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Abstract

Background: The increasing volume and variety of genotypic and phenotypic
data is a major defining characteristic of modern biomedical sciences. At the
same time, the limitations in technology for generating data and the inherently
stochastic nature of biomolecular events have led to the discrepancy between the
volume of data and the amount of knowledge gleaned from it. A major
bottleneck in our ability to understand the molecular underpinnings of life is the
assignment of function to biological macromolecules, especially proteins. While
molecular experiments provide the most reliable annotation of proteins, their
relatively low throughput and restricted purview have led to an increasing role for
computational function prediction. However, accurately assessing methods for
protein function prediction and tracking progress in the field remain challenging.
Methodology: We have conducted the second Critical Assessment of Functional
Annotation (CAFA), a timed challenge to assess computational methods that
automatically assign protein function. One hundred twenty-six methods from 56
research groups were evaluated for their ability to predict biological functions
using the Gene Ontology and gene-disease associations using the Human
Phenotype Ontology on a set of 3,681 proteins from 18 species. CAFA2 featured
significantly expanded analysis compared with CAFA1, with regards to data set
size, variety, and assessment metrics. To review progress in the field, the analysis
also compared the best methods participating in CAFA1 to those of CAFA2.
Conclusions: The top performing methods in CAFA2 outperformed the best
methods from CAFA1, demonstrating that computational function prediction is
improving. This increased accuracy can be attributed to the combined effect of
the growing number of experimental annotations and improved methods for
function prediction. The assessment also revealed that the definition of top
performing algorithms is ontology specific, that different performance metrics can
be used to probe the nature of accurate predictions, and the relative diversity of
predictions in the biological process and human phenotype ontologies. While we
have observed methodological improvement between CAFA1 and CAFA2, the
interpretation of results and usefulness of individual methods remain
context-dependent.
Keywords: Protein function prediction; disease gene prioritization

Introduction
Computational challenges in the life sciences have a successful history of driving the
development of new methods by independently assessing performance and providing
discussion forums for the researchers [1]. In 2010-2011, we organized the first Critical
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Assessment of Functional Annotation (CAFA) challenge to evaluate methods for
the automated annotation of protein function and to assess the progress in method
development in the first decade of the 2000s [2]. The challenge used a time-delayed
evaluation of predictions for a large set of target proteins without any experimental
functional annotation. A subset of these target proteins accumulated experimental
annotations after the predictions were submitted and was used to estimate the
performance accuracy. The estimated performance was subsequently used to draw
conclusions about the status of the field.

The CAFA1 experiment showed that advanced methods for the prediction of
Gene Ontology (GO) terms [3] significantly outperformed a straightforward appli-
cation of function transfer by local sequence similarity. In addition to validating
investment in the development of new methods, CAFA1 also showed that using
machine learning to integrate multiple sequence hits and multiple data types tends
to perform well. However, CAFA1 also identified nontrivial challenges for experi-
mentalists, biocurators and computational biologists. These challenges include the
choice of experimental techniques and proteins in functional studies and curation,
the structure and status of biomedical ontologies, the lack of comprehensive sys-
tems data that is necessary for accurate prediction of complex biological concepts,
as well as limitations of evaluation metrics [2, 4, 5, 6, 7]. Overall, by establishing
the state-of-the-art in the field and identifying challenges, CAFA1 set the stage for
quantifying progress in the field of protein function prediction over time.

In this study, we report on the major outcomes of the second CAFA experiment
(CAFA2) that was organized and conducted in 2013-2014, exactly three years after
the original experiment. We were motivated to evaluate the progress in method
development for function prediction as well as to expand the experiment to new
ontologies. The CAFA2 experiment also greatly expanded the performance analysis
to new types of evaluation and included new performance metrics.

