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The Cointegrated VAR

In a series of important papers Soren Johansen firmly roots cointegration

and error correction models in a vector autoregression framework.

Consider the levels VAR(p) for the (n × 1) vector Y t

Y t = ΦD t +Π1Y t−1 + · · ·+ΠpY t−p + εt , t = 1, . . . ,T

D t = deterministic terms
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I The VAR(p) model is stable if

det(I n −Π1z − · · ·−Πpz p) = 0

has all roots outside the complex unit circle.

I If there are roots on the unit circle then some or all of the variables

in Y t are I (1) and they may also be cointegrated.

I If Yt is cointegrated then the VAR representation is not the most

suitable representation for analysis because the cointegrating

relations are not explicitly apparent.
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I The cointegrating relations become apparent if the levels VAR is

transformed to the vector error correction model (VECM)

∆Y t = ΦD t +ΠY t−1 + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

Π = Π1 + . . . +Πp − I n

Γk = −

p∑
j=k+1

Πj , k = 1, . . . , p − 1

I In the VECM, ∆Y t and its lags are I (0).

I The term ΠY t−1 is the only one which includes potential I (1)

variables and for ∆Y t to be I (0) it must be the case that ΠY t−1 is

also I (0). Therefore, ΠY t−1 must contain the cointegrating relations

if they exist.

I If the VAR(p) process has unit roots (z = 1) then

det(I n −Π1 − . . . −Πp) = 0 ⇒ det(Π) = 0 ⇒ Π is singular
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If Π is singular then it has reduced rank; that is rank(Π) = r < n . There

are two cases to consider:

1. rank(Π) = 0. This implies that

Π = 0

Y t ∼ I (1) and not cointegrated

The VECM reduces to a VAR(p − 1) in first differences

∆Y t =ΦD t +Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt
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2. 0 < rank(Π) = r < n . This implies that Y t is I (1) with r linearly

independent cointegrating vectors and n − r common stochastic

trends (unit roots). Since Π has rank r it can be written as the

product

Π
(n×n)

= α
(n×r)

β
(r×n)

′

where α and β are (n × r) matrices with rank(α) = rank(β) = r .

The rows of β′ form a basis for the r cointegrating vectors and the

elements of α distribute the impact of the cointegrating vectors to

the evolution of ∆Y t . The VECM becomes

∆Y t =ΦD t + αβ
′Y t−1 + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt ,

where β′Y t−1 ∼ I (0) since β′ is a matrix of cointegrating vectors.
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Non-uniqueness

It is important to recognize that the factorization Π = αβ′ is not unique

since for any r × r nonsingular matrix H we have

αβ′ = αHH−1 β′ = (aH )(βH−1′ )′ = a∗ β∗′

Hence the factorization Π = αβ′ only identifies the space spanned by the

cointegrating relations. To obtain unique values of α and β′ requires

further restrictions on the model.
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Example: A bivariate cointegrated VAR(1) model
Consider the bivariate VAR(1) model for Y t = (y1t , y2t )

′

Y t = Π1Y t−1 + εt

The VECM is

∆Y t = ΠY t−1 + εt

Π = Π1−I 2

Assuming Y t is cointegrated there exists a 2× 1 vector β = (β1,β2)
′

such that

β′Y t = β1y1t + β2y2t ∼ I (0)

Using the normalization β1 = 1 and β2 = −β the cointegrating relation

becomes

β′Y t = y1t − βy2t

This normalization suggests the stochastic long-run equilibrium relation

y1t = βy2t + ut
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Since Y t is cointegrated with one cointegrating vector, rank(Π) = 1 so

that

Π = αβ′ =

(
α1

α2

)(
1 −β

)
=

(
α1 −α1β

α2 −α2β

)
The elements in the vector α are interpreted as speed of adjustment

coefficients. The cointegrated VECM for ∆Y t may be rewritten as

∆Y t = αβ
′Y t−1 + εt

Writing the VECM equation by equation gives

∆y1t = α1(y1t−1 − βy2t−1) + ε1t

∆y2t = α2(y1t−1 − βy2t−1) + ε2t

The stability conditions for the bivariate VECM are related to the

stability conditions for the disequilibrium error β′Y t .
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It is straightforward to show that β′Y t follows an AR(1) process

