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ABSTRACT

Motivation: High-throughput methods for detecting molecular
interactions have produced large sets of biological network data
with much more yet to come. Analogous to sequence alignment,
efficient and reliable network alignment methods are expected to
improve our understanding of biological systems. Unlike sequence
alignment, network alignment is computationally intractable. Hence,
devising efficient network alignment heuristics is currently a foremost
challenge in computational biology.
Results: We introduce a novel network alignment algorithm,
called Matching-based Integrative GRAph ALigner (MI-GRAAL),
which can integrate any number and type of similarity measures
between network nodes (e.g. proteins), including, but not limited
to, any topological network similarity measure, sequence similarity,
functional similarity and structural similarity. Hence, we resolve the
ties in similarity measures and find a combination of similarity
measures yielding the largest contiguous (i.e. connected) and
biologically sound alignments. MI-GRAAL exposes the largest
functional, connected regions of protein–protein interaction (PPI)
network similarity to date: surprisingly, it reveals that 77.7% of
proteins in the baker’s yeast high-confidence PPI network participate
in such a subnetwork that is fully contained in the human high-
confidence PPI network. This is the first demonstration that species
as diverse as yeast and human contain so large, continuous regions
of global network similarity. We apply MI-GRAAL’s alignments to
predict functions of un-annotated proteins in yeast, human and
bacteria validating our predictions in the literature. Furthermore,
using network alignment scores for PPI networks of different herpes
viruses, we reconstruct their phylogenetic relationship. This is the first
time that phylogeny is exactly reconstructed from purely topological
alignments of PPI networks.
Availability: Supplementary files and MI-GRAAL executables:
http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.
Contact: natasha@imperial.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

1.1 Background
Large amounts of biological network data of different types are
increasingly becoming available, e.g. protein–protein interaction
(PPI) networks, transcriptional regulation networks, signal
transduction networks and metabolic networks. PPI networks are
of particular importance because proteins are crucial for almost all
functions in the cell. Proteins almost never perform their functions
alone, but they cooperate with other proteins by forming physical
bonds, hence creating large, complex networks. Understanding these
networks is a foremost challenge of the post-genomic era.

A PPI network is conveniently modeled as an undirected
unweighted graph, denoted by G(V ,E), where V is the set of
proteins, or nodes, and E is the set of PPIs, or edges. The
interactions are usually obtained by high-throughput experimental
biotechniques, such as yeast two-hybrid assays (e.g. Fossum et al.,
2009; Parrish et al., 2007; Simonis et al., 2009; Stelzl et al., 2005)
and affinity purification coupled to mass spectrometry (Ho et al.,
2002; Krogan et al., 2006). It has been shown that the topology
of biological networks is not random (in the Erdös-Rényi random
graph sense) and that it is linked to biological function (Milenkovic
and Pržulj, 2008; Milo et al., 2004; Sharan et al., 2005).

Analogous to sequence alignment, network alignment can be vital
for understanding how cells work. It tries to find the best way to
fit one network into another (see Section 2.1). As for sequence
alignment, there exist local and global network alignments.
Local alignments aim to find small subnetworks corresponding
to pathways or protein complexes conserved in PPI networks of
different species. Such alignments can be ambiguous, since a node
from one network can be mapped to many nodes in another network.
In contrast, a global network alignment provides a unique alignment
from every node in the smaller network to exactly one node in the
larger network, even though this may lead to inoptimal matchings
in some local regions.

The earliest local network alignment algorithm is PathBLAST
(Kelley et al., 2004). It searches for high-scoring alignments of
pathways from two networks by taking into account both the
probabilities that PPIs in a pathway are true PPIs rather than
false positives and the homology between the aligned proteins.
A modification of PathBLAST, called NetworkBLAST-M (Sharan
et al., 2005), was developed to identify conserved protein complexes
in multiple species. MaWISh local alignment algorithm is based on
the duplication/divergence models that focus on understanding the
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evolution of protein interactions; it constructs a weighted global
alignment graph and tries to find a maximum induced subgraph in
it (Koyuturk et al., 2006). Graemlin algorithm scores a possibly
conserved module between different networks by computing the
log-ratio of the probability that the module is subject to evolutionary
constraints and the probability that it is under no constraints, taking
into account the phylogenetic relationships between species whose
networks are being aligned (Flannick et al., 2006).

