown in Fig. 7.6.

Here, χ takes a set to its characteristic function. Note that this definition is independent of the flow
of node n. That is, the outflow of n via edge (n, n′) depends only on Cn, Bn and es(n, n′). This
outflow is the multiset of all pairs (k, t) for which we must guarantee Cir (n′)(k) = t in order to
obtain Bn = Cir (n). Finally, we let the global inflow of the flow graph assign the empty multiset
to every node.

Figure 9.4 illustrates the encoding for the multicopy list structure depicted in Fig. 7.6. Each
node n is labeled with its contents Cn (in black). Above each node we show Bn (in red). Each edge
is labeled in blue with the outflow going from the source to the sink node of the edge. As every node
has at most one predecessor, the outflow labeling each edge is also the flow of the sink node of that
edge.

Let In be the node-level flow interface of node n in this flow graph (i.e., the inflow In.in(n)

coincides with n’s flow). Let further outs(In) be the set of all keys that are in the outflow of In, i.e.

outs(In) := {k | ∃n′ t. In.out(n′)(k, t) > 0} .

In order to ensure that we indeed must have Bn = Cir (n) for all nodes n, the invariant mcs_inv(r)

needs to enforce the following node-local conditions:

φ1(n,Bn, Cn, In) := ∀k. k ∈ outs(In) ∨Bn(k) = Cn(k) (9.2)
φ2(n,Bn, In) := ∀k t. In.in(n)(k, t) > 0⇒ Bn(k) = t (9.3)

The following lemma states the correctness of this encoding.

Lemma 9.1 If φ1(n,Bn, Cn, In) and φ2(n,Bn, In) hold for all nodes n in the flow graph obtained
from a multicopy structure as described above, then Bn = Cir (n).

Proof. The proof proceeds by induction over the inverse topological order of the multicopy structure
graph. Let k be a key and n a node in the graph. We show Bn′(k) = Cir (n′)(k), provided Bn′ =

Cir (n′) holds for all successors n′ of n in the topological order. We have to consider three cases
according to the definition of Cir (n) (Equation (8.1).

106 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

First, suppose Cn(k) 6= ⊥. In this case, we have Cir (n)(k) = Cn(k). Moreover, Equa-
tion (9.1) implies k /∈ outs(In). Hence, we can conclude from φ1(n,Bn, Cn, In) that Bn(k) =

Cn(k) holds, as well.
Next, suppose Cn(k) = ⊥ and k ∈ es(n, n′) for some n′. Then Equation (9.1) implies

In.out(n′)(k,Bn(k)) > 0. Since we have a valid flow graph, the interfaces In and In′ must com-
pose, which implies In′ .in(n′)(k,Bn(k)) > 0. It follows from φ2(n′, Bn′ , In′) that we then must
have Bn′(k) = Bn(k). By induction hypothesis we conclude Bn′(k) = Cir (n′)(k) and, hence,
Bn(k) = Cir (n′)(k) = Cir (n)(k) by Equation (8.1).

Finally, consider the case where Cn(k) = ⊥ and for all nodes n′, k /∈ es(n, n′). In
this case, Equation (9.1) again implies k /∈ outs(In) and Bn(k) = Cn(k) = ⊥ follows from
φ1(n,Bn, Cn, In). Thus, we again conclude Bn(k) = ⊥ = Cir (n)(k) by Equation (8.1). �

Note that all nodes in the flow graph shown in Fig. 9.4 satisfy these conditions and, indeed,
the annotated Bn are the correct contents-in-reach for this multicopy structure.

We next discuss how to incorporate this encoding into a general multicopy structure invariant
mcs_inv(r).

Invariant for multicopy data structure. The invariant mcs_inv(r) for the general multicopy
structure is shown in Fig. 9.5. It generalizes the invariant for the two-node multicopy template in
Fig. 8.6 by incorporating many of the ideas that we previously introduced for the proofs of the single-
copy templates (Chapter 6). For presentation purposes, we omit some details of the invariant for now
that we will only need when discussing the correctness of the maintenance operation. We discuss
each part of Fig. 9.5 in detail:

• The existentially quantified variables t, H and I are to be interpreted as the current clock
value, the current upsert history, and the current global interface of the graph, respectively.

• Similar to the two-node template, we use two abstract predicates MCS•(r, t,H) and
MCS(r, t,H) so that the invariant and the atomic triples of the data structure operations can
share a consistent view of the abstract state of the multicopy structure.

• We use appropriate authoritative RAs at ghost locations γs and γt, to keep track of the upsert
historyH and the global clock t. As for the two-node template, we split ownership of the global
clock between the invariant and the node predicate for the root node to capture Invariant 5.
We will need this property again for the proof of upsert later.

• We use an authoritative RA of flow interfaces at ghost location γI to keep track of the global
interface I , which is composed of singleton interfaces In for each node n ∈ dom(I). The In
are tied to the implementation-specific physical representation of the individual nodes via the
predicates N and S as explained below.

• The ghost resource • dom(I)
γf

keeps track of the footprint of the data structure using the
authoritative RA of sets of nodes. This resource plays a similar role in the proof as in the proofs

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 107

mcs_inv(r) := ∃ tH I.

MCS•(r, t,H)

∗ • H
γs ∗ ½ • t

γt ∗ • I
γI ∗ • dom(I)

γf

∗ I.in = λ0
∗ inFP(r)

∗maxTS(t,H)

∗ ∗
n∈dom(I)

∃bnCnBn. lk(n) 7→ bn
∗ (bn ? True : N(r, n, Cn, Bn))

∗ S(r, n, Cn, Bn, H)

where maxTS(H, t) := ∀ k, t′. (k, t′) ∈ H → t′ < t

N(r, n, Cn, Bn) := ∃es, t. node(r, n, es, Cn)

∗ ½es
γe(n) ∗ ½Cn

γc(n) ∗ ½Bn
γb(n) ∗ ◦ Cn

γs

∗
(
n = r ? ½ • t

γt
: True

)
S(r, n, Cn, Bn, H) := ∃es, In.

∗ ½es
γe(n) ∗ ½Cn

γc(n) ∗ ½Bn
γb(n)

∗ ◦In
γI ∗ dom(In) = {n} ∗ inFP(n) ∗ closed(es)

∗ In.out = λn′. χ({(k, t) | k ∈ es(n′) ∧ Cn(k) = ⊥ ∧Bn(k) = t})
∗
(
n = r ? Bn = H̄ ∗ In.in = λ0 : True

)
∗∗k∈KS • Bn(k)

γcir(n)(k)

∗ φ1(n,Bn, Cn, In) ∗ φ2(n,Bn, In)

inFP(n) := ◦ {n}
γf

closed(es) := ∀n′. es(n′) 6= ∅ → inFP(n′)

Figure 9.5: The invariant for the general multicopy template.

of the single-copy structures discussed earlier. Notably we use it to maintain the invariant
of traverse that the currently visited node n remains part of the data structure while n is
unlocked. We require that the global interface I has no inflow (I.in = λ0).

• The condition inFP(r) guarantees that r is always in the domain of the data structure.

108 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

• The condition maxTS(H, t) again captures Invariant 4, which will be needed for the proof of
upsert.

• The resources for every node n are split between the two predicates N(r, n, Cn, Bn) and
S(r, n, Cn, Bn, H). The latter is always owned by the invariant whereas the former is protected
by n’s lock and transferred between the invariant and the thread’s local state upon locking the
node and vice versa upon unlocking, as usual. We next discuss these two predicates in detail.

• The first conjunct of N(r, n, Cn, Bn) is the implementation-specific node predicate
node(r, n, es, Cn). For each specific implementation of the template, this predicate must tie
the physical representation of the node n to its contents Cn and a function es : N→ ℘(KS)

which captures the edgesets of n’s outgoing edges. We require that node is not duplicable:

node(r, n, es, Cn) ∗ node(r′, n, es ′, C ′n) ` False

Moreover, node must guarantee that the edgesets are disjoint:

node(r, n, es, Cn) ` ∀n1 n2. n1 = n2 ∨ es(n1) ∩ es(n2) = ∅

We include r in the parameters of node so that the implementation can choose different rep-
resentations for memory and disk nodes.

• The fractional resources at ghost locations γe(n), γc(n), and γb(n) ensure that the predicates N
and S agree on es , Cn, and Bn even when n is locked.

• The ghost resource ◦ Cn
γs

when combined with • H
γs

implies Cn ⊆ H , which captures
Invariant 3.

• As discussed previously, the final conjunct of N guarantees sole ownership of the global clock
by a thread holding the lock on the root node.

• Moving on to S(r, n, Cn, Bn, H), this predicate contains those resources ofn that are available
to all threads at all times. In particular, the resource ◦In

γI
guarantees that all the singleton

interfaces In compose to the global interface I , thus, satisfying the flow equation. Similarly,
the predicate inFP(n) guarantees that n remains in the data structure at all times. The predicate
closed(es) ensures that the outgoing edges of n point to nodes which are again in the data
structure. Together with the condition inFP(r), this guarantees that all nodes reachable from
r must be in dom(I).

• The next conjunct of S defines the outflow of the singleton interface In according to Equa-
tion (9.1) of our flow encoding of contents-in-reach. Note that, even though In is not shared
with the predicate N, only its inflow can change when n is locked, because the outflow of the
interface is determined by Cn, Bn, and es , all of which are protected by n’s lock.

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 109

1 mcs_inv(r) −∗ inFP(n) −∗
〈

True
〉
lockNode n

〈
N(r, n, In, Cn, Dn)

〉
2 mcs_inv(r) −∗ inFP(n) −∗ N(r, n, In, Cn, Dn) −∗

〈
True

〉
unlockNode n

〈
True

〉
3

4
{
node(r, n, es, Cn)

}
5 inContents n k

6
{
t. node(r, n, es, Cn) ∗ Cn(k) = t

}
7

8
{
node(r, n, es, Cn)

}
9 findNext n k

10
{
v. node(r, n, es, Cn) ∗ (v = Some(n′) ∗ k ∈ es(n′) ∨ v = None ∗ ∀n′. k /∈ es(n′))

}
Figure 9.6: Specifications of helper functions used by search

• The constraint Bn = H̄ holds if r = n and implies Invariant 1. We further require here that
the interface of the root node has no inflow (In.in = λ0), a property that we need in order
to prove that upsertmaintains the flow-related invariants. Moreover, similar to our two-node
invariant, we use for every key k an authoritative maxnat resource at ghost location γcir(n)(k)
to capture Invariant 2.

• The last two conjuncts of S complete our encoding of contents-in-reach and ensure that we
must indeed have Bn = Cir (n) at all atomic steps.

Finally, recall from our prior discussion in Section 8.2.1 that we encode the search re-
cency property needed for the meta-level correctness argument (Theorem 7.1) using the predicate
mcs_sr(k, t0). This predicate captures the fact that t0 is the logical timestamp of k at some point in
the past. We keep the definition of this predicate the same as for the proof of the two-node multicopy
template (cf. Section 8.2.1):

mcs_sr(k, t0) := ◦ {(k, t0)}
γs

.

