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Abstract This paper presents parallel solutions (developed based on two state-
of-the-art algorithms iSAX and sketch) for evaluating kNN (k nearest neighbor)
queries on large databases of time series, compares them based on various mea-
sures of quality and time performance, offers a tool that uses the characteristics
of application data to determine which algorithm to choose for that application
and how to set the parameters for that algorithm. Specifically, our experiments
show that: (i) iSAX and its derivatives perform best in both time and quality
when the time series can be characterized by a few low frequency Fourier Coeffi-
cients, a regime where the iSAX pruning approach works well. (ii) iSAX performs
significantly less well when high frequency Fourier Coefficients have much of the
energy of the time series. (iii) A random projection approach based on sketches
by contrast is more or less independent of the frequency power spectrum. The
experiments show the close relationship between pruning ratio and time for exact
iSAX as well as between pruning ratio and the quality of approximate iSAX. Our
toolkit analyzes typical time series of an application (i) to determine optimal seg-
ment sizes for iSAX and (ii) when to use Parallel Sketches instead of iSAX. Our
algorithms have been implemented using Spark, evaluated over a cluster of nodes,
and have been applied to both real and synthetic data. The results apply to any
databases of numerical sequences, whether or not they relate to time.
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1 Introduction

Nowadays people are able to monitor various indicators for their personal activities
(e.g., through smart-meters or smart-plugs for electricity or water consumption),
or professional activities (e.g., through the sensors installed on plants by farm-
ers). Sensor technology is also improving over time and the number of sensors is
increasing, e.g., in finance and seismic studies. This results in the production of
large and complex data, usually in the form of time series (or TS in short) [21,43,
53,36,37,16,39,33,29,32] that challenge knowledge discovery.

With such complex and massive sets of time series, fast and accurate similarity
search is critical to performing many data mining tasks like Shapelets, Motifs
Discovery, Classification or Clustering [36,31,56].

In order to improve the performance of such similarity queries, indexing [12,
34,10,11] has been successfully used in a variety of settings and applications [13,
45,2,48,6,54,23,30].

In this work, we focus on two distributed time series indexing methods of quite
different natures – a hash-based and a tree-based one.

The hash-based method ParSketch follows a locality-sensitive hashing (LSH)
strategy that uses a number of grid structures to hash similar items to the same
buckets with high probability. ParSketch processes a query time series by per-
forming a number of hash lookups to identify candidate neighbors, which are then
verified by explicit distance computation.

By contrast, the tree-based method DPiSAX builds an index tree using mul-
tiresolution symbolic representations of time series items, so that leaf nodes are
represented by high resolution symbols. Thus, candidate neighbors for a query are
found by traversing the tree down to the leaf node whose symbolic representation
is closest to the representation of the query.

The two methods are distributed, which allows us to examine their abilities to
scale to a large number of time series and operate in a distributed data processing
framework, such as Apache Spark. However, the different nature of the two meth-
ods leads to different partitioning approaches and method-specific parallelization
of the query processing.

The partitioning of DPiSAX uses the same multiresolution property as cen-
tralized iSAX and is based on representations of time series items at some basic
resolution. This means that a single query is first quickly routed to one of the
partitions using that basic resolution, where the rest of the search down the tree is
done locally at the partition. So, each query is performed serially, at one partition
of the index.

In ParSketch, the input dataset is simply split into disjoint subsets of equal
sizes, each assigned to a partition, where local grid structures are built. This
means that a single query is broadcast to all partitions, where candidate subsets
are searched locally. So, the processing of one query makes hash lookups in all
partitions of the index, but is done in parallel.

The major objective of both methods is to do fast approximate search with
high quality results. So, one of our goals is to evaluate the quality of the results
in relationship to the response time. Moreover, DPiSAX enables exact search as
a second step, where it uses the lower bounding properties of the symbolic repre-
sentation to prune candidates based on the current best-so-far neighbors.
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Our experiments show that these pruning capabilities are sensitive to the fre-
quency spectrum of the input dataset. DPiSAX pruning seems to be quite efficient
when energy is concentrated in the first few Fourier coefficients (which is the case
of random walks). Exact DPiSAX is slow (and approximate DPiSAX is inaccu-
rate) when energy is spread across the frequency spectrum (the extreme case of
which is white noise), yielding nearly all available time series as candidates.

By contrast, ParSketch is less sensitive to the energy distribution across Fourier
coefficients. This can be explained by the different dimensionality reduction tech-
niques used by the two methods: ParSketch is based on random projection, while
DPiSAX uses piecewise aggregate approximation (PAA) as a first step to reduce
dimensionality. If there are enough high frequency components, the time series will
oscillate substantially within a piece, but the approximation (which is based on
the mean within the piece) will not be sensitive to such oscillations.

This paper compares four parallel methods for solving nearest neighbor queries:
(i) parallel linear search in which we compare the query time series directly with
every time series in the database, (ii) Exact distributed iSAX (to be described
below), (iii) Approximate distributed iSAX, (iv) and the random sketch approach
ParSketch. Methods (ii, iii, and iv) all require indexes so perform best when there
are many queries against an unchanging database.

The rest of this paper is organized as follows. In Section 2, we define the
problem we address in the paper and present the related background. In Section 3
and Section 4, we describe the details of our parallel index construction and query
processing algorithms. Section 5 introduces our approach to suggest an indexing
method by analyzing the frequency characteristics of the time series. In Section 6,
we present a detailed experimental evaluation for comparing our approaches. In
Section 7, we discuss the related work. Finally, we conclude in 8.

In our previous papers [50,52,26,25,51] we describe parallel-based algorithms
to construct indexes and to provide similarity search on large sets of time se-
ries based on iSAX and Sketch techniques. This paper makes the following new
contributions:

– Compare these two state-of-the-art approaches (iSax and Sketches) in terms
of quality and time performance. This is the first time that such a comparison
is proposed in time series analysis.

– Provide a time series database frequency analysis method and draw recommen-
dations to choose the best approach based on this analysis. These approaches
behave differently depending on the data characteristics. No previous work
performs this analysis or helps data experts choose between these approaches.

The new material in this submission represents more than 40% of the paper
(when compared to the previously published papers). More precisely, the detailed
fundamental contributions of this journal submission not covered by the papers
listed above can be summarized as follows:

1. Section 5: A new analysis to choose the best indexing and querying approach
between DPiSAX and ParSketch based on the frequency spectrum analysis of
a sample of a given time series dataset. As a result, the paper introduces a
tool called BestNeighbor which estimates DPiSAX-friendliness as a metric to
suggest which indexing method to use.

2. Section 6: Experiments to back up the theoretical analysis of Section 5. In
particular, we performed the following experiments:



4 Oleksandra Levchenko et al.

(a) We studied the effect of frequency coefficients on the quality of the kNN
(k nearest neighbor) results (k=1, k=10) by DPiSAX and ParSketch for 10
synthetic and 5 real datasets (Section 6, Table 1).