β′Y t = (1 + β′α)β′Y t−1 + β
′εt

or

ut = φut−1 + vt , ut = β
′Y t

φ = 1+ β′α = 1+ (α1 − βα2)

vt = β′εt = u1t − βu2t

The AR(1) model for ut is stable as long as

|φ| = |1+ (α1 − βα2)| < 1

For example, suppose β = 1. Then the stability condition is

|φ| = |1+ (α1 − α2)| < 1

which is satisfied if

α1 − α2 < 0 and α1 − α2 > −2.
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Johansen’s Methodology for Modeling Cointegration

The basic steps in Johansen’s methodology are:

I Specify and estimate a VAR(p) model for Y t .

I Construct likelihood ratio tests for the rank of Π to determine the

number of cointegrating vectors.

I If necessary, impose normalization and identifying restrictions on the

cointegrating vectors.

I Given the normalized cointegrating vectors estimate the resulting

cointegrated VECM by maximum likelihood.
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LR Tests for the Number of Cointegrating Vectors

The unrestricted cointegrated VECM is denoted H (r). The I (1) model

H (r) can be formulated as the condition that the rank of Π is less than

or equal to r . This creates a nested set of models

H (0) ⊂ · · · ⊂ H (r) ⊂ · · · ⊂ H (n)

H (0) = non-cointegrated VAR

H (n) = stationary VAR(p)

This nested formulation is convenient for developing a sequential

procedure to test for the number r of cointegrating relationships.
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Remarks:

I Since the rank of the long-run impact matrix Π gives the number of

cointegrating relationships in Y t , Johansen formulates likelihood

ratio (LR) statistics for the number of cointegrating relationships as

LR statistics for determining the rank of Π.

I These LR tests are based on the estimated eigenvalues

λ̂1 > λ̂2 > · · · > λ̂n of the matrix Π. These eigenvalues also happen

to equal the squared canonical correlations between ∆Y t and Y t−1

corrected for lagged ∆Y t and D t and so lie between 0 and 1. Recall,

the rank of Π is equal to the number of non-zero eigenvalues of Π.
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Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

H0(r) : r = r0 vs. H1(r0) : r > r0

The LR statistic, called the trace statistic, is given by

LRtrace(r0) = −T
n∑

i=r0+1

ln(1− λ̂i )

I If rank(Π) = r0 then λ̂r0+1, . . . , λ̂n should all be close to zero and

LRtrace(r0) should be small since ln(1− λ̂i ) ≈ 0 for i > r0.

I In contrast, if rank(Π) > r0 then some of λ̂r0+1, . . . , λ̂n will be

nonzero (but less than 1) and LRtrace(r0) should be large since

ln(1− λ̂i ) << 0 for some i > r0.
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I The asymptotic null distribution of LRtrace(r0) is not chi-square but

instead is a multivariate version of the Dickey-Fuller unit root

distribution which depends on the dimension n − r0 and the

specification of the deterministic terms. Critical values for this

distribution are tabulated in Osterwald-Lenum (1992) for

n − r0 = 1, . . . , 10.
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Determining the Number of Cointegrating Vectors

A sequential procedure is used to determine the number of cointegrating

vectors:

1. First test H0(r0 = 0) against H1(r0 > 0). If this null is not rejected

then it is concluded that there are no cointegrating vectors among

the n variables in Y t .

2. If H0(r0 = 0) is rejected then it is concluded that there is at least one

cointegrating vector and proceed to test H0(r0 = 1) against

H1(r0 > 1). If this null is not rejected then it is concluded that there

is only one cointegrating vector.

3. If the H0(r0 = 1) is rejected then it is concluded that there is at least

two cointegrating vectors.