We now have all the ingredients to proceed with the proof of search.

Proof of search. We start with the specification of the implementation-specific helper functions
assumed by search as well as the lock module used in the proof. They are provided in Fig. 9.6.
The specifications of lockNode, unlockNode, and inContents are adapted from the ones we as-
sumed for the two-node template algorithm. The precondition inFP(n) is required for lockNode and
unlockNode in order to ensure that the node n which is operated on belongs to the graph. The func-
tion findNext assumes ownership of the resources node(r, n, In, vn) associated with the locked
node n and returns a successor node n′ of n such that k is in the edgeset of (n, n′) if such a node
exists.

Figure 9.7 provides the outline of the proof of search recency for the general multicopy tem-
plate. As most of the actual work is done by the recursive function traverse, we start with its atomic

110 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

1
{

mcs_inv(r) ∗mcs_sr(k, t0)
}
∗
〈
t H. MCS(r, t,H)

〉
2 let search r k =

3
{
inFP(r) ∗ H̄1(k) = Br(k) ∗ ◦ Br(k)

γcir(r)(k) ∗ t0 ≤ H̄1(k)
}

4
{
inFP(r) ∗ ◦ t1

γcir(r)(k) ∗ t0 ≤ t1
}
∗
〈
t H. MCS(r, t,H)

〉
5 traverse r k

6
〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
7

8
{

mcs_inv(r) ∗ inFP(n) ∗ ◦ t1
γcir(n)(k) ∗ t0 ≤ t1

}
∗
〈
t H. MCS(r, t,H)

〉
9 let rec traverse n k =

10 lockNode n;

11
{
N(r, n, Cn, Bn) ∗ ◦ Bn(k)

γcir(n)(k) ∗ t0 ≤ Bn(k)
}

12 let t' = inContents n k in

13
{
N(r, n, Cn, Bn) ∗ ◦ Bn(k)

γcir(n)(k) ∗ t0 ≤ Bn(k) ∗ Cn(k) = t′
}

14 if t' != ⊥ then begin

15
{
N(r, n, Cn, Bn) ∗ t0 ≤ Bn(k) ∗ Cn(k) = t′ 6= ⊥

}
16 (* Linearization point *)

17
{
N(r, n, Cn, Bn) ∗ t0 ≤ Cn(k) ∗ Cn(k) = t′

}
18

{
N(r, n, Cn, Bn) ∗ (k, t′) ∈ H ∗ t0 ≤ t′ ∗MCS(r, t,H)

}
19 unlockNode n; t'

20
〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
21 end
22 else begin

23
{
N(r, n, Cn, Bn) ∗ t0 ≤ Bn(k) ∗ Cn(k) = t′ = ⊥

}
24 match findNext n k with

25 | Some n' ->
{
node(r, n, es, Cn) ∗ · · · ∗ t0 ≤ Bn(k) ∗ Cn(k) = ⊥ ∗ k ∈ es(n ′)

}
26

{
node(r, n, es, Cn) ∗ · · · ∗ t0 ≤ Bn(k) ∗ Cn(k) = ⊥ ∗ k ∈ es(n ′)

}
27

{
N(r, n, Cn, Bn) ∗ inFP(n′) ∗ ◦ t1

γcir(n′)(k) ∗ t0 ≤ t1
}

28 unlockNode n;

29
{
inFP(n′) ∗ ◦ t1

γcir(n′)(k) ∗ t0 ≤ t1
}
∗
〈
t H. MCS(r, t,H)

〉
30 traverse n' k

31
〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
32 | None ->

{
node(r, n, es, Cn) ∗ · · · ∗ t0 ≤ Bn(k) ∗ Cn(k) = ⊥ ∗ ∀n′. k /∈ es(n′)

}
33

{
N(r, n, Cn, Bn) ∗ t0 ≤ Bn(k) ∗Bn(k) = Cn(k) = ⊥

}
34 (* Linearization point *)

35
{
N(r, n, Cn, Bn) ∗ t0 = Bn(k) = Cn = ⊥ ∗MCS(r, t,H)

}
36

{
N(r, n, Cn, Bn) ∗ (k,⊥) ∈ H ∗ t0 = ⊥ ∗MCS(r, t,H)

}
37 unlockNode n; ⊥
38 end

39
〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
Figure 9.7: Proof of search for general multicopy template

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 111

specification:

mcs_inv(r) −∗ inFP(n) −∗ ◦ t1
γcir(n)(k) −∗ t0 ≤ t1 −∗〈

t H. MCS(r, t,H)
〉
traverse n k

〈
t′. MCS(r, t,H) ∗ (k, t′) ∈ H ∗ t0 ≤ t′

〉
Recall the traversal invariant t0 ≤ Cir (n)(k) that we used in our informal proof of search recency.
The ghost resource ◦ t1

γcir(n)(k) , together with t0 ≤ t1 in the precondition of the above specifica-
tion precisely capture this invariant. In addition, traverse assumes the invariant mcs_inv(r) and
requires that nmust be a node in the graph, expressed by the predicate inFP(n). The operation then
guarantees to return t′ such that search recency holds.

Let us for now assume that traverse satisfies the above specification and focus on the proof
of search. The precondition of search r k assumes the invariant mcs_inv(r) and the predicate
mcs_sr(k, t0) (line 1). We must, hence, use these to establish the precondition for the call traverse
n k on line 5. To this end, we open the invariant from which we can directly obtain inFP(r). Next,
we unfold the definition of mcs_sr(k, t0) to obtain ◦ {(k, t0)}

γs
. Snapshotting • H1

γs
in the

invariant for the current upsert historyH1, we can conclude (k, t0) ∈ H1 and therefore t0 ≤ H̄1(k).
From S(r, r, Cr, Br) in the invariant we can further deduce H̄1(k) = Br(k) and ◦ Br(k)

γcir(r)(k)

(line 3). By substituting both H̄1(k) and Br(k) with a fresh existentially quantified variable t1 we
obtain the precondition of traverse (line 4). We now commit the atomic triple of search on the
call to traverse and immediately obtain the desired postcondition.

Proof of traverse. Finally, we prove the assumed specification of traverse. The proof starts
at line 8. The thread first locks node n which yields ownership of the predicate N(r, n, Cn, Bn).
At this point, we also open the invariant to take a fresh snapshot of the resource • Bn(k)

γcir(n)(k)

to conclude t0 ≤ Bn(k) from the precondition of traverse (line 11). Next, the thread executes
inContents n k. Note that the precondition of for this call, i.e. node(r, n, es, Cn), is available to
us as part of the predicate N(r, n, Cn, Bn). Depending on the return value t′ of inContents we end
up with two subcases.

In the case whereCn(k) = t′ 6= ⊥we continue on line 15. The call to unlockNode on line 19
will be the linearization point of this case. To obtain the desired postcondition of the atomic triple,
we first retrieve S(r, n, Cn, Bn, H) from the invariant and open its definition. From the definition of
In.out and Cn(k) 6= ⊥ we first obtain k /∈ In.out . Together with the constraint φ1(n,Bn, Cn, In)

we then infer Bn(k) = Cn(k). This leaves us with the proof context on line 17. Now we access the
preconditionMCS(r, t,H) of the atomic triple and sync it with the view ofH and t in the invariant.
Moreover, we use the resource ◦ Cn

γs
to infer Cn ⊆ H , which then implies (k, t′) ∈ H (line 18).

The call to unlockNode returns N(r, n, Cn, Bn) to the invariant and commits the atomic triple,
which concludes this case.

For the second case, we have Cn(k) = ⊥ and the thread calls findNext. Here, we unfold
N(r, n, Cn, Bn) to retrieve node(r, n, es, Cn) needed to satisfy the precondition of findNext. We
then end up again with two subcases: one where there is a successor node n′ such that k ∈ es(n′),

112 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

and the other where no such node exists. Let us consider the first subcase, which is captured by the
proof context on line 25. Now, before the thread unlocks n, we have to reestablish the precondition
of traverse for the recursive call on line 30. To do this, we first open the invariant and retrieve
S(r, n, Cn, Bn, H). From predicate closed(es), we obtain the resource inFP(n′) as es(n′) 6= ∅.
inFP(n′) is the first piece for the precondition of traverse. To obtain the remaining pieces, we must
retrieve S(r, n′, Cn′ , Bn′ , H) from the invariant. This is possible because we can infer n′ ∈ dom(I)

using inFP(n′).
First observe that from In.out(n′)(k,Bn(k)) > 0 and the fact that In and In′ compose, we

can conclude In′ .in(n′)(k,Bn(k)) > 0. It then follows from the constraint φ2(n′, Bn′ , In′) that
Bn′(k) = Bn(k). We can further take a fresh snapshot of the resource • Bn′(k)

γcir(n′)(k) to obtain

our final missing piece ◦ Bn′(k)
γcir(n′)(k) for the precondition of traverse. Then substituting

both Bn(k) and Bn′(k) by a fresh variable t1 and folding predicate N(r, n, Cn, Bn) we arrive at
line 27. Unlocking n transfers ownership of N(r, n, Cn, Bn) back to the invariant. The resulting
proof context satisfies the precondition of the recursive call to transfer, which we use to commit
the atomic triple by applying the specification of transfer inductively.

We are left with the last subcase where n has no successor for k (line 32). Here, we pro-
ceed similarly to the first case above: we obtain S(r, n, Cn, Bn, H) from the invariant and use
∀n′. k /∈ es(n′) to conclude that In.out(n′)(k,Bn) = 0 for all n′. It then follows from the con-
straint φ1(n,Bn, Cn, In) that Bn(k) = Cn(k). After folding predicate N(r, n, Cn, Bn) we arrive
on line 33. The linearization point in this case is at the point when n is unlocked, so we access
the precondition MCS(r, t,H) of the atomic triple and sync it with the view of H and t in the in-
variant. Again, using the resource ◦ Cn

γs
we infer Cn ⊆ H to conclude (k,⊥) ∈ H . The call to

unlockNode returns N(r, n, Cn, Bn) to the invariant and commits the atomic triple. The postcondi-
tion follows for t′ = ⊥, which is the return value in this case.

This completes the proof of search recency for general multicopy structures.

9.2.2 PROVING THE CORRECTNESS OF UPSERT
We now focus on proving the correctness of the upsert operation presented in Fig. 9.1. As the code
of upsert is identical to the version in the two-copy template, the general outline of the Iris proof
closely follows the one presented in Section 8.2.2. We therefore only discuss those aspects of the
proof that are concerned with our encoding of contents-in-reach using flows.

The upsert changes the physical contentsCr of the root node. As a consequence,the contents-
in-reach Cir (r) also changes. However, for all other nodes n, Cir (n) stays the same. This is the key
observation that enables us to a obtain local proof argument for the correctness of upsert in the
general case of a multicopy structure with an unbounded number of nodes.