The first global network alignment algorithm, IsoRank, is guided
by the intuition that two nodes should be matched only if their
neighbors can also be matched, formulated as an eigenvector
problem and using a greedy strategy (Singh et al., 2007). It uses
BLAST scores (Altschul et al., 1990) for sequence similarity
between nodes (proteins) into the node alignment cost function
by having a user-defined weight λ that controls for the relative
contribution of topological similarity. IsoRank has been extended
to perform local and global alignments between multiple networks
(Liao et al., 2009; Singh et al., 2008). Also, Graemlin has been
extended to construct global networks alignments between multiple
networks given their phylogenetic relationships (Flannick et al.,
2008). PISwap algorithm begins with a sequence-based network
alignment and then iteratively adjusts the alignment by incorporating
topological information (Chindelevitch et al., 2010). PATH and
GA algorithms use the same objective function which balances
(using parameter λ) between matching similar pairs and increasing
the number of aligned interactions (Zaslavskiy et al., 2009). They
are based on relaxations of the cost function over the set of
doubly stochastic matrices. Natalie and HopeMap algorithms require
homology information between proteins in the networks to create
alignments (Klau, 2009; Tian and Samatova, 2009). Given such
information, Natalie uses a Lagrangian relaxation approach, while
HopeMap uses an iterative connected components-based algorithm.
Global network alignment algorithms based purely on network
topology, called GRAAL (Kuchaiev et al., 2010) and H-GRAAL
(Milenkovic et al., 2010), have also been designed. They can align
networks of any type, not only biological ones, since they do not rely
on sequence similarity between nodes. Instead, both algorithms use
graphlet degrees, which give a highly constraining quantification
of topological similarity between nodes (described below). GRAAL
is a seed-and-extend approach, while H-GRAAL is based on the
Hungarian algorithm for solving the assignment problem.

1.2 Our contribution
It could be argued that local network alignments are of more value,
since distant species should not have large regions of global network
similarity. Surprisingly, we demonstrate that even species as distant
as yeast and human have large and contiguous (i.e. connected)
regions of PPI network similarity. In particular, we show that 77.7%
of the proteins in the baker’s yeast high-confidence PPI network
participate in the contiguous subnetwork that simultaneously exists
both in the yeast and in the human high-confidence PPI networks.

We demonstrate this by presenting a novel algorithm for global
network alignment, called Matching-based Integrative GRAph
ALigner (MI-GRAAL), that outperforms all previous approaches. Its
unique feature is the ability to integrate and automatically, without
any user-specified parameters, use several different sources of node
similarity information to construct the alignment (see Section 2.2).
Hence, it resolves ties in different node similarity measures and

produces more stable alignments (see Supplementary Material),
i.e. alignments that are almost the same for all runs of the algorithm
(note that if ties are broken randomly, as is the case in other network
aligners, different runs of the algorithm can produce quite different
alignments). Also, it allows for exploration of the effects of many
different node similarity measures on the quality of the alignments.
We show that MI-GRAAL’s alignments have better topological and
biological quality over other approaches.

Furthermore, we perform an all-to-all solely topological
alignment of five different herpesviral PPI networks and use the
network alignment similarity scores to exactly reconstruct the
phylogenetic relationship between these species. To our knowledge,
this is the first time that phylogeny is exactly reconstructed from
purely topological alignments of PPI networks.

2 ALGORITHM

2.1 Global network alignment
Several different formulations of the global network alignment problem have
been proposed (Flannick et al., 2008; Liao et al., 2009; Zaslavskiy et al.,
2009). Unfortunately, unlike with the sequence alignment, any reasonable
formulation of this problem makes it computationally hard. The reason for
this is the underlying subgraph isomorphism problem: given two graphs,
subgraph isomorphism asks if one graph exists as an exact subgraph of the
other. This problem is NP-complete, meaning that no efficient algorithm for
it is likely to be found (Cook, 1971).

We use the standard definition of the global alignment between two
networks G1(V1,E1) and G2(V2,E2), where |V1|≤|V2|, as a total injective
function f :V1 →V2 (Kuchaiev et al., 2010; Milenkovic et al., 2010; Singh
et al., 2007; Zaslavskiy et al., 2009). Function f is total if it maps all elements
of V1 to some elements of V2 and it is injective if it never maps different
elements from V1 to the same element of V2. Hence, the alignment is global
in the sense that each node in the smaller network is aligned to some node
in the larger network. Also, no two nodes from the smaller network can be
aligned to the same node in the larger network. To measure the topological
quality of the alignment f , we use the edge correctness (EC) measure, which
is defined as the percentage of correctly aligned edges (Kuchaiev et al., 2010;
Milenkovic et al., 2010; Singh et al., 2007; Zaslavskiy et al., 2009):

EC= |{(u,v)∈E1 ∧(f (u),f (v))∈E2}|
|E1| ×100% (1)

Hence, EC quantifies how topologically similar two networks are. Naturally,
when aligning two networks, we want to achieve as high EC as possible,
hence maximizing the number of aligned edges between two networks. Note
that EC is equal to 100% if and only if G2 contains an isomorphic copy of
G1, which implies the solution to the corresponding subgraph isomorphism
problem. Therefore, maximizing edge correctness is an NP-hard problem
and heuristic approaches must be devised. We introduce MI-GRAAL as one
such heuristic. To our knowledge, along with EC, the size of the largest
common connected subgraph (LCCS) (defined in Section 3.1) is the only
other measure of topological quality of an alignment that has been used. To
measure the biological quality of an alignment, other methods are used in
conjunction with EC and LCCS (see Section 3 for details).