(b) We studied the effect of iSAX PAA segments parametrization (varying word
length) on the quality of iSAX results, on various synthetic datasets with
different frequency characteristics to confirm claims in Section 5 (Section 6,
Table 2).

3. Section 6: Completely new experimental evaluation of performance of four kNN
search approaches: 1) ParSketch; 2) Exact version of DpiSAX; 3) Approximate
version of DPiSAX; 4) Parallel Linear Search (PLS). In order to provide an
unbiased comparison:

(a) all methods were implemented using the same tools (Scala and Spark) to
take full advantage from distributed computing environment;

(b) all the experiments were run in the same pre-deployed computing environ-
ment;

(c) all methods performances were evaluated on the same datasets (10 synthetic
and 5 real).

For each dataset and for each method, we measure the pruning ratio (when
available), the precision, and the response time in order to compare methods
in terms of quality and time performance (Section 6, Figures 6, 7, 8).

4. Text: Finally, we note that the rest of the paper also includes significant por-
tions of new material. In particular, Section 1 and Section 3.2 are new, while
Section 4.2 and Section 7 contain some new material and/or have been edited.

In summary, Section 1, Section 3.2, Section 5 and Section 6 contain original
material, never published before in any other conference or journal article. The
rest of the sections have been edited, but may repeat previously published material
with the purpose of making our current submission self-contained.

2 Problem Definition and Background

In this section, we define the problem we address.

2.1 Time series and kNN query

A time series X is a sequence of values X = {x1, ..., xn}. We assume that every
time series has a value at every timestamp t = 1, 2, ..., n. The length of X is
denoted by |X|. Figure 1a shows a time series of length 16, which will be used as
running example throughout this paper. (Note that while time series are our main
use case, any database and queries on sequences of numerical values can use the
tools described in this paper.)

Given two time series (or vectors) of real numbers, X = {x1, ..., xn} and Y =
{y1, ..., ym} such that n = m, the Euclidean distance between X and Y is defined
as [13]: ED(X,Y ) =

√∑n
i=1(xi − yi)2.

The Euclidean distance is one of the main similarity measurement methods
used in time series analysis. In this work, we assume that the distance between
the time series is measured by using the Euclidean function.
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The problem of similarity queries is one of the most important problems in
time series analysis and mining. We construe ”similarity” to mean finding the k
nearest neighbors (k-NN) of a query.

Definition 1 (Exact k nearest neighbors)
Given a query time seriesQ and a set of time seriesD, letR = ExactkNN(Q,D)

be the set of k nearest neighbors of Q from D. Let ED(X,Y ) be the Euclidean
distance between the points X and Y , then the set R is defined as follows:

(R ⊆ D) ∧ (|R| = k) ∧ (∀a ∈ R, ∀b ∈ (D −R), ED(a,Q) ≤ ED(b,Q))

Definition 2 (Approximate k nearest neighbors) Given a set of time series
D, a query time series Q, and ε > 0. We say that R = AppkNN(Q,D) is the
approximate k nearest neighbors of Q from D, if ED(a,Q) ≤ (1 + ε)ED(b,Q),
where a is the kth nearest neighbor from R and b is the true kth nearest neighbor.

3 Parallel iSAX-based kNN Search

In this section, we first describe the iSAX representation [44], and then present
DPiSAX, our parallel iSAX-based solution for kNN search over large time series
datasets.

3.1 iSax Representation

For very large time series databases, it is important to estimate the distance be-
tween two time series very quickly. There are several techniques, providing lower
bounds by segmenting time series. One popular method, is called indexable Sym-
bolic Aggregate approXimation (iSAX) representation [44,45]. The iSAX repre-
sentation is used to represent time series in our index.

The iSAX representation extends the SAX representation [28]. This latter rep-
resentation is based on the PAA representation [27] which allows for dimensionality
reduction while providing an important lower bounding property. The idea of PAA
is to have a fixed segment size, and minimize dimensionality by using the mean
values of each segment. Example 1 gives an illustration of PAA.

Example 1 Figure 1b shows the PAA representation of X, the time series of Figure
1a. The representation is composed of w = |X|/l values, where l is the segment
size. For each segment, the set of values is replaced with their mean. The length
of the final representation w is the number of segments (and, usually, w << |X|).

The SAX representation takes as input the reduced time series obtained using
PAA. It discretizes this representation into a predefined set of symbols, with a
given cardinality, where a symbol is a binary number. The cardinality of a symbol
is the number of possible distinct values it can take. Example 2 gives an illustration
of the SAX representation.

Example 2 In Figure 1c, we have converted the time series X to SAX representa-
tion with size 4, and cardinality 4 using the PAA representation shown in Figure
1b. We denote SAX(X) = [11, 10, 01, 01].
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Fig. 1: A time series X is discretized by obtaining a PAA representation and then using
predetermined break-points to map the PAA coefficients into SAX symbols. Here, the symbols
are given in binary notation, where 00 is the first symbol, 01 is the second symbol, etc. The
time series of Figure 1a in the representation of Figure 1d is [fourth, third, second, second]
(which becomes [11, 10, 01, 01] in binary). The representation of that time series in Figure
1c becomes [12, 12, 014, 02], where 1(2) means that 1 is the selected symbol among 2 possible
choices, 01 is the selected symbol among 4 possible choices, etc.

The iSAX representation uses a variable cardinality for each symbol of SAX
representation, each symbol is accompanied by a number that denotes its cardi-
nality. We defined the iSAX representation of time series X as iSAX(X) and we
call it the iSAX word of the time series X. For example, the iSAX word shown in
Figure 1d can be written as iSAX(X) = [12, 12, 014, 02].

The lower bounding approximation of the Euclidean distance for iSAX repre-
sentation iSAX(X) = {x′1, ..., x′w} and iSAX(Y ) = {y′1, ..., y′w} of two time series
X and Y is defined as [44]:

MINDIST (iSAX(X), iSAX(Y )) =
√

n
w

√√√√ w∑
i=1

(dist(x′i, y
′
i))

2

, where the function dist(x′i, y
′
i) is the distance between two iSAX symbols x′i and

y′i. The lower bounding condition is formulated as:

MINDIST (iSAX(X), iSAX(Y )) ≤ ED(X,Y )
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Fig. 2: Example of iSAX Index

Using a variable cardinality allows the iSAX representation to be indexable.
We can build a tree index as follows. Given a cardinality b, an iSAX word length w
and leaf capacity th, we produce a set of bw children for the root node, insert the
time series to their corresponding leaf, and gradually split the leaves by increasing
the cardinality by one character if the number of time series in a leaf node rises
above the given threshold th.

Example 3 Figure 2 illustrates an example of iSAX index, where each iSAX word
has 2 symbols and a maximum cardinality of 4. The root node has 22 children
while each child node forms a binary sub-tree. There are three types of nodes: root
node, internal node (N2, N5, N6, N7) and terminal node or leaf node (N3, N4,
N8, N9, N10, N11, N12, N13). Each leaf node links to a disk file that contains the
corresponding time series (up to th time series).

