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Abstract

In a stochastic partially-observable environment, an agent faces the dilemma of exploration and
exploitation to make a decision in order to optimize a particular reward function. Policy opti-
mization maps a certain state of environment to a decision. Various attempts have been made in
devising such policy using well-known techniques such as Partially Observable Markov Decision
Process(POMDP) or Monte Carlo Tree Search (MCTS). We evaluate these techniques in the con-
text of the Epidemic scenario. This paper proposes an algorithm to approximate an optimal policy
in the Epidemic scenario.

Introduction, Specific Aims, And Background

Pandemics have been a threat to public health and human society. The ability to control pandemics
to reduce their economic and social consequences is a challenge due to the difficulties in simulate
such scenario in real life situation. Therefore, many models of pandemics have been proposed to
resemble the actual scenario with a set of interventions to control the pandemics. These models
allow us to devise algorithm to approximate an optimal policy in minimizing the consequences of
the epidemics.

The Epidemic scenario is mentioned in [1] using the model of Coevolving Graphical Discrete
Dynamical System (CGDDS). We rewrite the definition of CGDDS for sake of record.

Such Epidemic scenario is represented by symbol S over a given domain D of state values and
a given domain L of label values, is a pair (G, F), whose components are as follows:

o Graph G(V, E): Let the vertex set V = {v1, v2, ...vn} represent the set of n ≥ 1 agents
(individuals). For each vertex vi, let vector si denote its states si = (s1i , s

2
i , ...s

k
i ) ∈ D =

(D1 × D2 × . . . × Dk), where k is the number of states of vertex vi. Intuitively, the states
comprise the agents health state, behavioral state (e.g., level of fear, risk aversion, etc.),
and static demographic attributes. Let the edge set E = {e1, e2, . . . , em} ⊂ (V × V ) rep-
resent the contacts between agents. For any edge e ∈ E, let vector le denote its labels
le = (l1e , l

2
e , . . . , l

h
e ) ∈ L = (L1 × L2 × . . . × Lh), where h denotes the number of labels. In

our social contact network, the edge labels include the contact duration and the contact type
(home, school, work, shopping, or others).

o Functions F = (f, gV , gE), where f is a set of local transition functions; gV is a set of vertex
modification functions; and gE is a set of edge modification functions. For each vertex vi,
let fi : D × DVi × LEi → D be its local state transition function, where Vi and Ei are the
neighboring vertices and edges of vi. Normally, Vi are vertices adjacent to vi and Ei are
edges incident on vi. The fi function corresponds to the propagation process that changes
the states of an agent based on
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(i) the current states of the agent

(ii) the states of all its neighboring agents

(iii) the current labels on the contact edges with its neighboring agents

These variables determine a distribution over D; then a state is chosen from the distribution
as the output of fi. So fi is a random function. Let gV = {gV1 , gV2 , . . . gVkV } be a set of kV
vertex modification functions, where each gVj : DV × LE → DV directly changes states of

vertices based on the current state of the whole graph. We assume V is constant. Let gE =
{gE1 , gE2 , . . . gEkE} be a set of kE edge modification functions, where each gEj : DV ×LE → LV×V

changes the set of edges and the edge labels based on the current state of the whole graph.

In [1], D is defined using SEIR model which includes only 4 possible states of an agent: suscep-
tible, exposed, infectious, and removed state. For gV , this corresponds to the set of pharmaceutical
interventions (PIs, e.g., antiviral, vaccination). For gE , this corresponds to the set of nonpharma-
ceutical interventions (NPIs, e.g., school closure, quarantine and social distancing) that change
the graph structure.

The reward function R(t) at each time step t is the number of agents (nodes) with removed
state. An optimal policy would try to minimize this function in a maximum number of time steps.
For example, given a simulation of Epidemics in 200 days, R(200) should be minimized.

Goals And Potential Impact

Given a CGDDS with n agents, then every time step, the CGDDS simulation system has to update
in O(n) nodes and O(n2) edges.

Our goal is to devise and assess the performance of our algorithm in a smaller scale of CGDDS
described in [1]. For testing convenience, we limit ourselves in 1000 agents. Even though this may
not reflect the actual scale of a pandemic, we believe that once we figure such algorithm, we can
generalize and increase the scale of our graph model using High Performance Computing (HPC).

We expect to modified the techniques in POMDP and MCTS to improve our algorithm. The im-
pact of the research could be significant in controlling future pandemics as well as other ”infectious”
phenomenons such as wild fire.

Methodology

Our method will evaluate the performance of existing framework in approximating optimal policy
for Epidemics scenario. The two prominent methods that we are going to look at are POMDP and
MCTS which are carefully described in [2] and [3] respectively.

POMDP is the generalization of Markov Decision process where the state-transition function is
stochastic and we may only observe part of the environment.

Formally, a POMDP consists of:

o |S| states S = {1, . . . , |S|} of the world;

o |A| actions (or controls) U = {1, . . . |A|} available to the policy;

o |Y | observations Y = {1, . . . , |Y |};

o a (possibly stochastic) reward r(i) ∈ R for each state i ∈ S.
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Each action u ∈ U determines a stochastic matrix [q(j|i, u)] where i = 1 . . . |S|, j = 1 . . . |S| , such
that q(j|i, u) denotes the probability of making a transition from state i ∈ S to state j ∈ S given
action u ∈ U . For each state i, an observation y ∈ Y is generated independently with probability
ν(y|i). The distributions q(j|i, u) and ν(y|i), along with a description of the rewards, constitutes
the model of the POMDP in figure 1.

Figure 1: Diagram of the world perspective of POMDP, and the stochastic process ν(yt, it) mapping
the current state it to an observation yt, thus hiding the true state information.

The application of MCTS in large-scale POMDP will be the second stage of the research which is
described in [3]. This approach employs techniques that reduce the effect of curse of dimensionality
as well as increase the running time of the algorithm.

Budget And Justification

Budget may be required if we need to get permission from the authors of [1] to attain access to
their large scale CGDDS system which would allow us to test the performance of algorithm in a
large scale environment.
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