2.2 MI-GRAAL algorithm
MI-GRAAL is substantially different from GRAAL (Kuchaiev et al., 2010)
and H-GRAAL (Milenkovic et al., 2010) algorithms (see below). The only
conceptual similarity between GRAAL and MI-GRAAL is that both of
them are, analogous to BLAST, seed-and-extend approaches. H-GRAAL
is not a seed-and-extend approach. MI-GRAAL works as follows. During
its first step, MI-GRAAL builds the matrix of confidence scores, C, of size
|V1|×|V2|. Entry C(i,j) in this matrix reflects the confidence with which the
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algorithm can align node i from G1 to node j from G2. Matrix C can be
built based on any number and type of similarity measures between nodes,
including, but not limited to, any topological network similarity measure,
sequence similarity, functional similarity and structural similarity. Since the
number of similarity measures can be very large, as a proof of concept, we
implement MI-GRAAL to use the following four topological similarities
between nodes in two networks, along with the fifth measure being the
sequence similarity given by the BLAST (Altschul et al., 1990) E-value
score between protein sequences:

(1) Graphlet degree signature distance (SD) (Milenkovic and Pržulj,
2008)

(2) Relative degree difference (DD)

(3) Relative clustering coefficient difference (CD)

(4) Relative eccentricity difference (ED)

(5) BLAST E-value for protein sequence similarity (SeqD)

For definitions on these measures, see Supplementary Material. We choose
these particular measures for the following reasons. The graphlet degree
signature distance has already been shown to work very well for aligning
biological networks (Kuchaiev et al., 2010; Milenkovic et al., 2010).
Degrees, clustering coefficients and eccentricities are the most common
simpler node measures. BLAST E-values are a standard measure for deciding
whether two proteins are homologous. We emphasize again that MI-GRAAL
can easily be extended to use any other topological distance measure between
nodes (e.g. proteins) in a network and any number of topological distances,
not only the five chosen in the current implementation described above. Also,
it can use any protein distance information, such as sequence, structural and
ontology information, and any number of such distance measures as well,
not just BLAST E-values chosen in the current implementation described
above. Its flexibility is further enhanced by allowing the user to give different
weights to different measures (see Supplementary Material).

We compute the four topological distance measures between all pairs
of nodes from networks G1 and G2, as well as the sequence alignment
cost matrix, SeqD (and others in other possible implementations of MI-
GRAAL), to obtain five V1 ×V2-sized matrices, SD, DD, CD, ED and SeqD.
To compute confidence scores of aligning nodes from G1 to nodes from G2,
MI-GRAAL treats each of these five cost matrices as independent agents that
tell how confident they are about aligning node i∈V1 with node j∈V2. Note
that the perfect alignment should minimize signature, degree, clustering,
eccentricity and sequence differences between nodes. Hence, the confidence
score between nodes i and j, C(i,j), is computed as C(i,j)=∑

X confX (i,j),
where confX (i,j) is a fraction of elements in the i-th row of matrix X
that are strictly greater than X(i,j); here, X stands for SD, DD, CC, ED
or SeqD matrix. Hence, if for some pair of nodes i and j, X(i,j) is the
smallest element in row i of matrix X, this means that matrix X is 100%
confident that node i should be aligned with node j. This definition of the
matrix of confidence scores, C, allows us to handle ties in the scores of
any individual agent, as well as contradictions between different agents
(e.g. i,j may be the best pair to align according to degrees, but not according
to sequences), without any a priori, user input parameter adjustments, simply
by taking the majority vote (see Supplementary Materaial). Note also that
such approach makes our algorithm more robust to minor error in individual
cost matrices. While building the matrix of confidence scores, MI-GRAAL
simultaneously constructs a priority queue of node pairs in decreasing order
of their confidence scores. The priority queue is used to quickly identify seed
node pairs when necessary (the details are below). It is possible that several
seed node pairs can have the same confidence scores, in which case the ties
are broken randomly.

Algorithms 1 and 2 present the pseudocode for MI-GRAAL algorithm
and its subroutine align_neighborhoods, respectively. Below, we define the
specific concepts used in them.