Note that previous studies have shown that the iSAX index is robust with
respect to the choice of parameters (word length, cardinality, leaf threshold) [45,
6,55]. Moreover, it can also be used to answer queries with the Dynamic Time
Warping (DTW) distance, through the use of the corresponding lower bounding
envelope [22].

3.2 DPiSAX

Here, we describe DPiSAX (Distributed Partitioned iSAX) [50], our parallel so-
lution for constructing a parallel iSAX-based index over large sets of time series
by making the most of the parallel environment and carefully distributing the
workload.

DPiSAX is based on a sampling phase that allows anticipating the distribution
of time series among the computing nodes. Such anticipation is mandatory for
efficient query processing, since it will allow, later on, to decide which partition
contains the time series that actually correspond to the query. DPiSAX splits the
full dataset for distribution into partitions using the partition table constructed
at the sampling stage. Then each worker builds an independent iSAX index on its
partition, with the iSAX representations having the highest possible cardinalities.
Alongside an efficient node splitting policy, it allows to preserve index tree’s load
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balance and to improve query performance, hence taking full advantage of time
series indexing in distributed environments.

3.2.1 Index construction

The index construction by DPiSAX proceeds in two steps.

– Partitioning. The first stage is done as follows. Given a desired number of
partitions P and a time series dataset D, the algorithm takes a sample S of
size L time series from D using stratified sampling, and emits its iSAX words
SWs = {iSAX(tsi), i = 1, ..., L}, initially assigned to a single partition. At
each iteration, DPiSAX divides the sample by splitting the biggest partition
into two sub-partitions, until the number of partitions reaches P , using the
same splitting policy, as defined for iSAX tree index construction. As a result,
the binary tree is converted to a partition table, where each leaf-node represents
a partition, described with its iSAX word, and will become a root node of each
sub-tree of the distributed index.

– Parallel sub-index creation. On the next stage, the input dataset D, is mapped
to iSAX representation DWs = {iSAX(tsi), i = 1, ..., N} with the highest
possible cardinalities of each symbol. Then, the database partitions are dis-
tributed among the available workers. Each worker builds locally its iSAX
index sub-tree on the given partition of time series and stores it on HDFS in
JSON format. Alongside, each leaf node (terminal node) is stored to HDFS as
a file with corresponding time series ids and their iSAX representations.

3.2.2 Query processing

Given a collection of queriesQ, in the form of time series, and the index constructed
in the previous section for a database D, we consider the problem of finding time
series in D that are similar to Q, according to the definitions of approximate k-NN
and exact k-NN searches:

– Approximate search: Given a batch of queries Q, DPiSAX approximate
search starts by obtaining the iSAX representations of all queries time series
using the highest possible cardinalities. The master identifies the target parti-
tion for each query by checking the query’s iSAX representation with the iSAX
word of each entry in the partition table and sends the query to the worker in
charge of the target partition. On each local index (sub-tree), the approximate
search is done by traversing the local index to the terminal node that has the
same iSAX representation as the query. The target terminal node contains at
least one and at most th iSAX words, where th is the leaf threshold.
On the next stage of search a parallel computation of the Euclidean distance is
performed in order to obtain the k nearest neighbors among all the candidates
for a queries in a batch, retrieved from terminal nodes.

– Exact search:
The exact search uses the approximate search result AKNN for a batch of
queries Q as best-so-far k nearest neighbors. This result is broadcast among
the workers in order to examine the index sub-trees that may contain the
time series that are probably more similar to Q than those of AKNN. The
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lower bound distance MINDIST is computed for each node on the sub-tree
to determine nodes with probable closer candidates. If the lower bound of a
node is already higher than the current best-so-far, the node and its sub-tree
are excluded from the search.
The k nearest neighbors are found by computing direct correlations on the
candidates subset for each query in parallel.

4 Parallel Sketch-based kNN Search

This section presents ParSketch, our sketch-based parallel solution for indexing
and similarity search over big time series datasets.

4.1 The Sketch Approach

The sketch approach, as developed by Kushilevitz et al. [24], Indyk et al. [17], and
Achlioptas [1], provides a very nice guarantee: with high probability a random
mapping taking b points in Rm to points in (Rd)2b+1 (the (2b+1)-fold cross-
product of Rd with itself) approximately preserves distances (with higher fidelity
the larger b is).

In our version of this idea, given a point (a time series or a window of a time
series) t ∈ Rm, we compute its dot product with N random vectors ri ∈ {1,−1}m.
This results in N inner products called the sketch (or random projection) of ti.
Specifically, sketch(ti) = (ti • r1, ti • r2, ..., ti • rN). We compute sketches for
t1, ..., tb using the same random vectors r1, ..., rN .

The theoretical underpinning for the utilization of sketches is given by the
Johnson-Lindenstrauss lemma [20].

Lemma 1 Given a collection C of m time series, for any two time series −→x ,−→y ∈
C, if ε < 1/2 and n =

9logm

ε2
, then

(1− ε) ≤ ‖
−→s (−→x )−−→s (−→y ) ‖2

‖ −→x −−→y ‖
≤ (1 + ε)

holds with probability 1/2, where −→s (−→x ) is the sketch of −→x of at least n dimensions.

The Johnson-Lindenstrauss lemma implies that the distance ‖sketch(ti) −
sketch(tj)‖ is a good appproximation of ‖ti − tj‖ provided the dimensionality
of the sketches (r) is large enough. Specifically, if ‖sketch(ti) − sketch(tj)‖ <
‖sketch(tk)− sketch(tm)‖, then it’s likely that ‖ti − tj‖ < ‖tk − tm‖, because
the ratio between the sketch distance and the real distance is close to one.

A sketch of a time series t is a vector of dot products: element i of the sketch is
the dot product between t and the ith random vector. Thus the full sketch contains
as many dot products as there are random vectors.

The data structure consists of a set of grids. Each grid maintains the sketch
values corresponding to the dot products between a specific set of random vectors
and all time series. Let |g| be the number of random vectors assigned to each grid,
and N be the total number of random vectors, then the total number of grids is
b = N/|g|. (We make sure that |g| divides N .)
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Fig. 3: Two series (s1 and s2) may be similar in some dimensions (here, illustrated by Grid1)
and dissimilar in other dimensions (Grid2). The higher the similarity between t1 and t2, the
larger the fraction of grids in which the series are close.

The distance between two time series in different grids may differ. We consider
two time series similar if they are similar in a given (large) fraction of grids.