4. The sequential procedure is continued until the null is not rejected.
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Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

H0(r0) : r = r0 vs. H1(r0) : r0 = r0 + 1

The LR statistic, called the maximum eigenvalue statistic, is given by

LRmax(r0) = −T ln(1− λ̂r0+1)

As with the trace statistic, the asymptotic null distribution of LRmax(r0)

is not chi-square but instead is a complicated function of Brownian

motion, which depends on the dimension n − r0 and the specification of

the deterministic terms. Critical values for this distribution are tabulated

in Osterwald-Lenum (1992) for n − r0 = 1, . . . , 10.
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Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in are restricted to

the form

ΦD t = µt = µ0 + µ1t

If the deterministic terms are unrestricted then the time series in Y t may

exhibit quadratic trends and there may be a linear trend term in the

cointegrating relationships. Restricted versions of the trend parameters

µ0 and µ1 limit the trending nature of the series in Y t . The trend

behavior of Y t can be classified into five cases:
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1. Model H2(r): µt = 0 (no constant):

∆Y t = αβ
′Y t−1 + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

and all the series in Y t are I (1) without drift and the cointegrating

relations β′Y t have mean zero.

2. Model H ∗1 (r): µt = µ0 = αρ0 (restricted constant):

∆Y t = α(β
′Y t−1 + ρ0) + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

the series in Y t are I (1) without drift and the cointegrating relations

β′Y t have non-zero means ρ0.

3. Model H1(r): µt = µ0 (unrestricted constant):

∆Y t = µ0 + αβ
′Y t−1 + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

the series in Y t are I (1) with drift vector µ0 and the cointegrating

relations β′Y t may have a non-zero mean.
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4. Model H ∗(r): µt = µ0 + αρ1t (restricted trend). The restricted

VECM is

∆Y t = µ0 + α(β
′Y t−1 + ρ1t)

+ Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

the series in Y t are I (1) with drift vector µ0 and the cointegrating

relations β′Y t have a linear trend term ρ1t .

5. Model H (r): µt = µ0 + µ1t (unrestricted constant and trend). The

unrestricted VECM is

∆Y t = µ0 + µ1t + αβ
′Y t−1

+ Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

the series in Y t are I (1) with a linear trend (quadratic trend in

levels) and the cointegrating relations β′Y t have a linear trend.
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Johansen’s Cointegration Tests in R

The package urca includes functions for cointegration analysis based on

Johansen’s methods.

> ca.jo

function (x, type = c("eigen", "trace"), ecdet = c("none", "const",

"trend"), K = 2, spec = c("longrun", "transitory"), season = NULL,

dumvar = NULL)

Note:

I This function considers 3 specifications for the deterministic term:
I “none” corresponds to case 1, i.e. no constant
I “const” corresponds to case 2, i.e. restricted constant
I “trend” corresponds to case 4, i.e. restricted trend

I K is the number of lags for the VAR in levels so K − 1 is the number

of lags in the VECM representation
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Example 1: Testing for Cointegration

Simulated data set 1:

yt1 = y2t + ut , ut = 0.75ut−1 + ε1t

y2t = y2t−1 + ε2t

εit ∼ iid N (0, (0.5)2) for i = 1, 2

> # Example bivariate cointegrated system

> e1 <- rnorm(250,mean=0,sd=.5)

> e2 <- rnorm(250,mean=0,sd=.5)

> u.ar1 <- arima.sim(model=list(ar=.75),250,innov=e1)

> y2 <- cumsum(e2)

> y1 <- y2 + u.ar1

> data1 <- cbind(y1,y2)
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Example 1: Trace Statistic

> # trace statistic

> test1 <- ca.jo(data1,ecdet="const",type="trace",K=2,spec="transitory")

> summary(test1)

Test type: trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 9.979511e-02 1.840829e-02 4.582038e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 4.61 7.52 9.24 12.97

r = 0 | 30.68 17.85 19.96 24.60

I Test finds 1 cointegrating vector
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Example 1: Max Eigenvalue Statistic

> # max eigenvalue statistic

> test2 <- ca.jo(data1,ecdet="const",type="eigen",K=2,spec="transitory")

> summary(test2)

Test type: maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 9.979511e-02 1.840829e-02 4.582038e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 4.61 7.52 9.24 12.97

r = 0 | 26.07 13.75 15.67 20.20

I Test finds 1 cointegrating vector
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Example 2: Testing for Cointegration
Simulated data set 2:

yt1 = 0.5y2t + 0.5y3t + ut , ut = 0.75ut−1 + ε1t

y2t = y2t−1 + ε2t

y3t = y3t−1 + ε3t

εit ∼ iid N (0, (0.5)2) for i = 1, 2, 3

> # Example trivariate cointegrated system (1 coint vector)