Graph G raised to power p is defined as Gp = (V (G),Ep), where Ep =
{(u1,u2) :distG(u1,u2)≤p} and the distance between u1 and u2, distG(u1,u2),

Algorithm 1 MI-GRAAL(G1,G2)

Construct, or read in the cost matrices and build the matrix of
confidence scores, C, as well as the priority queue of node pairs
ordered by their confidence scores.
Initialize alignment A to an empty set.
while there are unaligned nodes in G1 do

Use the priority queue to find a seed pair of nodes, (u,v), u∈
G1,v∈G2, i.e., the pair of nodes that can be aligned with the
highest confidence, C(u,v). Brake ties randomly.
Add (u,v) to alignment A.
for all k ∈{1,...,min{eccen(u),eccen(v)}} do

Construct the k-th neighborhood of u in G1, Nk
G1

(u), and the

k-th neighborhood of v in G2, Nk
G2

(v).

align_neighborhoods(Nk
G1

(u),Nk
G2

(v),C,A)
end for
If there are still unaligned nodes in G1, raise both graphs to the
next power (up to the 3rd power).

end while
return alignment A.

is the length of the shortest path between u1 and u2 in G. This allows us to
model insertions and deletions of nodes in the paths conserved between two
networks. We use up to the third power because PPI networks have a small-
world nature, i.e. they have small diameters. The k-th neighborhood of node
u in network G1, Nk

G1
(u), is defined to be the set of nodes of G1 that are

at distance ≤k from u. Hence, Nk
G1

(u) can be thought of as the ‘ball’ of
nodes around u up to and including nodes at distance k. A bipartite graph,

Algorithm 2 align_neighborhoods(Nk
G1

(u),Nk
G2

(v),C,A)

1. Construct a bipartite graph BP(Nk
G1

(u),Nk
G2

(v),E) with

node partitions being Nk
G1

(u) and Nk
G2

(v) as follows:

• Check the current alignment A and add an edge
(u′,v′) to E, u′ ∈Nk

G1
(u),v′ ∈Nk

G2
(v), if and only if

nodes u′ and v′ have at least one pair of aligned
neighbors. Hence, aligning them will increase the
numerator of EC by at least 1.

• To each edge (n,m) in E, assign the weight C(n,m),
the confidence with which we can align n and m.

2. Solve the maximum weight bipartite matching problem for
bipartite graph BP constructed above.

3. Add the optimal matching found in Step 2 above to the
current alignment A.

BP(V1,V2,E), is a graph with a node set V consisting of two partitions,
V =V1 ∪V2, so that every edge e∈E connects a node from V1 with a node
from V2; that is, there are no edges between nodes of V1 and there are no
edges between nodes of V2—all the edges go across the node partition. A
matching in a graph G is a set of edges such that no two edges from this
set share a common endpoint. In a weighted bipartite graph, the maximum
weight bipartite matching problem is a problem of finding a matching of
maximum weight. It can be solved in O(|V |2 log(|V |)+|V ||E|) time using
a modified shortest path search in the augmenting path algorithm (West,
2001). The total time complexity of MI-GRAAL algorithm for aligning
networks G1(V1,E1) and G2(V2,E2) is O(|V1|×(E1 +|V1|×log(|V1|)) (see
Supplementary Material).
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3 RESULTS AND DISCUSSION
In this section, we use MI-GRAAL to do comparative analyses of
biological networks and demonstrate the potential for its biological
application. In Section 3.1, we align PPI networks of eukaryotes
baker’s yeast and human, while in Sections 3.2 and 3.3 we align PPI
networks of bacteria and viruses, respectively. We demonstrate that
MI-GRAAL exposes the largest PPI subnetworks common across
species to date. It uncovers a surprising amount of common PPI
network topology between yeast and human: 77.7% of the proteins
in the yeast high-confidence PPI network comprise a connected
subnetwork that is fully contained within the human high-confidence
PPI network. While previously local network alignments across
species may have been considered to be of more value than global
alignments due to believed conservation of smaller subnetworks
only, that correspond to small functional subunits, this is the
first demonstration of topological conservation of huge network
regions. Biological implications of topological conservation of such
large network regions are subject of future research. For now, we
verify that MI-GRAAL aligns proteins of the same function, hence
enabling function prediction of unannotated proteins. Furthermore,
its edge correctness scores (defined in Section 2.1) can be used
for successful reconstruction of phylogenetic relationships between
species based purely on their PPI network topology, validating the
quality of our alignments. Hence, global network alignment could
be used as an alternative method for reconstructing phylogeny from
a new source of biological information, PPI network topology.

3.1 Yeast–human PPI network alignment
We align with MI-GRAAL the high-confidence yeast
Saccharomyces cerevisiae PPI network (Collins et al., 2007)
with the high-confidence human PPI network (Radivojac et al.,
2008), henceforth denoted as ‘yeast’ and ‘human’, respectively.
The former has 16 127 interactions among 2390 proteins and the
latter has 41 456 interactions among 9141 proteins. To construct
alignments, we explore all possible 25 −1=32−1 combinations
of the four topological and sequence measures discussed in
Section 2.2. To account for a possible randomness in the algorithm
caused by randomly breaking ties, we run each of the 31 tests 30
times and compute the statistics (see below).

