BANJO


When to use:

BANJO and other Bayesian approaches perform best when there is a large amount of data: hundreds of genes by thousands of time points.  Conversely, they may not be able to accurately infer a network from small datasets of only a few time points. That is, Bayesian approaches require more data than their mutual information or regression based counterparts. Use BANJO when you have data over many time points.
What it does:


Bayesian Network Inference with Java Objects (BANJO) \cite{Yu:2004te} infers edges networks that can be modeled as a first-order Markov process.  This means that each gene’s expression can be predicted by some combination of the expression values of its parents and itself at the previous time point.  No assumptions are made about linearity or non-linearity.  The Markov processes work on discretized values, so the algorithm is sensitive to how many bins the expression values are discretized in to.


The basic approach of BANJO is to search through all possible networks, looking for the network with the best score.  Of course, for any non-trivial dataset, we can’t actually look at all possible network combinations, so various search strategies are used: greedy, simulated annealing, and genetic algorithms.  The scoring is done using one of two metrics: Bayesian Dirichlet Equivalence (BDE) \cite{Heckerman:1995ut} or Bayesian Information Criterion (BIC) \cite{Schwarz:1978uv}.  The greedy search algorithm and the Bayesian Dirichlet equivalence scoring method were found to work best for gene networks in \cite{Yu:2004te}.  

In the \cite{Yu:2004te} report, all three search algorithms found the best network for the test datasets, but the greedy algorithm found it substantially faster than simulated annealing or genetic algorithms.  Both Bayesian Dirichlet Equivalence and Bayesian Information Criterion worked well as scoring measures for large datasets (hundreds of genes and thousands of time points), but for small datasets Bayesian Dirichlet equivalence was able to score the networks more accurately than Bayesian Information Criterion.  BANJO also uses an influence score to guess the directionality of the edges.

The Data


BANJO uses time-series data to infer networks.  Since Bayesian approaches to gene network inference typically suffer from lack of data, BANJO attempts to augment the time-series dataset using linear interpolation.  It was found in \cite{Yu:2004te} that interpolating one time point between observed time points helped the scoring methods BANJO uses.  BANJO is capable (and in fact, seems to work best) when the dataset is huge: hundreds of genes and thousands of time points.  
The Strategy


For this description of BANJO’s strategy, we’ll use the combination of algorithms that worked best in \cite{Yu:2004te}: greedy search algorithm with Bayesian Dirichlet Equivalence (BDE) scoring.  The greedy search algorithm works by first selecting a random network as its starting point. Call that its current network.  The algorithm then evaluates all neighbors to that network according to its BDE score, where a neighbor is the current network with one edge added or removed.  The neighboring network with the best score is then declared current, the BDE scores for all of its neighbors calculated, and the network with the highest BDE is selected.  This process continues until none of the neighbors have a BDE score higher than the currently selected network.  Because greedy algorithms tend to get stuck in local maxima, random restarts are required.  This means that the greedy search starts all over again from a new random network.  Yu, et al. perform 100 random restarts.  Once the highest ranking network has been selected, an influence score is generated for each edge.  This is done in order to predict sign and relative magnitude of the network’s edges.


The data are discretized into three bins prior to any calculations.  This is to help simplify the problem because of the relatively small amount of data available.  \cite{Yu:2004te} found through experiment that three bins seemed to be the optimal tradeoff between accuracy and the amount of data required.


The BDE measure is based on using the Dirichlet distribution as a Bayesian prior.  The Dirichlet distribution is the multivariate generalization of the beta distribution.  The BDE is calculated by solving for the log of the marginal likelihood \[P(D|G)] where \[D] is the data and \[G] is the network graph.  To do this, we integrate over all possible parameter assignments \[\Theta]:

\begin{equation}


log P(D|G) = log \int_\Theta P(D|G,\Theta) P(\Theta|G) d\Theta

\end{equation}

This integral is solvable if we assume that the prior \[P(\Theta|G)] has a Dirichlet distribution.  There are two intuitive measures to this score that make it attractive for scoring gene networks.  The first is that the scores are better when a parent is better at predicting a child.  The second is that this score penalizes complexity: the higher the number of parents that a child has, the lower the score. \cite{Yu:2004te}


The influence score proposed by \cite{Yu:2004te} is based on comparing the expression values of a gene to that of its children.  If it tends to be high when its children are high, and low when its children are low, it is an activator.  If it tends to be high when its children are low, and low when its children are high, then it is a repressor.