Methods
Experiment overview
The timeline for the second CAFA experiment followed that of the first experi-
ment and is illustrated in Figure 1. Briefly, CAFA2 was announced in July 2013
and officially started in September 2013, when 100,816 target sequences from 27
organisms were made available to the community. Teams were required to submit
prediction scores within the (0, 1] range for each protein-term pair they chose to
predict on. The submission deadline for depositing these predictions was set for
January 2014 (time point t0). We then waited until September 2014 (time point t1)
for new experimental annotations to accumulate on the target proteins and assessed
the performance of the prediction methods. We will refer to the set of all experi-
mentally annotated proteins available at t0 as the training set and to a subset of
target proteins that accumulated experimental annotations during (t0, t1] and used
for evaluation as the benchmark set. It is important to note that the benchmark
proteins and the resulting analysis vary based on the selection of time point t1. For
example, a preliminary analysis of the CAFA2 experiment was provided during the
Automated Function Prediction Special Interest Group (AFP-SIG) meeting at the
Intelligent Systems for Molecular Biology (ISMB) conference in July 2014.
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Figure 1 Timeline for the CAFA2 experiment.

The participating methods were evaluated according to their ability to predict
terms in Gene Ontology (GO) [3] and Human Phenotype Ontology (HPO) [8]. In
contrast with CAFA1, where the evaluation was carried out only for the Molecu-
lar Function Ontology (MFO) and Biological Process Ontology (BPO), in CAFA2
we also assessed the performance for the prediction of Cellular Component Ontol-
ogy (CCO) terms in GO. The set of human proteins was further used to evaluate
methods according to their ability to associate these proteins with disease terms
from HPO, which included all sub-classes of the term HP:0000118, “Phenotypic
abnormality”.

In total, 56 groups submitting 126 methods participated in CAFA2. From those,
125 methods made valid predictions on a sufficient number of sequences. One-
hundred and twenty-one methods submitted predictions for at least one of the GO
benchmarks, while 30 methods participated in the disease-gene prediction tasks
using HPO.

Evaluation
The CAFA2 experiment expanded the assessment of computational function predic-
tion compared with CAFA1. This includes the increased number of targets, bench-
marks, ontologies, and method comparison metrics.

We distinguish between two major types of method evaluation. The first, protein-
centric evaluation, assesses performance accuracy of methods that predict all on-
tological terms associated with a given protein sequence. The second type, term-
centric evaluation, assesses performance accuracy of methods that predict if a sin-
gle ontology term of interest is associated with a given protein sequence [2]. The
protein-centric evaluation can be viewed as a multi-label or structured-output learn-
ing problem of predicting a set of terms or a directed acyclic graph (a subgraph
of the ontology) for a given protein. Because the ontologies contain many terms,
the output space in this setting is extremely large and the evaluation metrics must
incorporate similarity functions between groups of mutually interdependent terms
(directed acyclic graphs). In contrast, the term-centric evaluation is an example of
binary classification, where a given ontology term is assigned (or not) to an input
protein sequence. These methods are particularly common in disease gene prioritiza-
tion [9]. Put otherwise, a protein-centric evaluation considers a ranking of ontology
terms for a given protein, whereas the term-centric evaluation considers a ranking
of protein sequences for a given ontology term.

Both types of evaluation have merits in assessing performance. This is partly due
to the statistical dependency between ontology terms, the statistical dependency
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among protein sequences and also the incomplete and biased nature of the exper-
imental annotation of protein function [6]. In CAFA2, we provide both types of
evaluation, but we emphasize the protein-centric scenario for easier comparisons
with CAFA1. We also draw important conclusions regarding method assessment in
these two scenarios.

No-knowledge and limited-knowledge benchmark sets
In CAFA1, a protein was eligible to be in the benchmark set if it had not had
any experimentally-verified annotations in any of the GO ontologies at time t0

but accumulated at least one functional term with an experimental evidence code
between t0 and t1. In CAFA2, we refer to such benchmark proteins as no-knowledge
benchmarks. On the other hand, proteins with limited knowledge are those that
had been experimentally annotated in one or two GO ontologies, but not in all
three, at time t0. For example, for the performance evaluation in MFO, a protein
without any annotation in MFO prior to the submission deadline was allowed to
have experimental annotations in BPO and CCO.