The highest edge correctness of 23.26%, comprised of 3751
aligned interactions among 2255 proteins, is obtained by an
alignment that uses only signatures to score node pairs. We call this
particular alignment Alignment 1. However, using only signatures
does not resolve all possible ties and leads to different alignments
for different runs with the average EC of 19.73% and the SD of
1.39% over the 30 runs. That is, such an alignment is not stable
(as defined in Section 1.2). Using only BLAST E-values does not
resolve all possible ties either and also leads to different alignments
for different runs with the average edge correctness of 13.30% and
the SD of 0.23% over the 30 runs. The best alignment obtained using
only BLAST E-values has the EC of 13.73% and it consists of 2215
aligned interactions among 2208 proteins. We call this particular
alignment Alignment 2. Note that Alignment 2 does use topology
because of the topological nature of MI-GRAAL. When we use
signatures, degrees, clustering coefficients and BLAST scores, we
obtain alignments that are 99.95% identical over the 30 runs and that
always have the edge correctness of 18.68%, consisting of 3012
aligned interactions among 2280 proteins. Therefore, using these

Table 1. Fraction of protein pairs in the yeast–human alignment that share
GO terms

#terms Alignment 1 Alignment 2 Alignment 3

≥1 46.67% (10−9) 50.58% (3.6×10−8) 47.84% (10−9)
≥2 14% (3.5×10−4) 20.52% (4×10−8) 16.67% (10−9)
≥3 3.58% (8.4×10−2) 8.19% (10−9) 6.08% (10−9)
≥4 1.01% (0.36) 4.10% (5×10−8) 2.81% (10−9)
≥5 0.32% (0.49) 1.89% (1.8×10−8) 1.61% (10−9)
≥6 0.05% (0.36) 0.97% (1.4×10−8) 0.97% (10−9)

Numbers in brackets are P-values.

four cost functions resolves almost all ties and leads to almost stable
alignments differing only in one or two aligned pairs. We pick one of
them at random and call it Alignment 3. Experiments with all other
possible combinations of node distance measures either result in
smaller edge correctness scores or lead to very different alignments
across different runs.

Topological quality: we further analyze the topological quality of
Alignments 1, 2 and 3 by examining the size of their LCCSs. The
LCCS is the largest connected subgraph that each of the aligned
networks have as an exact copy. We examine this, since we prefer
to align large and contiguous subgraphs rather than a number of
small disconnected network regions (e.g. aligning only isolated
edges would not give much insight into common topology of two
networks). The size of the LCCS in Alignment 1 is 1858 nodes and
3467 edges, which is about 77.7 and 21.5% of the yeast’s nodes
and edges, respectively. The LCCS uncovered by Alignment 2 has
1659 nodes and 1837 edges. Alignment 3, that uses both sequence
and topology, has the LCCS with 1853 nodes and 2490 edges (see
Supplementary Figure S1). Thus, all of these alignments expose
large contiguous common network regions (for comparison with
other methods, see Section 3.4). None of these edge correctness
scores are likely to be obtained at random (P≤10−9).

Biological quality: to measure the biological quality of the
Alignments 1, 2 and 3, we count the fraction of aligned protein
pairs that have at least 1, 2, 3 or more Gene Ontology (GO) terms
(The Gene Ontology Consortium, 2000) in common (we exclude
root GO terms from the analysis). The statistics and P-values are
presented in Table 1. The fractions are with respect to the size
of the yeast PPI network, since all yeast proteins are aligned to
human proteins, but not vice versa, as the yeast PPI network is
smaller than the human (see Section 2.1). Alignment 1 has the highest
EC and consists of aligned pairs statistically significant fraction of
which share at least 1, 2, or 3, but no more common GO terms. As
expected, using BLAST E-value information (Alignments 2 and 3)
improves GO term enrichment, since much of GO annotation is
derived from sequence alignments. For this reason, Alignment 2,
that uses only sequence information to score node similarities,
has the highest enrichment in GO terms. To account for this, we
repeat the same experiments using only experimental GO terms
annotations (i.e. GO term evidence codes: IPI, IGI, IMP, IDA, IEP,
TAS and IC). In this case, Alignments 1, 2 and 3 have 12.4% (P≤
1.2×10−2), 14.43% (P≤1.3×10−6) and 13.37% (P≤3.4×10−4)
of protein pars with at least one common GO term, respectively.
Alignments 2 and 3 also contain a significant fractions of pairs
with more than 2 common GO terms: 1.95% (P≤4×10−2) and
2.19% (P≤5×10−3), respectively. Hence, Alignment 3, that uses

1393

 at N
ew

 Y
ork U

niversity on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[17:38 18/4/2011 Bioinformatics-btr127.tex] Page: 1394 1390–1396

O.Kuchaiev and N.Pržulj

both topology and sequence to score node similarities, is not much
behind Alignment 2. Also, Alignment 3 has a much higher EC of
18.68% than Alignment 2, which has the average EC of 13.30%
and is not stable. Since Alignment 3 is the most stable alignment,
being 99.95% identical across different runs of the algorithm, and
since it has high GO term enrichment, we choose this alignment to
make protein function predictions for unannotated yeast and human
proteins.