Example 4 Let’s consider two time series t1=(2, 2, 5, 2, 6, 5) and t2=(2, 1, 6, 5, 5,
6). Suppose that we have generated four random vectors as follows : r1=(1, -1, 1,
-1, 1, 1), r2=(1, 1, 1, -1, -1, 1), r3=(-1, 1, 1, 1, -1, 1) and r4=(1, 1, 1, -1, 1, 1). Then
the sketches of t1 and t2, i.e. the inner products computed as described above, are
respectively s1=(14, 6, 6, 18) and s2=(13, 5, 11, 15). In this example, we create
two grids, Grid1 and Grid2, as depicted in figure 3. Grid1 is built according to the
sketches calculated with respect to vectors r1 and r2 (where t1 has sketch values
14 and 6 and t2 has sketch values 13 and 5). In other words, Grid1 captures the
values of the sketches of t1 and t2 on the first two dimensions (vectors). Grid2
is built according to vectors r3 and r4 (where t1 has sketch values 6 and 18 and
t2 has sketch values 11 and 15). Thus, Grid2 captures the values of the sketches
on the last two dimensions. We observe that t1 and t2 are close to one another in
Grid1. On the other hand, t1 and t2 are far apart in Grid2.

4.1.1 Partitioning Sketch Vectors

Multi-dimensional search structures don’t work well for more than four dimensions
in practice [42]. For this reason, as indicated in Example 4, we adopt a first algo-
rithmic framework that partitions each sketch vector into subvectors and builds
grid structures for the subvectors as follows:

– Partition each sketch vector s of size N into groups of some size |g|.
– The ith group of each sketch vector s is placed in the ith grid structure (of

dimension |g|).
– If two sketch vectors s and s′ are within distance c × d in more than a given

fraction f of the groups, then the corresponding time series are candidate
highly correlated time series and should be checked exactly.

For example, if each sketch vector is of length N = 40, we might partition each
one into ten groups of size |g| = 4. This would yield 10 grid structures, where time
series items are assigned to grid cells, so that close items are grouped in the same
grid cells. Suppose that the fraction f is 90%, then a time series t is considered as
similar to a database time series t′, if they are similar (assigned to the same cell)
in at least nine grids.
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Grid granularity can be adjusted to control the tradeoff between efficiency
and accuracy. Coarser grids have larger grid cells (i.e. more time series assigned
to the same cell), which leads to a larger number of candidates to process (slower
execution), but lower probability to miss a true positive (higher accuracy). The grid
granularity is defined through the parameter grid size that specifies the number
of cells per grid dimension. At the cell assignment step, grids are divided into cells
in a way that results in a uniform distribution of items across grid cells. This is
supported by a sampling phase that infers the distribution and defines the cell
borders along each dimension of each grid.

4.2 ParSketch

Our ParSketch solution takes full advantage of parallel data processing, both while
constructing indexes and querying them for time series similarity search.

4.2.1 Index construction

Time-series index construction on the input dataset D within distributed data
processing frameworks proceeds as follows:

1) A random transformation matrix R (composed of N random vectors) is
generated, where each element ri,j ∈ R is a random value in {1,−1}. This matrix
will be used to compute the sketch (of size N) of each time series t ∈ D, by
computing the dot product of t with R. Once generated, R is broadcast to all
worker nodes.

2) ParSketch strives to place an approximately equal number of time series
within each cell of each grid. The borders of these variable sized cells are defined
by a breakpoint table. This is done by sampling: ParSketch takes a sample S of size
L time series from the input dataset D. Based on random projection of S with
the random transformation matrix R, ParSketch defines the cell breakpoints BG

for each dimension at each grid G, considering the parameter grid size and the
distribution of values at each of theN sketch dimensions. The resulting breakpoints
table is also broadcast to worker nodes.

3) At the sketch computation stage the dot product of time series t, where
t ∈ D, with the random transformation matrix R results in a vector of much lower
dimension: sj = tj × R. The input dataset D is partitioned horizontally, so that
each time series t ∈ D is entirely handled at the same worker node. Then, at each
node, sketch vectors over D are built locally and then split into equal subvectors of
given size. Each subvector corresponds to a grid. Thus, each sketch is assigned to a
grid cell in each of the grids G using the breakpoints BG, defined at the sampling
stage.

4) We use a cluster of relational database instances, previously created and
distributed at the nodes, to persist the indexed time series. One database instance
stores the indexing of one partition of D into a relation with the structure (grid id,
cell id, t id), i.e., the cell assignment at each grid of a given time series t with
identifier t id. Thus, the entire contents of a particular cell in a particular grid is
spread across index nodes.
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4.2.2 Query processing

Given a collection of queries Q, in the form of distributed time series dataset, and
a previously constructed index on a dataset D, we consider the problem of finding
time series that are similar to Q in D. We perform such a search in the following
steps:

1) Similarly to the grid construction, at each node, sketches over Q are com-
puted in parallel, using the same random matrix R. Sketches are then split into
subvectors in parallel and assigned to grid cells at each grid G, using the same
breakpoints sequences BG. The resulting cell assignments of all queries are then
broadcast to worker nodes.

2) Each node checks the cell assignments of all queries against its partition of
the index. Then, the full list of candidates for each query is retrieved in parallel
by all worker nodes from their database instances. If a subvector of a query time
series q lands in the same grid cell as a database time series t, then t is a possible
match for q. Two time series (a query and a database one whose sketch is stored in
the grids) are considered to be similar if they are assigned to the same grid cell in
a large user-tunable fraction of grids. The candidates that meet these conditions
are filtered in a SELECT statement to each database, thus efficiently reducing
the data to be processed at early stages of the search. For instance, the entire
filtering of candidates for a given query q is pushed down to the databases and
done through the parallel execution of the aforementioned SELECT statement,
which selects all time series ti collocated with q in grid cells, then groups by ti
and counts, in order to finally emit those ti that are collocated with q in at least
the desired fraction f of grids.

3) Because sketching is approximate, each candidate match between a query
q and data vector t is checked by performing direct similarity computation. The
kNN results of a query q are the k candidates that have the highest similarity to
it.

5 Selecting the Best Indexing Approach based on Frequency
Coefficients

To choose the best indexing and querying approach between DPiSAX and ParS-
ketch for a given dataset, we have developed a tool called BestNeighbor. It makes
its decision based on the Fourier coefficients derived from the discrete Fourier
Transform of the data.

We start from the observation that the absolute value of the ith coefficient of
the discrete Fourier transform of a time series represents the amplitude of a wave
signal component whose full cycle repeats i times through the entire series (we
also refer to this signal as the ith frequency component). Intuitively (and in fact),
this relates to how the series should be divided into PAA segments for iSAX. In
particular, having fewer than i segments would fail to capture useful piecewise
summarization of the ith frequency component, because one PAA segment would
correspond to more than one full cycle of the component. However, there is a cost
to having too many segments because the iSAX data structure might then grow
significantly.
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Fig. 4: Two normalized time series of finance stock prices (and their PAA representations)
with substantial power at lower frequency components. The iSAX symbols corresponding to
these PAA values can distinguish different time series from one another.

Fig. 5: Two quite different time series (normalized) from the seismic dataset (and their PAA
representations) with substantial power at higher frequency components. The PAA values are
all close to 0, masking the differences.