In the proof, the change of Cir (r) must be reflected by an update of the ghost resource that
holdsBr in the predicatesN(r, r, Cr, Br) and S(r, r, Cr, Br, H) of the invariant. In turn, this means
that the outflow of the interface Ir may need to be updated, as well. We thus have to prove that the

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 113

k1 ⊥
k2 7
k3 8

r

k1 6

k2 5
k3 ⊥

n1

k1 ⊥
k2 3
k3 4

n2

k1 2

k2 ⊥
k3 1

n3

k1 6
k2 7
k3 8

k1 6
k2 5
k3 4

k1 2
k2 3
k3 4

k1 2
k2 ⊥
k3 1

χ({(k1, 6)}) χ({(k3, 4)}) χ({k1, 2})

Figure 9.8: Multicopy structure from Fig. 9.4 after upserting (k3, 8) at the root node.

resulting new interface I ′r of r still composes with the interfaces of the other nodes in the graph and
that the relevant constraints imposed on B′r, Cr, and I ′r by the invariant still hold.

There are several cases we need to cover. To illustrate these, consider again the multicopy
structure in Fig. 9.4. The simple case is when the upsertmodifies an existing copy of the query key
in the root. For instance, suppose we upsert key k2 to timestamp 8 in the structure shown in Fig. 9.4.
That is, Cr is updated to C ′r = Cr[k2� 8] and, in turn, Br is updated to B′r = Br[k2� 8]. First
note that the constraint:

Ir.out = λn′. χ({(k, t) | k ∈ es(n′) ∧ C ′r(k) = ⊥ ∧B′r(k) = t})

still holds for the old interface Ir because we already had Cr(k2) 6= ⊥ before the upsert. Hence, we
do not have to change Ir in this case, and it still composes with the rest of the graph. Also, it is easy to
see that the constraint φ1(r,B′r, C

′
r, Ir) remains valid. The constraint φ2(r,B′r, Ir) remains trivially

valid because Ir has no inflow. This argument generalizes to all those cases whereCr(k) 6= ⊥ before
the update or where k /∈ es(n′) for all nodes n′.

The more interesting case is when upsert adds a new copy of a key k that was not yet present
in the root node and there exists and edge leaving r that has k in its edgeset. For instance, suppose
k3 is upserted to 8 in the multicopy structure shown in Fig. 9.4. In this case, we had Cr(k3) = ⊥
before the upsert but we have Cr(k3) 6= ⊥ after the upsert. Hence, in order to make sure that the
constraint on the outflow of r’s interface is still satisfied, we need to change the outflow of Ir.
Figure 9.8 shows the updated multicopy structure for the considered upsert on k3 in Fig. 9.4. Note
that the outflow of r’s interface to n1 (i.e., the label on the edge between these nodes) is reduced
from χ({(k1, 6), (k3, 4)}) to χ({(k1, 6)}).

In general, suppose we have Cr(k) = ⊥ before the upsert and k ∈ es(n′) for some node n′.
In this case, we obtain the new I ′r from Ir by defining

I ′r.in := Ir.in

I ′r.out := λn′. (k ∈ es(n′) ? Ir.out(n′)[(k,Br(k))� 0] : Ir.out(n′))

First note that φ1(r,B′r, C
′
r, I
′
r) remains valid becauseB′r(k) = C ′r(k) for the upserted key k. More-

over, φ2(r,B′r, I
′
r) remains valid because the inflow did not change and Ir had no inflow.

114 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

Unfortunately, since the outflow of r’s interface has changed, the new interface I ′r will no
longer compose with the rest of the graph. That is, the interface In′ for the node n′ such that k ∈
es(n′) still expects a larger inflow compatible with the old outflow provided by Ir. To account for
this, we also need to update the inflow of interface In′ . Note that we can do this without locking n′

because this change does not violate any of the node-local invariants at n′. This is reflected by the
fact that the resource holding In′ remains in the invariant even if n′ is locked by another thread. We
update In′ .in by accounting for the reduced outflow from r as follows:

I ′n′ .out := In′ .out

I ′n′ .in := λn. (n = n′ ? In′ .in(n)[(k,Br(k))� In′ .in(n)(k,Br(k))− 1] : In′ .in(n))

Note that because the outflow of the interface remains the same, all constraints imposed on I ′n′ .out

by the invariant are still satisfied. Moreover, φ2(n′, Bn′ , I
′
n′) continues to hold because the inflow

of n′ only decreases, i.e., for all keys k′ and t, I ′n′ .in(n′)(k′, t) ≤ In′ .in(n′)(k′, t).
One can now easily verify that the composite interface of r and n′ before and after the upsert

is preserved, i.e., Ir ⊕ In′ = I ′r ⊕ I ′n′ . We can therefore replace Ir and In′ in the invariant by their
new interfaces in a single frame-preserving update at the commit point in the proof of upsert.

The remainder of the proof closely follows that presented for the two-node template in Sec-
tion 8.2.2.

9.2.3 PROVING THE CORRECTNESS OF MAINTENANCE
In order to prove correctness of the maintenance operation undertaken by compact (Fig 9.2), we
must show that the operation satisfies the following specification required by Theorem 7.1 from
Chapter 7.

mcs_inv(r) −∗ inFP(n) −∗
〈
tH. MCS(r, t,H)

〉
compact n

〈
MCS(r, t,H)

〉
The above specification says that compact logically takes effect in a single atomic step, and at this
step the global state of the data structure does not change. Note that for n = r, the auxiliary precon-
dition inFP(n) follows directly from the invariant mcs_inv(r).

Technically, the linearization point of the operation occurs when the lock on the final node
n is released on line 12, just before the function terminates. However, the interesting part of the
proof is to show that the changes to the physical contents of nodes n andm performed by each call
to mergeContents at line 6 preserve the abstract state of the structure as well as the invariant. In
particular, the changes to Cn and Cm also change the contents-in-reach of Cm. We need to argue
that this is a local change that does not propagate further in the data structure, similar to our proof
of upsert.

Updated invariant for proving correctness of maintenance. When proving the correctness of
compact, we face two technical challenges. The first challenge arises when establishing that compact
changes the contents of the nodes involved in such away that the high-level invariants aremaintained.

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 115

k1 5

k2 6

n

k1 3

k2 4

p

k1 2

k2 1

m

{k1}

{k1, k2}{k2}

k1 5

k2 ⊥
n

k1 3

k2 4

p

k1 2

k2 6

m

{k1}

{k1, k2}{k2}

k1 ⊥
k2 ⊥
n

k1 5

k2 4

p

k1 3

k2 4

m

{k1}

{k1, k2}{k2}

k1 ⊥
k2 ⊥
n

k1 ⊥
k2 ⊥
p

k1 5

k2 4

m

{k1}

{k1, k2}{k2}

Figure 9.9: Possible execution of the compact operation on aDAG. Edges are labeledwith their edgesets.
The nodes undergoing compaction in each iteration are marked in blue.

In particular, it is difficult to reestablish Invariant 2, which states that the contents-in-reach can only
increase over time. Since compaction replaces downstream copies of keys with upstream copies,
in order to maintain Invariant 2 we need the additional property that the timestamps of keys in the
contents of nodes can only decrease as wemove away from the root. This is captured by the following
additional invariant:

Invariant 6 At any atomic step, the contents of a node is not smaller than the contents-in-reach of
its successor. That is, for all keys k and nodes n andm, if k ∈ es(n,m) and Cn(k) 6= ⊥ then
Cir (m)(k) ≤ Cn(k).

This invariant is not yet captured by mcs_inv(r).
The second challenge is that the maintenance template only generates tree-like structures and

this invariant about the data structure graph is critical for the correctness of compact. However, the
Iris invariant mcs_inv(r) presented thus far allows for arbitrary DAGs (in fact, it does not even rule
out cycles).

To furthermotivate these two issues, consider themulticopy structure depicted at the top left of
Fig. 9.9. The logical contents of this structure (i.e. the contents-in-reach of n) is [k1� 5, k2� 6].

The structure at the bottom left shows the result obtained after executing compactn to com-
pletion where n has been considered to be at capacity and the successorm has been chosen for the

116 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

merge, resulting in (k2, 6) being moved from n tom. Note that at this point the logical contents of
the data structure is still [k1� 5, k2� 6] as in the original structure. However, the structure now
violates Invariant 6 for nodes p andm since Bm(k2) > Cp(k2).

Suppose that now a new compaction starts at n that still considers n at capacity. Now node
p is chosen for the merge, resulting in (k1, 5) being moved from n to p. The graph at the top right
depicts the resulting structure. The compaction then continues with p, which is also determined to
be at capacity. Nodem is chosen for the merge, resulting in (k1, 5) and (k2, 4) being moved from p

tom. At this point, the second compaction terminates. The final graph at the bottom right shows the
resulting structure at this point. Observe that the logical contents is now [k1� 5, k2� 4], violating
the specification which implies that the logical contents is to be preserved by maintenance. In fact
the contents-in-reach of n has decreased, violating Invariant 2.

The example illustrates the importance of the tree invariant for the correctness of the mainte-
nance template. This invariant is needed to guarantee that Invariant 6 is maintained, which in turn
is needed to maintain Invariant 2 when copies of keys are merged downstream. We observe that,
although compact will only create tree-like structures, we can prove its correctness using a weaker
invariant about the structure of the generated graphs, namely that at all times, every node has at most
one incoming edge. We will use this weaker invariant in our proof below.

To capture the two additional invariants, we define two new flows which we track using addi-
tional flow interfaces inmcs_inv(r) similar to the flow interface I used to encode contents-in-reach.

First we start with the flow used to express Invariant 6. In the following, we will use the
variable J to refer to interfaces related to this flow. At the high-level, the idea to capture Invariant 6
is for a node to propagate its contents to its successors. As a result, the inflow of the node-level
interface Jm of a node m encodes the union of the contents of all its predecessor nodes n. We can
then express Invariant 6 as a node-local condition that relates Jm.in and Bm.

More concretely, the new global interface J is stored at a new ghost location γJ inmcs_inv(r).
As for the contents-in-reach flow interface I , the associated RA is authoritative flow interfaces over
the flow domain of multisets of key-timestamp pairs. We add the constraint dom(I) = dom(J) to
ensure that I and J agree on which nodes belong to the graph. We further demand that J has no
inflow.