First, a table of cumulative density function (CDF) values is built from \[\Theta_{ijk}] where \[\Theta_{ijk}] is the probability that gene \[X_i] is in expression state \[k] when its parents are in expression state configuration \[j].  The expression state configuration is the combination of discretized expression values for all of the parents of some gene.  For example, if gene \[g] has 3 parents, and the expression values have been discretized into \[k=3] states, then a possible configuration \[j] is when parent \[p1] is in state 0, \[p2] is in state 1, and \[p3] is in 1.  For 3 parents when \[k=3], there are 27 
possible combinations, so \[j] is a number between 0 and 26.  The CDF value \[c_{ijk}] is the probability that a child node \[X_{ijk}] is in state \[k] or lower when its parents are in configuration \[j].

\begin{equation}


c_{ijk} = \sum^k_{k’=0} \Theta_{ijk’}

\end{equation}


The intuition here is that if the parent is an activator, the CDF value should shift in the positive direction as the value of the parent increases.  The reason is that if the parent is an activator, then the child gene’s expression value should rise and fall with the parent.  However, if the parent is a repressor, than the CDF value should shift in the negative direction as the value of the parent increases.


To figure out the direction of an edge in the case of a child gene having multiple parents, a voting system is used.  For each parent gene \[p] of some gene \[g], to determine whether \[p] is active or repressive, all other parents of \[g] are held at fixed states. This result counts as one vote.  When this is complete, one of the frozen parents will have its state shifted by one, and the algorithm recalculates how \[p] affects the child \[g].  This continues until all combinations of the frozen parents genes have been tested, and the votes from each combination are tallied.  If the votes are all positive or positive and neutral, the gene is marked as an activator of the child.  If the votes are all negative or negative and neutral, the gene is marked a repressor of the child.  If the votes are a combination of positive and negative, then no inference on the directionality of the edge can be made and the influence score is set to 0.


Finally, the magnitude of each parent gene’s influence score is calculated by subtracting its highest and lowest CDF value for the child.  The difference is then divided by the total number of votes so the score becomes scaled between −1 and 1.  Values closer to one indicate a stronger activation, and values closer to −1 indicate a stronger repression.  When the influence score is near 0, the direction of influence is indeterminate.
	Parameter Name
	What it does
	Default value

	Search type: greedy, simulated annealing, genetic algorithm
	Selects with algorithm to use to select with networks to score.
	\cite{Yu:2004te} found that greedy works best with gene networks.

	
	
	

	Scoring Measure: Bayesian Dirichlet Equivalence (BDE), Bayesian Information Criterion (BIC)
	Selects which method to use for scoring a particular network.
	BDE seem to work best with gene networks.  BIC requires larger amounts of data.

	
	
	

	Number of bins \[k]
	The number of bins that the data are split in to.  Algorithm is very sensitive to this parameter.
	3

	
	
	

	Number of interpolation points 
	How many points should be interpolated between observed data points?
	1


Examples:

----------------------------------------------------------------------------------------------------------

First, expression values are discretized into three levels: low, medium, and high (\[k = 0, 1, 2], respectively).

The integral can then be given in the form:

\begin{equation}


log P(D|G) = log \left( \prod^n_{i=1} \prod^{q_i}_{j=1} \left{ \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij}) \prod^{r_i}_{k=1} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})} \right}

\end{equation}

where \[n] is the number of variables \[x]_i in 

- Uses BDe, not BIC

- Uses greedy

- Interpolation of 1 point helps
�[You might want to give a reference. Also if any of this is a direct quote, please be sure to note that.]�





I’ve added the reference to Yu, as they discuss it briefly in that paper.  None of it is a direct quote.


�Ah, you’re right.  I forgot k=3 not 2 here (