During the growth phase, the no-knowledge targets that have acquired experimen-
tal annotations in one or more ontologies became benchmarks in those ontologies.
The limited-knowledge targets that have acquired additional annotations became
benchmarks only for those ontologies for which there were no prior experimen-
tal annotations. The reason for using limited-knowledge targets was to identify
whether the correlations between experimental annotations across ontologies can
be exploited to improve function prediction.

The selection of benchmark proteins for evaluating HPO-term predictors was sep-
arated from the GO analyses. There exists only a no-knowledge benchmark set in
the HPO category.

Partial and full evaluation modes
Many function prediction methods apply only to certain types of proteins, such as
proteins for which 3D structure data are available, proteins from certain taxa, or
specific subcellular localizations. To accommodate these methods, CAFA2 provided
predictors with an option of choosing a subset of the targets to predict on as long as
they computationally annotated at least 5,000 targets, of which at least 10 accumu-
lated experimental terms. We refer to the assessment mode in which the predictions
were evaluated only on those benchmarks for which a model made at least one pre-
diction at any threshold as partial evaluation mode. In contrast, the full evaluation
mode corresponds to the same type of assessment performed in CAFA1 where all
benchmark proteins were used for the evaluation and methods were penalized for
not making predictions.

In most cases, for each benchmark category, we have two types of benchmarks,
no-knowledge (NK) and limited-knowledge (LK), and two modes of evaluation, full-
mode (FM) and partial-mode (PM). Exceptions are all HPO categories that only
have no-knowledge benchmarks. The full mode is appropriate for comparisons of
general-purpose methods designed to make predictions on any protein, while the
partial mode gives an idea of how well each method performs on a self-selected
subset of targets.
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Evaluation metrics
Precision-recall (pr-rc) curves and remaining uncertainty-misinformation (ru-mi)
curves were used as the two chief metrics in the protein-centric mode. We also
provide a single measure evaluation in both types of curves as a real-valued scalar
to compare methods; however, we note that any choice of a single point on those
curves is somewhat arbitrary and may not match the intended application objectives
for a given algorithm. Thus, a careful understanding of the evaluation metrics used
in CAFA is necessary to properly interpret the results.

Precision (pr), recall (rc) and the resulting Fmax are defined as

pr(τ) = 1
m(τ)

m(τ)∑
i=1

∑
f 1 (f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1 (f ∈ Pi(τ)) ,

rc(τ) = 1
ne

ne∑
i=1

∑
f 1 (f ∈ Pi(τ) ∧ f ∈ Ti)∑

f 1 (f ∈ Ti)
,

Fmax = max
τ

{
2 · pr(τ) · rc(τ)
pr(τ) + rc(τ)

}
,

where Pi(τ) denotes the set of terms that have predicted scores greater than or
equal to τ for a protein sequence i, Ti denotes the corresponding ground-truth
set of terms for that sequence, m(τ) is the number of sequences with at least one
predicted score greater than or equal to τ , 1 (·) is an indicator function and ne is
the number of targets used in a particular mode of evaluation. In the full evaluation
mode ne = n, the number of benchmark proteins, whereas in the partial evaluation
mode ne = m(0), i.e. the number of proteins which were chosen to be predicted
using the particular method. For each method, we refer to m(0)/n as the coverage
because it provides the fraction of benchmark proteins on which the method made
any predictions.

The remaining uncertainty (ru), misinformation (mi) and the resulting minimum
semantic distance (Smin) are defined as

ru(τ) = 1
ne

ne∑
i=1

∑
f

ic(f) · 1 (f /∈ Pi(τ) ∧ f ∈ Ti) ,

mi(τ) = 1
ne

ne∑
i=1

∑
f

ic(f) · 1 (f ∈ Pi(τ) ∧ f /∈ Ti) ,

Smin = min
τ

{√
ru(τ)2 +mi(τ)2

}
,

where ic(f) is the information content of the ontology term f [10]. It is estimated in
a maximum likelihood manner as the negative binary logarithm of the conditional
probability that the term f is present in a protein’s annotation given that all its
parent terms are also present. Note that here, ne = n in the full evaluation mode
and ne = m(0) in the partial evaluation mode applies to both ru and mi.