We next augment S(r, n, Cn, Bn) with the fragmental ownership ◦ Jn
γJ

of the correspond-
ing singleton interface Jn. The desired flow is then obtained by adding a constraint defining the
outflow of Jn as

Jn.out = λn′. χ({(k, t) | k ∈ esn(n′) ∧ Cn(k) = t ∧ t 6= ⊥})

Finally, to capture Invariant 6, we add the following predicate as an additional conjunct to the defi-
nition of S(r, n, Cn, Bn):

φ3(n,Bn, Jn) := ∀k t. In.in(n)(k, t) > 0⇒ t 6 Bn(k) (9.4)

Next, let us tackle the invariant that each node has at most one predecessor. The high-level
idea to encode this invariant is to perform reference counting using flows. For this purpose, we

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 117

introduce one more global interface to mcs_inv(r) which we refer to by the variable R and store at
ghost location γR. The underlying flow domain here is natural numbers with addition as the monoid
operation. Again we add the conjunct dom(R) = dom(I) to mcs_inv(r) in order to ensure that the
interfaces agree on which nodes belong to the graph.

Now, by demanding that R has no inflow and by letting every node propagate outflow of 1 to
each of their successors, the flow of every node will be equal to the number of its incoming edges.
For the encoding, we again augment S(r, n, Cn, Bn) with the fragmental ownership ◦ Rn

γR
of the

corresponding singleton interface Rn and add a constrain defining the desired outflow:

R.out := λn′. (esn(n′) 6= ∅ ? 1 : 0)

The structural invariant is then captured by conjoining S(r, n, Cn, Bn) with the predicate:

φ4(n,Rn) := Rn.in(n) 6 1 (9.5)

We briefly explain why we can still prove the correctness of search and upsert with the
updated invariant mcs_inv(r). First note that search does not modify any ghost resources. So the
new invariant is still trivially maintained. Moreover, we are still able to follow the same proof outline
from Fig. 9.7 by simply ignoring the newly added ghost resources related to the interfaces J and R.

Now let us consider the operation upsert r k. Since upsert does not change the edgesets of
any nodes, the resources and constraints related to the reference counting flow interfaces Rn are
trivially maintained. However, since the contents of the root node r is changed, the interfaces Jr
as well as the interface Jn for any successor n of r with k ∈ esr(n) must be updated to include
the new pair (k,C ′r(k)). The contents of r here changes to C ′r = Cr[k� t] where t is the current
clock value. The predicate maxTS(H) in the invariant guarantees that C ′r(k) = t is larger than all
previous timestamps in the structure. Hence, propagating (k, t) to a successor n of r will preserve
the constraint φ3(n,Bn, Jn).

With the updated definition of mcs_inv(r), we are now ready to prove the correctness of
compact.

High-level proof of compact. The specifications of the implementation-specific helper functions
assumed by compact are provided in Fig. 9.10. A thread performing compact n starts by locking
node n and checking if node n is at full capacity using the helper function atCapacity. By locking
node n, the thread receives the resources available in N(r, n, Cn, Bn), for some contents Cn and
contents-in-reach Bn. The precondition of atCapacity requires the predicate node(r, n, esn, Cn),
which is available to the thread as part of N(r, n, Cn, Bn). The return value of atCapacity n is
a boolean indicating whether node n is full or not. The precise logic of how the implementation
of atCapacity determines whether a node is full is immaterial for the correctness of the template,
so the specification of atCapacity abstracts from this logic. If n is not full, compact releases the
lock on n, transferring ownership of N(r, n, Cn, Bn) back to the invariant and then terminates. The
call to unlockNode on line 12 is the commit point of the atomic triple in the else branch of the
conditional.

118 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

1
{
node(r, n, es, Cn)

}
2 atCapacity n

3
{
b. node(r, n, es, Cn) ∗ b = true ∨ b = false

}
4

5
{
node(r, n, esn, Cn)

}
6 chooseNext n

7

{
m. node(r, n, es ′n, Cn) ∗ es ′n(m) 6= ∅

∗ (esn = es ′n ∨ es ′n = λ∅[m� KS] ∗ node(r,m, esm, Cm) ∗ C′
n = λ⊥ ∗ esm = λ∅)

}
8

9
{
node(r, n, esn, Cn) ∗ node(r,m, esm, Cm) ∗ esn(m) 6= ∅

}
10 mergeContents n m

11

{
node(r, n, esn, C

′
n) ∗ node(r,m, esm, C′

m) ∗ C′
n ⊆ Cn ∗ C′

m ⊆ Cn ∪ Cm
∗merge(Cn, Cm) = merge(C′

n, C
′
m)

}
Figure 9.10: Specifications of helper functions used by compact - atCapacity n, chooseNext n, and
mergeContents n m.

k1 ⊥
k2 7
k3 ⊥

r

k1 6

k2 ⊥
k3 ⊥

n1

k1 ⊥
k2 5
k3 4

n2

k1 2

k2 ⊥
k3 1

n3

k1 6
k2 7
k3 4

k1 6
k2 5
k3 4

k1 2
k2 5
k3 4

k1 2
k2 ⊥
k3 1

χ({(k1, 6),
(k3, 4)})

χ({(k2, 5),
(k3, 4)}) χ({(k1, 2)})

Figure 9.11: Total merge of n1 with n2 in multicopy structure shown in Fig. 9.4.

Thus, let us consider the other case, i.e. when n is full. Here, the contents of node n must be
merged with the contents of some successor nodem of n. This nodem is determined by the helper
function chooseNext. chooseNext either returns an existing successor m of n (i.e., es ′n(m) 6= ∅
and esn = es ′n), or the returned nodem is a freshly allocated node linked into graph such that it is
now a successor of n. In the former case, we can establish thatm is part of the data structure due to
the fact that the edgeset of n directs some keys tom. This follows from the property closed(n) in
the invariant mcs_inv(r). In the latter case, we must extend the domain of the global flow interface
tracked by the invariant with the new nodem. This can be done using a frame-preserving update of
the authoritative version of the interfaces at ghost locations γI , γJ , and γR (see rule flowint-dom-upd
in §6.1.2). Showing that the invariant is preserved is easy because the invariant guarantees that m
can only be reached via m. Overall, once it has been established that node m is in the footprint of
the data structure, m is locked and the contents of n is (partially) merged into m using the helper
function mergeContents (line 6).

Let us now examine the specification of the function mergeContent in detail.
mergeContentsnmmerges the data from node n into nodem. Bymerge, wemean that some copies

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 119

of keys are transferred from n to m, possibly replacing older copies in m. Figure 9.11 shows the
merge process on the multicopy structure from Fig. 9.4. Here, the copy (k2, 5) has been transferred
from node n1 to n2. In general, mergeContents modifies the contents of the two nodes according
to the specification given in Fig. 9.10. The precondition demands ownership of the physical repre-
sentation of the nodes’ contents and thatm is a successor of n. The contents are modified to C ′n and
C ′m respectively such that C ′n ⊆ Cn and C ′m ⊆ Cn ∪ Cm (i.e., no new copies are conjured out of
thin air). To further constrain the new contents of the nodes, the postcondition additionally demands
merge(Cn, esn(m), Cm) = merge(C ′n, esn(m), C ′m), where

merge(Cn,Es, Cm) := λk.

Cn(k) if Cn(k) 6= ⊥
Cm(k) else if k ∈ Es

⊥ otherwise

We next show that, together, these constraints ensure that we can consistently update all relevant
ghost resources in the invariant. In particular, we will show that the contents-in-reach ofm can only
increase and that the contents-in-reach of all other nodes, including n remain unchanged.

For any key k and contents C, we denote by dom(C) the set of keys k such that C(k) 6= ⊥.
The set K := dom(Cn) \ dom(C ′n) then denotes all keys whose copies are merged from Cn into
Cm.

Observe that the last conjunct in the postcondition of mergeContents guarantees that
only copies of keys in the edgeset of the edge (n,m) are merged. That is, if k ∈ K,
then k ∈ esn(m). This is true because if k ∈ dom(Cn) \ dom(C ′n) and k /∈ esn(m), then
merge(n,C ′n, esn(m), C ′m)(k) = ⊥, but merge(n,Cn, esn(m), Cm)(k) = Cn(k) 6= ⊥, which is
a contradiction. We will use this observation freely in the remainder of the proof.

Before we can proceed with the rest of the proof, we need to choose witnesses for the exis-
tentially quantified variables in the invariant mcs_inv(r) before the call to mergeContents. For a
node p in the structure, we denote by Ip, Jp, and Rp the fragmental singleton flow interface of node
p at ghost locations γI , γJ , and γR, respectively. Moreover, letBp be the set stored at ghost location
γb(p) (i.e., the contents-in-reach of p before the call to mergeContents).

First, since the update of Cm also affects the contents-in-reach of m, we need to update Bm
appropriately. We do this by defining:

B′m := λk. (k ∈ K ? Cn(k) : Bm)

and then replace Bm at ghost location γb(m) by B′m. Additionally, we need to update each ghost
location γcir(m)(k) to hold the new value B′m(k). To do this, the authoritative maxnat RA re-
quires us to show that Bm(k) ≤ B′m(k). If k /∈ K, then Bm(k) = B′m(k) by definition. Hence
consider the case where k ∈ K. We then have B′m(k) = Cn(k) 6= ⊥. From this and k ∈ en(m),
it follows that Jn.out(m)(k,Cn(k)) > 0, which using the flow equation enables us to conclude
Jn.in(m)(k,Cn(k)) > 0. We then infer from φ3(m,Bm, Jm) that Bm(k) ≤ Cn(k) = B′m(k).

120 9. VERIFYING A GENERAL MULTICOPY TEMPLATE

Next, the fragmental singleton interfaces Ip for the successors p of m are affected by the
update of m. Hence, they need to be updated together with the interfaces of n and m. To this end,
let Sm := {p | esm(p) 6= ∅} be the set of all successors ofm. Since Cn and Cm change, we need to
update the outflows of In and Im, respectively, the inflows of Im and Ip for all p ∈ Sm accordingly.
We, thus, define the new node-level interfaces of these nodes to be consistent with the new contents
C ′n and C ′m:

I ′n.in := In.in

I ′n.out := λn′ (k, t). In.out(n′)(k, t) + (n′ = m ∧ k ∈ K ∧ Cn(k) = t ? 1 : 0)

I ′m.in := λn′ (k, t). Im.in(n′)(k, t) + (n′ = m ∧ k ∈ K ∧ Cn(k) = t ? 1 : 0)

I ′m.out := λn′ (k, t). Im.out(n′)(k, t)− (k ∈ esm(n′) ∧ k ∈ K \ dom(Cm) ∧Bm(k) = t ? 1 : 0)

I ′p.in := λn′ (k, t). Ip.in(n′)(k, t)− (k ∈ esm(n′) ∧ k ∈ K \ dom(Cm) ∧Bm(k) = t ? 1 : 0)

I ′p.out := Ip.out

First, note that the changes to the inflows and outflows match up consistently. One can therefore
easily verify that the old and new singleton interfaces compose to the same larger interface:

In ⊕ Im ⊕
⊕
p∈Sm

Ip = I ′n ⊕ I ′m ⊕
⊕
p∈Sm

I ′p

This means that we can simultaneously replace all old interfaces by their new ones using a frame-
preserving update of ghost location γI .