> e1 <- rnorm(250,mean=0,sd=.5)

> e2 <- rnorm(250,mean=0,sd=.5)

> e3 <- rnorm(250,mean=0,sd=.5)

> u.ar1 <- arima.sim(model=list(ar=.75),250,innov=e1)

> y2 <- cumsum(e2)

> y3 <- cumsum(e3)

> y1 <- .5*y2 + .5*y3 + u.ar1

> data2 <- cbind(y1,y2,y3)
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Example 2: Trace Statistic
> # trace statistic

> test1 <- ca.jo(data2,ecdet="const",type="trace",K=2,spec="transitory")

> summary(test1)

Test type: trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 1.193654e-01 3.702304e-02 1.051500e-02 3.592029e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 2 | 2.62 7.52 9.24 12.97

r <= 1 | 11.98 17.85 19.96 24.60

r = 0 | 43.50 32.00 34.91 41.07

I Test finds 1 cointegrating vector
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Example 3: Testing for Cointegration
Simulated data set 3:

y1t = y3t + ut , ut = 0.75ut−1 + ε1t

y2t = y3t + vt , vt = 0.75vt−1 + ε2t

y3t = y3t−1 + ε3t

εit ∼ iid N (0, (0.5)2) for i = 1, 2, 3

> # Example trivariate cointegrated system (2 coint vectors)

> e1 <- rnorm(250,mean=0,sd=.5)

> e2 <- rnorm(250,mean=0,sd=.5)

> e3 <- rnorm(250,mean=0,sd=.5)

> u.ar1 <- arima.sim(model=list(ar=.75),250,innov=e1)

> v.ar1 <- arima.sim(model=list(ar=.75),250,innov=e2)

> y3 <- cumsum(e3)

> y1 <- y3 + u.ar1

> y2 <- y3 + v.ar1

> data3 <- cbind(y1,y2,y3)
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Example 3: Trace Statistic
> # trace statistic

> test1 <- ca.jo(data3,ecdet="const",type="trace",K=2,spec="transitory")

> summary(test1)

Test type: trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 1.303347e-01 9.747977e-02 9.712308e-03 -2.544989e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 2 | 2.42 7.52 9.24 12.97

r <= 1 | 27.86 17.85 19.96 24.60

r = 0 | 62.49 32.00 34.91 41.07

I Test finds 2 cointegrating vectors
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Maximum Likelihood Estimation of the VECM

If it is found that rank(Π) = r , 0 < r < n , then the cointegrated VECM

∆Y t =ΦD t + αβ
′Y t−1 + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt

becomes a reduced rank multivariate regression. Johansen derived the

maximum likelihood estimation of the parametes under the reduced rank

restriction rank(Π) = r (see Hamilton for details). He shows that

I β̂mle = (v̂1, . . . , v̂ r ), where v̂ i are the eigenvectors associated with

the eigenvalues λ̂i

I The MLEs of the remaining parameters are obtained by least squares

estimation of

∆Y t =ΦD t + αβ̂
′
mleY t−1 + Γ1∆Y t−1 + . . . + Γp−1∆Y t−p+1 + εt
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Normalized Estimates of α and β

I The factorization

Π̂mle = α̂mle β̂
′
mle

is not unique.

I The columns of β̂mle may be interpreted as linear combinations of

the underlying cointegrating relations.

I For interpretations, it is often convenient to normalize or identify the

cointegrating vectors by choosing a specific coordinate system in

which to express the variables.
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Johansen’s normalized MLE

I An arbitrary normalization, suggested by Johansen, is to solve for

the triangular representation of the cointegrated system. The

resulting normalized cointegrating vector is denoted β̂c,mle . The

normalization of the MLE for β to β̂c,mle will affect the MLE of α

but not the MLEs of the other parameters in the VECM.

I Let β̂c,mle denote the MLE of the normalized cointegrating matrix

βc . Johansen (1995) showed that

T (vec(β̂c,mle) − vec(βc))

is asymptotically (mixed) normally distributed.