Protein function prediction: we make predictions for all three GO
ontology types, biological process (BP), molecular function (MF)
and cellular component (CC). To make predictions, for each of the
three ontology types we simply scan our yeast–human alignment
for protein pairs in which one protein is annotated and the other one
is not and transfer the annotations to the unannotated protein. For
human proteins, we make 45 BP predictions, 32 MF predictions and
64 CC predictions. For yeast proteins, we make 169 BP predictions,
446 MF predictions and 54 CC predictions. Alignment 3 and these
predictions are presented in Supplementary File 1. For validating
our predictions, we use the literature search and text mining web
service CiteXplorer (Labarga et al., 2007) to perform automatic
search of all published articles indexed in MEDLINE. For human
proteins, this tool finds at least one article mentioning the protein
of interest in the context of our predicted BP for 42.22% of our
predictions. Similarly, we validate 50 and 53.13% of our MF and
CC human predictions, respectively. For yeast, we validate 10.06%
of our BP predictions, as well as 45.41 and 11.11% of our MF and
CC predictions, respectively.

3.2 Aligning bacterial PPI networks
3.2.1 Campylobacter jejuni versus Escherichia coli We choose
to align PPI networks of these two species since they are currently
the most complete and well-studied bacterial PPI networks. The
high-confidence functional interaction network of E.coli integrates
high-quality experimental PPI and computational data (Peregrin-
Alvarez et al., 2009). It consists of 3989 interactions among 1941
proteins. The high confidence C.jejuni PPI network consists of 2988
interactions among 1111 proteins; it is produced by yeast-two-hybrid
experiments (Parrish et al., 2007). Similar to our yeast–human
alignments, we use MI-GRAAL to perform alignments using all
possible combinations of costs functions (see Section 2.2 for details).
We obtained protein sequences and GO annotation data for these
bacteria from the European Bioinformatics Institute (EMBL-EBI)
web site in March 2010.

The best edge correctness of 26.14% (or 781 aligned interactions)
is achieved when we use only topological parameters, signatures and
degrees, to score node pairs. The LCCS for this alignment has 629
nodes and 693 edges. However, this alignment does not contain
statistically significant fraction of protein pairs sharing GO terms.
Moreover, using only signatures and degrees does not resolve all
possible ties and thus leads to different alignments for different MI-
GRAAL runs, with the average EC of 24.44% and the SD of 0.61%.
Hence, using only these two topological scores is not enough to
construct unambiguous high-quality alignments.

The alignment constructed using signatures, clustering
coefficients and BLAST E-values is the most stable, more
than 99% identical across different runs, and it has a high edge
correctness of 24.16% with the LCCS consisting of 630 interactions
among 579 proteins. Interestingly, this combination of cost

functions is very similar to the one found to be the best for the
yeast–human alignment (see Section 3.1). Also, this alignment is of
high biological quality: out of the aligned pairs with both proteins
being annotated with GO terms, 43.01, 21.24, 11.40 and 6.22%
share at least 1, 2, 3 or 4 term, respectively, with the P-values
for these GO terms enrichments of 4.45×10−6, 4.86×10−9,
6.9×10−9 and 1.49×10−8, respectively. Since this alignment has
statistically significant fraction of aligned protein pairs with four
or more GO terms in common, we use it to predict function of
unannotated proteins. As before, by using CiteXplorer (Labarga
et al., 2007), we perform automatic search of articles indexed in
MEDLINE to validate our predictions. For C.jejuni, we predict BP
for 219 proteins, 3.65% of which we validate. Also, we validate
20% of 30 and 10.88% of 377 of our predictions of MF and CC,
respectively. For E.coli, we predict BP for 26 proteins, 38.46%
of which we validate. Also, we validate 50 and 43.69% of our 48
MF and 103 CC predictions, respectively. Clearly, the validation
rates for E.coli are much higher. This is due to the fact that E.coli
is much more studied than C.jejuni and thus, there are more
articles discussing the function of its proteins. The alignment and
the predictions for these bacteria are presented in Supplementary
File 2.