We next prove that the new interfaces continue to satisfy the constraints imposed by the in-
variant. Let us first consider the node n. We start by showing:

I ′n.out = λn′. χ({(k, t) | k ∈ es(n′) ∧ C ′n(k) = ⊥ ∧Bn(k) = t})

To see this, observe thatC ′n(k) 6= Cn(k) iff k ∈ K, in which caseC ′n(k) = ⊥ andBn(k) = Cn(k).
Next, note that φ2(n,Bn, I

′
n) continues to hold because the inflow of n’s interface does not

change. To prove that φ1(n,Bn, C
′
n, I
′
n) still holds, first note that if k /∈ K then Cn(k) = C ′n(k).

Moreover, φ1(n,Bn, Cn, In) implies Cn(k) = Bn(k) ∨ k ∈ outs(In). Since the outflow of I ′n in-
creases from In, we also haveC ′n(k) = Bn(k) ∨ k ∈ outs(I ′n), which proves this case. On the other
hand, if k ∈ K, then we immediately have by definition of I ′n.out that k ∈ outs(I ′n).

We next prove that all constraints are preserved for p ∈ Sm. From the fact that the outflow
of p’s interface does not change, we can immediately conclude that φ1(p,Bp, Cp, I

′
p) continues to

hold. Moreover, because the inflow of I ′p decreases from Ip, φ2(p,Bp, I
′
p) also remains true.

Let us thus consider the node m. We first prove that φ1(m,B′m, C
′
m, I

′
m) holds. We only

need to consider two cases since the outflow of I ′m reduces from Im. The first case is when
k ∈ outs(Im) but k /∈ outs(I ′m). In this case, we must have k ∈ K \ dom(Cm). That is, we have
C ′m(k) = Cn(k) = B′m(k). The only other case we need to consider is when k /∈ outs(Im) and
k /∈ outs(I ′m). In this case, we must have k /∈ K \ dom(Cm). If k /∈ K, then we have C ′m(k) =

Cm(k) = Bm(k) = B′m(k) by φ1(m,Bm, Cm, Im). On the other hand, if k ∈ K, then we imme-
diately have C ′m(k) = Cn(k) = B′m(k).

9.2. CORRECTNESS PROOF FOR THE GENERAL MULTICOPY TEMPLATE 121

To prove that φ2(m,B′m, I
′
m) holds, suppose that I ′m.in(m)(k, t) > 0. First, consider the

case where Im.in(m)(k, t) = 0. Together with I ′m.in(m)(k, t) > 0, this implies k ∈ K and
Cn(k) = t. We therefore immediately have B′m(k) = Cn(k) = t. Thus, consider the case where
Im.in(m)(k, t) > 0 but assume B′m(k) 6= t for the sake of deriving a contradiction. First, from
φ2(m,Bm, Im) it then follows that Bm(k) = t. From this we conclude B′m(k) 6= Bm(k) which
implies k ∈ K and, hence, Cn(k) 6= ⊥. It follows that In.out(m)(k, t) = 0. Because the global
interface I has no inflow, we can infer that there must exist some other node n′ such that
In′ .out(m)(k, t) > 0. This, in turn, implies k ∈ esn′(m). Hence, we must also haveRn′ .out(m) =

1. Since k ∈ K we further have k ∈ esn(m), which also implies Rn.out(m) = 1. It then fol-
lows from the flow equation that Rm.in(m) ≥ Rn.out(m) +Rn′ .out(m) = 2 which contradicts
φ4(m,Rm).

We similarly need to construct new fragmental singleton interfaces at ghost location γJ that
reflect the updates to Cn and Cm. Specifically, the outflows of Jn and Jm, respectively, the inflows
of Jm and Jp for all p ∈ Sm are affected by these updates. We define the new interfaces for these
nodes appropriately as follows:

J ′n.in := Jn.in

J ′n.out := λn′ (k, t). Jn.out(n′)(k, t)− (n′ = m ∧ k ∈ K ∧ Cn(k) = t ? 1 : 0)

J ′m.in := λn′ (k, t). Jn.in(n′)(k, t)− (n′ = m ∧ k ∈ K ∧ Cn(k) = t ? 1 : 0)

J ′m.out := λn′ (k, t). Jm.out(m′)(k, t) − (k ∈ esm(n′) ∧ k ∈ K ∧ Cm(k) = t ? 1 : 0)

+ (k ∈ esm(n′) ∧ k ∈ K ∧ Cn(k) = t ? 1 : 0)

J ′p.in := λn′ (k, t). Jp.in(n′)(k, t) − (n′ = p ∧ k ∈ esm(n′) ∧ k ∈ K ∧ Cm(k) = t ? 1 : 0)

+ (n′ = p ∧ k ∈ esm(n′) ∧ k ∈ K ∧ Cn(k) = t ? 1 : 0)

J ′p.out := Jp.out

Again, it is easy to verify that these new interfaces compose to the same large interface as the old
interfaces and can, hence, replace the old ones in a frame-preserving update. Proving that the new
interfaces continue to satisfy the constraints imposed by the invariant mcs_inv(r) is also straight-
forward. We only consider the most interesting case here: proving that φ3(p,Bp, J

′
p) continues to

hold. For this, it suffices to show that if k ∈ K and k ∈ esm(p), then Bp(k) ≤ Cn(k). To see this,
first note that k ∈ K implies Cn(k) 6= ⊥ and k ∈ esn(m). It follows that Jn.out(m)(k,Cn(k)) >

0 and hence Jm.in(m)(k,Cn(k)) > 0. Thus, we know from φ3(m,Bm, Jm) that Bm(k) ≤
Cn(k). Now we consider two subcases. If Cm(k) = ⊥, then Im.out(p)(k,Bm(k)) > 0 and hence
Ip.in(p)(k,Bm(k)) > 0. Then it follows from φ2(p,Bp, Ip) that Bp(k) = Bm(k) and we can
conclude Bp(k) ≤ Cn(k). On the other hand, if Cm(k) 6= ⊥, then Bm(k) = Cm(k). Moreover,
we obtain Im.out(p)(k,Cm(k)) > 0 which implies Im.in(p)(k,Cm(k)) > 0. We then obtain
from φ3(p,Bp, Jp) that Bp(k) ≤ Cm(k) = Bm(k). By transitivity, we finally conclude Bp(k) ≤
Bm(k) ≤ Cn(k).

122

C H A P T E R 10

Related Work, Future Work,
and Conclusion

10.1 RELATEDWORK

Ourwork builds on the search structure templates of Shasha andGoodman [1988], the Iris separation
logic [Jung et al., 2018], and the flow framework [Krishna et al., 2018, 2020b]. Our main technical
contributions relative to these works are a new proof technique for verifying template algorithms
of concurrent search structures that relies on the integration of the flow framework into Iris. The
notion of edgesets and keysets are taken from Shasha and Goodman [1988] but we show how to
reason locally about them using flows. Specifically, we capture the essence of the Keyset Theorem
of Shasha and Goodman [1988] in terms of an Iris RA, thereby eliminating any dependencies on
a specific programming language semantics, and allowing us to easily mechanize the proof in Iris.
We also provide a full mechanization of the meta-theory of the flow framework presented in [Kr-
ishna et al., 2020b] in Coq/Iris and GRASShopper. We note that Krishna et al. [2018] use the flow
framework to verify a template algorithm based on the give-up technique. However, their proof is
only on paper, still depends on a meta-level Keyset Theorem like [Shasha and Goodman, 1988] and
uses a bespoke program logic that is difficult to mechanize due to limitations of the original flow
framework (cf. [Krishna et al., 2020b]).

To our knowledge, we are the first to provide a mechanized proof of a concurrent B-link tree.
Unlike the proof of da Rocha Pinto et al. [2011], which is not mechanized, our proof does not assume
node-level operations to be given as primitives. In particular, we also verify the challenging split
operation. The only other comparable proof is that of a B+ tree in [Malecha et al., 2010]. However,
this work only considers a sequential B-tree implementation and the proof is considerably more
complex than ours (encompassing more than 5000 lines of proof for roughly 500 lines of code).
Moreover, much of our proof can be reused to verify other concurrent search structures that rely on
linking, such as the concurrent hash table implementation that we consider.

Feldman et al. [2018] show how to simplify linearizability proofs of concurrent data structures
with unsynchronized searches by reasoning purely sequentially about the traversal performed by the
search. Their contribution is orthogonal to ours as they do not aim to parameterize the concurrency
proof by the heap representation of the data structure.

Iris does not support reasoning about deallocation. Therefore our proofs assume a garbage
collected environment. However, Meyer and Wolff [2019] demonstrate a similar proof modularity
by decoupling the proof of data structure correctness from that of the underlying memory reclama-

10.1. RELATEDWORK 123

tion algorithm, allowing the correctness proof to be carried out under the assumption of garbage
collection. An alternative approach to extending our proofs to deal with memory reclamation is to
use Iron [Bizjak et al., 2019], a recent extension of Iris that allows proving absence of memory leaks.
It is a promising direction of future work to integrate these approaches and our technique in order
to obtain verified data structures where the user can mix-and-match the synchronization technique,
memory layout, and the memory reclamation algorithm.

There exist many other program logics that help modularize the correctness proofs of con-
current systems [Bornat et al., 2005, da Rocha Pinto et al., 2014, Dinsdale-Young et al., 2010, Feng
et al., 2007, Gu et al., 2018, Heule et al., 2013, Nanevski et al., 2014, Raad et al., 2015, Vafeiadis and
Parkinson, 2007, Xiong et al., 2017]. Like Iris, their main focus is on modularizing proofs along the
interfaces of components of a system (e.g. between the client and implementation of a data structure)
and accounting for differences in the concurrency semantics across different abstraction layers [Gu
et al., 2018]. Instead, we focus on modularizing the proof of a single component (a concurrent search
structure) so that the parts of the proof can be reused across many diverse implementations.

As discussed in §6.5, lock-free implementations of search structures often have non-fixed
as well as external linearization points. Much work has been dedicated to addressing this chal-
lenge [Bouajjani et al., 2013, 2017, Chakraborty et al., 2015, Delbianco et al., 2017, Dodds et al.,
2015, Frumin et al., 2018, Khyzha et al., 2017, Liang and Feng, 2013, O’Hearn et al., 2010, Zhu
et al., 2015]. However, we note that these papers do not aim to separate the proof of thread safety
from the proof of structural integrity. In fact, we see our contributions as orthogonal to these works.
For example, we can build on the recent work of supporting prophecy variables in Iris [Jung et al.,
2020] to extend our methodology to non-blocking algorithms, as we discuss below.