Experiments back this up. DPiSAX performs extremely well in terms of both
quality and response time when the data resembles a random walk, even when
segment sizes are large, with most of the energy in the low Fourier coefficients.
One might call that the iSAX-friendly regime. As the energy spreads to higher
Fourier coefficients, iSAX pruning becomes less effective for large segment sizes,
leading to a higher time burden for exact iSAX and lower precision for approximate
iSAX. In those regimes, the sketch approach offers quite high precision (over 90%
across both simulated and real data sets) and a time performance far below that
of exact iSAX. That would be the iSAX-unfriendly regime.

For a given number of segments, the frequency composition of a dataset has a
big impact on performance. For example, Figure 4 shows two time series of stock
prices whose spectrum concentrates energy in the first 4 frequency components.
The PAA of the 8 segments take values from a quite wide range, which leads
to a good variety of iSAX representations of time series with similar spectral
characteristics. By contrast, the two seismic series on Figure 5 are characterized by
higher frequencies, up to 53. One can easily notice that the mean of each segment
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tends to be close to 0 (assuming z-normalization), which significantly restricts the
possible iSAX grammar for that class of time series. This inevitably leads to poor
pruning of candidates, as the iSAX representations of any two (even very distant)
time series tend to show significant similarity.

To analyze the frequency spectrum of a time series dataset D for iSAX-
friendliness, we use the following strategy:

1. Take a sample S of the input dataset D.
2. For each series t in S, apply the Fast Fourier Transform (FFT). The energy

distribution of t is a vector E(t) of energy components, where each element
Ei(t) is the square of the absolute value of the ith Fourier coefficient, i.e.
proportional to the energy of the ith frequency component.

3. The averages of each energy component over all series constitute the mean
energy distribution E(S) for the entire sample S, which we consider a good
enough approximation of the energy distribution E(D) of the input dataset D.

4. Sort E(D) in descending order and take the highest energy componentsHEC(D)
that hold p% of the total energy. The parameter p% is configurable by the
user. By default, it is set to 80%. The least and greatest frequency indexes
in HEC(D), lD and gD respectively, indicate the range of Fourier coefficients
that concentrates the majority of the energy.

Low values of gD, meaning that high frequencies do not have significant energy
impact, are generally favorable for iSAX. By contrast, when gD is greater than
the number of segments, the problem depicted at Figure 5 occurs. In such cases,
increasing the number of segments can help increase the diversity of iSAX symbols,
hence improve the pruning to some reasonable values.

Our experiments (detailed in the next section) on different synthetic datasets
with diverse bandwidths (gD), varying the number of iSAX segments, show that
the pruning ratio (the fraction of the dataset filtered out by approximate iSAX to
ease the exact search) stays close to zero until the number of segments reaches some
minseg(gD), where it seems to take off and start making iSAX exact search useful.
To approximate minseg(gD), we made a simple regression analysis of the results
from our measurements, arriving at the following formula (detailed explanations
presented in Section 6.3):

minseg(gD) =
(7gD − 20)

4

For a reasonable upper bound on the number of segments, we assessed the
pruning ratio, setting the number of segments to 2gD, inspired by the Nyquist
sampling rate, which by definition is twice the highest frequency of a signal (and,
as Nyquist showed, is high enough to reconstruct the signal). This generally leads
to a very good pruning, hence fast exact search. However, for higher values of gD,
this entails slow indexing and requires more space for storing the index, since the
size of the index structure grows with the number of segments. In such cases, the
user may choose a number of segments between minseg(gD) and 2gD, to optimize
the tradeoff between indexing time and exact search time.

BestNeighbor does a Fourier analysis of any dataset to determine where most
of the power is. If there is substantial power at least up to the 30th coefficient,
then the dataset is in an ”iSAX-unfriendly” regime, so using ParSketch instead
would be recommended. Otherwise, the tool outputs the recommended range of
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values for the number of segments that may lead to good iSAX indexing and exact
search times.

The BestNeighbor tool finds the highest energy components that concentrate
the bulk of the energy. In the current version of BestNeighbor and based on our
experiments, we set the parameter p% to 80%, i.e., to choose the components
that hold 80% of the total energy. This works well in our experiments. However, if
this default value is not appropriate for the user’s dataset, he/she can change the
parameter accordingly. Testing on samples of the data may help set this parameter,
though we suspect the default will work well.

The time complexity for the analysis of frequency spectrum is O(a ∗ b log b),
where a - size of input sample dataset, b - length of 1 time series from dataset. To
determine the type of dataset in terms of frequency composition and to get rec-
ommendations on which indexing algorithm to use, the BestNeighbor tool requires
relatively small input. In our experiments we used dataset samples of size up to
1000 time series (a ≤ 1000), 200-256 points each (b ≤ 256). Hence dataset analysis
time complexity will be insignificant in the full cycle of indexing large time series
data.

6 Performance Evaluation

In this section, we report experimental results for comparing the quality and the
performance of DPiSAX and ParSketch for indexing different time series datasets.

6.1 Setup

Our experiments were conducted on a cluster1 of 16 compute nodes each having
two 8 core Intel Xeon E5-2630 v3 CPUs, 128 GB RAM, 2x558GB capacity storage
per node. The cluster is running under Hadoop version 2.7, Spark v. 2.4 and
PostgreSQL v. 9.4 as a relational database system.

Compared approaches. We evaluate the performance of four kNN search
approaches: 1) ParSketch; 2) Exact version of DpiSAx; 3) Approximate version of
DPiSAX; 4) Parallel Linear Search (PLS), which is a parallel version of the UCR
Suite fast sequential search (with all applicable optimizations in our context: no
computation of square root, and early abandoning) [36].

We performed our performance evaluation using different synthetic and real
datasets.

Synthetic datasets. For the purpose of experimentation, we generated several
synthetic data sets:

1. Random Walk input dataset: whose sizes/volumes vary between 50 million
and 500 million time series each of size 256 time points. At each time point,
a random walk generator cumulatively adds to the value of the previous time
point a random number drawn from a Gaussian distribution N(0,1).

2. Random dataset: contains 200 million time series each again of length 256,
representing ”white noise”. Each point is randomly drawn from a Gaussian
distribution N(0,1).

1 http://www.grid5000.fr
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3. Fourier slice data of the form Fx,y. This is done by first generating the fre-
quency spectra of the time series and then applying an inverse Fourier trans-
form plus some additional white noise to generate the series themselves. The
spectrum generation assigns high amplitudes to x subsequent frequency com-
ponents, starting from the yth one, and low ones for the rest. Randomness is
applied to the phase shifts of all frequencies, so that the generated set of series
can enjoy a good variety. In our notation, when y is not explicitly specified,
y = 0 is assumed.

Real datasets. In our experiments, we used several real datasets representing
various domains such as seismology, finance, astronomy, neuroscience and image
processing.

1. The seismic dataset, Seismic, was obtained from the IRIS Seismic Data Access
archive [19]. It contains seismic instrument recording from thousands of stations
worldwide and consists of 40 million data series of 200 values each.

2. The two finance datasets, StockP and StockR, are based on historical finance
data downloaded using the Yahoo Finance API2 that contains end-of-day
quotes for over 40000 stock symbols for the period from Jan 2010 to Mar
2018. After preprocessing, the StockP dataset contains 72 million series of 200
end-of-day quotes. Each series represents a sub-period of 200 consecutive days
for a particular stock symbol. The StockR dataset contains the price returns
(fractional change of price from one day to another) of the quotes from StockP.