I β̂c,mle is super consistent.
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Testing Linear Restrictions on β

The Johansen MLE procedure only produces an estimate of the basis for

the space of cointegrating vectors. It is often of interest to test if some

hypothesized cointegrating vector lies in the space spanned by the

estimated basis:

H0 : β
(r×n)

′ =

(
β′0

φ′

)
β′0 = s × n matrix of hypothesized cv’s

φ′ = (r − s)× n matrix of remaining unspecified cv’s

Result: Johansen (1995) showed that a likelihood ratio statistic can be

computed, which is asymptotically distributed as a χ2 with s(n − r)

degrees of freedom.
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Example 1 continued...

The function cajorls (urca package) estimates the restricted VECM.

> # estimate restricted VECM

> model1 <- cajorls(test1,r=1)

> print(model1)

$rlm

$beta

ect1

y1.l1 1.00000000

y2.l1 -0.92911069

constant -0.07135761

I Note that the β coefficients closely match those in the DGP
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Restricted VECM

Response y1.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 -0.18461 0.05589 -3.303 0.0011 **

y1.dl1 0.16984 0.09057 1.875 0.0619 .

y2.dl1 -0.20509 0.12156 -1.687 0.0928 .

Residual standard error: 0.7182 on 245 degrees of freedom

Multiple R-squared: 0.04769, Adjusted R-squared: 0.03603

F-statistic: 4.09 on 3 and 245 DF, p-value: 0.007393

I Note that y1t depends on the cointegrating vector
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Restricted VECM

Response y2.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 0.01918 0.04102 0.468 0.640

y1.dl1 0.08472 0.06647 1.274 0.204

y2.dl1 -0.04996 0.08922 -0.560 0.576

Residual standard error: 0.5271 on 245 degrees of freedom

Multiple R-squared: 0.01099, Adjusted R-squared: -0.001121

F-statistic: 0.9075 on 3 and 245 DF, p-value: 0.438

I Note that y2t does not depend on the cointegrating vector
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Testing Restrictions on β

Suppose we want to test whether the cointegrating vector is β ′ = (1,−1)

without imposing any restrictions on the intercept. This hypothesis can

be represented as a linear restriction on β:

H0 : R ′β = 0 or β = BΨ

where Ψ are the unknown parameters in the cointegrating vectors β,

B = R⊥ and R⊥ is the orthogonal complement of R such that

R ′R⊥ = 0.
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Testing Restrictions on β

> B1 <- matrix(c(1,-1,0,0,0,1),nrow=3)

> B1

[,1] [,2]

[1,] 1 0

[2,] -1 0

[3,] 0 1

> R <- Null(B1)

> R

[,1]

[1,] -0.7071068

[2,] -0.7071068

[3,] 0.0000000

I Now the test can be simply performed by passing the matrix B to

the test function.
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Testing Restrictions on β

> # test restrictions on beta

> test3 <- blrtest(z=test1,H=B1,r=1)

> summary(test3)

Estimation and testing under linear restrictions on beta

Eigenvalues of restricted VAR (lambda):

[1] 0.0974 0.0000

The value of the likelihood ratio test statistic:

0.65 distributed as chi square with 1 df.

The p-value of the test statistic is: 0.42

I The restrictions are not rejected
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Estimate VECM with Restrictions on β

> # estimate VECM with beta restrictions

> model2 <- cajorls(test3,r=1)

> print(model2)

$rlm

$beta

ect1

y1.l1 1.0000000000

y2.l1 -1.0000000000

constant 0.0008041931

41 / 62



Testing Restrictions on β

Suppose we want to test whether the cointegrating vector is β ′ = (1,−1)
with no intercept.

> B2 <- matrix(c(1,-1,0),nrow=3)

> B2

[,1]

[1,] 1

[2,] -1

[3,] 0

> R <- Null(B2)

> R

[,1] [,2]

[1,] 0.7071068 0

[2,] 0.7071068 0

[3,] 0.0000000 1
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Testing Restrictions on β

> # test restrictions on beta

> test4 <- blrtest(z=test1,H=B2,r=1)

> summary(test4)

Estimation and testing under linear restrictions on beta

Eigenvalues of restricted VAR (lambda):

[1] 0.0974

The value of the likelihood ratio test statistic:

0.65 distributed as chi square with 2 df.