We have carried out our proof mechanization effort in Iris [Jung et al., 2016, 2018, 2015,
Krebbers et al., 2017] and GRASShopper [Piskac et al., 2014]. Iris’ support for user-definable ghost
resources has been particularly helpful in the mechanization of our template proofs and GRASShop-
per’s proof automation allowed us to scale our verification of implementations to real-world con-
current search structures such as the B-link tree. However, the presented approach is not bound to
these specific tools. First, our proof methodology can be replicated in other separation logics that
support user-defined ghost state, such as FCSL [Sergey et al., 2015], which would also be useful if
one wanted to extend this work to non-linearizable data structures [Sergey et al., 2016]. Second, we
already have preliminary experience in automating flow-based proofs in the SL-based verification
system Viper [Müller et al., 2017]. Moreover, many of the ideas and techniques proposed in this
book can be used in other verification systems, including systems that are not based on separation
logic such as Dafny [Leino, 2010, 2017] and CIVL [Hawblitzel et al., 2015].

Fully automated proofs of linearizability by static analysis and model checking have been
mostly confined to simple list-based data structures [Abdulla et al., 2013, Amit et al., 2007, Bouajjani
et al., 2015, Cerný et al., 2010, Dragoi et al., 2013, Vafeiadis, 2009]. Recent work by Abdulla et al.
[2018] shows how to automatically verify more complex structures such as concurrent skip lists that
combine lists and arrays. Our work shows that it is possible to devise semi-automated techniques (in

124 10. RELATEDWORK, FUTUREWORK, AND CONCLUSION

which one formulates useful invariants) that work over a broad class of diverse data structures. Full
automation for such structures is still beyond the state of the art.

10.2 FUTUREWORK
Combining the edgeset framework with the flow framework has allowed us to mechanically prove
the safety of single-copy and multicopy search structures. We have shown such proofs for B-link
trees, hash-tables, and log-structured merge (LSM) trees, among others. Here are some directions
in which our work can be extended:

1. Generalizing the presented templates to cover other existing or potential search structure al-
gorithms.

2. Extending the proof technique to prove liveness properties such as termination or deadlock-
freedom.

3. Verifying templates that use lock-free concurrent techniques.

We will now examine these directions in turn.

10.2.1 GENERALIZATIONS AND EXTENSIONS
Our discussions of multicopy structures began with a graph model, but we have limited our dis-
cussion to list-based LSM trees. Our template algorithms, however, would carry over essentially
unchanged to a directed acyclic graph structure with the root in memory as now, but branching on
disk. A further generalization would be to allow concurrent updates to the disk nodes when doing
compaction, using single node concurrency techniques. Our framework offers the tools for these
generalizations.

10.2.2 PROVING LIVENESS
Proving liveness properties such as progress, deadlock-freedom, or termination would involve
strengthening the invariants we have used for our template algorithms. For example, the invariant
that the keysets of any two nodes in a single-copy structure are disjoint was sufficient to prove partial
correctness, but a liveness property like termination would require the stronger invariant that the set
of keysets of all nodes cover the key space. This captures the high-level property that given any key
k, there is some node in the structure that is responsible for k.

Proving that such an invariant is maintained would require us to prove that the underlying
structure is, in some sense, acyclic. More precisely, we need to show that given any key k, its search
path (i.e. the path obtained by starting at the root and following edges that have k in their edgeset)
is acyclic. Note that none of the single-copy structure proofs in this book proved such an acyclicity
property; for partial correctness, it is sufficient to show that if an operation on k operates on a node
n then k is in n’s keyset. Such an acyclicity invariant can be encoded by using the effectively-acyclic
extension of the flow framework [Krishna et al., 2020b].

10.2. FUTUREWORK 125

Liveness proofs usually proceed by defining a ranking function, a function from states of the
structure to some well-ordered set. Once we have shown that the search structure is acyclic, we can
define the ranking function of an operation as the cardinality of the search path. Acyclicity implies
that the search path is a list, which means that every time the operation moves from one node to the
next, the number of nodes in the search path reduces.

Note that when reasoning about liveness, it is very important to specify the environment under
which the algorithm is operating. For instance, even in an acyclic structure, a search operation on k
might never terminate if it is operating in an environment where maintenance operations are contin-
ually pre-empting the search operation and performing splits that increase k’s search path. Standard
assumptions about the environment or scheduler, such as fair scheduling or bounded interference,
would be required to rule out such undesirable executions.

Formalizing liveness properties in separation logic would require us to use logics that for-
malize notions of fairness and ranking functions, such as TaDA-live [D’Osualdo et al., 2019]. Our
proof technique can be transferred to such logics without much technical difficulty because our
flow-based encoding can be performed in any separation logic that supports user-defined resource
algebras. There are also automated tools for proving that algorithms are non-blocking [Gotsman
et al., 2009], and it would be interesting to see if we can incorporate our approach with these tools.

10.2.3 LOCK-FREE CONCURRENT SEARCH STRUCTURE ALGORITHMS
In order to be able to use sequential reasoning in node-level operations, we have assumed the avail-
ability of a locking mechanism. However, many lock-free algorithms have been proposed, e.g. [Har-
ris, 2001, Levandoski et al., 2013] and analyzed as noted in the related work section [Bouajjani et al.,
2013, 2017, Chakraborty et al., 2015, Delbianco et al., 2017, Dodds et al., 2015, Frumin et al., 2018,
Khyzha et al., 2017, Liang and Feng, 2013, O’Hearn et al., 2010, Zhu et al., 2015].

Very often, the template algorithms we propose continue to apply. For example, a lock-free
list in which a thread prepends upserts to the beginning of the list by doing a CAS (compare-and-
set) to the root pointer of the list is essentially a multi-copy structure (e.g. in a BW-tree [Levandoski
et al., 2013]. Thus it enjoys the same basic invariants as the LSM tree: the logical value of a key is
the value associated with the element closest to the head of the list. Properties like search recency
still hold.

In fact, an algorithm designer can often use compare-and-swap or the more general compare-
and-set in a similar way to locks. Suppose, for example, that a thread records the state of some
pointer at time t1 and then does a compare-and-set based on that recorded state at time t2. If the
compare-and-set succeeds, then the pointer has not changed from t1 to t2. Note that if the thread
had instead locked the pointer from t1 to t2, then the thread would enjoy the same guarantee.

In the prepending example above, “locking the root pointer” plays essentially the same role as
“recording the address in the root pointer, constructing a node to prepend, and then doing a compare-
and-swap on the root pointer”. The advantage of locking is that there is no need to redo work, as
there would be if the compare-and-swap fails. The advantage of the compare-and-swap is that lock-

126 10. RELATEDWORK, FUTUREWORK, AND CONCLUSION

freedom avoids the possibility that a hung thread stops other threads from making progress, because
that hung thread holds a lock.

The bottom line is that the good state conditions (i.e. the keysets of different nodes are disjoint,
and the contents of each node is a subset of its keyset) still apply.

Consider, for example, the following simple (though very inefficient) single-copy lock-free
concurrent tree algorithm.

• The root pointer is stored at a fixed location r. Each value of the address stored in that pointer
is associated with the time of the last successful modification of the tree.

• A search at time t starts at r and follows the pointer to the copy of that tree structure present
as of time t.

• Any modification (i) reads the address A stored in r which is the address of the root of the
tree at that time; (ii) copies the existing tree structure and creates a whole new tree structure
whose tree root node is at address A′1; (iii) performs its modification on the new tree; (iv)
uses a compare-and-swap to check whether r still contains the address A and, if so, swaps it
to address A′. If r no longer contains address A, the modification must start over.

• The linearization point of each modification is the time that r was successfully modified. The
linearization point of every search is the time the search begins.

Of course, copying the entire search structure for every modification is extremely inefficient.
An alternative is to (i) copy just the nodes in the path from the root to the leaf that is modified (say
in a B-tree like structure), (ii) modify whichever nodes in that path that need to be modified, and
then (iii) use a compare and swap to point to the new tree root. No nodes outside that path need be
copied.

These methods work well with our proof methodology. The good state conditions are pre-
served by these algorithms and a thread that begins a search for k at time t and later visits a node
n will enjoy the invariant that k is in the inset of n for the structure as of time t. Thus the search’s
linearization point will be the time when the search begins, i.e., t.

Other lock-free algorithms such as the Harris list [Harris, 2001] (which maintains a list sorted
by key) are more fine-grained and require new invariants, which we will address in future work.

10.3 CONCLUSION
We have presented a proof technique for concurrent search structures that (i) separates the reasoning
about thread safety frommemory safety using the edgeset framework; and (ii) allows local reasoning
about global predicates using the flow framework.

We have demonstrated our technique by formalizing and verifying template algorithms us-
ing this technique, have shown how to derive verified implementations on specific data structures,
1To ensure that tree root node addresses are never repeated, we might require that A′ > A.

and have thereby mechanized the proofs of linearizability and memory safety for a large class of
concurrent search structures.

We believe that this same decompositional approach can be used for other concurrent graph
problems in communication networks, memory management, and other domains that use fine-
grained concurrent data structures.

128

Bibliography
Abdulla, P. A., Haziza, F., Holík, L., Jonsson, B., and Rezine, A. (2013). An integrated specifica-
tion and verification technique for highly concurrent data structures. In Piterman, N. and Smolka,
S. A., editors, Tools and Algorithms for the Construction and Analysis of Systems - 19th Interna-
tional Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795
of Lecture Notes in Computer Science, pages 324–338. Springer.

Abdulla, P. A., Jonsson, B., and Trinh, C. Q. (2018). Fragment abstraction for concurrent shape
analysis. In Ahmed, A., editor,Programming Languages and Systems - 27th European Symposium
on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume
10801 of Lecture Notes in Computer Science, pages 442–471. Springer.

Amit, D., Rinetzky, N., Reps, T. W., Sagiv, M., and Yahav, E. (2007). Comparison under abstraction
for verifying linearizability. In Damm, W. and Hermanns, H., editors, Computer Aided Verifica-
tion, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
volume 4590 of Lecture Notes in Computer Science, pages 477–490. Springer.

Apache Software Foundation (2020a). Apache cassandra. https://cassandra.apache.org/.
Last accessed on August 15, 2020.

Apache Software Foundation (2020b). Apache HBase. https://hbase.apache.org/. Last ac-
cessed on August 17, 2020.

Bansal, K., Reynolds, A., King, T., Barrett, C. W., andWies, T. (2015). Deciding local theory exten-
sions via e-matching. In Kroening, D. and Pasareanu, C. S., editors, Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part II, volume 9207 of Lecture Notes in Computer Science, pages 87–105. Springer.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency Control and Recovery in
Database Systems. Addison-Wesley.

Bizjak, A., Gratzer, D., Krebbers, R., and Birkedal, L. (2019). Iron: managing obligations in higher-
order concurrent separation logic. Proc. ACM Program. Lang., 3(POPL):65:1–65:30.

Bornat, R., Calcagno, C., and Yang, H. (2005). Variables as resource in separation logic. In Es-
cardó, M. H., Jung, A., and Mislove, M. W., editors, Proceedings of the 21st Annual Conference
on Mathematical Foundations of Programming Semantics, MFPS 2005, Birmingham, UK, May

https://cassandra.apache.org/
https://hbase.apache.org/

10.3. CONCLUSION 129

18-21, 2005, volume 155 of Electronic Notes in Theoretical Computer Science, pages 247–276.
Elsevier.