3. The astronomy dataset, Astro, represents celestial objects and was obtained
from [47]. The dataset consists of 104 million data series of size 256.

4. The neuroscience dataset, SALD, obtained from [40] represents MRI data,
including 209 million data series of size 128.

5. The image processing dataset, Deep1B, retrieved from [38], contains 279 million
Deep1B vectors of size 96 extracted from the last layers of a convolutional
neural network.

Measures. For each dataset and for each method (approximate iSAX, exact
iSAX, and ParSketch), we measure the pruning ratio (when available), the pre-
cision, and the time in seconds. Pruning is the fraction of the database that are
discarded by the iSAX index. Precision is defined to be correlation of the kth time
series found by a particular method divided by the kth closest time series found
by direct computation of correlation.

Queries. We evaluated the performance of the tested methods with three types
of query workloads, batches of 10, 100 and 1000 queries. In our experiments, the
default number of queries is 100.

6.2 Results

Using different synthetic datasets, Figures 6 and 7 show the query performance
results3 for different approaches while setting k to 1 and 10 respectively. In both fig-
ures, we see the query response time and precision of ParSketch, and exact/approximate

2 http://finance.yahoo.com
3 Indexing time responses are not reported here since they mainly depend on the cluster

size.
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Fig. 6: Synthetic datasets kNN=1 comparison. For the top-1 nearest neighbor query, the rela-
tive quality and time performance depends strongly on the dataset. When the lowest 5 Fourier
coefficients contain most of the energy of the time series iSAX pruning works very well so both
approximate iSAX gives high precision and exact iSAX is very fast. As the energy spreads to
higher Fourier coefficients, iSAX pruning deteriorates with the result that approximate iSAX
loses in precision and exact iSAX increases in time. Sketch time and precision stay about the
same for all frequency distributions, though also degrades slightly as higher Fourier coefficients
acquire more energy.
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Fig. 7: Synthetic datasets kNN=10 comparison. For the top-10 nearest neighbor query, the
results are qualitatively similar to those for top-1 queries: iSAX works well when most of the
power is in the lower Fourier coefficients, but less well when energy spreads to higher Fourier
coefficients. Sketch time and precision vary much less.
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Fig. 8: Comparison of Real Datasets: Stock Prices datasets (a random walk distribution
model) have most of their power in the first few coefficients. The other datasets have power
in multiple coefficients. For those cases, iSAX pruning works less well and so the quality of
approximate iSAX suffers and the time of exact iSAX increases. ParSketch is slower than
exact iSAX in the Random Walk dataset but is otherwise faster.

versions of DPiSAX. We can see, for instance, that on the Random Walk dataset,
DPiSAX approximate search is fast and takes 40 seconds (yellow bar) for a preci-
sion of 98% (green bar), while exact gives 100% precision (as expected for exact
search) and is nearly as fast (52 seconds) as the pruning (green bar) is high - 98%.

The query takes 78 seconds with parSketch, where the precision is 99.99%.
These numbers may be compared, for instance, with those reported for the Random
F5,4 dataset, where approximate takes 75 seconds for a precision of 94%, but exact
search with zero pruning increases in time significantly, to 1179 seconds.

For this dataset, parSketch returns result in 117 second for a precision of
99.85%.

Figure 8 shows the performance results using real datasets.

As shown, DPiSAX performance varies across the datasets. The stock price
dataset is like a random walk with most of the energy of its time series in the low
Fourier coefficients. For that dataset, approximate DPiSAX is fast (52 seconds,
orange bar) and quite accurate (94%, blue bar) and exact DPiSAX is almost as
fast (126 seconds) and perfectly accurate. This is not true for the other data sets.

We studied the effect of Fourier coefficients on the quality of the kNN results
by DPiSAX and ParSketch, in particular for k = 1 and k = 10. Table 1 shows the
results sorted in ascending order by gD that indicates the greatest of the Fourier
coefficients that concentrate the majority of the time series energy. These results
were measured through a setup with 8 PAA segments for the iSAX words. As
seen, low values of gD indicate that the data set will work well on iSAX (iSAX-
friendliness), because it returns high quality results with lower response time than
that of ParSketch.

As the number of high energy components increases, the iSAX pruning ratio
significantly decreases. The reason is that in the low frequency case, different time
series will acquire different PAA symbols. High frequencies within a PAA segment
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Table 1: Frequency analysis of all datasets (real and synthetic). The range
[lD..gD] specifies the slice of Fourier coefficients that collectively account for at
least 80% of the energy. iSAX pruning and quality of iSAX and sketches are dis-
played for both top-1 and top-10 nearest neighbors queries. The table is sorted by
gD, low values of which are favorable for efficient iSAX pruning and therefore the
quality of approximate iSAX, which is observed in both top-1 and top-10 cases.
Sketch quality is only slightly sensitive to the frequency characterization.
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R F1 256 [1..1] 0.793 0.975 0.999 0.785 0.969 0.999
Stock P 200 [1..4] 0.989 0.964 1.000 0.963 0.944 0.999
RW 256 [1..4] 0.988 0.984 1.000 0.979 0.974 1.000
R F5,0 256 [1..5] 0.942 0.979 0.999 0.926 0.964 0.989
R F5,2 256 [3..7] 0.508 0.968 0.999 0.413 0.940 0.998
R F5,4 256 [5..9] 0.000 0.946 0.998 0.000 0.900 0.998
R F10 256 [1..10] 0.361 0.907 0.995 0.124 0.806 0.989
R F5,8 256 [9..13] 0.000 0.950 0.999 0.000 0.905 0.998
R F20 256 [1..20] 0.000 0.777 0.974 0.000 0.669 0.959
Deep1B 96 [1..47] 0.077 0.895 0.998 0.041 0.842 0.995
R F50 256 [1..50] 0.000 0.676 0.941 0.000 0.565 0.921
SALD 128 [1..52] 0.000 0.898 0.994 0.004 0.807 0.989
Seismic 200 [5..53] 0.020 0.809 0.996 0.020 0.565 0.995
Stock R 200 [10..99] 0.022 0.637 0.933 0.000 0.493 0.921
Astro 256 [1..127] 0.004 0.654 0.946 0.002 0.535 0.921
RN 256 [1..127] 0.000 0.701 0.928 0.000 0.525 0.907
∗ R Fx,y - randomly generated dataset with x subsequent high amplitude fre-
quency components, starting from the yth one; RW - Random Walk; RN - Random
Noise.

are not captured within the mean calculation of the PAA calculation, so very
different time series will acquire the same PAA symbol. This reduces the efficiency
of the index.