In addition to the main metrics, we used two secondary metrics. Those were the
weighted version of the precision-recall curves and the version of the ru-mi curves
normalized to the [0, 1] interval. These metrics and the corresponding evaluation
results are shown in Supplementary Materials.
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For the term-centric evaluation we used the area under the Receiver Operating
Characteristic (ROC) curve (AUC). The AUCs were calculated for all terms that
have acquired at least 10 positively annotated sequences, whereas the remaining
benchmarks were used as negatives. The term-centric evaluation was used both
for ranking models and to differentiate well and poorly predictable terms. The
performance of each model on each term is provided in Supplementary Materials.

As we required all methods to keep two significant figures for prediction scores,
the threshold τ in all metrics used in this study exhaustively runs from 0.01 to 1.00
with the step size of 0.01.

Data sets
Protein function annotations for the Gene Ontology assessment were extracted,
as a union, from three major protein databases that are available in the public
domain: Swiss-Prot [11], UniProt-GOA [12] and the data from the GO consortium
web site [3]. We used evidence codes EXP, IDA, IMP, IGI, IEP, TAS and IC to
build benchmark and ground-truth sets. Annotations for the HPO assessment were
downloaded from the Human Phenotype Ontology database [8].
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Figure 2 CAFA2 benchmark breakdown. The left panel shows the benchmark size for each of the
four ontologies. The right panel lists the breakdown of benchmarks for both types over 11 species
(with no less than 15 proteins) sorted according to the total number of benchmark proteins. For
both panels, dark colors (blue, red, yellow) correspond to no-knowledge (NK) types, while their
light color counterparts correspond to limited-knowledge (LK) types. The size of CAFA 1
benchmarks are shown in gray.

Figure 2 summarizes the benchmarks we used in this study. The left panel shows
the benchmark sizes for each of the ontologies and compares these numbers to
CAFA1. All species that have at least 15 proteins in any of the benchmark categories
are listed in the right panel.

Baseline models
We built two baseline methods, Näıve and BLAST, and compared them with all
participating methods. The Näıve method simply predicts the frequency of a term
being annotated in a database [13]. BLAST was based on search results using the
Basic Local Alignment Search Tool (BLAST) software against the training database
[14]. A term will be predicted as the highest local alignment sequence identity among
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all BLAST hits annotated with the term. Both of these two methods were “trained”
on the experimentally annotated proteins available in Swiss-Prot at time t0, except
for HPO where the two baseline models were trained using the annotations from
the t0 release of the Human Phenotype Ontology.

Results
Overall performance
The performance accuracies of the top 10 methods are shown in Figures 3 and 4.
The 95% confidence intervals were estimated using bootstrapping on the benchmark
set with B = 10, 000 iterations [15]. The results provide a broad insight into the
state of the art.

Figure 3 Overall evaluation using the maximum F-measure, Fmax. Evaluation was carried out
on no-knowledge benchmark sequences in the full mode. The coverage of each method is shown
within its performance bar. A perfect predictor would be characterized with Fmax = 1. Confidence
intervals (95%) were determined using bootstrapping with 10,000 iterations on the set of
benchmark sequences. For cases in which a principal investigator participated in multiple teams,
only the results of the best-scoring method are presented. Details for all methods are provided in
Supplementary Materials.

Predictors performed very differently across the four ontologies. Various reasons
contribute to this effect including: (1) the topological properties of the ontology
such as the size, depth, and branching factor; (2) term predictability; for example,
the BPO terms are considered to be more abstract in nature than the MFO and
CCO terms; (3) the annotation status, such as the size of the training set at t0 as
well as various annotation biases [6].

In general, CAFA2 methods perform better in predicting MFO terms than any
other ontology. Top methods achieved the Fmax scores around 0.6 and considerably
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Figure 4 Overall evaluation using the minimum semantic distance, Smin. Evaluation was
carried out on no-knowledge benchmark sequences in the full mode. The coverage of each method
is shown within its performance bar. A perfect predictor would be characterized with Smin = 0.
Confidence intervals (95%) were determined using bootstrapping with 10,000 iterations on the set
of benchmark sequences. For cases in which a principal investigator participated in multiple teams,
only the results of the best-scoring method are presented. Details for all methods are provided in
Supplementary Materials.
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surpassed the two baseline models. Maintaining the pattern from CAFA1, the per-
formance accuracies in the BPO category were not as good as in the MFO category.
The best-performing method scored slightly below 0.4.