Bouajjani, A., Emmi, M., Enea, C., and Hamza, J. (2013). Verifying concurrent programs against
sequential specifications. In Felleisen, M. and Gardner, P., editors, Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages 290–309. Springer.

Bouajjani, A., Emmi, M., Enea, C., and Hamza, J. (2015). On reducing linearizability to state
reachability. In Halldórsson, M. M., Iwama, K., Kobayashi, N., and Speckmann, B., editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science,
pages 95–107. Springer.

Bouajjani, A., Emmi, M., Enea, C., and Mutluergil, S. O. (2017). Proving linearizability using
forward simulations. In Majumdar, R. and Kuncak, V., editors, Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II, volume 10427 of Lecture Notes in Computer Science, pages 542–563. Springer.

Brookes, S. (2007). A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-3):227–
270.

Brookes, S. and O’Hearn, P. W. (2016). Concurrent separation logic. ACM SIGLOG News, 3(3):47–
65.

Burckhardt, S., Alur, R., and Martin, M. M. K. (2007). Checkfence: checking consistency of con-
current data types on relaxed memory models. In Ferrante, J. and McKinley, K. S., editors,
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages 12–21. ACM.

Cerný, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., and Alur, R. (2010). Model checking
of linearizability of concurrent list implementations. In Touili, T., Cook, B., and Jackson, P. B.,
editors,Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer Science, pages 465–
479. Springer.

Chakraborty, S., Henzinger, T. A., Sezgin, A., and Vafeiadis, V. (2015). Aspect-oriented lineariz-
ability proofs. Log. Methods Comput. Sci., 11(1).

da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., and Wheelhouse, M. J. (2011).
A simple abstraction for complex concurrent indexes. In Lopes, C. V. and Fisher, K., editors,
Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

130 10. RELATEDWORK, FUTUREWORK, AND CONCLUSION

Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR,
USA, October 22 - 27, 2011, pages 845–864. ACM.

da Rocha Pinto, P., Dinsdale-Young, T., and Gardner, P. (2014). Tada: A logic for time and data ab-
straction. In Jones, R. E., editor, ECOOP 2014 - Object-Oriented Programming - 28th European
Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture
Notes in Computer Science, pages 207–231. Springer.

Dayan, N. and Idreos, S. (2018). Dostoevsky: Better space-time trade-offs for lsm-tree based key-
value stores via adaptive removal of superfluous merging. In Das, G., Jermaine, C. M., and
Bernstein, P. A., editors, Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 505–520. ACM.

Delbianco, G. A., Sergey, I., Nanevski, A., and Banerjee, A. (2017). Concurrent data structures
linked in time. InMüller, P., editor, 31st European Conference on Object-Oriented Programming,
ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages 8:1–8:30. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M. J., and Yang, H. (2013). Views: com-
positional reasoning for concurrent programs. In Giacobazzi, R. and Cousot, R., editors, The 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy - January 23 - 25, 2013, pages 287–300. ACM.

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. J., and Vafeiadis, V. (2010). Concur-
rent abstract predicates. In D’Hondt, T., editor, ECOOP 2010 - Object-Oriented Programming,
24th European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, volume 6183 of
Lecture Notes in Computer Science, pages 504–528. Springer.

Dodds, M., Haas, A., and Kirsch, C. M. (2015). A scalable, correct time-stamped stack. In Raja-
mani, S. K. and Walker, D., editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-
17, 2015, pages 233–246. ACM.

Dodds, M., Jagannathan, S., Parkinson, M. J., Svendsen, K., and Birkedal, L. (2016). Verifying
custom synchronization constructs using higher-order separation logic. ACM Trans. Program.
Lang. Syst., 38(2):4:1–4:72.

D’Osualdo, E., Farzan, A., Gardner, P., and Sutherland, J. (2019). Tada live: Compositional reason-
ing for termination of fine-grained concurrent programs. CoRR, abs/1901.05750.

Dragoi, C., Gupta, A., and Henzinger, T. A. (2013). Automatic linearizability proofs of concurrent
objects with cooperating updates. In Sharygina, N. and Veith, H., editors, Computer Aided Veri-
fication - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 174–190. Springer.

10.3. CONCLUSION 131

Facebook (2020). RocksDB. https://rocksdb.org/. Last accessed on August 17, 2020.

Feldman, Y.M. Y., Enea, C., Morrison, A., Rinetzky, N., and Shoham, S. (2018). Order out of chaos:
Proving linearizability using local views. In Schmid, U. andWidder, J., editors, 32nd International
Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018,
volume 121 of LIPIcs, pages 23:1–23:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Feng, X., Ferreira, R., and Shao, Z. (2007). On the relationship between concurrent separation logic
and assume-guarantee reasoning. In Nicola, R. D., editor, Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4421 of Lecture Notes in Computer Science, pages 173–188.
Springer.

Filipovic, I., O’Hearn, P. W., Rinetzky, N., and Yang, H. (2009). Abstraction for concurrent ob-
jects. In Castagna, G., editor, Programming Languages and Systems, 18th European Symposium
on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502 of
Lecture Notes in Computer Science, pages 252–266. Springer.

Frumin, D., Krebbers, R., and Birkedal, L. (2018). Reloc: A mechanised relational logic for fine-
grained concurrency. In Dawar, A. and Grädel, E., editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018,
pages 442–451. ACM.

Fu, M., Li, Y., Feng, X., Shao, Z., and Zhang, Y. (2010). Reasoning about optimistic concurrency
using a program logic for history. In Gastin, P. and Laroussinie, F., editors, CONCUR 2010
- Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, August
31-September 3, 2010. Proceedings, volume 6269 of Lecture Notes in Computer Science, pages
388–402. Springer.

Google (2020). LevelDB. https://github.com/google/leveldb. Last accessed on August 15,
2020.

Gotsman, A., Cook, B., Parkinson, M. J., and Vafeiadis, V. (2009). Proving that non-blocking algo-
rithms don’t block. In Shao, Z. and Pierce, B. C., editors, Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, pages 16–28. ACM.

Gu, R., Shao, Z., Kim, J., Wu, X. N., Koenig, J., Sjöberg, V., Chen, H., Costanzo, D., and Ra-
mananandro, T. (2018). Certified concurrent abstraction layers. In Foster, J. S. and Grossman,
D., editors, Proceedings of the 39th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 646–661.
ACM.

https://rocksdb.org/
https://github.com/google/leveldb

132 10. RELATEDWORK, FUTUREWORK, AND CONCLUSION

Harris, T. L. (2001). A pragmatic implementation of non-blocking linked-lists. In Welch, J. L., ed-
itor, Distributed Computing, 15th International Conference, DISC 2001, Lisbon, Portugal, Octo-
ber 3-5, 2001, Proceedings, volume 2180 of Lecture Notes in Computer Science, pages 300–314.
Springer.

Hawblitzel, C., Petrank, E., Qadeer, S., and Tasiran, S. (2015). Automated and modular refinement
reasoning for concurrent programs. In Kroening, D. and Pasareanu, C. S., editors, Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes in Computer Science, pages
449–465. Springer.

Herlihy, M. and Shavit, N. (2008). The art of multiprocessor programming. Morgan Kaufmann.

Herlihy, M. andWing, J. M. (1990). Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492.

Heule, S., Leino, K. R. M., Müller, P., and Summers, A. J. (2013). Abstract read permissions: Frac-
tional permissions without the fractions. In Giacobazzi, R., Berdine, J., and Mastroeni, I., edi-
tors, Verification, Model Checking, and Abstract Interpretation, 14th International Conference,
VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in
Computer Science, pages 315–334. Springer.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580.

Iris Team (2020). The Iris 3.3 documentation. https://plv.mpi-sws.org/iris/appendix-3.

3.pdf. Last accessed on July 29, 2020.

Jonathan Ellis (2011). Leveled compaction in Apache Cassandra. https://www.datastax.com/b
log/2011/10/leveled-compaction-apache-cassandra. Last accessed on August 15, 2020.

Jones, C. B. (1983). Specification and design of (parallel) programs. In Mason, R. E. A., editor,
Information Processing 83, Proceedings of the IFIP 9thWorld Computer Congress, Paris, France,
September 19-23, 1983, pages 321–332. North-Holland/IFIP.

Jung, R., Krebbers, R., Birkedal, L., and Dreyer, D. (2016). Higher-order ghost state. In Garrigue,
J., Keller, G., and Sumii, E., editors, Proceedings of the 21st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages
256–269. ACM.

Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., and Dreyer, D. (2018). Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Pro-
gram., 28:e20.

https://plv.mpi-sws.org/iris/appendix-3.3.pdf
https://plv.mpi-sws.org/iris/appendix-3.3.pdf
https://www.datastax.com/blog/2011/10/leveled-compaction-apache-cassandra
https://www.datastax.com/blog/2011/10/leveled-compaction-apache-cassandra

10.3. CONCLUSION 133

Jung, R., Lepigre, R., Parthasarathy, G., Rapoport, M., Timany, A., Dreyer, D., and Jacobs, B.
(2020). The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang.,
4(POPL):45:1–45:32.

Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., and Dreyer, D. (2015).
Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In Rajamani, S. K.
and Walker, D., editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
637–650. ACM.

Khyzha, A., Dodds, M., Gotsman, A., and Parkinson, M. J. (2017). Proving linearizability using par-
tial orders. In Yang, H., editor,Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10201 of Lecture Notes in Computer Science, pages 639–667. Springer.

Krebbers, R., Jung, R., Bizjak, A., Jourdan, J., Dreyer, D., and Birkedal, L. (2017). The essence
of higher-order concurrent separation logic. In Yang, H., editor, Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-
29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 696–723.
Springer.

Krishna, S., Patel, N., Shasha, D. E., and Wies, T. (2020a). Verifying concurrent search structure
templates. In Donaldson, A. F. and Torlak, E., editors, Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, pages 181–196. ACM.

Krishna, S., Shasha, D. E., and Wies, T. (2018). Go with the flow: compositional abstractions for
concurrent data structures. Proc. ACM Program. Lang., 2(POPL):37:1–37:31.

Krishna, S., Summers, A. J., and Wies, T. (2020b). Local reasoning for global graph properties.
In Müller, P., editor, Programming Languages and Systems - 29th European Symposium on Pro-
gramming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12075 of
Lecture Notes in Computer Science, pages 308–335. Springer.

Leino, K. R. M. (2010). Dafny: An automatic program verifier for functional correctness. In Clarke,
E. M. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reasoning -
16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected
Papers, volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer.

134 10. RELATEDWORK, FUTUREWORK, AND CONCLUSION

Leino, K. R. M. (2017). Modeling concurrency in dafny. In Bowen, J. P., Liu, Z., and Zhang, Z.,
editors, Engineering Trustworthy Software Systems - Third International School, SETSS 2017,
Chongqing, China, April 17-22, 2017, Tutorial Lectures, volume 11174 of Lecture Notes in Com-
puter Science, pages 115–142. Springer.