The p-value of the test statistic is: 0.72

I The restrictions are not rejected
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Estimate VECM with Restrictions on β

> # estimate VECM with beta restrictions

> model3 <- cajorls(test4,r=1)

> print(model3)

$rlm

$beta

ect1

y1.l1 1

y2.l1 -1

constant 0
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Testing Restrictions on α

This hypothesis can be represented as a linear restriction on α:

H0 : R ′α = 0 or α = AΨ

> A1 <- matrix(c(1,0),nrow=2)

> R <- Null(A1)

> R

[,1]

[1,] 0

[2,] 1

I Now the test can be simply performed by passing the matrix A to

the test function.
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Testing Restrictions on α

> # test weak exogeneity

> test5 <- alrtest(z=test1,A=A1,r=1)

> summary(test5)

The value of the likelihood ratio test statistic:

0.18 distributed as chi square with 1 df.

The p-value of the test statistic is: 0.67

Weights W of the restricted VAR:

[,1]

[1,] -0.2031

[2,] 0.0000

I The restrictions are not rejected
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Testing Restrictions on α and β

> # test restriction on beta and weak exogeneity

> test6 <- ablrtest(z=test1,A=A1,H=B2,r=1)

> summary(test6)

Estimation and testing under linear restrictions on alpha and beta

Eigenvalues of restricted VAR (lambda):

[1] 0.0949

The value of the likelihood ratio test statistic:

1.34 distributed as chi square with 2 df.

The p-value of the test statistic is: 0.51

I The restrictions are not rejected
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Testing Restrictions on α and β

Eigenvectors, normalised to first column

of the restricted VAR:

[,1]

[1,] 1

[2,] -1

[3,] 0

Weights W of the restricted VAR:

[,1]

[1,] -0.1967

[2,] 0.0000

>
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Example 3 continued...

The function cajorls (urca package) estimates the restricted VECM.

> # estimate restricted VECM

> model1 <- cajorls(test1,r=2)

> print(model1)

$rlm

$beta

ect1 ect2

y1.l1 1.000000e+00 0.0000000

y2.l1 -5.551115e-17 1.0000000

y3.l1 -9.730800e-01 -0.9982614

constant -2.526943e-01 0.1276533

I Note that the β coefficients closely match those in the DGP
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Restricted VECM

Response y1.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 -0.30095 0.06850 -4.394 1.66e-05 ***

ect2 -0.04163 0.05504 -0.756 0.450

y1.dl1 0.04422 0.09318 0.475 0.636

y2.dl1 -0.02032 0.08383 -0.242 0.809

y3.dl1 -0.03034 0.15012 -0.202 0.840

---

Residual standard error: 0.6869 on 243 degrees of freedom

Multiple R-squared: 0.07999, Adjusted R-squared: 0.06106

F-statistic: 4.226 on 5 and 243 DF, p-value: 0.001058

I Note that y1t only depends on the first cointegrating vector
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Restricted VECM

Response y2.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 -0.01749 0.07354 -0.238 0.812242

ect2 -0.22410 0.05909 -3.792 0.000188 ***

y1.dl1 0.07135 0.10005 0.713 0.476449

y2.dl1 -0.03753 0.09001 -0.417 0.677095

y3.dl1 -0.11722 0.16118 -0.727 0.467758

---

Residual standard error: 0.7375 on 243 degrees of freedom

Multiple R-squared: 0.07269, Adjusted R-squared: 0.05361

F-statistic: 3.81 on 5 and 243 DF, p-value: 0.00243

I Note that y2t only depends on the second cointegrating vector
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Restricted VECM

Response y3.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 -0.02667 0.05218 -0.511 0.610

ect2 -0.00841 0.04193 -0.201 0.841

y1.dl1 0.03379 0.07099 0.476 0.634

y2.dl1 -0.02255 0.06386 -0.353 0.724

y3.dl1 -0.05837 0.11436 -0.510 0.610

---

Residual standard error: 0.5233 on 243 degrees of freedom

Multiple R-squared: 0.00485, Adjusted R-squared: -0.01563

F-statistic: 0.2369 on 5 and 243 DF, p-value: 0.946

I Note that y3t does not depend on any of the cointegrating vectors
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Testing Restrictions on β

> # test restrictions on beta

> B1 <- matrix(c(1,0,-1,0,0,1,-1,0,0,0,0,1),nrow=4)

> test3 <- blrtest(z=test1,H=B1,r=2)

> summary(test3)

Estimation and testing under linear restrictions on beta

Eigenvalues of restricted VAR (lambda):

[1] 0.1285 0.0973 0.0006

The value of the likelihood ratio test statistic:

0.56 distributed as chi square with 2 df.