For the two newly-added ontologies in CAFA2, we observed that the top predic-
tors performed no better than the Näıve method under Fmax, whereas they slightly
outperformed the Näıve method under Smin in CCO. One possible reason for the
competitive performance of the Näıve method in the CCO category is the fact that
a small number of relatively general terms are frequently used, and those relative
frequencies do not diffuse quickly enough with the depth of the graph. For instance,
the annotation frequency of “organelle” (GO:0043226, level 2), “intracellular part”
(GO:0044424, level 3) and “cytoplasm” (GO:0005737, level 4) are all above the
best threshold for the Näıve method (τoptimal = 0.32). Correctly predicting these
terms increases the number of “true positives” and thus boosts the performance
of the Näıve method under the Fmax evaluation. However, once the less informa-
tive terms are down-weighted (using the Smin measure), the Näıve method becomes
significantly penalized and degraded. The weighted Fmax and normalized Smin eval-
uations can be found in Supplementary Materials.

However, high frequency of general terms does not seem to be the major reason for
the observed performance in the HPO category. One possible explanation for this
effect would be that the average number of HPO terms associated with a human
protein is much larger than in GO. The mean number of annotations per protein
in HPO is 84, while the MFO, BPO and CCO the mean number of annotations per
protein are 10, 39, and 14 respectively. The high number of annotations per protein
makes prediction using HPO terms significantly more difficult. In addition, unlike
for GO terms, the HPO annotations cannot be transferred from other species based
on homology and other available data. Successfully predicting the HPO terms in
the protein-centric mode is a difficult problem.

Term-centric evaluation
Protein-centric view, despite its power in showing the strengths of a predictor,
does not gauge a predictor’s performance for a specific function. We therefore also
assessed predictors in the term-centric manner by calculating AUCs for individual
terms. Averaging those AUCs over terms provides a metric for ranking predictors,
whereas averaging performances over terms provides insights into how well this term
can be predicted computationally by the community.

Figure 5 shows the performance evaluation where the AUCs for each method
were averaged over all terms for which at least ten positive sequences were avail-
able. Proteins without predictions were counted as predictions with a score of 0. As
shown in Figures 3-4, correctly predicting CCO and HPO terms for a protein might
not be an easy task according to the protein-centric results. However, the over-
all poor performances could also result from the dominance of poorly predictable
terms. Therefore, a term-centric view can help differentiate prediction quality across
terms. As shown in Figure 6, most of the terms in HPO obtain AUC greater than the
Näıve model, with some terms on average achieving reasonably well AUCs around
0.7. Depending on the training data available for participating methods, well pre-
dicted phenotype terms range from mildly specific such as “Lymphadenopathy” and
“Thrombophlebitis” to general ones such as “Abnormality of the Skin Physiology”.
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Figure 5 Overall evaluation using the averaged AUC over terms with no less than 10 positive
annotations. Evaluation was carried out on no-knowledge benchmark sequences in the full mode.
Error bars indicate the standard error in averaging AUC over terms for each method. For cases in
which a principal investigator participated in multiple teams, only the results of the best-scoring
method are presented. Details for all methods are provided in Supplementary Materials.

Figure 6 Averaged AUC per term for Human Phenotype ontology. Left panel: Terms are sorted
based on AUC, dashed red line indicates the performance of the Näıve method. Right panel: The
top 10 accurately predicted terms without overlapping ancestors (except for the root).