3.2.2 Mesorhizobium versus Synechocystis The E.coli and
C.jejuni, as well as the yeast and human PPI networks analyzed in
the previous sections, are all produced by different research groups,
sometimes using different experimental techniques. This implies
different and hard to estimate levels of noise and incompleteness
of the data. To estimate the highest level of edge correctness that
can be achieved by MI-GRAAL for PPI networks, we align networks
produced by the same lab and by the same experimental technique:
PPI networks of Mesorhizobium loti and Synechocystis sp. PCC6803
(Sato et al., 2007; Shimoda et al., 2008). These networks contain
about 24 and 52% of the protein coding genes from these organisms,
respectively. The interactions were identified using a modified high-
throughput yeast two-hybrid system. The Mesorhisobium network
contains 3094 interactions among 1804 proteins and Synechocystis
network contains 3102 interactions amongst 1920 proteins.

Again, we use all possible combinations of cost functions
described above. The protein sequences and GO annotations were
downloaded from Kazusa DNA Research Institute1 in March 2010.
The largest EC of 41.79% was obtained when signatures, degrees,
clustering coefficients and eccentricities were used. This alignment
has a tree-like LCCS with 1142 nodes and 1148 (37.10%) edges.
Since interactions in these networks were detected by the same group
and the same experimental technology, we obtain a substantially
higher edge correctness than in our previous experiments in which
we align networks published by different research groups. As
before, to measure the biological quality of the alignments, we
count how many of the aligned protein pairs share GO terms.
The alignments based only on topological similarities between
nodes do not have statistically significant enrichment in pairs that
share GO terms. When we use all possible node scoring metrics
described in Section 2.2, we obtain alignments with small drops
in EC scores to the average of 39.75% that are almost stable,
being 89% identical across different runs. In these alignments, a
significant fraction of aligned pairs has at least 1, 2 or 3 GO terms in
common, with P-values less than 10−5. Hence, we use one of these
alignments to predict functions of unannotated proteins (presented in
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Fig. 1. Phylogeny of the five analyzed herpesviruses. (A) The gold standard
tree (McGeoch and Gatherer, 2005; McGeoch et al., 2006); (B) unrooted
phylogenetic tree reconstructed from edge correctness scores of topological
alignments produced by MI-GRAAL.

Supplementary File 3). However, possibly due to different protein or
gene naming schemes and also since these bacteria are not as well
studied as E.coli and C.jejuni, we were not able to validate these
predictions in the literature.

3.3 Aligning viral PPI networks
All PPI networks discussed above contain only a fraction of proteins
in each species and therefore, their alignment should not be used to
reconstruct their phylogenetic relationship. The story is different for
viral PPI networks described below.

We analyze PPI networks of five herpesviruses: varicella-zoster
virus (VZV), Kaposis sarcoma-associated herpes virus (KSHV),
herpes simplex virus 1 (HSV-1), murine cytomegalovirus (mCMV)
and Epstein–Barr virus (EBV) (Fossum et al., 2009). Although
these networks contain false positives and negatives due to noise in
experimental techniques, they contain genome-wide PPIs, meaning
that all possible protein pairs in each virus were tested for
interactions. It has been shown that meaningful inferences about
the evolution of protein interaction networks require comparative
analysis of reasonably closely related species (Agrafioti et al., 2005).
For these closely related herpesviruses, Fossum et al. (2009) have
reconstructed phylogenetic relationships by counting the number
of conserved interacting orthologous pairs in these species. Unlike
Fossum et al. (2009), we do not use orthology or any sequence-
based information. Instead, we use MI-GRAAL to perform all-to-all
solely topological global alignment of these PPI networks (based on
signatures, degrees and clustering coefficients) and use the edge
correctness scores as distances between species in the neighbor-
joining algorithm of the PHYLIP package (Felsenstein, 1989) to
exactly reconstruct the unrooted phylogenetic tree of these viruses
(Fig. 1). Also, we obtained the same results by using Fitch–
Margoliash algorithm under additive tree model (Felsenstein, 1989).
The phylogenetic tree does not change over different runs of MI-
GRAAL. Hence, this is an evidence in support of our previous
claim that purely topological network alignment may be used to
reconstruct unrooted phylogenetic trees between closely related
species (Kuchaiev et al., 2010; Milenkovic et al., 2010). Note that we
were unable to exactly reproduce a rooted phylogenetic tree (which
would assume evolutionary timescale) using either UPGMA or
Fitch-Margoliash under ultrametric model algorithms (Felsenstein,
1989). Hence, it remains an open question whether such information
can be extracted from PPI network topology in principle and whether
we were unable to do so because of the noise in the networks or
limitations of MI-GRAAL.