Furthermore, we studied the effect of varying the iSAX word length w (number
of segments) on the quality of iSAX results, on various synthetic datasets with
different frequency characteristics. The results are presented in Table 2, where,
for each particular dataset D and its highest important Fourier coefficient gD,
the rows corresponding to w = minseg(gD) and w = 2gD are highlighted. The
findings show that pruning is ineffective when w < minseg(gD). Increasing w
helps improve the quality, which becomes particularly high when w reaches 2gD.
However, raising w to 60 or more makes the indexing very slow, even slower than
linear search for 100 queries. For this reason, we consider a dataset D to be in an
”iSAX-unfriendly” regime, if its highest frequency gD is greater than 30.

The first rows of the table show that iSAX pruning can be good even with
very few segments (as few as 2). However, too few segments may lead to parti-
tioning limitations that result in very few partitions, hence underexploiting the
parallelization capabilities of the index. This explains the large indexing times for
these cases. So, for efficient indexing, a minimum of 8 segments is recommended.

These results confirm our claims in Section 5, that:
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Table 2: iSAX PAA segments parametrization. We vary the number of segments
w for certain datasets and study the tradeoffs of DPiSAX performance in terms of
quality and time of index construction and query answering. The rows correspond-
ing to w = minseg(gD) and w = 2gD are highlighted. Based on these results, the
tool BestNeighbor (described in section 5) does an analysis of any given dataset
to determine if it is in an ”iSAX-friendly” regime. If so, the tool outputs a rec-
ommended range of values for the number of segments for a given dataset, which
corresponds to the highlighted rows in Table 2 (and could be used directly to tune
DPiSAX parameter --wordLength). That may lead to efficient iSAX indexing and
search time. If the dataset is determined to be ”iSAX-unfriendly” - the tool recom-
mends using ParSketch.
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Random Walk 4

2 6900 0.611(∗) 0.982 51 808

4 747 0.851(∗) 0.941 45 254

8 751 0.961(∗) 0.945 31 102
16 850 0.988 0.943 31 69
32 1117 0.994 0.927 28 30
48 1387 0.996 0.935 32 26
60 1548 0.996 0.930 28 26

Random F5.0 5

4 649 0.351(∗) 0.905 104 986

8 541 0.910(∗) 0.952 23 151
10 538 0.969 0.962 21 84

16 640 0.987(∗) 0.961 32 66
32 890 0.993 0.965 37 67
48 1157 0.994 0.962 37 65
60 1320 0.995 0.965 32 56

Random F5.2 7

4 824 0.000(∗) 0.856 179 1698

8 566 0.389(∗) 0.928 38 755
14 590 0.958 0.960 21 72

16 644 0.975(∗) 0.962 39 87
32 881 0.992 0.963 21 52
48 1137 0.994 0.966 21 49
60 1295 0.994 0.961 21 48

Random F5.4 9

4 936 0.000 0.843 204 1827

8 560 0.000(∗) 0.890 54 1179
11 594 0.315 0.933 34 808

16 838 0.890(∗) 0.959 24 174
18 654 0.954 0.966 37 112

32 825 0.990(∗) 0.967 27 62
48 1058 0.993 0.964 35 65
60 1308 0.995 0.965 21 47

Random F10 10

4 680 0.001 0.685 99 1519

8 548 0.094(∗) 0.778 28 1070
13 586 0.694 0.847 23 384

16 636 0.851(∗) 0.857 27 222
20 659 0.961 0.878 29 95

32 867 0.987(∗) 0.860 30 69
48 1131 0.993 0.869 26 56
60 1286 0.996 0.877 25 50

Random F5.8 13

4 630 0.000 0.845 1245 1715

8 762 0.000(∗) 0.904 43 1218

16 667 0.090(∗) 0.947 41 1073
18 713 0.406 0.950 38 723
26 789 0.944 0.964 40 137

32 890 0.979(∗) 0.965 30 78

Random F20 20

8 551 0.000 0.661 33 1180

16 624 0.002(∗) 0.743 43 1130

32 884 0.559(∗) 0.768 21 537
40 1017 0.816 0.769 21 248

48 1076 0.897(∗) 0.751 32 175

60 1213 0.950(∗) 0.751 37 114

Random F30 30

8 564 0.000 0.585 35 1162
16 676 0.000 0.68 23 1135

32 866 0.003(∗) 0.706 22 1119
48 1137 0.256 0.699 22 843

60 1289 0.590(∗) 0.697 24 497

(∗) Pruning ratio measures for particular combinations of gD and w that were used
as training examples for the regression model to define minseg(gD).
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1. low values of gD (meaning that high frequencies do not have significant impact)
are favorable for iSAX;

2. pruning is reasonable when the number of iSAX segments w is at leastminseg(gD);
3. setting w to 2gD leads to effective pruning;
4. iSAX exact search gets very expensive when gD > 30; in such cases, ParSketch

is recommended as a better approximate solution.

Readers interested in seeing more comparison results over different datasets
are invited to visit the following web page: http://imitates.gforge.inria.fr/.
In addition to performance results, the visitors can visually see randomly chosen
time series queries (up to 1000 for each dataset) and their k nearest neighbor time
series.

6.3 Defining minseg(gD)

As introduced in Section 5 and later validated through the experiments, for low
values of w, the pruning ratio stays equal or close to zero (i.e., no useful pruning
from the iSAX data structure). The result is that exact iSAX search resolves to a
linear search (comparing the query time series to each item in the database) with
the added overhead of pointlessly traversing the entire iSAX index tree to attempt
pruning. For this reason, we consider pruning to be “reasonable” if it filters out at
least a small fraction of the database. At some point as we increase w the pruning
ratio takes off.

The minseg(gD) formula helps determine the minimal number of segments
(word length) w for iSAX to achieve a reasonable pruning. To define the formula,
we first utilized an empirical approach to build a training set for a regression model
to approximate the pruning ratio as a function of gD (the greatest high energy
frequency of a dataset D) and w. Out of our collection of synthetic datasets, each
characterized by its gD, we took the measured pruning ratio for various w among
the values {2, 4, 8, 16, 32, 48, 60}.

For each particular dataset (and gD), we have selected a representative range
of w values that lead to a range of pruning ratios, i.e., keeping at most one training
example with zero pruning ratio and at most one with high pruning (≥ 0.95). The
training set is in fact a subset of Table 2, where the 24 training examples are
marked with (∗) in the “pruning ratio” column.

Then, we explored different setups for linear regression using the pruning ratio
as target and combinations of gD, w, 1

gD
, 1

w , gD

w , w
gD

as features. The most signif-

icant regression coefficients were attributed to the features 1
w and gD

w . The linear

regression on those features showed the satisfactory R2 score of 0.85, leading to
the following approximation of pruning ratio Papprox (coefficients rounded to 1
decimal place for simplicity):

Papprox = 3.4
1

w
− 1.2

gD
w

+ 1.2

Further, we aim at finding a threshold C, such that Papprox ≥ C holds for
all training examples, for which the measured pruning ratio is “reasonable”, and
does not hold for those where the pruning ratio is “close to zero”. We determined

http://imitates.gforge.inria.fr/
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that when C = 0.5, this condition is satisfied. Solving the inequality Papprox ≥ 0.5
leads to w ≥ minseg(gD), where:

minseg(gD) = 1.75gD − 5

After defining minseg(gD) as above (note that 2.0gD would be the Nyquist
rate), we measured the iSAX pruning for all datasets, setting the number of seg-
ments to minseg(gD) and 2.0gD, as shown in Table 2.