Performance on various categories of benchmarks
Easy vs. difficult benchmarks
As in CAFA1, the no-knowledge GO benchmarks were divided into “easy” versus
“difficult” categories based on their maximal global sequence identity with proteins
in the training set. Since the distribution of sequence identities roughly forms a
bimodal shape (Supplementary Materials), a cutoff of 60% was manually chosen
to define the two categories. The same cutoff was used in CAFA1. Unsurprisingly,
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across all three ontologies, the performance of the BLAST model was substantially
impacted for the difficult category because of the lack of high sequence identity ho-
mologs and as a result, transferring annotations was relatively unreliable. However,
we also observed that most top methods were insensitive to the types of bench-
marks, which provides us with encouraging evidence that state-of-the-art protein
function predictors can successfully combine multiple potentially unreliable hits, as
well as multiple types of data, into a reliable prediction.

Species-specific categories
The benchmark proteins were split into even smaller categories for each species as
long as the resulting category contained at least 15 sequences. However, because
of space limitations, we only show the breakdown results on eukarya and prokarya
benchmarks in Figure 7 (the species-specific results are provided in Supplemen-
tary Materials). It is worth noting that the performance accuracies on the entire
benchmark sets were dominated by the targets from eukarya due to their larger pro-
portion in the benchmark set and annotation preferences. The eukarya benchmark
rankings therefore coincide with the overall rankings, but the smaller categories
typically showed different rankings and may be informative to more specialized
research groups.

For all three GO ontologies, no-knowledge prokarya benchmark sequences col-
lected over the annotation growth phase mostly (over 80%) came from two species:
E. coli and P. aeruginosa (for CCO, 21 out of 22 proteins were from E. coli). Thus,
one should keep in mind that the prokarya benchmarks essentially reflect the perfor-
mance on proteins from these two species. Methods predicting the MFO terms for
prokaryotes are slightly worse than those for eukaryotes. In addition, direct function
transfer by homology for prokaryotes did not work well using this ontology. How-
ever, the performance was better using the other two ontologies, especially CCO.
It is not very surprising that top methods achieved good performance for E. coli as
it is a well-studied model organism.

Top methods have improved since CAFA1
The second CAFA experiment was conducted three years after the first one. As our
knowledge of protein function has increased since then, it was worthwhile to assess
whether computational methods have also been improved and if so, to what extent.
Therefore, to monitor the progress of the community over time, we revisit some of
the top methods in CAFA1 and compare them with their successors.

The comparison was done on an overlapping benchmark set created from CAFA1
targets and CAFA2 targets. More precisely, we used the stored predictions on the
target proteins from CAFA1 and compared them with the new predictions from
CAFA2 on the overlapping set of CAFA2 benchmarks and CAFA1 targets (a se-
quence had to be a no-knowledge target in both experiments to be eligible in this
evaluation). For this purpose, we used a hypothetical ontology by taking the in-
tersection of the two Gene Ontology snapshots (versions from January 2011 and
June 2013) so as to mitigate the influence of ontology changes. We thus collected
356 benchmark proteins for MFO comparisons and 698 for BPO comparisons. The
two baseline methods were trained on respective Swiss-Prot annotations for both
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Figure 7 Performance evaluation using the maximum F-measure, Fmax, on eukaryotic (left)
versus prokaryotic (right) benchmark sequences. Evaluation was carried out on no-knowledge
benchmark sequences in the full mode. The coverage of each method is shown within its
performance bar. Confidence intervals (95%) were determined using bootstrapping with 10,000
iterations on the set of benchmark sequences. For cases in which a principal investigator
participated in multiple teams, only the results of the best-scoring method are presented. Details
for all methods are provided in Supplementary Materials.

ontologies so that they serve as controls for database change. In particular, Swis-
sProt2011 (for CAFA1) contained 29,330 and 31,282 proteins for MFO and BPO,
while SwissProt2014 (for CAFA2) contained 26,907 and 41,959 proteins for the two
ontologies.