The p-value of the test statistic is: 0.76

I The restrictions are not rejected
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Estimate VECM with Restrictions on β

> # estimate VECM with beta restrictions

> model2 <- cajorls(test3,r=2)

> print(model2)

$rlm

$beta

ect1 ect2

y1.l1 1.0000000 0.0000000

y2.l1 0.0000000 1.0000000

y3.l1 -1.0000000 -1.0000000

constant -0.1278010 0.1355248
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Testing Restrictions on α
> # test weak exogeneity

> A1 <- matrix(c(1,0,0,0,1,0),nrow=3)

> test4 <- alrtest(z=test1,A=A1,r=2)

> summary(test4)

The value of the likelihood ratio test statistic:

0.28 distributed as chi square with 2 df.

The p-value of the test statistic is: 0.87

Weights W of the restricted VAR:

[,1] [,2]

[1,] -0.2446 -0.0308

[2,] -0.0860 0.0952

[3,] 0.0000 0.0000

I The restrictions are not rejected
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Testing Restrictions on α and β

> # test restriction on beta and weak exogeneity

> test5 <- ablrtest(z=test1,A=A1,H=B1,r=2)

> summary(test5)

Estimation and testing under linear restrictions on alpha and beta

Eigenvalues of restricted VAR (lambda):

[1] 0.1281 0.0973 0.0000

The value of the likelihood ratio test statistic:

0.69 distributed as chi square with 2 df.

The p-value of the test statistic is: 0.71

I The restrictions are not rejected
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Zivot (2000) continued...

> data <- cbind(st,ft)

>

> # trace test

> test1 <- ca.jo(data,ecdet="const",type="trace",K=2,spec="transitory")

> summary(test1)

Eigenvalues (lambda):

[1] 5.922276e-02 2.205465e-02 3.469447e-18

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 5.42 7.52 9.24 12.97

r = 0 | 20.25 17.85 19.96 24.60
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Estimate Restricted VECM

> # estimate restricted model

> model1 <- cajorls(test1,r=1)

> print(model1)

$rlm

$beta

ect1

st.l1 1.000000000

ft.l1 -1.000860977

constant -0.001915953
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Restricted VECM

Response st.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 1.65502 0.82642 2.003 0.0463 *

st.dl1 0.03872 1.89308 0.020 0.9837

ft.dl1 0.03062 1.89125 0.016 0.9871

---

Residual standard error: 0.03401 on 240 degrees of freedom

Multiple R-squared: 0.02481, Adjusted R-squared: 0.01262

F-statistic: 2.035 on 3 and 240 DF, p-value: 0.1096

I Note that st only depends on the cointegrating vector
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Restricted VECM

Response ft.d :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

ect1 1.745423 0.825300 2.115 0.0355 *

st.dl1 0.004534 1.890527 0.002 0.9981

ft.dl1 0.067139 1.888691 0.036 0.9717

---

Residual standard error: 0.03396 on 240 degrees of freedom

Multiple R-squared: 0.02726, Adjusted R-squared: 0.0151

F-statistic: 2.242 on 3 and 240 DF, p-value: 0.08405

I Note that ft only depends on the cointegrating vector
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Testing Restrictions on β

> # test restrictions on beta

> B1 <- matrix(c(1,-1,0,0,0,1),nrow=3)

> test3 <- blrtest(z=test1,H=B1,r=1)

> summary(test3)

Estimation and testing under linear restrictions on beta

The value of the likelihood ratio test statistic:

0.02 distributed as chi square with 1 df.

The p-value of the test statistic is: 0.88

I The restrictions are not rejected
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Estimate VECM with Restrictions on β

> # estimate restricted model

> model2 <- cajorls(test3,r=1)

> print(model2)

$rlm

Coefficients:

st.d ft.d

ect1 1.57824 1.67058

st.dl1 0.09174 0.05737

ft.dl1 -0.02217 0.01449

$beta

ect1

st.l1 1.000000000

ft.l1 -1.000000000

constant -0.002356319
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