ICME Qualifying Exam, June 2009

Discrete Mathematics and Algorithms

1. Let $G(V, E)$ be an undirected graph with n nodes and m edges. For a subset $X \subseteq V$, we use $G[x]$ to denote the subgraph induced on X that is, the graph whose node set is X and whose edge set consists of all edges of G for which both ends lie in X.

Give a polynomial-time algorithm that produces, for a given natural number $k \leq n$, a set $X \subseteq V$ of k nodes with the property that the induced subgraph $G[X]$ has at least $\frac{m k(k-1)}{n(n-1)}$ edges.
You may give either a deterministic algorithm, or a randomized algorithm that has an expected running time that is polynomial, and that only outputs correct answers.
2. A d-coloring of a graph $G(V, E)$ is an assignment of one of d possible colors to each vertex of G such that no two adjacent vertices receive the same color. Prove the following:
a. If the maximum degree in G is d, then G is $d+1$-colorable.
b. If the maximum degree in G is d and G is connected, then G is d-colorable unless it is a complete graph or an odd cycle.