To conduct a “head-to-head” analysis between any two methods, we generated
B = 10, 000 bootstrap samples and let methods compete on each such benchmark
set. The average performance metric as well as the number of wins were recorded.
Figure 8 summarizes the results of this analysis. We use a color code from green to
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red to indicate the performance improvement δ from CAFA1 to CAFA2,

δ(m2,m1) = 1
n

n∑
i=1

F (i)
max(m2)− 1

n

n∑
i=1

F (i)
max(m1)

where m1 and m2 stand for methods from CAFA1 and CAFA2, respectively, and
F

(i)
max(·) represents the Fmax of a method evaluated on the i-th bootstrapped bench-

mark set. The selection of top methods for this study was based on their perfor-
mance in each ontology on the entire benchmark sets. Panels B and C in Figure 8
show the comparison between baseline methods trained on different data sets. We
see no improvements of these baselines except for BLAST on BPO where it is
slightly better to use the newer version of Swiss-Prot as the reference database
for the search. On the other hand, all top methods in CAFA2 outperformed their
counterparts in CAFA1. For predicting molecular functions, even though transfer-
ring functions from BLAST hits does not give better results, the top models still
managed to perform better. It is possible that the newly acquired annotations since
CAFA1 enhanced BLAST, which involves direct function transfer, and perhaps lead
to better performances of those “downstream” methods that rely on sequence align-
ments. However, this effect does not completely explain the extent of performance
improvement achieved by those methods. This is promising evidence that top meth-
ods from the community have improved since CAFA1 and that the improvement
was not simply due to updates of curated databases.

Diversity of methodology
We analyzed the extent to which methods generated similar predictions within each
ontology. We calculated the pairwise Pearson correlation between methods on a
common set of gene-concept pairs and then visualized these similarities as networks
(Supplementary Materials).

In the molecular function ontology, where we observed the highest overall perfor-
mance of prediction methods, eight of ten top methods were in the largest connected
component. In addition, we observed a high connectivity between methods, suggest-
ing that the participating methods are leveraging similar sources of data in similar
ways. Predictions for the biological process ontology showed a contrasting pattern.
In this ontology, the largest connected component contained only two of the top
ten methods. The other top methods were contained in components made up of
other methods produced by the same lab. This suggests that the approaches that
participating groups have taken generate more diverse predictions for this ontol-
ogy and that there are many different paths to a top performing biological process
prediction method. Results for the human phenotype ontology were more similar
to the biological process ontology, while results for cellular component were more
similar in structure to molecular function.

Taken together, these results suggest that ensemble approaches that aim to include
independent sources of high quality predictions may benefit from leveraging the data
and techniques used by different research groups and that such approaches that ef-
fectively weigh and integrate disparate methods may demonstrate more substantial
improvements over existing methods in the process and phenotype ontologies where
current prediction approaches share less similarity.
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Molecular Function

Biological Process

Figure 8 CAFA1 versus CAFA2 (top methods) A comparison in Fmax between top 5 CAFA1
models against top 5 CAFA2 models. Colored boxes encode the results such that (1) colors
indicate margins of a CAFA2 method over a CAFA1 method in Fmax and (2) numbers in the box
indicate the percentage of wins. For both MFO and BPO results, A. CAFA1 top 5 models (rows,
from top to bottom) against CAFA2 top 5 models (columns, from left to right) B. Comparison of
Näıve baselines trained respectively on SwissProt2011 and SwissProt2014. C. Comparison of
BLAST baselines trained on SwissProt2011 and SwissProt2014.

Conclusions
Accurately annotating the function of biological macromolecules is difficult, and
requires the concerted effort of experimental scientists, biocurators, and computa-
tional biologists. We conducted the second CAFA challenge to assess the status of
computational function prediction of proteins and to quantify the progress in the
field. Following the success of CAFA1 three years ago, we decided to significantly
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expand the number of protein targets, the number of biomedical ontologies used for
annotation, the number of analysis scenarios, as well as the metrics used for evalua-
tion. We believe the results of the CAFA2 experiment provide useful information on
the status of the state-of-the-art in protein function prediction, can guide the devel-
opment of new concept annotation methods, and help experimental studies through
prioritization. Understanding the function of biological macromolecules brings us
closer to understanding life at the molecular level and improving human health.