Leino, K. R. M. and Pit-Claudel, C. (2016). Trigger selection strategies to stabilize program veri-
fiers. In Chaudhuri, S. and Farzan, A., editors, Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, volume
9779 of Lecture Notes in Computer Science, pages 361–381. Springer.

Levandoski, J. J., Lomet, D. B., and Sengupta, S. (2013). The bw-tree: A b-tree for new hardware
platforms. In Jensen, C. S., Jermaine, C. M., and Zhou, X., editors, 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 302–
313. IEEE Computer Society.

Levandoski, J. J. and Sengupta, S. (2013). The bw-tree: A latch-free b-tree for log-structured flash
storage. IEEE Data Eng. Bull., 36(2):56–62.

Liang, H. and Feng, X. (2013). Modular verification of linearizability with non-fixed linearization
points. In Boehm, H. and Flanagan, C., editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages
459–470. ACM.

Luo, C. and Carey, M. J. (2020). Lsm-based storage techniques: a survey. VLDB J., 29(1):393–418.

Malecha, J. G., Morrisett, G., Shinnar, A., and Wisnesky, R. (2010). Toward a verified relational
database management system. In Hermenegildo, M. V. and Palsberg, J., editors, Proceedings of
the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 237–248. ACM.

Meyer, R. and Wolff, S. (2019). Decoupling lock-free data structures from memory reclamation for
static analysis. Proc. ACM Program. Lang., 3(POPL):58:1–58:31.

Michael, M. and Scott, M. (1995). Correction of a memory management method for lock-free data
structures. Technical Report TR599, University of Rochester.

Müller, P., Schwerhoff, M., and Summers, A. J. (2017). Viper: A verification infrastructure for
permission-based reasoning. In Pretschner, A., Peled, D., and Hutzelmann, T., editors, Depend-
able Software Systems Engineering, volume 50 of NATO Science for Peace and Security Series -
D: Information and Communication Security, pages 104–125. IOS Press.

Nanevski, A., Ley-Wild, R., Sergey, I., and Delbianco, G. A. (2014). Communicating state transition
systems for fine-grained concurrent resources. In Shao, Z., editor, Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European

10.3. CONCLUSION 135

Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer Science, pages 290–310.
Springer.

O’Hearn, P. W. (2007). Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307.

O’Hearn, P.W., Reynolds, J. C., and Yang, H. (2001). Local reasoning about programs that alter data
structures. In Fribourg, L., editor, Computer Science Logic, 15th International Workshop, CSL
2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001, Proceedings,
volume 2142 of Lecture Notes in Computer Science, pages 1–19. Springer.

O’Hearn, P. W., Rinetzky, N., Vechev, M. T., Yahav, E., and Yorsh, G. (2010). Verifying lineariz-
ability with hindsight. In Richa, A. W. and Guerraoui, R., editors, Proceedings of the 29th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich, Switzerland, July
25-28, 2010, pages 85–94. ACM.

O’Neil, P. E., Cheng, E., Gawlick, D., and O’Neil, E. J. (1996). The log-structured merge-tree
(lsm-tree). Acta Informatica, 33(4):351–385.

Owicki, S. S. and Gries, D. (1976). Verifying properties of parallel programs: An axiomatic ap-
proach. Commun. ACM, 19(5):279–285.

Piskac, R., Wies, T., and Zufferey, D. (2013). Automating separation logic using SMT. In Shary-
gina, N. and Veith, H., editors,Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in
Computer Science, pages 773–789. Springer.

Piskac, R., Wies, T., and Zufferey, D. (2014). Grasshopper - complete heap verification with mixed
specifications. In Ábrahám, E. and Havelund, K., editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages
124–139. Springer.

Raad, A., Villard, J., and Gardner, P. (2015). Colosl: Concurrent local subjective logic. In Vitek,
J., editor, Programming Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in
Computer Science, pages 710–735. Springer.

Raju, P., Kadekodi, R., Chidambaram, V., and Abraham, I. (2017). Pebblesdb: Building key-value
stores using fragmented log-structured merge trees. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 497–514. ACM.

136 10. RELATEDWORK, FUTUREWORK, AND CONCLUSION

Reynolds, J. C. (2002). Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 55–74. IEEE Computer Society.

Sergey, I., Nanevski, A., and Banerjee, A. (2015). Mechanized verification of fine-grained concur-
rent programs. In Grove, D. and Blackburn, S., editors, Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, pages 77–87. ACM.

Sergey, I., Nanevski, A., Banerjee, A., and Delbianco, G. A. (2016). Hoare-style specifications as
correctness conditions for non-linearizable concurrent objects. In Visser, E. and Smaragdakis, Y.,
editors, Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016, pages 92–110. ACM.

Severance, D. G. and Lohman, G. M. (1976). Differential files: Their application to the maintenance
of large databases. ACM Trans. Database Syst., 1(3):256–267.

Shasha, D. E. and Goodman, N. (1988). Concurrent search structure algorithms. ACM Trans.
Database Syst., 13(1):53–90.

Svendsen, K. and Birkedal, L. (2014). Impredicative concurrent abstract predicates. In Shao, Z., ed-
itor, Programming Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Com-
puter Science, pages 149–168. Springer.

Thonangi, R. and Yang, J. (2017). On log-structured merge for solid-state drives. In 33rd IEEE
International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22,
2017, pages 683–694. IEEE Computer Society.

Vafeiadis, V. (2009). Shape-value abstraction for verifying linearizability. In Jones, N. D. and
Müller-Olm, M., editors, Verification, Model Checking, and Abstract Interpretation, 10th Inter-
national Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings, vol-
ume 5403 of Lecture Notes in Computer Science, pages 335–348. Springer.

Vafeiadis, V. and Parkinson, M. J. (2007). A marriage of rely/guarantee and separation logic. In
Caires, L. and Vasconcelos, V. T., editors, CONCUR 2007 - Concurrency Theory, 18th Interna-
tional Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, volume
4703 of Lecture Notes in Computer Science, pages 256–271. Springer.

Wu, X., Xu, Y., Shao, Z., and Jiang, S. (2015). Lsm-trie: An lsm-tree-based ultra-large key-value
store for small data items. In Lu, S. and Riedel, E., editors, 2015 USENIX Annual Technical Con-
ference, USENIX ATC ’15, July 8-10, Santa Clara, CA, USA, pages 71–82. USENIX Association.

10.3. CONCLUSION 137

Xiong, S., da Rocha Pinto, P., Ntzik, G., and Gardner, P. (2017). Abstract specifications for concur-
rent maps. In Yang, H., editor, Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10201 of Lecture Notes in Computer Science, pages 964–990. Springer.

Zhu, H., Petri, G., and Jagannathan, S. (2015). Poling: SMT aided linearizability proofs. In Kroen-
ing, D. and Pasareanu, C. S., editors, Computer Aided Verification - 27th International Confer-
ence, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207
of Lecture Notes in Computer Science, pages 3–19. Springer.

138

Authors’ Biographies

SIDDHARTH KRISHNA
Siddharth Krishna is a post-doctoral researcher at Microsoft Research Cambridge, UK. He did his
PhD in logic and verification at New York University, where he had the good fortune to work with
Nisarg, Dennis, and Thomas. He now works on parallel and distributed algorithms for large-scale
mahine learning workloads. When he is not pleading with computers to do his bidding, he likes to
watch comedy panel/news shows and play ultimate frisbee.

NISARG PATEL
Nisarg Patel is a PhD student at New York University’s Department of Computer Science, where he
works with Siddharth, Dennis and Thomas on automated verification of concurrent programs. His
academic interests also include synthesis of controller programs for robots. Outside of computer
science, he loves playing football and reading about history and politics.

DENNIS SHASHA
Dennis Shasha is a Julius Silver Professor of computer science at the Courant Institute of New York
University and an Associate Director of NYU Wireless. In addition to his long fascination with
concurrent algorithms, he works on meta-algorithms for machine learning to achieve guaranteed
correctness rates; with biologists on pattern discovery for network inference; with physicists and
financial people on algorithms for time series; on database tuning; and tree and graph matching.

Because he likes to type, he has written six books of puzzles about a mathematical detective
named Dr. Ecco, a biography about great computer scientists, and a book about the future of com-
puting. He has also written technical books about database tuning, biological pattern recognition,
time series, DNA computing, resampling statistics, and causal inference in molecular networks.

He has written the puzzle column for various publications including Scientific American, Dr.
Dobb’s Journal, and currently the Communications of the ACM. He is a fellow of the ACM and an
INRIA International Chair.

THOMASWIES
Thomas Wies is an Associate Professor in computer science at the Courant Institute of New York
University and a member of the Analysis of Computer Systems Group. His research interests are in

AUTHORS’ BIOGRAPHIES 139

Programming Languages and Formal Methods with a focus on program analysis and verification,
automated deduction, and correctness of concurrent software. He is recipient of an NSF CAREER
Award and has won multiple best paper awards.

	Acknowledgments
	Introduction
	Algorithmic Modularity
	Concurrent Search Structure Templates
	Case Studies
	Summary and Outline

	The Edgeset Framework and Template Algorithms
	B-link Trees
	Abstracting Search Structures using Edgesets
	The Link Template

	A Primer on Deductive Verification
	Basics and Notation
	Programming Language
	Separation Logic: Iris
	Formulas
	Specifications
	Proof Rules

	Ghost State
	Motivation
	Ghost States and Resource Algebras
	Proof of the Single-node Template
	Two-node Template and Keysets
	Disjoint Keysets and the Keyset RA

	The Flow Framework
	Motivation
	Local Reasoning about Global Properties
	The Flow Interface RA
	Encoding Keysets using Flows

	Verifying Single-copy Concurrent Templates
	The Give-up Template
	Proof of the Give-up Template
	Maintenance Operations.

	The Link Template
	Inreach
	Proof of the Link Template
	Maintenance Operations.

	The Lock-coupling Template
	Verifying Implementations
	Proof Mechanization and Automation

	Verifying Multicopy Structures
	Overview
	Differential File Structures
	Log-Structured Merge Trees
	Multicopy Structures

	Verifying the Two-Node Multicopy Template
	The Two-Node Multicopy Template
	Correctness Proof for the Two-Node Template
	Proving Search Recency
	Proving the Correctness of Upsert
	Proving the Correctness of Maintenance

	Verifying a General Multicopy Template
	The General Multicopy Template
	Correctness Proof for the General Multicopy Template
	Proving Search Recency
	Proving the Correctness of Upsert
	Proving the Correctness of Maintenance

	Related Work, Future Work, and Conclusion
	Related Work
	Future Work
	Generalizations and Extensions
	Proving Liveness
	Lock-Free Concurrent Search Structure Algorithms

	Conclusion

	Bibliography
	Authors' Biographies