7 Related Work

In the context of time series data mining, several techniques have been developed
and applied to time series data, e.g., clustering, classification, outlier detection,
pattern identification, motif discovery, and others. The idea of indexing time se-
ries is relevant to all these techniques. Note that, even though several databases
have been developed for the management of time series (such as Informix Time
Series, InfluxDB, OpenTSDB, and DalmatinerDB based on RIAK), they do not
include similarity search indexes, focusing instead on (temporal) SQL-like query
workloads. Thus, they cannot efficiently support similarity search queries, which
is the focus of our study.

Indexes often make the response time of lookup operations sublinear in the
database size. Relational systems have mostly been supported by hash structures,
B-trees, and multidimensional structures such as R-trees, with bit vectors playing
a supporting role. Such structures work well for lookups, but only adequately for
similarity queries. The problem of indexing time series using centralized solutions
has been widely studied in the literature, e.g., [3,4,14,46,7]. For instance, in [3],
Assent et al. propose the TS-tree (time series tree), an index structure for efficient
retrieval and similarity search over time series. The TS-tree provides compact
summaries of subtrees, thus reducing the search space very effectively. To ensure
high fanout, which in turn results in small and efficient trees, index entries are
quantized and dimensionally reduced.

In [4], Cai et al. use Chebyshev polynomials as a basis for dealing with the
problem of approximating and indexing d-dimensional trajectories and time series.
They show that the Euclidean distance between two d-dimensional trajectories is
lower bounded by the weighted Euclidean distance between the two vectors of
Chebyshev coefficients, and use this fact to create their index.

In [14], Faloutsos et al. use R*-trees to locate multi dimensional sequences in a
collection of time series. The idea is to map a large time series sequence into a set
of multi-dimensional rectangles, and then index the rectangles using an R*-tree.
Our work is able to use the simplest possible multi-dimensional structure, the grid
structure, because our problem is simpler as we will see.

7.1 iSAX-based Indexes

In [46], Shieh and Keogh propose a multiresolution symbolic representation called
indexable Symbolic Aggregate approXimation (iSAX) which is based on the SAX
representation. The advantage of iSAX over SAX is that it allows the comparison
of words with different cardinalities, and even different cardinalities within a single



BestNeighbor: Efficient Evaluation of kNN Queries on Large Time Series Data 23

word. iSAX can be used to create efficient indices over very large databases. Several
works have then built upon the iSAX representation, including iSAX2+ [5,6],
Adaptive Data Series Index (ADS+) [54,55], Compact and Contiguous Sequence
Infrastructure (Coconut) [23], Parallel Index for Sequences (ParIS) [35], and Ultra
Compact Index for Variable-Length Similarity Search (ULISSE) [30]. A recent
study is comparing the performance of several different time series indexes [10].

The iSAX2+ index [6] was specifically designed for very large collections of
time series, proposing new mechanisms and corresponding algorithms for efficient
bulk loading and node splitting. The authors described algorithms for efficient
handling of the raw time series data during the bulk loading process, by using
a technique that uses main memory buffers to group and route similar time se-
ries together down the tree, performing the insertion in a lazy manner. In [54],
instead of building the complete iSAX2+ index over the complete dataset and
querying only later, Zoumpatianos et al. propose to adaptively build parts of the
index, only for the parts of the data on which the users issue queries. Coconut [23]
proposed a compact and contiguous data layout that is based on sortable iSAX
representations, while ULISSE [30] focused on the problem of supporting simi-
larity search queries on sequences of variable-length. All these indexes have been
developed for a centralized environment, and cannot scale up to very high volumes
of time series. The ParIS index [35] was recently proposed for taking advantage of
the modern hardware parallelization opportunities within a single compute node.
ParIS describes techniques that use the Single Instruction Multiple Data (SIMD)
instructions, as well as the multi-core and multi-socket architectures, for paral-
lel index creation and query answering. As such, ParIS is complementary to our
DPiSAX approach.

7.2 Sketch-based Solutions

Our sketch-based method takes advantage of random vectors. The basic idea is to
multiply each time series (or in a sliding window context, each window of a time
series) with a set of random vectors. The result of that operation is a sketch for
each time series consisting of the distance (or similarity) of the time series to each
random vector. Then two time series can be compared by comparing sketches.

Note that the sketch approach we advocate is a kind of Locality Sensitive
Hashing [15], by which similar items are hashed to the same buckets with high
probability. In particular, the sketch approach is similar in spirit to SimHash [8],
in which the vectors of data items are hashed based on their angles with random
vectors.

Random projection has been widely used in the literature for dimensionality re-
duction. For example, in [41], Schneider et al. propose scalable density-based clus-
tering algorithms using random projections. Their clustering algorithms achieve
significant speedup compared to equivalent density-based techniques, with good
clustering quality in Euclidean space. Wilkinson et al. [49] introduce a classifier
designed to address the curse of dimensionality and exponential complexity by
using random projections. Their classifier organizes a set of random projections
into a decision list used for scoring new data points.

In [18], random projection is used for discovering representative trends over
time series, e.g., finding average trend that is the subsequence whose total dis-
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tance to all other subsequences is the smallest. The authors propose approximate
algorithms that work on a pool of sketches made from the original time series. In
[9], Dasgupta takes advantage of random projections for learning high-dimensional
Gaussian mixture models. He proposes an efficient algorithm that returns with high
probability the true centers of the Gaussians, given a precision threshold specified
by the user.

In ParSketch, we use random projection for creating an efficient index over large
time series datasets. We parallelize the sketch approach both at index creation time
and at query processing time. Experiments show excellent and nearly linear gains
in performance.

On the whole, the main limitation of the existing solutions in the literature is
that they do not scale to very big databases containing billions of time series. For
example, with the state of the art iSax-based solution [5], indexing a database of
one billion time series takes several days, while our parallel solutions allow us to
index it in some hours.

8 Conclusions

We have studied the performance and quality characteristics of the two state-of-
the-art distributed methods for indexing massive time series databases, DPiSAX
and ParSketch. DPiSAX excels when most of the energy in a database of time
series lies in the low order Fourier coefficients. Otherwise, the DPiSAX pruning
ratio suffers and therefore both accuracy of approximate DPiSAX and time for
exact DPiSAX. In that case, ParSketch exhibits much better accuracy, thanks
to its insensitivity to energy distribution across Fourier coefficients. These results
hold across simulated and real datasets.

We have introduced a utility that estimates DPiSAX-friendliness based on a
Fourier analysis of a sample of a given time series database to suggest an indexing
method to use.

For purposes of reproducibility, our datasets and code (including for the ran-
dom generators) are available here: http://imitates.gforge.inria.fr/code.

html.
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