The field has moved forward
Three years ago, in CAFA1, we concluded that the top methods for function pre-
diction outperform straightforward function transfer by homology. In CAFA2, we
observe that the methods for function prediction have improved compared to those
from CAFA1. As part of the CAFA1 experiment, we stored all predictions from all
methods on 48,298 target proteins from 18 species. We used those stored predic-
tions and compared them to the newly deposited predictions from CAFA2 on the
overlapping set of benchmark proteins and CAFA1 targets. The head-to-head com-
parisons among top five CAFA1 methods against top five CAFA2 methods reveal
that the top CAFA2 methods outperformed all top CAFA1 methods.

Although it is difficult to disentangle the contributions of larger training sets from
those of methodological novelties, the fact that the BLAST algorithm using the data
from 2011 and data from 2014 showed little difference, led us to conclude that a
larger share of the contribution likely belongs to the new methods. The experiences
from CAFA1 and continuous AFP-SIG meetings every year during the ISMB con-
ference where many new developments are readily shared may have contributed to
this outcome [16].

Evaluation metrics
A fair performance assessment in protein function prediction is far from straightfor-
ward. Although various evaluation metrics have been proposed under the framework
of multi-label and structured-output learning, the evaluation in this subfield also
needs to be interpretable to a broad community of researchers as well as the pub-
lic. To address this, we used several metrics in this study as each provides useful
insights and complements the others. Understanding the strengths and weaknesses
of current metrics and developing better metrics remains important.

One important observation with respect to metrics is that the protein-centric
and term-centric views may give different perspectives to the same problem. For
example, while in the MFO and BPO we generally observe positive correlation
between the two, in CCO and HPO these different metrics might lead to entirely
different interpretations of the experiment. Regardless of the underlying cause, as
discussed in Results, it is clear that some ontological terms are predictable with
high accuracy and can be reliably used in practice even in these ontologies. In the
meantime, more effort will be needed to understand the problems associated with
statistical and computational aspects of method development.

In CAFA2 we introduced minimum semantic distance as another protein-centric
metric [10]. The investigation of the BLAST baseline reveals that the best local se-
quence identity cutoff for transferring experimental annotations from sequence hits
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occurs around 0.5 for all three GO ontologies and just under (0.35) for HPO, if Fmax

is used as the evaluation metric. However, for Smin, these cutoffs are substantially
higher to over 0.6 for MFO, 0.7 for HPO and surprisingly over 0.9 for both BPO
and CCO. We believe these higher thresholds provide biologically interesting results
and have thus decided to use both pr-rc curves and ru-mi curves in protein-centric
performance assessments.

Well-performing methods
We observe that participating methods usually specialize in one or a few categories
of protein function prediction and have been developed with their own application
objectives in mind. Therefore, performance rankings of methods often change from
one benchmark set to another. There are complex factors that influence the final
ranking including the selection of the ontology, types of benchmark sets and eval-
uation, as well as evaluation metrics, as discussed earlier. Most of our assessment
results show that the performances of top-performing methods are generally com-
parable to each other. Thus, although a small group of methods could be considered
as generally good, there is no single method that dominates over all benchmarks.

We also observed that when provided a chance to select a reliable set of predic-
tions, the methods generally perform better (partial evaluation mode vs. full evalu-
ation mode). Although most methods seem not to have been actively developed for
the partial evaluation mode, this outcome is very encouraging. On the other hand,
the limited-knowledge category of assessment seems to have not provided any boost
in terms of performance accuracy. However, this was a new prediction category in
CAFA and so few methods may have been optimized for prediction in the limited-
knowledge scenario. Many important comparisons can be found in Supplementary
Materials.

Final notes
The automated functional annotation remains an exciting yet challenging task
with implications relevant to the entirety of biomedical sciences. Three years after
CAFA1, the top methods from the community have shown encouraging progress in
both MFO and BPO categories. However, in terms of raw scores, there is still sig-
nificant room for improvement in all ontologies, and particularly in BPO, CCO and
HPO. There is also a need to develop an experiment-driven, as opposed to curation
driven, component of the evaluation to address limitations for term-centric evalua-
tion. In the future CAFA experiments, we will continue to monitor the performance
over time and invite a broad range of computational biologists, computer scientists,
statisticians and others to address these engaging problems of concept annotation
for biological macromolecules through CAFA.
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