Table 2. Comparison of methods capable of solely topological network
alignment

Algorithm EC 1 (%) EC 2 (%) LCCS 1 LCCS 2 Other sources

IsoRank 3.89 5.33 261 28 Yes (one)
GRAAL 11.72 11.25 900 46 No
H-GRAAL 10.92 4.59 1290 22 No
MI-GRAAL 23.26 41.79 3467 1148 Yes (many)

Column ‘Algorithm’ presents the name of the algorithm, columns ‘EC 1’ and ‘EC
2’ present the largest edge correctnesses achieved by the algorithms when aligning
yeast and human (1), and Mesorhizobium loti and Synechocystis sp. PCC6803 (2),
respectively. Columns ‘LCCS 1’ and ‘LCCS 2’ present numbers of edges in the LCCS
achieved by the algorithms when aligning yeast and human (1), and Mesorhizobium
loti and Synechocystis sp. PCC6803 (2), respectively. Column ‘Other sources’ indicates
whether the algorithm can use any sources of information in addition to network
topology (e.g. sequence) and how many.

3.4 Comparison with other methods
The topological qualities of alignments produced by MI-GRAAL are
impressive in comparison with alignments of the same networks with
the three relevant global network alignment algorithms: IsoRank
(Singh et al., 2007), GRAAL (Kuchaiev et al., 2010) and H-
GRAAL (Milenkovic et al., 2010) (see below for the discussion
of other network alignment algorithms). We ran IsoRank, GRAAL
and H-GRAAL on the same human, yeast and bacterial PPI
(Mesorhizobium loti and Synechocystis sp. PCC6803) networks
that we aligned by MI-GRAAL (described above). Also, we ran
IsoRank for all λ from 0 to 1 in increments of 0.1 (described in
Section 1.1) using the same sequence similarity scores that we used
in MI-GRAAL. Table 2 summarizes the comparisons: MI-GRAAL’s
alignments have more than twice as large EC and LCCS than the
competing algorithms. Furthermore, unlike IsoRank, MI-GRAAL
does not require the sequence score contribution to be adjusted
manually by the user-specified parameter λ. Instead, this is done
automatically by using the confidence scores matrix (see Section 2.2
for details).

We do not compare MI-GRAAL to Graemlin 2 because it
requires a variety of other input information, including phylogenetic
relationships between the species being aligned (Flannick et al.,
2008). In contrast, we can use the output from MI-GRAAL to
reconstruct the phylogenetic relationship between species (see
Section 3.3). Later methods, such as HopeMap (Tian and Samatova,
2009) and Natalie (Klau, 2009), require homology information about
proteins from both networks and therefore are not comparable to MI-
GRAAL, since, in contract with them, by using MI-GRAAL, we can
predict functional similarity between proteins of different species.
Recently, a new algorithm IsoRankN was published (Liao et al.,
2009). However, its output is many-to-many mapping between nodes
in the networks, whereas we define the global network alignment as
a one-to-one node mapping (see Section 2.1). Therefore, strictly
speaking, IsoRankN does not solve the global network alignment
problem as we define it and its output cannot be quantified using edge
correctness scores. Hence, it is not comparable with MI-GRAAL.
Current implementations of PATH and GA algorithms (Zaslavskiy
et al., 2009) cannot process networks of the sizes of yeast and human
PPI networks that we aligned by MI-GRAAL.1 PISwap algorithm

1Personal communication with the authors of (Zaslavskiy et al., 2009).
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has been shown to have the performance similar to that of IsoRank,
GA and PATH algorithms (Chindelevitch et al., 2010) and therefore,
we perform extensive comparison only with IsoRank (described
above).

4 CONCLUDING REMARKS
We introduce a new global network alignment algorithm, MI-
GRAAL, that is capable of integrating any number and type of node
similarity measures, hence resolving ties in similarity measures and
producing more stable alignments that almost do not change over
different runs of the algorithm. We demonstrate that MI-GRAAL
exposes a surprisingly large amount of common topology between
PPI networks to date. In particular, it uncovers that 77.7% of the
proteins in the yeast high-confidence PPI network are linked into a
connected subnetwork that is fully contained in the human high-
confidence PPI network. This is the first demonstration of the
existence of such a surprisingly large amount of shared topology
between species as distant as yeast and human. The biological
reasons for sharing this much topology could only be speculated at
the moment, including hypothesizing common structural principles
across eukaryotic life. Further, we verify that the protein pairs
aligned across species share biological function, which enables
us to use the alignments to transfer function from annotated to
unannotated parts of the aligned networks. In addition, we use our
network alignment scores to successfully reconstruct phylogeny
from PPI network topology only. This validates our alignment
algorithm and implicates that it could be used to reconstruct
phylogeny from the new source of biological information—PPI
network topology.

Aligning biological networks of different species is expected to
be a valuable tool in the future, since, as demonstrated above,
such alignments may lead to transfer of knowledge across networks
and potential discoveries in evolutionary biology. In the light
of forthcoming accumulation of huge amounts of biochemical
and other domain network data, network alignment methods
are expected to become increasingly valuable in improving our
understanding and control of not only biological but also social and
technological networks.
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